线、角、三角形复习题
八年级数学 三角形 专题复习50道(含答案)
八年级数学三角形专题复习50道一、选择题:1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.3或4或5或63.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米5.如图,在五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的邻补角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.按照定义,三角形的角平分线(或中线、或高)应是()A.射线B.线段C.直线D.射线或线段或直线7.如图中有四条互相不平行的直线L.L2.L3.L4所截出的七个角.关于这七个角的度数关系,下列1何者正确( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°8.三角形三条高的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部.D.三角形的内部、外部或顶点9.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC一条角平分线,则∠CAD度数为( )A.40° B.45° C.50° D.55°10.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0B.0<a<4C.4<a<8D.0<a<811.如图,在△ABC中,∠A=,角平分线BE.CF相交于点O,则∠BOC=( )A.90°+B.90°-C.180°+D.180°-12.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3.5cmB.4cm,5cm,9cmC.5cm,8cm,15cmD.6cm,8cm, 9cm13.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒B.20cm的木棒;C.50cm的木棒D.60cm的木棒14.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°15.如图,直角△ADB中,∠D=90°,C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是(A)10 (B)20 (C)30 (D)4016.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°17.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S=4cm2,则S△ABC的值为△BEF()A.1cm2B.2cm2C.8cm2D.16cm218.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=()A.a+b+c B.﹣a+3b﹣c C.a+b﹣c D.2b﹣2c19.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个B.3个C.4个D.5个20.已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或10二、填空题:21.若等腰三角形的周长为21,其中两边之差为3,则各边长分别为。
中考数学复习专题17:三角形及其性质(含中考真题)
专题17 三角形及其性质☞解读考点知识点名师点晴三角形的重要线段中线、角平分线、高线理解三角形有关的中线、角平分线、高线,并会作三角形的中线、角平分线、高线三角形的中位线理解并掌握三角形的中位线的性质三角形的三边关系两边之和大于第三边,两边之差小于第三边理解三角形的三边关系,并能确定三角形第三边的取值范围三角形的内角和定理三角形的内角和等于180°掌握三角形的内角和定理,并会证明三角形的内角和定理三角形的外角三角形的外角的性质能利用三角形的外角进行角的有关计算与证明☞2年中考【题组】1.(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.2.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D .考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是( )A .5,6,10B .5,6,11C .3,4,8D .4a ,4a ,8a (a >0) 【答案】A . 【解析】试题分析:A .∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确; B .∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误; C .∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误; D .∵4a+4a=8a ,∴三条线段不能构成三角形,故本选项错误. 故选A .考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( ) A .9 B .12 C . 7或9 D .9或12 【答案】B . 【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12; 当腰长为2时,根据三角形三边关系可知此情况不成立; 所以这个三角形的周长是12. 故选B .考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 【答案】B .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A .118°B .119°C .120°D .121° 【答案】C . 【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE ,CD 是∠B 、∠C 的平分线,∴∠CBE=21∠ABC ,∠BCD=21∠BCA ,∴∠CBE+∠BCD=21(∠ABC+∠BCA )=60°,∴∠BFC=180°﹣60°=120°,故选C . 考点:三角形内角和定理.8.(广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或10 【答案】B .考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的( ) A .内心 B .外心 C .中心 D .重心 【答案】D . 【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D . 考点:三角形的重心.10.(百色)下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形 【答案】A . 【解析】试题分析:∵三角形具有稳定性,∴A 正确,B .C 、D 错误.故选A .考点:三角形的稳定性.11.(百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .6 【答案】B . 【解析】试题分析:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ,b=212S ,c=2S h ,又∵a ﹣b <c <a+b ,∴22222412412S S S S Sh -<<+,即2233S S Sh <<,解得3<h <6,∴h=4或h=5,故选B .考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .【答案】D .考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是( )A .正方形B .矩形C .平行四边形D .直角三角形 【答案】D . 【解析】试题分析:直角三角形具有稳定性.故选D . 考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 【答案】A . 【解析】试题分析:为△ABC 中BC 边上的高的是A 选项.故选A . 考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A.17 B .16 C.15 D.14【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB ∥CD ,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB ∥CD ,AD 与BC 交于点E .若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是 .【答案】1<c <5. 【解析】试题分析:由题意得,290a -=,20b -=,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c <5.故答案为:1<c <5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根. 20.(南充)如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A=80°,∠B=40°,则∠ACE 的大小是 度.【答案】60. 【解析】试题分析:∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE 平分∠ACD ,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有 个. 【答案】10. 【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10. 考点:三角形三边关系.22.(广东省)如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若ABC 12S =△,则图中阴影部分的面积是 .【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .【答案】5. 【解析】试题分析:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE=22BC CE +=2243+=5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=43,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】53 2.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的中线,BD 与CE 相交于点O ,则OBOD = .【答案】2. 【解析】试题分析:∵△ABC 的中线BD 、CE 相交于点O ,∴点O 是△ABC 的重心,∴OBOD =2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A ⊥l2,A 为垂足,C2,C3是l1上任意两点,点B 在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简2221432a a a a a a +⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【答案】13a -,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.n 3 4 5 6m 1 0 1 1【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=12∠ABC=12×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=12(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=12(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB=4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=12∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A. 120° B. 135° C. 150° D. 180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A55255225105【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵55,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=55BEAB,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】1 5.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5两种,故取出的三条线段为边能构成钝角三角形的概率是21105 . 考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC 中,∠A=40°,剪去∠A 后成四边形,则∠1+∠2= 度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An 在射线OA 上,点B1,B2,B3,…,Bn ﹣1在射线OB 上,且A1B1∥A2B2∥A3B3∥…∥An ﹣1Bn ﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn ﹣1,△A1A2B1,△A2A3B2,…,△An ﹣1AnBn ﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】12;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知2132A B A B =212323A B B A B B S S=12,2233A B A B =212323A B B A B B SS=12,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
三角形复习题
B C 七年级〔下〕第七章《三角形》复习学校 班级 学号 [一] 认识三角形1.三角形有关定义:在图9.1.3〔1〕中画着一个三角形ABC .三角形的顶点采用大写字母A 、B 、C 或K 、L 、M 等表示,整个三角形表示为△ABC 或△KLM 〔参照顶点的字母〕.如图9.1.3〔2〕所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB ;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD 是与△ABC 的内角∠ACB 相邻的外角.图9.1.3〔2〕指明了△ABC 的主要成分.图9.1.32.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形; 有一个内角是钝角――钝角三角形;3三角形可以按角边分类:.把三条边都相等的三角形称为等边三角形〔或正三角形〕;两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;. 练习:1、图中共有〔 〕个三角形。
A :5B :6C :7D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是〔 〕A :AE B :CD C :BF D :AF3、三角形一边上的高〔 〕。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是〔 〕。
A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 6、具备以下条件的三角形中,不是直角三角形的是〔 〕。
A :∠A+∠B=∠CB :∠A=∠B=12∠C C :∠A=90°-∠B D :∠A-∠7、一个三角形最多有 个直角,有 个钝角,有 个锐角。
8、△ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 , 则a= cm , b= cm , c= cm 。
9、如图,AB∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?图9.1.4CD AC10 、如图,在4×4的方格中,以AB为一边,以小正方形的顶点为顶点,画出符合以下条件的三角形,并把相应的三角形用字母表示出来。
2022-2023学年人教版八年级数学上册《第11章 三角形》期末综合复习题(附答案)
2022-2023学年人教版八年级数学上册《第11章三角形》期末综合复习题(附答案)一.选择题(共9小题)1.若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.92.图中三角形的个数是()A.8B.9C.10D.113.如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°4.下列图中具有稳定性的是()A.B.C.D.5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.两条直线被第三条直线所截,内错角相等D.平行于同一直线的两条直线互相平行6.四边形的内角和为()A.180°B.360°C.540°D.720°7.现有长度分别为20cm,30cm的两根木条,从下面四根木条中选取一根,首尾相接能连成一个三角形木架,则应选取的是()A.10cm B.20cm C.50cm D.60cm8.已知直角三角形的一个锐角为25°,则它的另一个锐角的度数为()A.25°B.65°C.75°D.不能确定9.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°二.填空题10.在△ABC中,∠A=52°,∠B=102°,则∠C=.11.正五边形的内角和为°,外角和为°.12.如图,有下列结论:①∠A>∠ACD;②∠B+∠ACB=180°﹣∠A;③∠A+∠ACB<180°;④∠HEC>∠B.其中,正确的是(填上你认为正确的所有的序号).13.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =.14.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.15.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=.三.解答题16.如图,AD是△ABC的角平分线,∠1=∠2,∠3=∠4,IE⊥BC于点E,(1)若∠ABC=40°,∠ACB=80°,则∠5=,∠6=.(2)猜想∠5、∠6的数量关系是:.(3)请对你的猜想进行证明.17.四边形ABCD中,∠A=140°,∠D=80度.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.18.已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.(1)求∠2的度数;(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.19.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,则∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)根据①中的计算结果写出∠A与∠A1之间等量关系;(3)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A6与∠A的数量关系;(4)如图,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.20.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.参考答案一.选择题1.解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.2.解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选:B.3.解:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选:C.4.解:因为三角形具有稳定性,而只有C是全部由三角形结构组成.故选C.5.解:A、三角形的中线、角平分线、高线都是线段说法正确,故此选项不符合要求;B、任意三角形的外角和都是360°说法正确,故此选项不符合要求;C、两条直线被第三条直线所截,只有两直线平行时,内错角才能相等,此说法错误,故此选项符合要求;D、平行于同一直线的两条直线互相平行,说法正确,故此选项不符合要求;故选:C.6.解:四边形的内角和=(4﹣2)•180°=360°.故选:B.7.解:设第三根木条的长为lcm,∵△的另外两边分别为20cm,30cm,∴30cm﹣20cm<l<20cm+30cm,即10cm<l<50cm.∴四个选项中只有B符合题意.故选:B.8.解:∵直角三角形的两个锐角互余,而一个锐角为25°,∴另一个锐角的度数为90°﹣25°=65°.故选:B.9.解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.二.填空题10.解:∵∠A=52°,∠B=102°,∴∠C=180°﹣∠A﹣∠B=180°﹣52°﹣102°=26°.故答案为26°.11.解:∵n边形的内角和公式(n﹣2)•180°,∴正五边形的内角和为(5﹣2)•180°=540°,外角和为360°,故答案为540°;360°.12.解:①∠A<∠ACD,故①错误;②∠B+∠ACB=180°﹣∠A,故②正确;③∠A+∠ACB<180°,故③正确;④∠HEC=∠AED>∠ACD>∠B,则∠HEC>∠B,故④正确.故答案为:②③④.13.解:∵∠ACD=∠A+∠B,∠A=80°,∠ACD=150°,∴∠B=70°.故答案为:70°.14.解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是n•(n+2)=n2+2n故答案为:n2+2n.15.解:如图,连接AO并延长,∵∠A=80°,∠1=15°,∠2=40°,∴∠BOC=∠A+∠1+∠2,=80°+15°+40°,=135°.故答案为:135°.三.解答题16.解:(1)∵∠ABC=40°,∠ACB=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵AD是△ABC的角平分线,∠1=∠2,∠3=∠4,∴∠5=∠1+∠BAD=20°+30°=50°,同理可得∠6=50°,故答案为:50°,50°;(2)猜想∠5=∠6;(3)证明:∵∠5=∠BAD+∠1=(∠A+∠B)=(180°﹣∠C)=90°﹣∠C,∠6=90°﹣∠3=90°﹣∠C,∴∠5=∠6.17.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C,所以∠B=∠C=.(2)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.或解:∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣140°=40°,又∵BE平分∠ABC,∴∠ABC=2∠ABE=80°,∴∠C=360°﹣∠ABC﹣∠A﹣∠D=60°.(3)∵∠A+∠ABC+∠BCD+∠D=360°,∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.∵∠EBC=∠ABC,∠BCE=∠BCD,∴∠E=180﹣∠EBC﹣∠BCE=180°﹣(∠ABC+∠BCD)=180°﹣×140°=110°.18.解:(1)∵∠1=∠C,∠2=2∠3,∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3,∵∠BAC+∠2+∠C=180°,即70°+2∠3+3∠3=180°,∴∠3=22°,∴∠2=2∠3=44°;(2)AE⊥BC,∵∠DAC=∠BAC﹣∠3=70°﹣22°=48°,又∵AE平分∠DAC,∴∠DAE=∠DAC=24°∴∠1=3∠3=66°,∴∠AED=180﹣∠1﹣∠DAE=180°﹣66°﹣24°=90°,即AE⊥BC.19.解:(1)∠A;70°;35°;(2)∠A=2∠A1;(3)∠A=64∠A6;(4)∵∠ACD﹣∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD 的平分线∴∠A1=∠A1CD﹣∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°﹣(∠QEC+∠QCE)=180°﹣∠BAC,∴∠Q+∠A1=180°.因此①∠Q+∠A1的值为定值正确.20.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°.∵∠A=∠AOC,∴∠B=∠BOC;(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,即∠DOB=∠EOB=∠OAE=∠OEA.∵∠DOB+∠EOB+∠OEA=90°,∴∠DOB=30°,∴∠A=30°;(3)∠P的度数不变,∠P=30°,∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=∠AOM=(90°﹣∠AOC)=45°﹣∠AOC,∠PCO=∠BCO=(∠A+∠AOC)=∠A+∠AOC.∴∠P=180°﹣(∠PCO+∠FOM+90°)=45°﹣∠A=30°.。
北师大版七年级数学下册第三章《三角形》单元复习题
第3章三角形单元复习题一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B。
三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是()A。
4、5、6 B.6、8、15C.5、7、12D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A。
0°<α<90° B.60°<α<90°C。
60°<α<180° D.60°≤α<90°4.下列判断正确的是()A。
有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6B.6<x<12C。
0<x<12 D。
x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A。
则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7。
三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A。
三条中线交点 B.三条角平分线交点C。
三条高线交点D。
三条高线所在直线交点8。
已知等腰三角形的一个角为75°,则其顶角为()A。
30°B。
75°C.105°D。
30°或75°9。
如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A。
一处 B.二处C。
三处D。
四处10。
三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是()A.锐角三角形B.直角三角形C。
四年级线与角练习题
四年级线与角练习题1. 三条线段AB、BC和CD相互连接,形成一个封闭的图形ABCDEF。
请回答以下问题:(a)边AB的长度是5厘米,边BC的长度是3厘米,边CD的长度是7厘米,边DE的长度是4厘米。
计算周长是多少厘米?(b)边AB和边BC之间的夹角是直角吗?(c)边BC和边CD之间的夹角是锐角、钝角还是直角?(d)边CD和边DE之间的夹角是几度?2. 在一张纸上画一条直线EF,并在该直线上选择一点G。
用尺子测量出直线EG的长度为6厘米,以此为半径,以点G为圆心画一个圆。
请回答以下问题:(a)直线EF与圆的交点有几个?(b)如果将半径增加到8厘米,直线EF与圆的交点又会有何变化?(c)在直线上选择不同的点G,圆与直线的交点会有何变化?(d)如果将直线EF的位置改变,圆与直线的交点会有何变化?3. 下图中每个小正方形的边长都是2厘米。
请回答以下问题:(a)通过点B和点F可以画出一条直线吗?(b)边AB的长度是多少厘米?(c)边BC和边CD之间的夹角是直角吗?(d)边AB和边BC之间的夹角是多少度?(e)边CD和边DE之间的夹角是锐角、钝角还是直角?4. 将一张纸沿着直线KL折叠,使点M和点N完全重合,形成如下图所示的图形。
请回答以下问题:(a)直线MN和直线KL之间的夹角是几度?(b)如果将纸完全展开,点M和点N会重合吗?(c)直线KL和直线MN是否平行?(d)如果纸上画有一条与直线KL平行的直线PQ,将纸沿着直线PQ折叠,点M和点N会重合吗?5. 在一张纸上画一条直线RS,并在该直线上选择一点T。
连接直线RT和直线TS,形成一个夹角。
请回答以下问题:(a)如果直线RT和直线TS之间的夹角是45度,直线RT和直线RS之间的夹角又是多少度?(b)如果直线RS的位置改变,直线RT和直线TS之间的夹角会有何变化?(c)如果在直线RS上选择不同的点T,直线RT和直线TS之间的夹角会有何变化?(d)直线RT和直线TS之间的夹角是否可以是直角?注意:请在纸上画图,然后根据图形回答问题。
中考数学复习 第8讲 三角形(一)试题-人教版初中九年级全册数学试题
第八讲三角形(一)8.1 三角形的线段与角基础盘点1.不在同一条直线上的三条线段首尾顺次相接组成的图形叫做.2.(1)从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高.注意:高与垂线不同,高是线段,垂线是直线.(2)连接三角形的与对边的线段,叫做三角形的中线.(3)在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线.注意:三角形的角平分线是线段,一个角的角平分线是射线.3.三角形的两边之和第三边,两边之差第三边.4.三角形的内角和是;三角形的一个外角大于,三角形的一个外角等于.考点呈现考点1 三角形的高例1(2015•某某)下列四个图形中,线段BE是△ABC的高的是()A B C D解析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.只有D符合题意,故选D.评注:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外.考点2 三角形三边关系例2(2015•某某)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.16解析:设第三边的长为x,因为三角形两边的长分别是4和10,所以10﹣4<x<10+4,即6<x<14.故选C.评注:三条线段能否构成一个三角形,关键在于判定它们是否符合三角形三边的不等关系,符合即可构成一个三角形,否则就不能构成一个三角形.考点3 三角形的外角例3(2015·某某)图1中∠1的大小等于()A.40°B.50°C.60°D.70°图1解析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算,得∠1=130°﹣60°=70°.故选D.评注:本题考查了“三角形的一个外角等于与它不相邻的两个内角的和”的性质,理解“与它不相邻的内角”是解题的关键.考点4 三角形的内角和例4(2015•某某)如图2,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°图2解析:因为∠A=60°,所以∠ABC+∠ACB=120°.因为BE,CD是∠B,∠C的平分线,所以∠CBE=∠ABC,∠BCD=.所以∠CBE+∠BCD=(∠ABC+∠BCA)=60°,所以∠BFC=180°﹣60°=120°.故选C.评注:本题主要考查了三角形内角和定理和角平分线的定义,综合运用三角形内角和定理和角平分线的定义是解答此题的关键.误区点拨1.对三角形的重要线段的认识有误例1 下列说法正确的是()A.三角形的角平分线是射线B.三角形的高是一条垂线C.三角形的三条中线相交于一点D.三角形的中线、角平分线和高都在三角形内错解:A或B或D剖析:选A是混淆了一个角的平分线与三角形角平分线的本质区别:角的平分线是射线,三角形的角平分线是线段;选B是对三角形的高的定义理解有误,三角形的高是从三角形的一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫三角形的高,因此三角形的高也是线段;三角形的中线、角平分线以及锐角三角形的三条高都在三角形内部,但钝角三角形有两条高在三角形的外部,故选D也是错误的.只有C选项是正确的.2.运用三角形三边关系时出错例2(2015·某某)下列长度的三条线段能组成三角形的是()A. 1,2,3B.,1,2,3C.3,4,8D.4,5,6错解:A或B或C剖析:利用三角形三边关系来判断所给的线段能否构成三角形时,只需求出三角形较小两边的和,如果这两边的和大于第三边,即可保证三角形任何两边的和大于第三边.选项A中1+2=3,选项B中1+2<3;选项C中3+4<8,所以A,B,C都不能构成三角形,应选D.跟踪训练1(2015•某某)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.2(2015•某某)如图,直线a∥b,一块含60°角的直角三角尺ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A .105°B .110°C .115°D . 120°第1题图3.(2015•滨州)在△ABC 中,∠A ∶∠B ∶∠C=3∶4∶5,则∠C 等于( )A.45°B.60°C.75°D.90°4.(2015•某某)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=( )A . 120° B. 130° C. 140° D. 150°第4题图 第5题图5.(2015·某某)如图,在△ABC 中,∠B =40°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =度.8.2 全等三角形基础盘点2.全等三角形的性质:(1)全等三角形相等;(2)全等三角形相等;3.全等三角形的判定方法:(1)三相等的两个三角形全等;(2)两角和对应相等的两个三角形全等;(3)两角和相等的两个三角形全等;(4)两边和相等的两个三角形全等;(5)斜边和相等的两个直角三角形全等.4.角平分线上的点到角两边的距离..考点呈现考点1 全等三角形的性质E B DA例1(2015·某某)如图1,△ABC≌△DEF,则EF=.图1解析:因为△ABC≌△DEF,所以BC=EF,则EF=5.评注:按照全等三角形的对应顶点中字母的出现位置来确定对应元素,在相应位置上出现的字母所表示的元素必为对应元素.这种方法的使用前提是表示全等三角形时,所写的表达式中对应顶点的位置必须写得准确无误.此题主要考查了全等三角形的性质,找出对应边是解题关键.考点2 全等三角形的判定例2(2015•某某)如图2,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C. AD∥BC D. DF∥BE图2解析:当∠D=∠B时,在△ADF和△CBE中因为,所以△ADF≌△CBE(SAS).故选B.评注:添加使两个三角形全等的条件,基本方法是先结合图形挖掘隐含条件(如公共边、公共角、对顶角等),然后根据全等三角形的判定方法去补充适当的条件.考点3 角平分线的性质例3(2015•某某)如图3,OC是∠A OB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A. 6 B. 5 C. 4 D. 3解析:过点P作PE⊥OB于点E,如图3.根据“角平分线上的点到角的两边的距离相等”可得PE=PD.因为PD=6,所以PE=6,即点P到OB的距离是6.故选A.图3评注:应用角平分线的性质及其判定时,一定要具备两个垂直距离(即点到直线的距离),证明过程中要直接运用这两个定理,而不要去寻找全等三角形.误区点拨1.混淆全等三角形的对应元素例1如图4所示,△ABD≌△CAE,∠BAD=∠ACE,∠D=∠E.请写出全等三角形的其他对应元素.图4错解:对应角∠ B和∠ CAE,对应边BD和CE ,AD和AE , AB和AC .剖析:全等三角形的对应角所对的边是对应边,对应边所对的角是对应角.因此,对应边应该是BD与AE,AD与CE,AB与CA.注意,记两个全等三角形时,对应的顶点字母写在对应的位置上,由字母顺序去找对应元素就不会出错.2.误将“SSA”当成“SAS”来证题例2 如图5,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,试说明∠BAE=∠CAE.图3DC B AE图5错解:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=,,AE AE ACE ABE EC EB 所以△AEB≌△AEC.所以∠BAE=∠CAE.剖析:本题错在说明两个三角形全等时用了“边边角”的条件来判定,这是不正确的.因为有两条边及其中一边的对角对应相等的两个三角形不一定全等.正解:因为BE=CE , 所以∠EBC=∠ECB.又因为∠ABE=∠ACE, 所以∠ABC=∠ACB,AB=AC .在△AEB 和△AEC 中,⎪⎩⎪⎨⎧===,,,AC AB CE BE AE AE 所以△AEB≌△AEC.所以∠BAE=∠CAE.跟踪训练1.(2015•某某)如图,下列条件中,不能证明△ABC ≌△DCB 的是( )A . AB=DC ,AC=DB B . AB=DC ,∠ABC=∠DCBC . BO=CO ,∠A=∠D D . AB=DC ,∠A=∠D第1第9题M D B FE OO P AB A C第1题图第2题图2.(2015•某某)如图,OP平分∠MON , PE⊥OM于E, PF⊥ON于F,OA=OB, 则图中有对全等三角形3. (2015·义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A 与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是A. SASB. ASAC. AASD. SSS第3题图第4题图4.(2015•某某)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个8.3 等腰三角形基础盘点1. 有的三角形叫做等腰三角形.2.(1)等腰三角形是对称图形,其对称轴是;(2)等腰三角形的两个相等(简写成“等边对等角”),等腰三角形的、和互相重合(简称“三线合一”).3. 等边三角形是的三角形,也叫正三角形,它是对称图形,有条对称轴.4.(1)的三角形是等腰三角形(简写成“等角对等边”);(2)的三角形是等边三角形;(3)有一个角是的等腰三角形是等边三角形.考点呈现考点1 等腰三角形的边长确定例1(2015•某某)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为() A. 11 B. 16 C. 17 D. 16或17解析:①6是腰长时,三角形的三边长分别为6,6,5,利用三角形的三边关系判断可知其能组成三角形,则周长=6+6+5=17;②6是底边时,三角形的三边长分别为6,5,5,利用三角形的三边关系判断可知其能组成三角形,则周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.评注:对于底和腰不等的等腰三角形,若条件中没有明确底和腰时,应在符合三角形三边关系的前提下分类讨论.考点2 等腰三角形的性质例2(2015•湘西州)如图1,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B. 60°C.72°D.108°图1解析:因为∠A=36°,AB=AC,所以∠ABC=∠C=72°,因为BD平分∠ABC,所以∠ABD=36°,所以∠1=∠A+∠ABD=72°,故选:C.评注:本题考查的是三角形的外角的性质和等腰三角形的性质,掌握等腰三角形的两个底角相等和三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.考点3 等腰三角形的“三线合一”例3(2015•某某)如图2,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为( )A .35°B .45°C .55°D .60°解析:AB=AC ,D 为BC 的中点,所以AD 平分∠BAC,AD⊥BC .所以∠DAC=∠BAD=35°,∠ADC=90°.所以∠C=∠ADC -∠DAC=55° .故选C.此题方法不唯一评注:等腰三角形顶角的平分线、底边上的高、底边的中线互相重合,称“三线合一”. “三线合一”是说明两角相等、两线段相等及两线垂直的重要依据,一定要注意它适用的X 围和结论成立的条件.考点4 等腰三角形的判定例4(2015•某某)在平面直角坐标系中,点A ,B ,动点C 在x 轴上,若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数为A.2B.3C.4D.5解析:如图3,首先根据线段的中垂线上的点到线段两端点的距离相等,求出AB 的中垂线与x 轴的交点,即可求出点C 1;然后再求出AB 的长为16,以点A 为圆心,以AB 的长为半径画弧,与x 轴的交点为点C 2,C 3;最后判断出以点B 为圆心,以AB 的长为半径画弧,与x 轴没有交点,据此判断出点C 的个数为3个.故选B .评注:本题是在坐标系中进行图形操作,考查等腰三角形的分类思想.同学们解答此类问题时,要按AB 为底边和腰分类思考,同时不要遗漏. D CBA图2图3误区点拨例1(2015•宿迁)若等腰三角形中的两边长分别为2和5,则这个三角形的周长为( )A .9B . 12C . 7或9D . 9或12错解:当腰长为2,底为5时,周长为2×2+5=9;当腰长为5,底为2时,周长为5×2+2=12,故选D.剖析:由三角形三边之间的关系可知,当腰长为2,底为5时,不能构成三角形,而边长为5cm 的边只可以作腰,不可以作底,因此周长只能为12.本题应分两种情况来考虑求解是正确的,但要注意构成三角形的条件.2.忽视分类思想的应用例2 (2015•某某)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.错解:如图4,由 BD ⊥AC ,∠ABD=20°,得到顶角∠BAC=70°;图4图5剖析:此题要分情况讨论:当等腰三角形的顶角是锐角时,同错解;当等腰三角形的顶角是钝角时,如图5,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°.故答案为110°或70°.跟踪训练C ABD1. (2015·某某)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个第1题图第2题图第3题图第4题图2. (2015•某某)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△B的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm3. (2015•某某)如图,在等腰三角形ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36°B.54°C.18°D.64°4. (2015•某某)如图,在一X长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为参考答案 8.1 三角形的线段与角1.82.C3.C4.C解析:因为∠B=40°,所以由三角形内角和定理,得∠BAC +∠A CB=180°-40°=140°.所以∠DAC+∠FCA=180°-∠BAC +180°-∠B C A=360°-140=220°.所以∠EAC+∠ECA=21(∠DAC+∠FCA)=110°.所以由三角形内角和定理,得∠AEC=70°. 8.2 全等三角形1.D2.38.3 等腰三角形1.D2.C3.B4. 8或2或2解析:如图分三种情况:①中剪下的等腰三角形的面积为21×4×4=8;②中剪下等腰三角形的面积为21×4×221-4=2;③中剪下等腰三角形的面积为21×4×223-4=2.①②③第4题图。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
与三角形有关的线段,与三角形有关的角练习题
111.1与三角形有关的线段练习题1.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______. 3.ABC △中,6a =,8b =,则周长P 的取值范围是______. 4.a b c ,,是ABC △中A ∠,B ∠,C ∠的对边,若4a λ=,3b λ=,14c =,则λ的取值范围是______.5.若a b c ,,为ABC △的三边,则a b ca b c---+______0(填“>,=,<”). 6.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . 7.等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 8.等腰三角形周长为23,且腰长为整数,这样的三角形共有( )个 A.4个 B.5个 C.6个 D.7个 9.如图2,以BC 为公共边的三角形的个数是( ) A.2 B.3 C.4 D.5 10.若三条线段中3a =,5b =,c 为奇数, 那么由a b c ,,为边组成的三角形共有( ) A.1个B.3个C.无数多个D.无法确定11.如果线段a b c ,,能组成三角形,那么它们的长度比可能是( ) A.1:2:4B.1:3:4C.3:4:7D.2:3:412. 在△ABC 中,D 是BC 上的点,且BD :DC=2:1,S △ACD =12,那么S △ABC 等于( )A. 30B. 36C. 72D. 2413.如图3所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm2D.14cm15. 三角形的最长边为10,另两边的长分别为x 和4,周长为c ,求x 和c 的取值范围。
三角形(知识点+题型分类练习+基础检测+能力提高)
三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
2.3. 三角形三边的关系(重点)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余。
②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。
④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。
二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高。
三角形的三条高的交于一点,这一点叫做“三角形的垂心”。
2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。
三角形三条中线的交于一点,这一点叫做“三角形的重心”。
三角形的中线可以将三角形分为面积相等的两个小三角形。
3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。
要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。
三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。
2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。
②按边分类:不等边三角形,等腰三角形。
等腰三角形底和腰相等时叫做等边三角形。
3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。
平分三角形的面积。
②高线:过定点做对边的垂线,顶点与垂足之间的线段。
得到两个直角三角形。
③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。
4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。
最新版八年级上册数学三角形及全等复习题(每天两题)
最新版⼋年级上册数学三⾓形及全等复习题(每天两题)1.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′的长度是多少?请说明理由.2.已知如图∠B=90°AB=AD=BC,DE⊥AC,求证:BE=DC.3.求证:在直⾓三⾓形中,⼀个锐⾓所对的直⾓边等于斜边的⼀半,那么这个锐⾓是30°4.求证:三⾓形⼀边上的中线等于这条边的⼀半,那么这个三⾓形是直⾓三⾓形5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是多少?6.等腰三⾓形⼀腰上的中线把周长分成13cm,15cm两部分,求:腰长和底边长7.已知:如图,锐⾓△ABC的两条⾼BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三⾓形;(2)判断点O是否在∠BAC的⾓平分线上,并说明理由.8.如图、在△ABC中,D是BC边上的⼀点,E是AD的中点,过点A作BC的平⾏线交CE的延长线于F,且AF=BD.求证:D是BC的中点.9.如图,△ABC中,∠ABC=2∠C,AD是BC边上的⾼,BE=BD求证:AF=FC10.如图,已知点D为等腰直⾓△ABC内⼀点,∠CAD=∠CBD=15°,E为AD延长线上的⼀点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.11.如图,已知点M,N和∠AOB,求作⼀点P,使P到M,N的距离相等,且到∠AOB的两边的距离相等.(要求尺规作图,并保留作图痕迹)12.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长13.如图,AD是△ABC的⾓平分线,DF⊥AB,垂⾜为F,DE=DG,△ADG和△AED的⾯积分别为50和39,求△EDF的⾯积14.如图,△ABC中,∠B=60°,∠BAC,∠ACB的平分线AD,CE交于点O,说明AE+CD=AC的理由15.等腰三⾓形⼀腰上的⾼与另⼀腰夹30°⾓,求底⾓16.如图AB=AC、ED⊥BC,求证:△AEF为等腰三⾓形17.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.18.△ABC中AB=AC、∠A=60°,BD⊥AC,E为BC中点,DF⊥DE求证EC是线段BF三等分点19.已知:三⾓形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直⾓三⾓形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直⾓三⾓形?证明你的结论.20在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上⼀点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.21.如图,△ABC内有⼀点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,试求∠BDC的度数.22.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,求BC.23.如图,已知△ABC中,过点C作∠BAC的平分线AD的垂线,垂⾜为D,作DE∥AB交AC于E,求证:AE=CE24.如图,AD为△ABC的中线,DE、DF分别为△ADB、△ADC的⾓平分线,求证:BE+CF>EF.25.△ABC中,AB=a,AC=b,a>b,AD为中线,求AD的长26.PD⊥AB,PE⊥AC,PF⊥BC,且PD=PE=PF,∠BAC=80°,求∠BPC27.如图,P是∠BAC内的⼀点,PE⊥AB,PF⊥AC,垂⾜分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的⾓平分线上.28、D是BC中点,ED⊥BC,AE平分∠BAC,EF⊥AB,EG⊥AC,求证:BF=CG29.如图,把△ABC纸⽚沿DE折叠,使点A落在四边形BCDE内部点A′的位置.聪明的同学,你能猜出∠A′与∠1、∠2之间的数量关系吗?请找出来,并说明理由30.如图,已知在△ABC中,AB=AC,E是AD上⼀点,BE=CE.求证:AD⊥BC.31.已知:如图AD=AC,∠ADB=∠ACB>90°,求证:△ADB≌△ACB32.BC=8cm,AH⊥BC,AH=5cm,BD=CD,BE=AE,AF=DF,求△DEF⾯积33.△ABC中,AB=AC,BD=CE,求证:DF=EF34、正⽅形ABCD ,E 为中点,∠EAF=∠BAE ,求证:AF=BC+FC35.CE 是中线,CB 是中线,AB=AC ,求证:CD=2CE36.在Rt △ABC 中,∠ACB=90°,AC=BC ,D 为BC 中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于F .(1)求证:△ACD ≌△CBF ;(2)求证:AB 垂直平分DF .37.△ABC 中,∠ABC=3∠C ,AD 平分∠BAC ,BE 垂直AD求证:BE=21(AC-AB )38.等腰三⾓形ABC ,⼀腰AB=18,D 在AC 上,DB=DA ,若△BCD 的周长是30,求BC 的长39.四边形ABCD 中,AD=4,BC=1,∠A=30°,∠ADC=120°求CD40.如图 AF 是△ABC 的⾓平分线,BD ⊥AF ,交AF 的延长线于D ,DE ∥AC 交AB 于E ,求证:AE=BE .41.正⽅形ABCD,∠MAN=45°,求证:MN=BH+DN42.在△ABC中,AD平分∠BAC,AB=AC-BD,∠B与∠C有什么关系43.等腰三⾓形腰上的⾼是腰长的⼀半,求底⾓44.以△ABC边AB,AC为边作正⽅形ABDE,ACFG,AH是⾼,求证EM=GM45.如图,在△ABC中,∠ACB=90゜,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连MN.(1)求证:DM=DN;(2)若∠DMC=15°,BN=1,求MN的长.46.如图AD//BC,∠A=∠BEF,∠ABC=2∠C,AB=AD求证:BE=EF47.如图:AB=DE,∠B+∠D=180°,求证:AC=CE48.如图∠C=2∠B ,AD ⊥BC ,求证:BD=AC+CD49.∠1=∠2,DE ⊥BC ,BE=21(BC+AB )求证:∠BAD+∠C=180°50.如图,已知AB=DC ,DB=AC 求证:∠ABD=∠DCA51.如图,△ABC 的边BC 的中垂线DF 交△BAC 的外⾓平分线AD 于D ,F 为垂⾜,DE ⊥AB 于E ,且AB >AC ,求证:BE-AC=AE .52.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD=AB ,∠1=∠2=∠3.求证:BC=DE .53.如图,AB 与DE 相交于M ,AC 与DF 相交于N ,AB=AC ,DE=DF ,AD 平分∠BAC .求证:AM=AN .54.已知:如图,P是与∠BAC相邻的外⾓平分线上异于A的任意⼀点,若PB=m,PC=n,AC=b,AB=c,试⽐较m+n与b+c的⼤⼩,并说明理由.55.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上⼀点,点E在BC上,且AE=CF.(1)若∠CAE=30°,求∠ACF度数;(2)求证:AB=CE+BF.56.在△ABC中,AB=AC,∠ABD=60°,∠ACD=60°求证:BD+CD=AB57.如图,在△ABC中,AD是BC边上的中线,F为AC边上的⼀点,连接BF交AD于点E,若∠BED=∠CAD,求证:AC=BE58.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D分别是AC、BC的中点,△ADE是等腰三⾓形,∠AED=90°,连接BE、EC.(1)判断线段BE和EC的关系,并证明你的结论.59.已知如图,点C 为线段AB 上⼀点,△ACM 、△CBN 都是等边三⾓形,AN 交CM 于点E ,BM 交CN 于点F ,求证:(1)CE=CF ;(2)EF ∥AB .60在某⼀地⽅,有条⼩河和草地,⼀天某牧民的计划是从A 处的牧场牵着⼀只马到草地牧马,再到⼩河饮马,你能为他设计⼀条最短的路线吗?(在N 上任意⼀点即可牧马,M 上任意⼀点即可饮马.)(保留作图痕迹,需要证明)61.已知:如图,等边△ABC 中,AE=CD ,AD 、BE 相交于点P ,BQ⊥AD 于Q .求证:BP=2PQ62.△ABC 中,BD=CD ,AD ⊥AC ,∠BAD=30°,求证:AC=21AB63.已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,△ABC 的⾯积64.求证:等边三⾓形内任意⼀点到三边距离和等于它的⾼65.在Rt △ABC 中,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB垂直,求∠A 的度数。
八年级数学三角形专题复习50道(含答案)
八年级数学三角形专题复习50道一、选择题:1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.已知AB=1.5,AC=4.5,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.3或4或5或63.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米5.如图,在五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的邻补角,则∠1+∠2+∠3等于( )A.90°B.180°C.210°D.270°6.按照定义,三角形的角平分线(或中线、或高)应是()A.射线B.线段C.直线D.射线或线段或直线7.如图中有四条互相不平行的直线L1.L2.L3.L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°8.三角形三条高的交点一定在()A.三角形的内部B.三角形的外部C.三角形的内部或外部.D.三角形的内部、外部或顶点9.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC一条角平分线,则∠CAD度数为( )A.40° B.45° C.50° D.55°10.△ABC中,AB=AC=4,BC=a,则a的取值范围是( )A.a>0B.0<a<4C.4<a<8D.0<a<811.如图,在△ABC中,∠A=,角平分线BE.CF相交于点O,则∠BOC=( )A.90°+B.90°-C.180°+D.180°-12.下列长度的三条线段能组成三角形的是( )A.1cm,2cm,3.5cmB.4cm,5cm,9cmC.5cm,8cm,15cmD.6cm,8cm, 9cm13.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒B.20cm的木棒;C.50cm的木棒D.60cm的木棒14.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°15.如图,直角△ADB 中,∠D=90°,C 为AD 上一点,且∠ACB 的度数为(5x-10)°,则x 的值可能是(A)10 (B)20 (C)30 (D)4016.如图,在△ACB 中,∠ACB=100°,∠A=20°,D 是AB 上一点.将△ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于()A .25°B .30°C .35°D .40°17.如图,在△ABC 中,已知点E 、F 分别是AD 、CE 边上的中点,且S △BEF =4cm 2,则S △ABC 的值为()A.1cm2B.2cm2C.8cm2D.16cm 218.若a 、b 、c 是△ABC 的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|=()A .a+b+cB .﹣a+3b ﹣cC .a+b ﹣c D.2b ﹣2c19.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个 B.3个 C.4个 D.5个已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或10二、填空题:21.若等腰三角形的周长为21,其中两边之差为3,则各边长分别为。
人教版 初中数学八年级上册 第十一章 三角形 复习习题 (含答案解析)
人教版初中数学八年级上册第十一章三角形复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,将一张含有30∘角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2= 44∘,则∠1的大小为()A.14∘B.16∘C.90∘−αD.α−44∘2.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°3.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60∘,∠ABE=25∘,则∠DAC的大小是()A.15∘B.20∘C.25∘D.30∘4.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A.105°B.110°C.115°D.120°5.如图,点D、E分别为△ABC的边AB、CB的中点,记△BDE的面积为S1,四边形ADEC的面积为S2,则S1∶S2=()A.1∶4B.1∶3C.1∶2D.1∶16.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.107.已知:一等腰三角形的两边长x,y满足方程组{2x−y=33x+2y=8则此等腰三角形的周长为( )A.5B.4C.3D.5或48.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.119.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°10.若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.1811.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°12.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.1413.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.0.5B.1C.3.5D.714.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 15.15.如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°16.适合下列条件的△ABC中, 直角三角形的个数为①a=13,b=14,c=15;②a=6,∠A=45°;③∠A=32°, ∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4.⑥a:b:c=3:4:5⑦∠A:∠B:∠C=12:13:15⑹a=√5,b=2√5,c=5A.2个B.3个C.4个D.5个17.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.9018.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB 交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:① ∠AOB=90°+ 12∠C②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab其中正确的是( )A.①②B.③④C.①②④D.①③④19.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A.1B.2C.3D.020.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.二、填空题21.(题文)如图,m∥n,∠1=110°,∠2=100°,则∠3=_______°.22.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A =70°,则∠BOC=______.23.如图,四边形ABCD中,点MN分别在AB,AC上,∠C=80°,按如图方式沿着MN折叠,使FN∥CD,此时量得∠FMN=40°,则∠B的度数是_____.24.若a、b、c是△ABC的三边,且满足|a+b-8|+|a-b-2|=0,则c的取值范围____________..25.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.26.如图,AD是△ABC的中线,CE是△CAD的中线.若△CAE的面积为1,则△ABC 的面积为______.27.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.28.若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是_____.29.一个三角形的两边长分别是2和7,最长边a为偶数,则这个三角形的周长为______.30.若a、b、c为三角形的三边,且a、b满足√a2−9+(b−2)2=0,则第三边c的取值范围是.31.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____________.32.已知x=2是关于x的方程x2−2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ABC的周长为__________.33.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.34.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=88°,则∠C的度数为=___________.35.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O,分别作AB、BC、AC 的垂线,垂足分别为E、F、G,连接EF,若OG=3,则EF为__.36.如图,点D、E、F分别为△ABC三边的中点,如果△ABC的面积为S,那么以AD、BE、CF为边的三角形的面积是_____.37.在△ABC中,∠A=160°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如图1,则∠A1的度数为__;第二步:在△A1BC 上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如图2.照此下去,至多能进行___步.38.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x=150°时,对应的和谐数对有一个,它为(10,20);当x=66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________.39.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个40.如图,△ABC中,∠C=90°,AC=6,BC=8,动点P从A点出发,以1cm/s的速度,沿A﹣C﹣B向B点运动,同时,动点Q从C点出发,以2cm/s的速度,沿C﹣B﹣A向A 点运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t=_____秒时,△PCQ的面积等于8cm2.三、解答题41.如图,在△ABC中,∠B=40°,∠C=80°,AD是BC边上的高,AE平分∠BAC.(1)求∠BAE的度数;(2)求∠DAE的度数.42.用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长;(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.43.如图,在△ABC中,BO、CO分别平分∠ABC和∠ACB.计算:(1)若∠A =60°,求∠BOC的度数;(2)若∠A =100°, 则∠BOC的度数是多少?(3)若∠A =120°, 则∠BOC的度数又是多少?(4)由(1)、(2)、(3),你发现了什么规律?请用一个等式将这个规律表示出来.44..如图1,AB∥CD,直线EF 交AB 于点E,交CD 于点F,点G 在CD 上,点P在直线EF 左侧,且在直线AB 和CD 之间,连接PE,PG.(1) 求证:∠EPG=∠AEP+∠PGC;∠EFC,求∠AEP 的(2) 连接EG,若EG 平分∠PEF,∠AEP+ ∠PGE=110°,∠PGC=12度数.(3) 如图2,若EF 平分∠PEB,∠PGC 的平分线所在的直线与EF 相交于点H,则∠EPG 与∠EHG之间的数量关系为.45.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.46.已知:如图,在△ABC中,AD∥BC,AD平分外角∠EAC.求证:AB=AC.47.如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.48.如图,在六边形ABCDEF中,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的度数.49.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.50.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10cm,BC=8cm,AC=6cm,求:(1)CD的长;(2)△ABC的角平分线AE交CD于点F,交BC于E点,求证:∠CFE=∠CEF.51.如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.52.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.53.如图,△ABC,按要求完成下列各题:①画△ABC的中线CD;②画△ABC的角平分线AE;③画△ABC的高BF;④画出把△ABC沿射线BF方向平移3cm后得到的△A1B1C1.54.如图,在Rt△ABC中,∠C=90°,把AB对折后,点A与点B重合,折痕为DE.(1)若∠A=25°,求∠BDC的度数.(2)若AC=4,BC=2,求BD.55.如图,在△ABC中,∠1=100°,∠C=80°,∠2=1∠3,BE平分∠ABC.求∠4的度2数.56.已知在一个十边形中,其中九个内角的和是1320°,求这个十边形另一个内角的度数.57.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.58.读句画图:如图,已知△ABC.(1)画图:①△ABC的BA边上的高线CD;②过点A画BC的平行线交CD于点E;(2)若∠B=30°,则∠AED=°.59.如图,在△ABC 中,DM 、EN 分别垂直平分AC 和BC ,交AB 于M 、N .(1)若△CMN 的周长为21 cm ,求AB 的长;(2)若∠MCN =50°,求∠ACB 的度数.60.如图,在△ABC 中,CD 平分∠ACB ,DE ∥AC ,∠B=70°,∠EDC=30°,求∠ADC 的度数.61.如图直线EF//GH ,点A 、点B 分别在EF 、GH 上,连接AB , FAB ∠的角平分线AD 交GH 于D ,过点D 作DC AB ⊥交AB 延长线于点C ,若036CAD ∠=,求BDC ∠的度数。
中考数学专题复习之《三角形》试题集
9.1 三角形(2) 同步练习◆课堂测控测试点三角形的三条重要线段1.锐角三角形的三条高在三角形_________,钝角三角形有______条高在三角形外,直角三角形有两条高恰好是_________.2.如图1,BD=DE=EF=CF,图中共有_______个三角形,AF是△______的中线,AE是△_______的中线.(1) (2) (3)3.如图2,∠AEB=90°,则AE是______个三角形的高,它们分别是______.4.如图3,△ABC中BC边上的高是________,△ACD中CD边上的高是_____,以CF为高的三角形是________.5.关于三角形的角平分线和中线,下列说法正确的是()A.都是直线 B.都是射线 C.都是线段 D.可以是射线或线段6.如果一个三角形的三条高的交点恰是一个三角形的顶点,那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定7.下列说法正确的是()A.三角形的角平分线、中线、高都在三角形的内部;B.三角形的角平分线、高都在三角形的内部;C.三角形的高、中线都在三角形的内部;D.三角形的角平分线、中线在三角形的内部8.在图4中第一个三角形中作三条中线、在第二个三角形作三条角平分线,在第三个三角形中作三条高线.◆课后测控1.如图5,AD为△ABC的中线,AE•是△ABC•的角平分线,•若BD=•2cm,•则BC=_____cm,若∠BAC=80°,则∠CAE=________.(5) (6) (8)2.如图6,∠ACB=90°,CD⊥AB于D,则BC边上的高是______,AC•边上的高是______,AB边上的高是______,三条高的交点是______.3.如图7,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD与△BCD•的周长差为_______cm.4.如图,画△ABC的AB边上的高,正确的是()5.下面的说法:①三角形一边的对角也是另外两边的夹角;②三角形的角平分线就是三角形的内角的平分线;③三角形的中线就是顶点和它的对边中点的连线段;④△ABC中,顶点A就是∠A,其中正确的说法是()A.①②③④ B.①②③ C.①② D.①③6.下面说法正确的是()A.三角形的高就是顶点到对边垂线段的长 B.直角三角形有且仅有一条高C.三角形的高都在三角形的内部 D.三角形三条高至少有一条高在三角形内部7.三角形一边上的中线把原三角形分成两个()A.形状相同的三角形 B.面积相等的三角形C.直角三角形 D.周长相等的三角形8.如图,在△ABC中,AD⊥BC且AD平分∠BAC,若∠1=30°,则∠C为多少度?∠B呢?△ABC是什么三角形?9.如图,已知:D是△ABC的BC边延长线上一点,DF⊥AB于点F,交AC于E,•∠A=40°,∠D=30°,求∠ACB的度数.10.如图,△ABC中,∠C=90°,AD平分∠CAB,与∠ABC的角平分线BE 相交于点D,求∠ADE的度数.答案:回顾探索1.中线 2.顶点与垂足间的线段2.顶点与交点之间的线段课堂测控1.内两两直角边2.10 AEC ADF和△ABC3.三△ADE,△ ABE,△ACE4.AD AD △BCF和△ACF5.C 6.B 7.D 8.画图略课后测控1.4 40°2.AC BC CD C3.2(点拨:由BD是中线知AD=CD)4.D 5.B 6.D 7.B8.60°,60°,等边三角形9.80°(点拨:根据三角形内角和等于180°先求∠B=60°,再求∠ACB=80°)10.45°(点拨:由∠C=90°,AD、BE是∠CAB、∠CBA的平分线可得∠BAD+•∠ABD=45°,又∠ADE=∠BAD+∠ABD)学校 班级 姓名…………………………………密………………………封………………………线……………………………中考专题训练 三角形(一)一、选择题1.(2013德阳)如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是(). A . 5. 5 B .5 C .4.5 D .4 是一个三角形的边长的是(). 2.(2013温州)下列各组数可能A .1,2,4 B .4,5,9 C .4,6,8 D .5,5,113.(2013宁波)一个多边形的每个外角都等于72°,则这个多边形的边数为().A .5B .6C .7D .8 4.(2013陕西)如图,在四边形中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有(). A .1对B .2对 C .3对D .4对5.(2011泸州)如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,AC=10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C ′,折痕为BE ,则EC 的长度是(). A .B .C .D .6.(2012贵阳)如图,在Rt △ABC 中,∠ACB=90°,AB 的垂直平分线DE 交于BC 的延长线于点F ,若∠F=30°,DE=1,则EF 的长是(). A .3 B .2 C .D .17.(2012宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为().B C DAO第4题图第5题图第6题图A .90B .100C .110D .1218.(2013牡丹江)如图,在△ABC 中∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是().A .1个B .2个C .3个D .4个 二、填空题9.(2013温州)如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=度.10.(2013黔西南州)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD , DF=DE ,则∠E=度.11.(2012四川南充)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是cm .12.(2012山东枣庄)如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB=5,BC =8,则EF 的长为_.13.(2012甘肃白银)如图,由四个边长为1的小正方形构成一个大正方形,连接第7题图 第8题图第9题图第10题图第11题图第12题图小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是.第13题图第14题图14.(2012山东临沂)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.三、解答题15.(2012广东广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.16.(2012湖南湘西)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.17.(2012重庆市)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18.(2012广东肇庆)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.19.(2012北京市)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=900,∠CED=450,∠DCE=900,DE=,BE=2.求CD的长和四边形ABCD的面积.20.(2012浙江绍兴)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)若∠ACD=114°,求∠MAB的度数;(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.21.(2012山东滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.(1)求证:△ADF≌△CBE;(2)求正方形ABCD的面积;(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.22.(2011广东河源)如图,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.(1)当△APC与△PBD的面积之和取最小值时,AP=;(直接写结果)(2)连结AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图,若点P固定,将△PBD绕点P按顺时针方向旋转α的大小是否发生变化?(旋转角小于180°),此时(只需直接写出你的猜想,不必证明)23.(2011吉林长春)探究:如图①,在的形外分别作等腰直角△ABF和等腰直角△ADE,,连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.应用:以的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL,若的面积为5,则图中阴影部分四个三角形的面积和为________.24.(2013常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.北师大版七年级下第五章三角形一、三角形三边关系和角关系1、三角形任意两边之和大于第三边。
中考数学三角形复习试题以及答案
三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =(b+c-a)+(a+c-b)=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个B.4个C.3个D.2个考点:等腰三角形答案:A(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是( )考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线4.(1)与三角形三个顶点距离相等的点是这个三角形的( )A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;(2)O为内心时,∠BOC=90°+ ∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C。
直角三角形边角关系复习题
直角三角形边角关系复习题直角三角形是初中数学中的重要概念,它是指一个角为90度的三角形。
在直角三角形中,边角关系是一个基本的知识点,它涉及到三边的关系以及角度的计算。
本文将通过复习题的形式,帮助读者巩固和加深对直角三角形边角关系的理解。
1. 已知一直角三角形的斜边长为5cm,其中一个直角边长为3cm,求另一个直角边的长。
解析:根据勾股定理,斜边的平方等于两直角边的平方和。
设另一个直角边长为x,则有3^2 + x^2 = 5^2。
解方程得到x=4,因此另一个直角边的长为4cm。
2. 已知一个直角三角形的两个直角边分别为6cm和8cm,求斜边的长。
解析:同样利用勾股定理,设斜边长为y,则有6^2 + 8^2 = y^2。
解方程得到y=10,因此斜边的长为10cm。
3. 已知一个直角三角形的斜边长为13cm,其中一个直角边长为5cm,求另一个直角边的长。
解析:同样利用勾股定理,设另一个直角边长为z,则有5^2 + z^2 = 13^2。
解方程得到z=12,因此另一个直角边的长为12cm。
通过以上三道题目,我们可以看到直角三角形的边角关系是通过勾股定理来求解的。
勾股定理是数学中的基本定理之一,它描述了直角三角形的边长之间的关系。
在直角三角形中,斜边的平方等于两直角边的平方和。
这个定理的应用非常广泛,不仅在数学中有重要作用,在物理、工程等领域也有广泛应用。
除了边长之间的关系,直角三角形还涉及到角度的计算。
在直角三角形中,直角的角度是90度,而其他两个角的度数之和为90度。
因此,如果已知一个角的度数,就可以通过计算得到另一个角的度数。
这种关系在解三角形的问题中经常出现。
在解题过程中,我们还可以利用三角函数来计算直角三角形的边长和角度。
例如,正弦函数、余弦函数和正切函数等都可以用来计算直角三角形中的边长和角度。
这些函数是三角学中的重要概念,通过它们可以更方便地解决一些复杂的三角形问题。
总结起来,直角三角形的边角关系是初中数学中的基础知识,它涉及到勾股定理、角度计算和三角函数等概念。
备考2024年中考数学二轮复习-图形的性质_三角形_三角形的角平分线、中线和高-单选题专训及答案
备考2024年中考数学二轮复习-图形的性质_三角形_三角形的角平分线、中线和高-单选题专训及答案三角形的角平分线、中线和高单选题专训1、(2017路南.中考模拟) 已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A . 内心B . 重心C . 外心D . 无法确定2、(2017迁安.中考模拟) 已知△ABC在正方形网格中的位置如图所示,则点P是△ABC的()A . 外心B . 内心C . 三条高线的交点D . 三条中线的交点3、(2017大石桥.中考模拟) 下列四个图形中,线段BE是△ABC的高的是()A .B .C .D .4、(2018浙江.中考模拟) 如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )A .B .C .D . 25、(2017道外.中考模拟) 如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为()A . 12B . 24C . 16D . 326、(2017.中考模拟) 如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A . AC=10B . AB=15C . BG=10D . BF=157、(2019无锡.中考模拟) 如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE.若BD=3,CE=2,则△ABC的面积为()A . 4B . 8C . 12D . 168、(2017如皋.中考模拟) 下列尺规作图,能判断AD是△ABC边上的高是()A .B .C .D .9、(2019城.中考模拟) 在△ABC中,D是BC边上的点(不与B,C重合),连接AD,下列表述错误的是()A . 若AD是BC边的中线,则BC=2CDB . 若AD是BC边的高线,则AD<AC C . 岩AD是∠BAC的平分线,则△ABD与△ACD的面积相等D . 若AD是∠BAC的平分线又是BC边的中线,则AD为BC边的高线10、(2019定兴.中考模拟) 如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .11、(2019永定.中考模拟) 在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A .B .C . 34D . 1012、(2019.中考模拟) G为△ABC的重心,△ABC的三边长满足AB>BC>CA,记△GAB,△GBC,△GCA的面积分别为S1、S2、S3,则有()A . S1>S2>S3B . S1=S2=S3C . S1<S2<S3D . S1、S2、S3的大小关系不确定13、(2019武汉.中考模拟) 点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A .B .C .D .14、(2020海淀.中考模拟) 小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A . AB,AC边上的中线的交点B . AB,AC边上的垂直平分线的交点C . AB,AC边上的高所在直线的交点D . ∠BAC与∠ABC 的角平分线的交点15、(2018惠阳.中考模拟) 如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()A . 6B . 5C . 4D . 316、(2018百色.中考真卷) 顶角为30°的等腰三角形三条中线的交点是该三角形的()A . 重心B . 外心C . 内心D . 中心17、(2017河池.中考真卷) 三角形的下列线段中能将三角形的面积分成相等两部分的是()A . 中线B . 角平分线C . 高D . 中位线18、(2015.中考真卷) 三角形三条中线的交点叫做三角形的( )A . 内心B . 外心C . 中心D . 重心19、(2019大渡口.中考模拟) 下列命题是假命题的是()A . 三角形的三条高交于一点B . 直角三角形有三条高C . 三角形的一条中线把三角形的面积分成相等的两部分D . 三角形的三条中线交于一点20、(2019仁寿.中考模拟) 如图,AB∥CD,点EF平分∠BED,若∠1=30°,∠2=40°,则∠BEF的度数是()A . 70°B . 60°C . 50°D . 35°21、(2016广安.中考真卷) 下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A . 1个B . 2个C . 3个D . 4个22、(2019上海.中考模拟) 如图,在△ABC中,AB=AC,BC=4,tan B=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取()A . 2B . 3C . 4D . 523、(2020长春.中考模拟) 如图,用三角板作△ABC的边AB上的高,下列三角板的摆放位置正确的是( )A .B .C .D .24、(2020绍兴.中考模拟) 已知△ABC的两条中线的长分别为5、10,若第三条中线的长也是整数,则第三条中线长的最大值()A . 7B . 8C . 14D . 1525、(2021福建.中考模拟) 如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A .B .C .D .26、(2022本溪.中考模拟) 观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A .B .C .D .27、(2021苏州.中考模拟) 如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A . a2+b2=5c2B . a2+b2=4c2C . a2+b2=3c2D . a2+b2=2c228、(2020凤翔.中考模拟) 如图,经过的重心,点是的中点,过点作交于点,若,则线段的长为( )A . 6B . 4C . 5D . 329、(2021迁安.中考模拟) 如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为()A . 30°B . 20°C . 25°D . 15°30、(2022定远.中考模拟) 如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠FAG=∠FCB;③AF=AG;④BH=CH.A . ①②③④B . ①②③C . ②④D . ①③三角形的角平分线、中线和高单选题答案1.答案:B2.答案:D3.答案:C4.答案:C5.答案:C6.答案:B7.答案:A8.答案:D9.答案:C10.答案:A11.答案:D12.答案:B13.答案:A14.答案:B15.答案:C16.答案:A17.答案:A18.答案:D19.答案:A20.答案:D21.答案:A22.答案:B23.答案:A24.答案:C25.答案:A26.答案:27.答案:28.答案:29.答案:30.答案:。