反比例函数教学设计
《反比例函数》初三数学教案
《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。
《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:教师提出问题。
学生思考、交流,回答问题。
教师根据学生活动情况进行补充和完善。
二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。
)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。
)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。
在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。
反比例函数教案设计思路 反比例函数优秀教案
反比例函数教案设计思路反比例函数优秀教案反比例函数教案设计思路第 1 篇一、教学目标【学问与技能】从现实情境和已知阅历动身,争辩两个变量之间的相互关系,加深对概念的理解。
了解反比例函数的意义,理解反比例函数的概念。
会求简洁实际问题中的反比例函数解析式。
【过程与方法】经受抽象反比例函数概念的过程,进一步提高探究问题、归纳问题的力气,能运用函数思想方法解决有关问题。
【情感态度与价值观】增加用函数观点思考问题的意识和习惯。
二、教学重难点【重点】反比例函数的概念。
【难点】反比例函数的概念。
三、教学过程(一)导入新课情景设置:(呈现图片)生活中,存在着许多变化的量,比如:在乘坐火车时观看列车时刻表,你就能观看到许多变化的量.思考:表中有哪些是常量?哪些是变量?变量之间有怎样的关系?问题:一辆列车从南京动身开往上海,以速度v(km/h)行驶,行驶时间为t(h),行驶路程为s(km).(1)若速度v=160(km/h),行驶路程s(km)与行驶时间为t(h)之间的关系式为?(2)若南京到上海总路程约301km,行驶速度v与行驶t(h)的关系式为?我们利用数学表达式描述了这两个生活中的例子,同学们观看这两个表达式,这里有你生疏的函数吗?(3)v,t的积为定值,在学校里我们学过,假如两个量的乘积确定,那么这两个量成反比例,能把它写成函数形式吗?假如可以写成,那么v是t的函数吗?(二)生成新知出示例题:(1)京沪铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;反比例函数教案设计思路第 2 篇反比例函数解题技巧反比例函数是学校数学函数部分的重要内容,是一个核心学问点.由反比例函数的图像和性质能衍生出许多数学问题.随着新课改的不断深化,在近几年的各地中考数学试卷中,以反比例函数为背景设计的新题型也随处可见,试题难度以低、中档为主,常见的题型有填空题、选择题和解答题.同学们要能娴熟运用反比例函数的图像和性质答题.一、利用反比例函数图像的增减性例1 反比例函数y等于[2x]图像上有三个点(x1,y1)、(x2,y2)、(x3,y3),其中(x1【点拨】假如我们能把函数的图像大致画出来,在图像上描出三个对应点,那么我们解决这种问题就相对比较直观,也比较简洁了.例2 在反比例函数[1-2mx]的图像上有两点A(x1,y1)、B(x2,y2),当x10A. m0B. m0C.[m12]D.[m12]【点拨】对于这道题,我们必需依据x和y的关系先推断函数图像的分布,然后依据函数图像的增减性来求m值的范围.例3 工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧,进行锻造操作.经过8min时,材料温度降为600℃.煅烧时,温度y(℃)和时间x(min)成一次函数关系;锻造时,温度y(℃)和时间x(min)成反比例关系(如图1).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y和x的函数关系式,并且写出自变量x的取值范围;(2)依据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?【点拨】由图像可知曲线BC的表达式是y等于[4800x],在解决其次个问题时,科学的解法应当是令y等于[4800x]480,但由于大家还没有学过分式不等式,那只能先解方程[4800x]等于480,然后结合函数的增减性得出x10.二、利用反比例函数表达式中"k"的几何意义争论函数问题要*函数的本质特征.反比例函数y等于[kx](k0)中,反比例系数k有一个很重要的几何意义:过反比例函数y等于[kx(k0)]图像上任意一点P作x轴、y轴的垂线PM、PN,垂足为M、N,则矩形PMON的面积S等于PMPN等于[yx 等于xy等于k].所以,过双曲线上任意一点作x轴、y轴的垂线,它们和x轴、y 轴所围成的矩形面积为常数.从而有S△PNO等于S△PMO等于[12k].在解决有关反比例函数的问题时,若能灵敏运用反比例函数中"k"的几何意义,则会给解题带来很多便利.应用1:比较面积大小.例4 如图2,在函数y等于[2x](x0)的图像上有三点A、B、C.过这三点分别向x轴、y轴作垂线.过每一点所作的两条垂线和x轴、y轴围成的矩形的面积分别为SA、SB、SC,则( ).A. SASBSCB. SAC. SA【点拨】依据反比例函数中"k"的几何意义可知SA等于2,SB等于2,SC等于2.所以SA等于SB等于SC.故选D.应用2:求面积.例5 若函数y等于kx(k0)和函数y等于[1x]的图像相交于A、C两点,AB垂直x轴于B,则△ABC的面积为( ).A. 1B. 2C. kD. k2【点拨】如图3,若先求出A、C两点的坐标,再求△ABC的面积,则解题过程简洁烦琐.若能利用反比例函数中"k"的几何意义,则能"快刀斩乱麻".解:由反比例函数图像关于原点成中心对称知O为AC中点.依据反比例函数中"k"的几何意义,有S△ABO等于[121]等于[12].又由于△ABO和△BOC是同底等高的三角形,所以S△ABC等于2[12]等于1.故选A.应用3:确定解析式.例6 如图4,反比例函数y等于[kx][(k0)]和一次函数y等于-x-k的图像相交于A点,过A点作ABx轴于点B.已知S△AOB等于2,直线y等于-x-k和x轴相交于点C.求反比例函数和一次函数的解析式.【点拨】由反比例函数y等于[kx][(k0)]中"k"的几何意义知S△AOB等于2等于[12][k],故[k等于4].又由于反比例函数图像在其次、四象限,所以[k等于-4].从而可知,两个函数的解析式分别为[y等于-4x]和y等于-x+4.三、利用反比例函数图像的对称性中心对称的实质是旋转变换,和函数图像融合时具有较强的直观性、操作性,较好地实现了数学基本学问、空间观念和多种数学思维力气的综合运用,由于反比例函数的图像有中心对称性,所以可以将非特殊图形转化为特殊图形(圆形),解题的关键是面积的割补及对称转化.例7 下图中正比例函数和反比例函数的图像相交于A、B两点,分别以A、B两点为圆心,作出和y轴相切的两个圆,若点A的坐标为(1,2),求图中两个阴影面积的和.【点拨】利用反比例函数图像和圆的对称性求解.解:由点A的坐标可知,圆的半径是1,又由反比例函数的对称性知,两个阴影部分的面积和应为一个圆的面积,因此图中两个阴影面积的和为.例8 已知反比例函数y等于[1x]、y等于-[1x]的图像和一个圆,则图中阴影部分的面积是( ).A. B.2 C.4 D.条件不足,无法求【点拨】依据反比例函数的图像的对称性和圆的对称性得出:图中阴影部分的面积等于圆的面积的一半,由于圆的半径是2,所以图中阴影部分的面积是[12]22等于2.故选B.四、利用一次函数图像和反比例函数图像的交点解一次函数和反比例函数相结合的题,要充分利用"交点在两个函数图像上"这个有利的条件,确定函数的关系式,并结合图像,依据函数图像的相关性质分析函数值之间的关系.例9 如图,一次函数和反比例函数的图像相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是 .【点拨】由一次函数和反比例函数的图像相交于A、B两点,可知图中使反比例函数的值小于一次函数的值的x的取值范围是:x-1或0此外,还有一次函数和反比例函数的综合应用题,一般它包含两个区间的函数关系,因此同学们在求两个函数的关系式时应特别留意转折点(即公共点),它又是自变量的取值范围的分界点.解决函数情境应用题的核心是通过观看和分析图像、图表、情境,捕获有效信息,并对已获得的信息进行加工、处理和整理,分清变量之间的关系,选择适当的数学工具,將实际问题转化为相应的函数数学模型来解决问题.【反比例函数教案设计思路反比例函数优秀教案】。
反比例函数教案6篇
反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
反比例函数教学设计(通用6篇)
反比例函数教学设计(通用6篇)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y 都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I= .(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t= .它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y 的值.[生]设反比例函数的表达式为y= .(1)当x=-1时,y=2;∴k=-2.∴表达式为y=- .(2)当x=-2时,y=1.当x=- 时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=- ;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,- .Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y= ,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
反比例函数的图像和性质教学设计
反比例函数的图像和性质教学设计标题:反比例函数的图像和性质教学设计引言:反比例函数是数学中一个重要的概念,在实际生活中有着广泛的应用。
理解反比例函数的图像和性质对于学生掌握数学知识和解决实际问题非常重要。
本文将介绍一个针对反比例函数的图像和性质的教学设计,帮助学生更好地理解和应用这一概念。
一、教学目标1. 理解反比例函数的概念和性质;2. 能够画出反比例函数的图像;3. 熟练应用反比例函数解决实际问题。
二、教学内容和过程1. 概念讲解首先,通过简单易懂的语言解释反比例函数的概念,如:反比例函数是形如y = k/x的函数,其中k是一个常数。
然后,引导学生思考反比例函数的性质,如:- 当x趋近于0时,y趋近于无穷大;- 当x趋近于无穷大时,y趋近于0;- 函数图像关于y轴对称。
2. 图像练习在学生已经了解反比例函数的概念后,进行图像练习。
教师可以提供一系列的反比例函数的函数式,要求学生画出其图像,并解释函数式中各个参数的作用。
例如,要求学生画出函数y = 3/x的图像,并说明当x取不同值时,函数图像的变化情况。
这样可以帮助学生更好地理解反比例函数的图像特点。
3. 实际应用接下来,引导学生将反比例函数应用于实际问题的解决中。
给出一些与反比例函数相关的实际问题,如:某电子产品的价格与销量成反比例关系,已知当销量为1000时,价格为500元,要求学生利用反比例函数解决:- 当销量为2000时,价格是多少?- 当价格为100元时,销量是多少?通过实际问题的解决,让学生将抽象的反比例函数与实际情况联系起来,提高解决问题的能力。
4. 总结归纳最后,对反比例函数的图像和性质进行总结归纳。
学生可以梳理出反比例函数图像的特点,如图像与坐标轴的关系、函数图像的变化趋势等。
同时,学生还可以总结反比例函数的性质,并提出自己的观点和思考。
三、评估为了测试学生对反比例函数图像和性质的理解和应用能力,可以设计相应的形式评估,如选择题、填空题和解决实际问题的题目等。
6.1反比例函数(教案)(3)
三、教学难点与重点
1.教学重点
(1)反比例函数的定义:y = k/x(k≠0),强调k不为零,这是反比例函数成立的前提条件。
举例:在实际问题中,如速度与时间的关系,当时间为零时,速度没有意义,因此k不能为零。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在描述物体在反比例力作用下运动的应用,以及它如何帮助我们解决问题。
针对这个问题,我计划在接下来的课程中,增加一些与生活紧密相关的反比例函数实例,让学生更加直观地感受反比例函数的作用。此外,我还将加强对学生的引导,鼓励他们在小组讨论中积极发表自己的观点,提高他们的参与度。
另外,我在课程中强调了反比例函数与一次函数图像的关系,但感觉学生们对此部分的掌握程度并不理想。在今后的教学中,我需要更加注重这方面的讲解和练习,让学生更好地理解两者之间的联系和区别。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)反比例函数的图像与性质:双曲线、在每个象限内y随x的增大而减小(k>0)或增大(k<0)。
《反比例函数》教学设计
《反比例函数》教学设计一、教学目标1.理解反比例函数的定义和性质;2.掌握反比例函数的图像、特点及其在实际问题中的应用;3.能够解决与反比例函数相关的问题。
二、教学重点与难点1.理解反比例函数的定义和性质;2.掌握反比例函数的图像、特点及其在实际问题中的应用。
三、教学内容及教学步骤1.反比例函数的定义和性质(10分钟)通过介绍反比例函数的定义和性质,引导学生初步认识反比例函数,并与比例函数进行比较。
(教师可使用幻灯片或板书等方式进行讲解,同时与同学互动交流)2.反比例函数的图像与性质(30分钟)(1)通过绘制表格并画出反比例函数的图像,帮助学生直观地理解反比例函数的性质;(2)解释反比例函数图像的特点,如图像与坐标轴的交点、函数图像的大致走势等;(3)使用幻灯片或其他辅助工具演示反比例函数图像的变化规律。
3.反比例函数在实际问题中的应用(30分钟)(1)通过实际问题的引导,帮助学生理解反比例函数在实际生活中的应用,并进行相关练习;(2)引导学生分析、解决实际问题中的反比例函数应用题。
4.反比例函数的解决与综合应用(30分钟)通过多种题型的练习,帮助学生掌握反比例函数的解决方法,如交叉乘积法、图像法等,并进行综合应用题。
四、教学手段1.板书法:通过板书方法进行定义和性质的讲解,帮助学生记忆与理解;2.实物法:通过实际生活中的例子,引导学生认识反比例函数的应用;3.图示法:通过图示辅助讲解,帮助学生理解反比例函数的图像及特点;4.讨论法:通过课堂讨论,引导学生共同发现和探讨。
五、教学评价方式1.进行练习题,检查学生对反比例函数的掌握程度;2.进行小组讨论,评价学生对反比例函数应用问题的解决能力;3.综合评价学生对所学内容的理解程度和应用能力。
六、教学拓展1.引导学生通过自主学习和实际生活中的观察,找出更多的反比例函数应用例子;2.学生可以将所学反比例函数和比例函数进行对比,找出它们的共同点和区别;3.引导学生在课后的学习中,进一步研究反比例函数的性质和应用。
反比例函数教案优秀7篇
反比例函数教案优秀7篇《反比例函数》教学设计篇一一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。
情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx (1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y 就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
第26章_反比例函数_全章教案
第26章_反比例函数_全章教案第26章反比例函数全章教案一、教学目标:1.知识目标:了解反比例函数的基本概念和性质,掌握绘制反比例函数的图像,解决与反比例函数相关的实际问题。
2.能力目标:能够正确运用反比例函数的性质解决实际问题,培养学生的逻辑思维和问题解决能力。
3.情感目标:培养学生对数学的兴趣和学习动力,激发学生的思维灵活性和创造性。
二、教学重难点:1.重点:反比例函数的基本概念和性质,绘制反比例函数的图像。
2.难点:如何正确运用反比例函数解决实际问题。
三、教学过程:1.情境导入(5分钟)通过一些实际问题的引导,让学生了解反比例函数的概念和性质。
比如:小明用5个小时跑完全程100公里的路程,那么他每小时的速度是多少?2.概念解释与讲解(10分钟)讲解反比例函数的概念和性质。
反比例函数是指两个变量之间的关系,当其中一个变量的值增加时,另一个变量的值会减小,反之亦然。
反比例函数的一般形式为y=k/x,其中k为常数。
3.图像绘制与讨论(20分钟)让学生用自己的方法绘制反比例函数的图像,并进行讨论。
引导学生观察图像的特点,如何表示反比例函数的性质。
4.性质总结与归纳(10分钟)总结反比例函数的性质,如:在定义域内,函数的值随着自变量的增大而减小,反之亦然;函数的图像是关于y轴和x轴的交点的对称图形等。
5.实际问题解决(20分钟)通过一些实际问题,引导学生运用反比例函数解决实际问题。
比如:小明去超市买苹果,每斤4元,他想知道买10斤需花费多少钱?6.拓展应用(10分钟)让学生以小组形式,找寻更多与反比例函数相关的实际问题,并进行讨论和解决,拓展应用反比例函数的范围。
7.归纳总结(10分钟)四、课堂练习与作业:1.完成课堂练习册上关于反比例函数的练习题。
2.布置反比例函数的作业题,要求学生将其解答过程写清楚。
五、板书设计:第26章反比例函数1.反比例函数的概念和性质y=k/x2.反比例函数的图像特点-定义域内,函数的值随着自变量的增大而减小,反之亦然-函数的图像是关于y轴和x轴的交点的对称图形备注:以上只是教案大纲,根据具体教学情况,具体内容和时间分配可以有所调整。
反比例函数教案(优秀3篇)
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数教案设计(优秀篇)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。
3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。
二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。
2. 反比例函数的性质:比例系数、定义域、值域、图像特点。
3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。
4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。
三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。
2. 难点:反比例函数的实际应用,特别是复杂问题的解决。
四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。
2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。
五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。
2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。
3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。
4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。
5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。
6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。
7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。
六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。
2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。
3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。
七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。
(完整版)反比例函数教案
第十七章 反比例函数17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xky =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0.讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xky =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k(k ≠0)的形式三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念.补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的? 五、例习题分析例1.见教材P47分析:因为y 是x 的反比例函数,所以先设xky =,再把x =2和y =6代入上式求出常数k,即利用了待定系数法确定函数解析式。
《反比例函数》教学设计
《反比例函数》教学设计教学目标:1.学生能够了解什么是反比例函数,掌握反比例函数的定义和性质;2.学生能够应用反比例函数解决实际问题;3.学生能够利用反比例函数解决实际问题的问题。
教学重点:1.反比例函数的定义和性质;2.反比例函数的应用。
教学难点:1.利用反比例函数解决实际问题。
教学准备:1.教师准备电子白板、投影仪、计算器等;2.学生准备笔记纸和笔。
教学过程:Step 1:导入新知识(5分钟)教师通过提问让学生回顾什么是比例函数,并与一般线性函数进行比较。
教师引导学生思考:比例函数中是否存在除以零的情况?如果存在,其特点是什么?Step 2:引入反比例函数(10分钟)教师通过投影仪展示反比例函数的定义和性质,并与比例函数进行对比。
教师示范一个简单的反比例函数问题,让学生通过计算器或手算验证。
Step 3:探究反比例函数的图像(20分钟)教师引导学生思考:如何根据函数式所给到的图形中知晓函数式的特点。
教师通过投影仪演示如何利用函数式的特点来画反比例函数的图像,并帮助学生画出几个例子。
Step 4:学习反比例函数的应用(30分钟)教师给学生提供几个实际生活中的问题,例如:两辆汽车从同一个地点同时出发,一辆以60千米每小时的速度向北行驶,另一辆以80千米每小时的速度向南行驶。
求两辆汽车相遇需要多长时间?教师指导学生分析问题,列方程,并解答问题。
Step 5:解决实际问题(25分钟)教师让学生分组解决几个实际问题,要求学生应用反比例函数解决。
教师根据学生的解答情况进行指导和评价。
Step 6:总结和扩展(10分钟)教师让学生总结反比例函数的特点,以及如何解决实际问题。
教师提问:如何确定实际问题中何时可以使用反比例函数解决?Step 7:作业布置(5分钟)教师布置作业:完成课堂练习和阅读相关知识。
教学反思:通过本节课的教学,学生对反比例函数的定义和性质有了初步的了解,也能够应用反比例函数解决实际问题。
反比例函数教案6篇
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:1. 知识与技能:(1)理解反比例函数的定义,掌握反比例函数的一般形式;(2)学会用图像和解析式表示反比例函数;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)运用反比例函数解决生活中的实际问题,提高学生的应用能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性;(2)培养学生合作探究的精神,提高学生的团队协作能力;(3)培养学生运用数学知识解决实际问题的能力,增强学生的实践能力。
二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其一般形式;(2)反比例函数的图像特点;(3)反比例函数在实际问题中的应用。
2. 教学难点:(1)反比例函数图像的绘制;(2)反比例函数在实际问题中的灵活运用。
1. 导入新课:(1)引导学生回顾正比例函数的知识,为新课的学习做好铺垫;(2)通过展示实例,引导学生发现反比例函数的规律。
2. 自主探究:(1)让学生根据实例,总结反比例函数的定义及其一般形式;(2)引导学生利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)组织学生进行小组讨论,分享各自的学习心得。
3. 课堂讲解:(1)讲解反比例函数的定义及其一般形式;(2)讲解反比例函数的图像特点;(3)讲解反比例函数在实际问题中的应用。
4. 巩固练习:(1)设计练习题,让学生巩固反比例函数的知识;(2)鼓励学生运用反比例函数解决实际问题,提高学生的应用能力。
5. 小结与拓展:(1)对本节课的内容进行总结,加深学生对反比例函数的理解;(2)布置课后作业,让学生进一步巩固反比例函数的知识。
四、教学评价:1. 学生对反比例函数的定义、一般形式和图像特点的掌握程度;2. 学生运用反比例函数解决实际问题的能力;3. 学生在课堂上的参与程度、合作意识和团队协作能力。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。
掌握反比例函数的定义和性质。
1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。
反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。
引导学生通过观察实际例子,发现反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。
理解反比例函数图像的特点。
2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。
双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。
2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。
让学生通过分析反比例函数图像,理解反比例函数的性质。
第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。
能够应用反比例函数的性质解决实际问题。
3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
设计练习题,让学生应用反比例函数的性质解决实际问题。
第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。
能够运用反比例函数的知识进行综合分析。
4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。
4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。
设计练习题,让学生运用反比例函数的知识进行综合分析。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 学生能理解反比例函数的概念,掌握反比例函数的定义和性质。
2. 学生能够运用反比例函数解决实际问题,提高解决问题的能力。
过程与方法:1. 学生通过观察、分析、归纳等方法,探索反比例函数的性质。
2. 学生能够利用反比例函数的性质进行函数图象的识别和分析。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验成功的喜悦。
2. 学生培养合作精神,学会与他人交流和分享。
二、教学内容:1. 反比例函数的定义:学生通过观察实例,理解反比例函数的概念,掌握反比例函数的定义。
2. 反比例函数的性质:学生通过实验、观察、分析等方法,探索反比例函数的性质,如单调性、奇偶性等。
3. 反比例函数图象的识别:学生通过观察图象,学会识别反比例函数图象,理解图象的特点。
4. 反比例函数的应用:学生通过解决实际问题,运用反比例函数的知识,提高解决问题的能力。
5. 反比例函数的综合练习:学生通过练习题,巩固反比例函数的知识,提高解题能力。
三、教学重点与难点:重点:1. 反比例函数的概念和性质。
2. 反比例函数图象的识别和分析。
难点:1. 反比例函数的性质的深入理解和运用。
2. 解决实际问题中反比例函数的应用。
四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作学习法等,激发学生的学习兴趣,培养学生的探究能力和合作精神。
2. 教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,直观展示反比例函数的知识,帮助学生理解和掌握。
五、教学过程:1. 导入新课:通过展示实例,引导学生思考反比例函数的概念,激发学生的学习兴趣。
2. 知识讲解:讲解反比例函数的定义和性质,引导学生通过观察、分析、归纳等方法,探索反比例函数的性质。
3. 实例分析:分析实际问题,引导学生运用反比例函数的知识,解决问题。
4. 课堂练习:学生独立完成练习题,巩固反比例函数的知识。
6. 课后作业:布置作业,让学生进一步巩固反比例函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.定义:
2.思想方法:待定系数法,数学建模思想.
习题17.1第1、2、4题
小组交流后回答
全班问答交流
△帮助学生完成对反比例函数概念从感性体验到理性认识的过渡.
△让学生感受从特殊到一般的思考方法,发展学生的抽象思维能力,同时也为知识的内化和正迁移创造了条件,培养学生的建模意识.
学情分析
作为八年级的学生,已经具备了较强的类比学习能力和总结归纳能力,已经具有了函数和相关知识,并且对函数变化过程也有一定的认识,但运用函数方法解决实际问题仍存在较多困难.
教
学
目
标
1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式,能判断一个函数是否为反比例函数.
2.能描点画出反比例函数的图像,会用待定系数法求反比例函数的解析式,进一步理解函数的三种表示方法.
(二)互动迁移
举出类似以上的实例:
(三)明晰概念
Y= (k为常数,k≠0)或y=kx-1;xy=k.
(四)领悟概念
1.其他形式
2.对x、y、k的具体要求.
下列等式中y是x的反比例函数吗?若是,指出k的值.
Y= ,y=- ,xy=0,y= ,
Y= - ,y= + 3,y=4x-1,y= .
例1教材40页
教学设计
题目
第十七章反比例函数
总课时
8
学校
教 者
年级
八年
学科
数学
设计来源
教学时间
2012年3月23日—31日
教
材
分
析
本章内容属于“数与代数”领域,是在已学过平面直坐标系和一次函数的基础上学习的,让学生进一步理解函数的内涵,并感受现实世界存在各种函数以及如何应用函数解决实际问题.反比例函数是最基本的函数之一,是学习后续各类函数的基础.本章主要内容是反比例函数教材从几个学生所熟悉的实际问题出发,引进其概念使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识.本章一共安排了2个小节和2个选学内容.
教学设计
题目
17.1.2反比例函数的图象和性质
总课时
2
学校
教 者
年级
八年
学科
数学
设计来源
教学时间
2012年3月24日—27日
教
材
分
析
反比例函数的图象和性质是反比例函数教学的重点,学生需要在理解的基础上熟练运用,本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考等数学活动,初步认识具体的反比例函数图象的特征,逐步明确反比例函数的整体直观形象,为学生探索反比例函数的图象的性质提供了思维活动的空间.
◇资源准备
□评价○反思
第一课时
14
创设情境
以旧探新
尝试发现
探索新知
以练促思
强化新知
反思小结
观点提炼
布置作业
问题1:长方形的一边为6,面积y与另一边x之间有什么关系?若抛开实际含义,它的图象是什么样子?
问题2:若长方形的面积为6,一边长x与另一边y之间又有什么关系呢?它的图象又是什么样子呢?是否和上面一样?
4)要注意发挥图象的作用.
习题17.1第7、9题
学生思考后解答
小组合作、探究
学生独立完成
学生归纳,教师引导并补充
△好奇心能生发求知欲.使学生在宽松的环境中彼此分享成功的喜悦.
△使学生养成团结协作的意识.
△巩固所学知识.
△培养学生的归纳能力.
教学设计
题目
17.2实际问题与反比例函数
总课时
4
学校
教 者
年级
活动1:画出反比例函数y= 的图象.
问题1:画反比例函数的图像应注意什么?
问题2:图象能与坐标轴相交吗?为什么?
活动2:作出反比例函数y=- 的图象.
活动3:画出反比例函数y= 和y=- 的图象.
问题3:图象有什么共同点?其形状是什么?
问题4:观察图象,你能对它们进行分类吗?说说分类标准,并对其共性进行描述.
教学流程
分课时
环节
与时间
教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
13
创设情境
领悟新知
20ˊ
自主演练
内化新知
10ˊ
拓展应用
升华新知
10ˊ
反思小结
观点提炼
布置作业
5ˊ
(一)情境引入
根据下面情境,探究有关问题.
问题1:把一张面值100元的人民币换成50元的人民币,可得几张?如果换成面值20元的,可得几张?如果换成10元的呢?设所换成的面值为x元,相应的张数为y,
第二课时
15
创设情境
温旧引新
5′
应用迁移
巩固提高
20′
依托“面积”
加深理解
15′
反思小结
观点提炼
5′
布置作业
问题:已知点(5,2)在反比例函数y= 的图象上,判断点(- 5,- 2)是否也在此图象上.题中的“?”是被一名同学不小心擦掉的数字,请你分析一下“?”代表什么数,并解答此题.
例1已知反比例函数的图象经过点A(2,6),
问题5:你认为什么元素决定着图象的个性差异?
问题6:总结反比例函数的性质.
问题7:怎样从解析式上对性质进行解释?
练习:1.教材43页1、2题
2.已知反比例函数y= ,分别根据下列条件求出k的取值范围.
函数的图象位于第一、三象限;
y随x的减小而减小.
知识归纳:比较反比例函数和正比例函数
思想方法归纳:描点作图法,观察法,归纳法,数形结合思想.
八年
学科
数学
设计来源
教学时间
2012年3月28日—31日
教
材
分
析
本节是在学生已经掌握了反比例函数的定义、图象与性质以及八年级上册一次函数应用的基础上学习的,是反比例函数有关知识在现实生活中的应用与延续,体现了现实的教学、有用的数学理念.本节教学内容对学生参加实践活动,解决日常生活中的实际问题具有重要意义,同时向学生渗透了转化、建模和数形结合的思想,为今后学习二次函数的应用奠定了基础.
学情分析
学生已经已经学过一次函数,初步掌握了研究函数的基本方法,通过列表、描点、连线画出图象,通过图象去研究函数的性质.
教
学
目
标
知识与技能:
1.会用描点法画反比例函数的图象;2.结合图象分析并掌握其性质;3.能灵活运用反比例函数的图象和性质求函数的解析式,进而解决一些较综合的数学问题.
过程与方法:
1.经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征;2.经历观察、分析、交流的过程,逐步提高从函数图象中感受其规律的能力;3.从较综合的题目的解答中学会使用数形结合的方法.
巩固练习:教材45页第1、2题.
过图象上任意一点作坐标轴的垂线段,与坐标轴构成的长方形的面积S=| k|.
反比例函数的性质运用的注意点:
1)k的符号决定图象所在象限,反之,图象所在象限决定k的符号.
2)在每一个象限内,y随x的变化情况,在不同象限切忌使用.
3)从反比例函数的图象上任一点向坐标轴作垂线,这一点和垂足及坐标原点所构成的三角形面积等于 | k|.
1你会用含x的代数式表示y吗?
2当换成的面值x变化时,相应的张数y会怎样变化?
3变量y是x的函数吗?
问题2:当矩形的面积为24cm2时,长a与宽b的关系.当b越来越大时,a
变量a是b的,理由:
问题3:京沪高速公路全长1262km,汽车行驶完全程所用时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
重
点
用反比例函数的知识解决实际问题.
难
点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.
课前准备
多媒体课件、挂图、小黑板
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
教学设计
题目
17.1.1反比例函数的意义
总课时
1
学校
教 者
情感态度与价值观:
1.经历抽象反比例概念的过程,体会数学学习的重要性,提高学生学习数学的兴趣;2.通过分组讨论,培养学生合作交流意识和探索精神.
重
点
理解反比例函数的概念,能根据已知条件写出函数解析式.
难
点
理解反比例函数的概念.
课前准备
多媒体课件、小黑板
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
情感态度与价值观:
1.由图象的画法和分析,体验数学活动中的探索和创造性,感受数学美,并通过图象的直观教学激发学习兴趣;2.深刻领会函数解析式与和函数图象之间的联系,体会数形结合及转化的思想方法;3.通过解决综合题,增强学生的自信心,涵育学生学习数学的兴趣.
重
点
正确地进行描点、画出图象,理解并掌握反比例的图象和性质,能灵活运用反比例函数的性质解决一些综合问题
习题17.1第3、8题.
学生回答并画出图象
学生猜想
学生摸索着画图
利用已有经验画图
小组交流、讨论、归纳
△鼓励学生间相互讨论相互比较,借助分析、判断、归纳、总结等手段共同取得正确的画图经验.
△巩固所学的知识
△与已有知识联系、比较,以加深理解.
教学流程
分课时
环节
与时间
教师活动