第八章 立体几何初步第4课时 平面与平面的位置关系

合集下载

人教B版高考总复习一轮数学精品课件 第8章立体几何与空间向量 第2节空间点、直线、平面之间的位置关系

人教B版高考总复习一轮数学精品课件 第8章立体几何与空间向量 第2节空间点、直线、平面之间的位置关系
异面直线的图形有 ②④
.
解析 在图①中,MG∥HN且MG=NH,则四边形MGHN是平行四边形,有
HG∥MN,不是异面直线;在图②中,G,H,N三点共面,但M∉平面GHN,因此GH
与MN异面;在图③中,M,G分别是所在棱的中点,所以GM∥HN且GM≠HN,故
HG,NM必相交,不是异面直线;在图④中,G,M,N共面,但H∉平面GMN,因此
于C,当圆上两点为一直径的两个端点时,它们与圆心三点共线不能确定平
面,故C不正确;对于D,梯形的两个底边所在直线平行,可确定一个平面,故D
正确.
6.(人教A版必修第二册习题8.4第2(2)题)若直线a不平行于平面α,且a⊄α,则
下列结论成立的是( B )
A.α内的所有直线与a是异面直线
B.α内不存在与a平行的直线
BCC1B1内,直线MB1与平面BCC1B1相交于点B1,点B1不在直线BN上,所以直
线BN与直线MB1是异面直线,故C正确;对于D,因为点M与DD1都在平面
C1D1DC内,点A在平面C1D1DC外,DD1不过点M,所以AM与DD1是异面直线,
故D正确.故选CD.
考点三 正方体中的切割(截面)问题
题组三连线高考
8.(2006·上海,文15)若空间中有两条直线,则“这两条直线为异面直线”是“这
两条直线没有公共点”的( A )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 若“这两条直线为异面直线”,则“这两条直线没有公共点”;若“这两条
直线没有公共点”,则“这两条直线可能异面,也可能平行”.
9.(2021·全国乙,理5)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线

新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt

新教材高中数学第八章立体几何初步8.4.1平面课件新人教A版必修第二册ppt


×
如三棱锥的四个顶点相连的四边形不能确定
一个平面


平面是空间中点的集合,是无限集
答案:④
4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则
直线AB∩β=
.
解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.
答案:C
∴由基本事实3可知,点P在平面ABC与平面α的交线上,同理可
证Q,R也在平面ABC与平面α的交线上.
∴P,Q,R三点共线.
本例换为:如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C
与平面ABC1D1交于点Q,如何说明B,Q,D1三点共线?
证明:如图所示,连接A1B,CD1.
显然B∈平面A1BCD1,D1∈平面A1BCD1.
④两条平行线确定一个平面
A.①②
B.②③
C.②④
D.③④
(2)两个平面若有三个公共点,则这两个平面(
A.相交
B.重合
C.相交或重合
D.以上都不对
)
解析:(1)不在同一条直线上的三点确定一个平面.圆上三个点
不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.
当四点在一条直线上时不能确定一个平面,③不正确.根据平
且 P∈l
3.做一做:如图所示,在空间四边形各边AD,AB,BC,CD上分别
取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直线BD
上.
证明:∵EF∩GH=P,
∴P∈EF,且P∈GH.
又EF⊂平面ABD,GH⊂平面CBD,
∴P∈平面ABD,且P∈平面CBD,
即P∈平面ABD∩平面CBD,平面ABD∩平面CBD=BD,

普通高中教科书数学目录(2019版)

普通高中教科书数学目录(2019版)

必修 (第一册)(共计72 课时)第一章 集合与常用逻辑用语 (10课时)1.1 集合的概念1.2 集合间的基本关系1.3 集合的基本运算阅读与思考 集合中元素的个数1.4 充分条件与必要条件阅读与思考 几何命题与充分条件、必要条件1.5 全称量词与存在量词第二章 一元二次函数、方程和不等式 (8课时)2.1 等式性质与不等式性质2.2 基本不等式2.3 二次函数与一元二次方程,不等式第三章 函数的概念与性质 (12课时)3.1 函数的概念及其表示阅读与思考 函数概念的发展历程3.2 函数的基本性质信息技术应用 用计算机绘制函数图象3.3 幂函数探究与发现 探究函数1y x x=+的图象与性质 3.4 函数的应用 (一)文献阅读与数学写作* 函数的形成与发展第四章 指数函数与对数函数 (16课时)4.1 指数4.2 指数函数阅读与思考 放射性物质的衰减信息技术应用 探究指数函数的性质4.3 对数阅读与思考 对数的发明4.4 对数函数探究与发现 互为反函数的两个函数图象间的关系4.5 函数的应用 (二)阅读与思考 中外历史上的方程求解文献阅读与数学写作* 对数概念的形成与发展数学建模 (3课时) 建立函数模型解决实际问题第五章 三角函数 (23课时)5.1 任意角和弧度制5.2 三角函数的概念阅读与思考 三角学与天文学5.3 诱导公式5.4 三角函数的图象与性质探究与发现 函数()sin y A x ωϕ=+及函数()cos y A x ωϕ=+的周期探究与发现 利用单位圆的性质研究正弦函数、余弦函数的性质5.5 三角恒等变换信息技术应用 利用信息技术制作三角函数表5.6 函数()sin y A x ωϕ=+5.7 三角函数的应用阅读与思考 振幅、周期、频率、相位必修 (第二册)(共计69 课时)第六章平面向量及其应用 (18课时)6.1 平面向量的概念6.2 平面向量的运算阅读与思考 向量及向量符号的由来6.3 平面向量基本定理及坐标表示6.4 平面向量的应用阅读与思考 海伦和秦九韶数学探究 (2课时) 用向量法研究三角形的性质第七章 复数 (8课时)7.1 复数的概念7.2 复数的四则运算阅读与思考 代数基本定理7.3*复数的三角表示探究与发现 1的n 次方根第八章 立体几何初步 (19课时)8.1 基本立体图形8.2 立体图形的直观图阅读与思考 画法几何与蒙日8.3 简单几何体的表面积与体积探究与发现 祖暅原理与柱体、锥体的体积8.4 空间点、直线、平面之间的位置关系8.5 空间直线、平面的平行8.6 空间直线、平面的垂直阅读与思考 欧几里得 《原本》与公理化方法文献阅读与数学写作*几何学的发展第九章 统计 (13课时)9.1 随机抽样阅读与思考 如何得到敏感性问题的诚实反应信息技术应用 统计软件的应用9.2 用样本估计总体阅读与思考 统计学在军事中的应用——二战时德国坦克总量的估计问题 阅读与思考 大数据9.3 案例统计 公司员工的肥胖情况调查分析第十章 概率 (9课时)10.1 随机事件与概率10.2 事件的相互独立性10.3 频率与概率阅读与思考 孟德尔遗传规律选择性必修 (第一册)(共计43 课时)第一章 空间向量与立体几何 (15课时)1.1 空间向量及其运算1.2 空间向量基本定理1.3 空间向量及其运算的坐标表示阅读与思考 向量概念的推广与应用1.4 空间向量的应用第二章 直线和圆的方程 (16课时)2.1 直线的倾斜角与斜率2.2 直线的方程探究与发现 方向向量与直线的参数方程2.3 直线的交点坐标与距离公式阅读与思考 笛卡儿与解析几何2.4 圆的方程阅读与思考 坐标法与数学机械化2.5 直线与圆、圆与圆的位置关系第三章 圆锥曲线的方程 (12课时)3.1 椭圆信息技术应用 用信息技术探究点的轨迹:椭圆3.2 双曲线探究与发现 为什么b y x a=±是双曲线22221x y a b -=的渐近线 3.3 抛物线探究与发现 为什么二次函数2y ax bx c =++的图象是抛物线阅读与思考 圆锥曲线的关学性质及其应用文献阅读与数学写作* 解析几何的形成与发展选择性必修 (第二册)(共计30 课时)第四章 数列 (14课时)4.1 数列的概念阅读与思考 斐波那契数列4.2 等差数列4.3 等比数列阅读与思考 中国古代数学家求数列和的方法4.4*数学归纳法第五章一元函数的导数及其应用(16课时)5.1 导数的概念及其意义5.2 导数的运算探究与发现牛顿法——用导数方法求方程的近似解5.3 导数在研究函数中的应用信息技术应用图形技术与函数性质文献阅读与数学写作* 微积分的创立与发展选择性必修(第三册)(共计35 课时)第六章计数原理(11课时)6.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少6.2 排列与组合探究与发现组合数的两个性质6.3 二项式定理数学探究(2课时)杨辉三角的性质与应用第七章随机变量及其分布(10课时)7.1 条件概率与全概率公式阅读与思考贝叶斯公式与人工智能7.2 离散型随机变量及其分布列7.3 离散型随机变量的数字特征7.4 二项分布与超几何分布探究与发现二项分布的性质7.5 正态分布信息技术应用概率分布图及概率计算第八章成对数据的统计分析(9课时)8.1 成对数据的统计相关性8.2 一元线性回归模型及其应用阅读与思考回归与相关8.3 列联表与独立性检验数学建模(3课时)建立统计模型进行预测。

高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案

高中数学第八章立体几何初步-平面与平面垂直的判定课件及答案

则 AD⊥BC,SD⊥BC,∴∠ADS 为二面角 A-BC-S 的平面角.在 Rt△BSC
中,∵SB=SC=a,
∴SD=
22a,BD=B2C=
2 2 a.
在 Rt△ABD 中,AD= 22a.在△ADS 中, ∵SD2+AD2=SA2,∴∠ADS=90°,即二面角 A-BC-S 为直二面角,故平
面 ABC⊥平面 SBC.
(3)垂线法.过二面角的一个面内异于棱上的 A 点向另一个平面作垂线,垂 足为 B,由点 B 向二面角的棱作垂线,垂足为 O,连接 AO,则∠AOB 为二面 角的平面角或其补角.如图③,∠AOB 为二面角 α-l-β 的平面角.
【对点练清】
1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两
D.AO⊥l,BO⊥l,且 AO⊂α,BO⊂β 答案:D
3.如图,在正方体 ABCD-A1B1C1D1 中,二面角 A-BC-A1 的平面 角等于 ________. 答案:45°
知识点二 平面与平面垂直
(一)教材梳理填空 1.面面垂直的定义:
一般地,两个平面相交,如果它们所成的二面角是_直__二__面__角__,就说 定义
D.不存在
()
答案:C 3.若平面 α⊥平面 β,平面 β⊥平面 γ,则
()
A.α∥γ
B.α⊥γ
C.α 与 γ 相交但不垂直 答案:D
D.以上都有可能
题型一 二面角的概念及其大小的计算
【学透用活】 (1)一个二面角的平面角有无数个,它们的大小是相等的. (2)构成二面角的平面角的三要素:“棱上”“面内”“垂直”,即二面角的 平面角的顶点必须在棱上,角的两边必须分别在两个半平面内,角的两边必须都 与棱垂直,这三个条件缺一不可. (3)当二面角的两个半平面重合时,规定二面角的大小是 0°;当二面角的两 个半平面合成一个平面时,规定二面角的大小是 180°,所以二面角的平面角 α 的取值范围是 0°≤α≤180°.

2021_2022学年新教材高中数学第8章立体几何初步8.4.1平面课件新人教A版必修第二册 (1)

2021_2022学年新教材高中数学第8章立体几何初步8.4.1平面课件新人教A版必修第二册 (1)

2.上述问题中,你能证明B,E,D1三点共线吗?
[提示] 由于平面A1BCD1与平面ABC1D1交于直线BD1,又 E∈BD1,根据基本事实3可知B,E,D1三点共线.
[证明] 因为梯形ABCD中,AD∥BC, 所以AB,CD是梯形ABCD的两腰. 所以AB,CD必定相交于一点. 设AB∩CD=M. 又因为AB⊂α,CD⊂β,所以M∈α,M∈β. 所以M∈α∩β. 又因为α∩β=l,所以M∈l. 即AB,CD,l共字语言表达
图形语言表达
符号语言表达
点A在直线l上
A∈l
点B在直线l外
B∉l
点A在平面α内
_A_∈__α__
点P在平面α外 直线l在平面α内 直线l不在平面α内 平面α与β相交于直
线l
P∉α _l⊂__α__ _l_⊄_α__ __α_∩__β_=__l __
法三:因为A,B,C三点不在同一条直线上, 所以A,B,C三点可以确定一个平面α. 因为A∈α,B∈α,所以AB⊂α, 同理BC⊂α,AC⊂α, 故直线AB,BC,AC共面.
类型3 点共线、线共点问题 【例3】 如图,已知平面α,β,且α∩β=l.设梯形ABCD中, AD∥BC,且AB⊂α,CD⊂β.
合作探究·释疑难
类型1 类型2 类型3
类型1 立体几何三种语言的相互转化 【例1】 用符号表示下列语句,并画出图形. (1)平面α与β相交于直线l,直线a与α,β分别相交于点A,B; (2)点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB 上.
[解] (1)用符号表示:α∩β=l,a∩α=A,a∩β=B,如图. (2)用符号表示:A∈α,B∈α,a∩α=C,C∉AB,如图.
本例变为:如图所示,在空间四边形各边AD,AB,BC,CD上 分别取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直 线BD上.

新教材高中数学第八章立体几何初步8.4.2空间点直线平面之间的位置关系分层演练含解析必修第二册

新教材高中数学第八章立体几何初步8.4.2空间点直线平面之间的位置关系分层演练含解析必修第二册

空间点、直线、平面之间的位置关系A级基础巩固1.三棱台的一条侧棱所在直线与其对面所在的平面之间的关系是()A.相交B。

平行C。

直线在平面内D。

平行或直线在平面内解析:延长各侧棱可恢复成棱锥的形状,所以三棱台的一条侧棱所在直线与其对面所在的平面相交。

答案:A2。

在长方体ABCD—A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B。

异面 C.平行D。

垂直解析:如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交。

答案:A3。

在长方体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有5条.解析:与AB平行、与CC1相交的直线是CD,C1D1;与CC1平行、与AB相交的直线是BB1,AA1;与AB,CC1都相交的直线是BC,故满足条件的棱有5条.4.若A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是相交.解析:因为A∈α,B∉α,C∉α,所以平面ABC与平面α有公共点,且不重合,所以平面ABC与平面α的位置关系是相交.5.简述下列问题的结论,并画图说明:(1)若a⊂α,b∩a=A,则直线b和平面α的位置关系如何?(2)若a⊂α,b∥a,则直线b和平面α的位置关系如何?解:(1)由图①可知:b⊂α或b∩α=A。

(2)由图②可知:b⊂α或b∥α.①②B级能力提升6.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是()A。

异面或平行B。

异面或相交C。

异面D。

相交、平行或异面解析:异面直线不具有传递性,如图所示,在长方体模型中,a,b异面,直线c的位置可如图中c1,c2,c3所示,所以a和c的位置关系可以是相交、平行或异面。

答案:D7。

已知直线a,b,c,下列三个命题:①若a与b异面,b与c异面,则a与c异面;②若a∥b,a和c相交,则b和c也相交;③若a⊥b,a⊥c,则b∥c.其中,正确命题的个数是()A。

2024年高考数学总复习第八章《立体几何与空间向量》8

2024年高考数学总复习第八章《立体几何与空间向量》8

2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。

空间点线面之间的位置关系

空间点线面之间的位置关系

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:αBAβαABαβαβBAAβαBA α∈ 点A 在平面α内A α∉ 点A 不在平面α内b a Aa b A =直线a 、b 交于A 点a α⊂直线a 在平面α内a α=∅ 直线a 与平面α无公共点a A α=直线a 与平面α交于点Al αβ= 平面α、β相交于直线l二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示:或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面;BA αAαAαaαaαa Aα推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章 立体几何初步(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第八章立体几何初步(公式、定理、结论图表)1.多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形2.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.3.旋转体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.(2)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(3)三视图的长度特征:“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧同宽.5.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.6.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.7.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l三者关系S圆柱侧=2πrl――→r′=rS圆台侧=π(r+r′)l――→r′=0S圆锥侧=πrl8.柱、锥、台和球的表面积和体积(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外的一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.10.空间直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(3)平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.11.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a12.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β,b ∥β,a ∩b =P ,a ⊂α,b ⊂α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b14.直线与平面垂直(1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面.(4)直线和平面垂直的性质:①垂直于同一个平面的两条直线平行.②直线垂直于平面,则垂直于这个平面内的任一直线.③垂直于同一条直线的两平面平行.15.直线和平面所成的角(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)直线和平面所成角的范围是0°≤θ≤90°.16.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)二面角的范围是0°≤θ≤180°.17.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理l⊥α<常用结论>1.特殊的四棱柱2.球的截面的性质3.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下:5.几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,6.异面直线的判定定理7.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.8.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.9.线、面平行的性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.12.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.<解题方法与技巧>一、空间几何体概念辨析题的常用方法A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图1图2B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.]二、识别三视图的步骤(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.典例2:(1)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A­BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()A B C D(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(1)A(2)A[(1)正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.(2)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.]三、由三视图确定几何体的步骤典例3:(1)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()A.217B.25C.3D.2(1)C(2)B[(1)在正方体中作出该几何体的直观图,记为四棱锥P­ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图1所示.图1图2圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图2所示,连接MN,则图中MN即为M到N的最短路径.ON=14×16=4,OM=2,∴MN=OM2+ON22 5.故选B.]四、由几何体的部分视图确定剩余视图的方法解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.典例4:如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A B C DA [由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.]五、空间几何体的直观图1.用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.2.原图形与直观图面积的关系典例5:(1)已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为()A.2B.24C.22D .22(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形(1)C (2)C [(1)法一(作图求解):如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22,故选C.法二(公式法):由题中数据得等腰梯形ABCD的面积S=12×(1+3)×1=2.由S直观图=24S原图形,得S直观图=24×2=22,故选C.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,由题意得OA綊BC,故四边形OABC是菱形,故选C.]六、求解几何体表面积的类型及求法A.48+πB.48-πC.48+2πD.48-2π(2)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π(1)A(2)B[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.]七、求体积的常用方法典例7:(1)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2+1B.π2+3C.3π2+1 D.3π2+3(2)如图,已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,则四棱锥A 1­BB 1D 1D 的体积为.(1)A (2)13[(1)由三视图可知该几何体是由底面半径为1,高为3的半个圆锥和三棱锥S­ABC 组成的,如图,三棱锥的高为3,底面△ABC 中,AB =2,OC =1,AB ⊥OC .故其体积V =13×12×π×12×3+13×12×2×1×3=π2+1.故选A.(2)四棱锥A 1­BB 1D 1D 的底面BB 1D 1D 为矩形,其面积S =1×2=2,又四棱锥的高为点A 1到平面BB 1D 1D 的距离,即h =12A 1C 1=22,所以四棱锥的体积V =13×2×22=13.]八、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.典例8:(1)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D­ABC体积的最大值为()A.123B.183C.243D.543(2)已知直三棱柱ABC­A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310(1)B(2)C[(1)如图,E是AC中点,M是△ABC的重心,O为球心,连接BE,OM,OD,BO.因为S△ABC=34AB2=93,所以AB=6,BM=23BE=23AB2-AE2=2 3.易知OM⊥平面ABC,所以在Rt△OBM中,OM=OB2-BM2=2,所以当D,O,M三点共线且DM=OD+OM时,三棱锥D­ABC的体积取得最大值,且最大值V ma x=13S△ABC×(4+OM)=13×93×6=18 3.故选B.(2)如图所示,由球心作平面ABC的垂线,则垂足为BC 的中点M .因为AB =3,AC =4,AB ⊥AC ,所以BC =5.又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA=132,故选C.]九、共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.典例9:(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A .0B .1C .2D .3(2)如图,正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:①E ,C ,D 1,F 四点共面;②CE,D1F,DA三线共点.(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.](2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.②∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.十、空间两条直线的位置关系典例10:(1)已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有.(填序号)(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(填上所有正确答案的序号).①②③④(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]十一、平移法求异面直线所成角的步骤典例11:(1)在正方体ABCD­A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD 所成角的正切值为()A.2 2B.32C.52D.72(2)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为()A.12B .-12C.32D .-32(1)C (2)A [(1)如图,连接BE ,因为AB ∥CD ,所以异面直线AE 与CD 所成的角等于相交直线AE 与AB 所成的角,即∠EAB .不妨设正方体的棱长为2,则CE =1,BC =2,由勾股定理得BE = 5.又由AB ⊥平面BCC 1B 1可得AB ⊥BE ,所以tan ∠EAB =BE AB =52.故选C.(2)如图,分别取AB ,AD ,BC ,BD 的中点E ,F ,G ,O ,连接EF ,EG ,OG ,FO ,FG ,则EF ∥BD ,EG ∥AC ,所以∠FEG 为异面直线AC 与BD 所成的角.易知FO ∥AB ,因为AB ⊥平面BCD ,所以FO ⊥平面BCD ,所以FO ⊥OG ,设AB =2a ,则EG =EF =2a ,FG =a 2+a 2=2a ,所以∠FEG =60°,所以异面直线AC 与BD 所成角的余弦值为12,故选A.]十二、判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).典例12:如图,在四棱锥P ­ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD .[证明](1)连接EC ,因为AD ∥BC ,BC =12AD ,E 为AD 中点,所以BC AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点.又因为F 是PC 的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点,所以FH ∥PD ,因为FH ⊄平面PAD ,PD ⊂平面PAD ,所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点,所以OH ∥AD ,因为OH ⊄平面PAD ,AD ⊂平面PAD .所以OH ∥平面P AD .又FH ∩OH =H ,所以平面OHF ∥平面PAD .又因为GH ⊂平面OHF ,所以GH∥平面PAD.十三、判定平面与平面平行的四种方法(1)面面平行的定义,即证两个平面没有公共点(不常用);(2)面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两个平面平行(客观题可用);(4)利用平面平行的传递性,两个平面同时平行于第三个平面,那么这两个平面平行(客观题可用).注意:谨记空间平行关系之间的转化典例13:已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC 为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,M,N分别为DB,DC的中点.(1)求证:平面EMN∥平面ABC;(2)求三棱锥A­ECB的体积.[解](1)证明:取BC中点H,连接AH,∵△ABC为等腰三角形,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN ∥AH ,∵EN ⊄平面ABC ,AH ⊂平面ABC ,∴EN ∥平面ABC ,又M ,N 分别为BD ,DC 中点,∴MN ∥BC ,∵MN ⊄平面ABC ,BC ⊂平面ABC ,∴MN ∥平面ABC ,又MN ∩EN =N ,∴平面EMN ∥平面ABC .(2)连接DH ,取CH 中点G ,连接NG ,则NG ∥DH ,由(1)知EN ∥平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等,又△BCD 是边长为2的等边三角形,∴DH ⊥BC ,又平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,DH ⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =3,又N 为CD 中点,∴NG 又AC =AB =3,BC =2,∴S △ABC =12·|BC |·|AH |=22,∴V E ­ABC =V N ­ABC =13·S △ABC ·|NG |=63.十四、证明直线与平面垂直的常用方法(1)利用线面垂直的判定定理.(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”.(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”.(4)利用面面垂直的性质定理.典例14:如图,在斜三棱柱ABC ­A 1B 1C 1中,底面ABC 是边长为2的正三角形,M 为棱BC 的中点,BB 1=3,AB 1=10,∠CBB 1=60°.(1)求证:AM ⊥平面BCC 1B 1;(2)求斜三棱柱ABC ­A 1B 1C 1的体积.[解](1)证明:如图,连接B 1M ,因为底面ABC 是边长为2的正三角形,且M 为棱BC 的中点,所以AM ⊥BC ,且AM =3,因为BB 1=3,∠CBB 1=60°,BM =1,所以B 1M 2=12+32-2×1×3×cos 60°=7,所以B 1M =7.又因为AB 1=10,所以AM 2+B 1M 2=10=AB 21,所以AM ⊥B 1M .又因为B 1M ∩BC =M ,所以AM ⊥平面BCC 1B 1.(2)设斜三棱柱ABC ­A 1B 1C 1的体积为V ,则V =3VB 1­ABC =3VA ­B 1BC=3×13S △B 1BC ·|AM |=12×2×3×sin 60°×3=92.所以斜三棱柱ABC­A1B1C1的体积为9 2 .十五、证明面面垂直的两种方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题.(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决,注意:三种垂直关系的转化典例15:(1)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线B[取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.](2)如图,四棱锥P­ABCD中,△PCD为等边三角形,CD=AD=2AB,E,S,T,Q为CD,P A,PB,AD的中点,∠ABC=∠BCD=∠PEA=90°,平面STRQ∩平面ABCD=RQ.①证明:平面P AE⊥平面STRQ;②若AB=1,求三棱锥Q­BCT的体积.[解]①证明:因为E为CD的中点,CD=2AB,∠ABC=∠BCD=90°,所以四边形ABCE 为矩形,所以AE⊥CD.由已知易得RQ∥CD,所以RQ⊥AE.因为∠PEA=90°,PE∩CD=E,故AE⊥平面PCD,又因为AE⊂平面ABCD.故平面PCD⊥平面ABCD.因为PE⊥CD,所以PE⊥平面ABCD.因为RQ⊂平面ABCD,所以RQ⊥PE.又PE ∩AE =E ,所以RQ ⊥平面PAE .所以平面P AE ⊥平面STRQ .②由①可知,PE ⊥平面ABCD ,又T 是PB 的中点,∴点T 到平面BCQ 的距离为12PE =32,易知S △BCQ =12S 梯形ABCD =12×12×(1+2)×3=334.故三棱锥Q ­BCT 的体积V =13×334×32=38.十六、求点到平面的距离(高)的两种方法(1)定义法:求几何体的高或点到面的距离,经常根据高或距离的定义在几何体中作出高或点到面的距离.其步骤为:一作、二证、三求.如何作出点到面的距离是关键,一般的方法是利用辅助面法,所作的辅助面,一是要经过该点,二是要与所求点到面的距离的面垂直,这样在辅助面内过该点作交线的垂线,点到垂足的距离即为点到面的距离.(2)等体积法:求棱锥的高或点到平面的距离常常利用同一个三棱锥变换顶点及底面的位置,其体积相等的方法求解.典例16:(1)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为.2[如图,过点P 作⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离.再过O 作OE ⊥AC 于E ,OF ⊥BC 于F ,连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC .又PE =PF =3,所以OE =OF ,所以CO 为∠ACB 的平分线,即∠ACO =45°.在Rt △PEC 中,PC =2,PE =3,所以CE =1,所以OE =1,所以PO =PE 2-OE 2=(3)2-12= 2.](2)如图,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.①证明:PO ⊥平面ABC ;②若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解]①证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC .②作CH ⊥OM ,垂足为H .又由①可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°,所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.十七、求直线和平面所成角的步骤(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.典例17:(1)在长方体ABCD­A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()A.8B.62C.82D.83C[如图,连接AC1,BC1,AC.∵AB⊥平面BB1C1C,∴∠AC1B为直线AC1与平面BB1C1C所成的角,∴∠AC1B=30°.又AB=BC=2,在Rt△ABC1中,AC1=2sin30°=4.在Rt△ACC1中,CC1=42-(22+22)=22,∴V长方体=AB×BC×CC1=2×2×22=82.](2)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.①求证:AD⊥BC;②求异面直线BC与MD所成角的余弦值;③求直线CD与平面ABD所成角的正弦值.[解]①证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.②如图,取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,所以MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM =AD 2+AM 2=13.因为AD ⊥平面ABC ,所以AD ⊥AC .在Rt △DAN 中,AN =1,故DN =AD 2+AN 2=13.在等腰三角形DMN 中,MN =1,可得cos ∠DMN =12MN DM=1326.所以,异面直线BC 与MD 所成角的余弦值为1326.③如图,连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,所以CM ⊥AB ,CM = 3.又因为平面ABC ⊥平面,平面ABC ∩平面ABD =AB ,而CM ⊂平面ABC ,故CM ⊥平面ABD ,所以∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =AC 2+AD 2=4.在Rt △CMD 中,sin ∠CDM =CM CD =34.所以,直线CD 与平面ABD 所成角的正弦值为34.十八、转化思想的应用(1)证明线面平行、面面平行可转化为证明线线平行;证明线线平行可以转化为证明线面平行或面面平行.(2)从解题方法上讲,由于线线垂直、线面垂直、面面垂直之间可以相互转化,因此整个解题过程始终沿着线线垂直、线面垂直、面面垂直的转化途径进行.(3)求几何体的体积也常用转化法.如三棱锥顶点和底面的转化,几何体的高利用平行、中点,比例关系的转化等.典例18:如图,在四棱锥P ­ABCD 中,△PAD 是等腰直角三角形,且∠APD =90°,∠ABC =90°,AB ∥CD ,AB =2CD =2BC =8,平面PAD ⊥平面ABCD ,M 是PC 的三等分点(靠近C 点处).(1)求证:平面MBD ⊥平面P AD ;(2)求三棱锥D ­MAB 的体积.[解](1)证明:由题易得BD =AD =42,∴AB 2=AD 2+BD 2,∴BD ⊥AD .∵平面P AD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD .又∵BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .(2)过点P 作PO ⊥AD 交AD 于点O (图略),∵平面PAD ⊥平面DAB ,平面PAD ∩平面DAB =AD ,∴PO ⊥平面DAB ,∴点P 到平面DAB 的距离为PO =2 2.∴V D ­MAB =V M ­DAB =13S △DAB ·13PO =13×12×(42)2×13×22=3229.十九、解决平面图形翻折问题的步骤典例19:图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.图1图2(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1=3,故DM=2.所以四边形ACGD的面积为4.二十、存在性问题的一般解题方法先假设其存在,然后把这个假设作为已知条件,和题目的其他已知条件一起进行推理论证和计算.在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在;如果得到了一个不合理的结论,则说明不存在.而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.典例20:如图,在四棱锥P­ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.。

2021届高考数学一轮复习第八章立体几何与空间向量第4节直线平面平行的判定及其性质含解析

2021届高考数学一轮复习第八章立体几何与空间向量第4节直线平面平行的判定及其性质含解析

第4节直线、平面平行的判定及其性质考试要求1。

以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题。

知识梳理1.直线与平面平行(1)直线与平面平行的定义直线l与平面α没有公共点,则称直线l与平面α平行。

(2)判定定理与性质定理文字语言图形表示符号表示判定定理平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面a⊄α,b⊂α,a∥b⇒a∥α性质定理一条直线和一个平面平行,则过这条a∥α,a⊂β,α∩β直线的任一平面与此平面的交线与该直线平行=b⇒a∥b2。

平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β性质定两个平面平行,则其中一个平面内的直线平行于α∥β,a⊂α⇒a∥β理另一个平面如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β,α∩γ=a,β∩γ=b⇒a∥b3。

与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β。

[常用结论与易错提醒]1.平行关系的转化2。

平面与平面平行的六个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。

(2)夹在两个平行平面间的平行线段长度相等。

(3)经过平面外一点有且只有一个平面与已知平面平行。

(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(6)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.诊断自测1.判断下列说法的正误。

(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行。

()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条。

人教版高中数学新教材必修第8章-立体几何初步-教辅教案

人教版高中数学新教材必修第8章-立体几何初步-教辅教案

②球心到截面的距离 d 与球半径 R 及截
面圆的半径 r 满足 d =
R2 -r2 ;
③球体被经过球心的平面截得的圆叫做
大圆, 被 不 经 过 球 心 的 平 面 截 得 的 圆 叫 做
小圆.
8. 2 立体图形的直观图
1. 直观图
对于立体图形,直观图是 最 常 用 的 描 述
方式. 在前面介绍各个基本立体图形时,使用
高)
正棱台
1
S 正棱台侧 = ( c′+c) h′
2
( c′、 c 为 上、 下 底 面
周长,h′为斜高)
S 表 = S 侧 + S 上底
+S 下底
2. 常见旋转体的侧面积和表面积
几何体
侧面积公式
表面积公式
圆柱
S 圆柱侧 = 2πrl ( r 为 底
S 圆柱表 = 2πr 2
圆锥
圆台
面半径,l 为母线长)
是四边形,并且每相邻两个四边形的公共边
都相互平行,由这些面所围成的多面体叫做
棱柱.
两个互相平行的平面叫 做 棱 柱 的 底 面,
简称底. 除底面外的各面叫做棱柱的侧面. 相
邻侧面的公共边叫做棱柱的侧棱. 侧棱与底
面的公共点叫做棱柱的顶点.
127
5AAeP
一般用 表 示 底 面 各 顶 点 的 字 母 表 示 棱
成的多面体叫做棱锥. 其中,多边形面叫做棱
锥的底面;有公共顶点的各个三角形面叫做
棱锥的侧面;各侧面的公共顶点叫做棱锥的
顶点;相邻侧面的公共边叫做棱锥的侧棱.
2. 棱锥的分类与表示
底面是三角形、四边形、五边形……的棱
锥分别叫做三棱锥、四棱锥、五棱锥……其中

中等职业教育规划教材数学(山东省基础类)目录

中等职业教育规划教材数学(山东省基础类)目录

中等职业教育规划教材数学目录数学—101第一章集合1.1集合及其表示1.1.1集合1.1.2集合地表示方法1.2集合之间的关系1.3集合的基本运算1.3.1交集1.3.2并集1.3.3补集1.4充要条件阅读与实践02第二章2.1一元二次方程2.2不等式2.2.1不等式的基本性质2.2.2不等式的解集与区间2.2.3含绝对值的不等式2.2.4一元二次不等式阅读与实践03第三章函数3.1函数的概念3.2函数的表示方法3.3函数的单调性3.4函数的奇偶性3.5二次函数的图像和性质3.6函数的应用阅读与实践04第四章指数函数与对数函数4.1实数指数4.2指数函数4.3对数及其运算4.3.1对数4.3.2对数的运算4.4对数函数4.5幂函数4.6指数函数与对数函数的应用阅读与实践05第五章数列5.1数列5.2等差数列5.2.1等差数列的概念5.2.2等差数列的前n项和5.3等比数列5.3.1等比数列的概念5.3.2等比数列的前n项和5.4等差数列与等比数列的应用阅读与实践06第六章空间几何体6.1认识空间几何体6.1.1认识多面体与旋转体6.1.2棱柱、棱锥6.1.3圆柱、圆锥、球6.2空间几何体的表面积与体积6.2.1空间几何体的表面积6.2空间几何体的体积阅读与实践数学—207三角函数7.1任意角的概念与弧度制7.1.1任意角的概念7.1.2弧度制7.2任意角的三角函数7.2.1任意角的三角函数的定义7.2.2单位圆与正弦、余弦线7.2.3利用计算器求三角函数值7.2.4三角函数值在各象限的符号7.3同角三角函数的基本关系式7.4三角函数的诱导公式7.5正弦、余弦函数的图像、性质7.5.1正弦函数的图像和性质7.5.2余弦函数的图像和性质7.6已知三角函数值求角阅读与实践08第八章平面向量8.1向量的概念8.2向量的线性运算8.2.1向量的加法2.2向量的减法8.2.3数乘向量8.3平面向量的直角坐标运算8.3.1平面向量的直角坐标及其运算8.3.2平面向量平行的坐标表示8.3.3向量的长度公式和中点公式8.4向量的内积8.4.1向量的内积8.4.2向量的内积的直角坐标运算阅读与实践09第九章直线与圆的方程9.1直线的方程9.1.1直线的方向向量和向式方程9.1.2直线的斜率和点斜式方程9.1.3直线的法向量与点法式方程9.1.4直线的一般式方程9.2两条直线的位置关系9.2.1两条直线的平行99.2.2两条直线的交点与垂直9.3点到直线的距离9.4圆的方程9.4.1圆的标准方程9.4.2圆的一般方程阅读与实践10第十章立体几何初步10.1平面的基本性质10.2空间两条直线的位置关系10.3直线与平面的位置关系10.4平面与平面的位置关系阅读与实践11第十一章概率与统计初步11.1技术的基本原理11.2概率初步11.2.1随机事件与样本空间11.2.2古典概率11.3随机抽样11.3简单的随机抽样11.3系统抽样11.3分层抽样11.4用样本估计总体11.4.1用样本的概率分布估计总体发布11.4.2用样本的数字特征估计数字特征11.5一元线性回归分析。

空间点、直线、平面之间的位置关系(人教A版2019必修二)

空间点、直线、平面之间的位置关系(人教A版2019必修二)
(1)定义:不同在 任何 一个平面内的两条直线. (2)异面直线的画法:如果直线a,b为异面直线,为了表示它们不共面的特点,作图时,通常用 一个或两个平面衬托.
(二)空间点、直线、平面的位置关系
知识点二 空间两条直线的位置关系
【探究2】分别在两个平面内的两条直线是否一定异面?
位置关系
特点
相交
同一平面内,有且只有 一个 公 共点
第八章 立体几何初步
8.4.2 空间点、直线、平面之间的位置关系
教材分析
本小节内容选自《普通高中数学必修第二册》人教A版(2019)第八章《立体几何初步》的第四节《空间点、 直线、平面之间的位置关系》。以下是本节的课时安排:
课时内容 所在位置 新教材内 容分析
核心素养 培养
教学主线
8.4 空间点、直线、平面之间的位置关系
答案:(1)× (2)× (3)√ (4)× (5)×
(三)典型例题
1.空间直线与直线的位置关系
例1.如图,已知正方体ABCDA1B1C1D1,判断下列直线的位置关系:
①直线A1B与直线D1C的位置关系是 ②直线A1B与直线B1C的位置关系是 ③直线D1D与直线D1C的位置关系是 ④直线AB与直线B1C的位置关系是
重点、难点
1.重点:了解直线与平面的三种位置关系,并会用图形语言和符号语言表示 2.难点:了解空间中两条直线的三种位置关系, 理解两异面直线的定义,会用平面衬托来画异面直线。
(一)新知导入
观察你所在的教室.
【问题】 (1)教室内同一列的灯管所在的直线是什么位置关系? (2)教室内某灯管所在的直线和地面是什么位置关系? (3)教室内某灯管所在的直线和黑板左右两侧所在的直线是什么位置关系? (4)教室内黑板面和教室的后墙面是什么位置关系? 提示 (1)平行. (2)平行. (3)二者是异面直线. (4)平行.

全国通用版高中数学第八章立体几何初步知识点题库

全国通用版高中数学第八章立体几何初步知识点题库

(名师选题)全国通用版高中数学第八章立体几何初步知识点题库单选题1、已知平面α内的∠APB =60°,射线PC 与PA,PB 所成的角均为135°,则PC 与平面α所成的角θ的余弦值是( )A .−√63B .√63C .√33D .−√33 答案:B分析:作出图形,如图,通过分析,可得∠CPD 为PC 与平面α所成的角的补角,利用余弦定理可以计算. 作出如下图形,令PA =PB =PC =2,则∠CPA =∠CPB =135∘,∴AC =BC ,取AB 中点D ,连接PD ,则∠CPD 即为PC 与平面α所成的角的补角,在△APC 中,AC 2=PA 2+PC 2−2PA ⋅PC ⋅cos135∘=8+4√2,∴在△PCD 中,CD 2=AC 2−AD 2=7+4√2,∵PD =√3,∴cos∠CPD =PC 2+PD 2−CD 22PC⋅PD =−√63, ∴ PC 与平面α所成的角θ的余弦值是√63.故选:B.小提示:本题考查线面角的求法,找出所成角,构造三角形是解题的关键.2、如图,已知正方体的棱长为a,沿图1中对角面将它分割成两个部分,拼成如图2的四棱柱,则该四棱柱的全面积为()A.(8+2√2)a2B.(2+4√2)a2C.(4+2√2)a2D.(6−4√2)a2答案:C分析:拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,据此变化,进行求解. 由题意,拼成的几何体比原正方体的表面增加了两个截面,减少了原来两个正方形面,由于截面为矩形,长为√2a,宽为a,所以面积为√2a2,所以拼成的几何体的表面积为4a2+2√2a2=(4+2√2)a2.故选:C.3、若一个正方体的体对角线长为a,则这个正方体的全面积为()A.2a2B.2√2a2C.2√3a2D.3√2a2答案:A分析:设正方体的棱长为x,求出正方体的棱长即得解.a2,解:设正方体的棱长为x,则√3x=a,即x2=13a2=2a2.所以正方体的全面积为6x2=6×13故选:A4、紫砂壶是中国特有的手工陶土工艺品,经典的有西施壶,石瓢壶,潘壶等,其中石瓢壶的壶体可以近似看成一个圆台,如图给了一个石瓢壶的相关数据(单位:cm),那么该壶的容积约为()A.100cm3B.200cm3C.300cm3D.400cm3答案:B分析:根据题意可知圆台上底面半径为3,下底面半径为5,高为4,由圆台的结构可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,求出ℎ的值,最后利用圆锥的体积公式进行运算,即可求出结果.解:根据题意,可知石瓢壶的壶体可以近似看成一个圆台,圆台上底面半径为3,下底面半径为5,高为4,可知该壶的容积为大圆锥的体积减去小圆锥的体积,设大圆锥的高为ℎ,所以ℎ−4ℎ=610,解得:ℎ=10,则大圆锥的底面半径为5,高为10,小圆锥的底面半径为3,高为6,所以该壶的容积V=13×π×52×10−13×π×32×6=1963π≈200cm3.故选:B.5、《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,AC⊥CD,AC=BC+CD=2,当△BCD的面积最大时,鳖臑ABCD的表面积为()A .√3+√62B .3+√62C .2+√3+√62D .3+√3+√62答案:D分析:根据题意可证明CD ⊥BC ,从而说明三角形BCD 是直角三角形,求得BD ,进而求得四个直角三角形的面积,可得答案.由题意可知:AB ⊥平面BCD ,CD ⊂平面BCD ,故AB ⊥CD ,又AC ⊥CD ,AC ∩AB =A,AB,AC ⊂平面ABC ,故CD ⊥平面ABC ,BC ⊂平面ABC ,故CD ⊥BC ,所以S △BCD =12BC ⋅CD ≤12×(BC+CD 2)2=12 ,当且仅当BC =CD =1时取得等号, 故BD =√1+1=√2 ,由AB ⊥平面BCD ,可知AB ⊥BD,AB ⊥BC ,故AB =√AC 2−BC 2=√4−1=√3 ,所以S △ABD =12AB ⋅BD =√62,S △ABC =12AB ⋅BC =√32 , S △BCD =12BC ⋅CD =12,S △ACD =12AC ⋅CD =1,所以鳖臑ABCD 的表面积为√62+√32+12+1=3+√3+√62 ,故选:D6、如图,△O ′A ′B ′是水平放置的△OAB 的直观图,A ′O ′=6,B ′O ′=2,则△OAB 的面积是( )A.6B.12C.6√2D.3√2答案:B分析:由直观图和原图的之间的关系,和直观图画法规则,还原△OAB是一个直角三角形,其中直角边OA= 6,OB=4,直接求解其面积即可.解:由直观图画法规则,可得△OAB是一个直角三角形,其中直角边OA=6,OB=4,∴S△OAB=12OA⋅OB=12×6×4=12.故选:B.7、鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为()A.8(6+6√2+√3)B.6(8+8√2+√3)C.8(6+6√3+√2)D.6(8+8√3+√2)答案:A解析:该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可.由题图可知,该鲁班锁玩具可以看成是一个棱长为2+2√2的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为√2,则该几何体的表面积为S =6×[(2+2√2)2−4×12×√2×√2]+8×12×2×√3 =8(6+6√2+√3).故选:A.小提示:本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.8、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃑⃑⃑⃑⃑ ==(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ 和BO ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +y(BA ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ ) =xAB⃑⃑⃑⃑⃑ −yAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(AD ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ ) =(x −y)AB ⃑⃑⃑⃑⃑ +y ⋅(2AF ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ )=(x −y)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ +12yAB ⃑⃑⃑⃑⃑ =(x −y 2)AB ⃑⃑⃑⃑⃑ +2yAF ⃑⃑⃑⃑⃑ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AO ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +xAB ⃑⃑⃑⃑⃑ +yBC ⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ −xBA ⃑⃑⃑⃑⃑ +y ⋅43BE ⃑⃑⃑⃑⃑ =(1−x)BA ⃑⃑⃑⃑⃑ +4y 3BE ⃑⃑⃑⃑⃑ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.9、下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3答案:A分析:①②③④均可举出反例.①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;②如图2,满足两侧面ABB1A1与底面垂直,但不是直棱柱,②错误;③如图3,四边形ACC1A1为矩形,即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误. 故选:A10、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D11、下列说法中正确的是( )A .如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行B .平面α内△ABC 的三个顶点到平面β的距离相等,则α与β平行C .α//β,a//α,则a//βD .a//b ,a//α,b ⊄α,则b//α答案:D分析:根据线面关系,逐一判断每个选项即可.解:对于A 选项,如果一条直线与一个平面平行,那么这条直线与平面内的无数条直线平行,而不是任意的直线平行,故错误;对于B选项,如图1,D,E,F,G分别为正方体中所在棱的中点,平面DEFG设为平面β,易知正方体的三个顶点A,B,C到平面β的距离相等,但△ABC所在平面α与β相交,故错误;对于选项C,a可能在平面β内,故错误;对于选项D,正确.故选:D.12、已知球O的体积为36π,则该球的表面积为()A.6πB.9πC.12πD.36π答案:D分析:根据球的体积公式求出半径,即可求出表面积.πR3=36π,解得R=3,设球的体积为R,则由题可得43则该球的表面积为4π×32=36π.故选:D.填空题13、设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题:①若m⊥n,n⊂α,则m⊥α;②若m⊥α,m⊂β,则α⊥β;③若m⊥α,n⊥α,则m//n;④若m⊂α,n⊂β,α//β,则m//n.其中真命题的序号为__.答案:②③分析:由直线与直线、直线与平面、平面与平面的位置关系判断即可.解:①由线面垂直的判定定理可得,若要使m⊥α,则m要垂直α中的两条相交的直线,通过分析,m只垂直来α中的一条直线,故不能做出判断,故①错误;②根据面面垂直的判定定理可得,若m⊥α,m⊂β,则α⊥β,故②正确;③由线面垂直的性质定理可得,两条不同的直线都垂直同一个平面,则这两条直线必平行,故③正确;④由面面平行的性质定理可得,只有若m⊂α,n⊂β,α//β,不能得出m//n,如果加上条件m,n在同一平面内,则可得线线平行,故④错误,所以答案是:②③14、2021年7月,某学校的学生到农村参加劳动实践,一部分学生学习编斗笠,一种用竹篾或苇蒿等材料制作外形为圆锥形的斗笠,称为“灯罩斗笠”(如图),一部分学生学习制作泥塑几何体,现有一个棱长为6的正方体形状泥块,其各面的中心分别为点E,F,G,H,M,N,将正方体削成正八面体形状泥块G−EMHF−N,若用正视图为正三角形的一个“灯罩斗笠”罩住该正八面体形状泥块G−EMHF−N,使得正八面体形状泥块G−EMHF−N可以在“灯罩斗笠”中任意转动,则该有底的“灯罩斗笠”的表面积的最小值为___________.答案:81π分析:由题意,只需正八面体形状泥块G−EMHF−N位于圆锥的内切球内即可.如图所示:设正方体ABCD−A1B1C1D1的中心O满足OE=OF=OH=OF=OH=OM=ON=3,则几何体GEMHFN的外接球的球心为O,半径为3.当“灯罩斗笠”的表面积最小时,正八面体形状泥块G−EMHF−N的外接球即为圆锥的内切球,故圆锥的底面圆的半径r=3tan30°=3√3,所以该“灯罩斗笠”的表面积的最小值为S=πr2+πlr=π(3√3)2+π⋅3√3⋅6√3=81π.所以答案是:81π15、已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为______.答案:π3分析:设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,根据面积关系可得122πrl=2⋅π⋅r2,即可得到答案;设圆锥的母线长为l,底面半径为r,圆锥的母线与其底面所成的角为θ,则122πrl=2⋅π⋅r2⇒rl=12,∴cosθ=12⇒θ=60°,所以答案是:π316、如图,在正方体ABCD−A1B1C1D1中,O是侧面A1ADD1的中心,则异面直线B1O与BD的夹角大小为______.答案:30°##π6分析:平移直线,找出异面直线所成角,利用三角形的知识求解.如图,连接D1B1,则D1B1//BD,则∠D1B1O即为所求异面直线夹角(或其补角),连接B1A,A1D,AD1,则AD1=D1B1=B1A,所以△AD1B1是等边三角形,则∠AB1D1=60°.O是AD1中点,则由等边三角形的性质可知B1O平分∠AB1D1,即∠D1B1O=30°.所以答案是:30°17、已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:①若α∩γ=a,β∩γ=b,且a//b,则α//β;②若a,b相交且都在α,β外,a//α,b//β,则α//β;③若a//α,a//β,则α//β;④若a⊂α,a//β,α∩β=b,则a//b.其中正确命题的序号是________.答案:④分析:根据线线、线面、面面之间的位置关系即可得出结果.解析:①错误,α与β也可能相交;②错误,α与β也可能相交;③错误,α与β也可能相交;④正确,由线面平行的性质定理可知.所以答案是:④解答题18、如图,在三棱锥P−ABC中,D,E分别为AB,PB的中点,EB=EA,且PA⊥AC,PC⊥BC.求证:BC⊥平面PAC.答案:证明见解析.分析:由题可得PA⊥AB,利用线面垂直的判定定理可得PA⊥平面ABC,进而可得PA⊥BC,然后利用线面垂直的判定定理即得.∵在△AEB中,D是AB的中点,EB=EA,∴ED⊥AB,∵E是PB的中点,D是AB的中点,∴ED∥PA,∴PA⊥AB,又PA⊥AC,AB∩AC=A,AB⊂平面ABC,AC⊂平面ABC,∴PA⊥平面ABC,∵BC⊂平面ABC,∴PA⊥BC,又PC⊥BC,PA∩PC=P,PA⊂平面PAC,PC⊂平面PAC,∴BC⊥平面PAC.19、长方体ABCD−A1B1C1D1的体积为V,P是DD1的中点,Q是AB上的动点,求四面体P−CDQ的体积.答案:112V.分析:因为Q是AB上的动点,且AB//CD,可求出S△CDQ,再根据V P−CDQ=13S△CDQ·PD,即可求出四面体P−CDQ的体积.设长方体的长、宽、高分别为AB=a,BC=b,AA1=c,则有V=abc.P是DD1的中点,所以PD=12c,因为Q是AB上的动点,且AB//CD,所以S△CDQ=12CD⋅AD=12ab,所以V P−CDQ=13S△CDQ·PD=13×12ab×12c=112abc=112V.20、如图,已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M , N分别为BC , B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO//平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值..答案:(1)证明见解析;(2)√1010分析:(1)先求出线线平行,可得线线垂直,即可求线面垂直,最后可得面面垂直;(2)连接NP,先求证四边形ONPA是平行四边形,根据几何关系求得EP,在B1C1截取B1Q=EP,由(1)BC⊥平面A1AMN,可得∠QPN为B1E与平面A1AMN所成角,即可求得答案.证明:(1)由题意知AA1//BB1//CC1,又∵侧面BB1C1C是矩形且M,N分别为BC,B1C1的中点,∴MN//BB1,BB1⊥BC,∴MN//AA1,MN⊥B1C1,又底面是正三角形,∴AM⊥BC,AM⊥B1C1,又∵MN∩AM=M,AM⊂平面A1AMN,MN⊂平面A1AMN,∴B1C1⊥平面A1AMN,∵B1C1⊂平面EB1C1F,∴平面A1AMN⊥平面EB1C1F;(2)连接NP,因为AO//平面EB1C1F,平面AONP∩平面EB1C1F=NP,所以AO//NP,根据三棱柱上下底面平行,其面A1NMA∩平面ABC=AM,面A1NMA∩平面A1B1C1=A1N,所以ON//AP,故:四边形ONPA是平行四边形.设△ABC边长是6m (m>0),可得:ON=AP,NP=AO=AB=6m,因为O为△A1B1C1的中心,且△A1B1C1边长为6m,所以ON=13×6×sin60°=√3m,故:ON=AP=√3m.又EF//BC,所以APAM =EPBM,所以√33√3=EP3,解得:EP=m,在B1C1截取B1Q=EP=m,故QN=2m,又B1Q=EP,B1Q//EP,所以四边形B1QPE是平行四边形,所以B1E//PQ.由(1)B1C1⊥平面A1AMN,故∠QPN为B1E与平面A1AMN所成角,在Rt△QPN,根据勾股定理可得:PQ=√QN2+PN2=√(2m)2+(6m)2=2√10m,∴sin∠QPN=QNPQ =2√10m=√1010,所以直线B1E与平面A1AMN所成角的正弦值:√1010.小提示:本题考查了空间位置关系,线面平行,线面垂直,面面垂直,线面角的计算,考查了运算能力和空间想象能力,属于中档题.。

2021一轮数学教师用书目录

2021一轮数学教师用书目录

目录课堂过关第一章集合与常用逻辑用语第1课时集合的概念1第2课时集合的基本运算4第3课时简单的逻辑联结词、全称量词与存在量词8第二章函数与导数第1课时函数及其表示13第2课时函数的定义域和值域18第3课时函数的单调性22第4课时函数的奇偶性及周期性26第5课时函数的图象31第6课时二次函数36第7课时指数函数、对数函数及幂函数(1)40第8课时指数函数、对数函数及幂函数(2)44第9课时指数函数、对数函数及幂函数(3)48第10课时函数与方程53第11课时导数的概念与运算57第12课时导数在研究函数中的应用61第13课时函数模型及其应用68第14课时函数的综合应用75第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数81第2课时同角三角函数的基本关系式与诱导公式86第3课时三角函数的图象和性质90第4课时两角和与差的正弦、余弦和正切公式97第5课时二倍角的正弦、余弦和正切公式102第6课时简单的三角恒等变换106第7课时正弦定理和余弦定理110第8课时解三角形应用举例114第9课时三角函数的综合应用120第四章平面向量与复数第1课时平面向量的概念与线性运算126第2课时平面向量的基本定理及坐标表示131第3课时平面向量的数量积及平面向量的应用举例135第4课时复数140第五章数列第1课时数列的概念及其简单表示法144第2课时等差数列148第3课时等比数列152第4课时数列的求和157第5课时数列的简单应用161第6课时数列的综合应用167第六章不等式第1课时一元二次不等式及其解法172第2课时二元一次不等式(组)与简单的线性规划177 第3课时基本不等式182第4课时不等式的综合应用186第七章推理与证明第1课时合情推理与演绎推理190第2课时直接证明与间接证明195第3课时数学归纳法(理科专用)199第八章立体几何初步第1课时空间点、直线、平面之间的位置关系204第2课时直线与平面的位置关系(1)208第3课时直线与平面的位置关系(2)213第4课时平面与平面的位置关系218第5课时空间几何体的表面积和体积224第6课时空间向量在立体几何中的应用(理科专用)228第九章平面解析几何第1课时直线的倾斜角与斜率236第2课时直线的方程239第3课时直线与直线的位置关系243第4课时圆的方程247第5课时直线与圆的位置关系252第6课时椭圆(1)258第7课时椭圆(2)263第8课时双曲线269第9课时抛物线273第10课时直线与圆锥曲线的综合应用(1)277第11课时直线与圆锥曲线的综合应用(2)282第十章算法、统计与概率第1课时算法290第2课时统计初步(1)295第3课时统计初步(2)298第4课时古典概型(1)303第5课时古典概型(2)307第6课时几何概型与互斥事件311第十一章计数原理、随机变量及分布列第1课时分类加法计数原理与分步乘法计数原理(理科专用)316第2课时排列与组合(理科专用)320第3课时二项式定理(理科专用)324第4课时离散型随机变量及分布列、超几何分布(理科专用)328第5课时独立性及二项分布(理科专用)334第6课时离散型随机变量的均值与方差(理科专用)340选修4-1几何证明选讲第1课时相似三角形的进一步认识(理科专用)346第2课时圆的进一步认识(理科专用)351选修4-2矩阵与变换第1课时线性变换、二阶矩阵及其乘法(理科专用)357第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)362选修4-4坐标系与参数方程第1课时坐标系(理科专用)366第2课时参数方程(理科专用)370选修4-5不等式选讲第1课时绝对值不等式(理科专用)375第2课时不等式证明的基本方法(理科专用)379课时训练第一章集合与常用逻辑用语第1课时集合的概念383第2课时集合的基本运算384第3课时简单的逻辑联结词、全称量词与存在量词385第二章函数与导数第1课时函数及其表示387第2课时函数的定义域和值域388第3课时函数的单调性390第4课时函数的奇偶性及周期性391第5课时函数的图象393第6课时二次函数395第7课时指数函数、对数函数及幂函数(1)396第8课时指数函数、对数函数及幂函数(2)397第9课时指数函数、对数函数及幂函数(3)399第10课时函数与方程400第11课时导数的概念与运算402第12课时导数在研究函数中的应用403第13课时函数模型及其应用405第14课时函数的综合应用407第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数410第2课时同角三角函数的基本关系式与诱导公式411第3课时三角函数的图象和性质413第4课时两角和与差的正弦、余弦和正切公式415第5课时二倍角的正弦、余弦和正切公式417第6课时简单的三角恒等变换418第7课时正弦定理和余弦定理420第8课时解三角形应用举例421第9课时三角函数的综合应用425第四章平面向量与复数第1课时平面向量的概念与线性运算428第2课时平面向量的基本定理及坐标表示430第3课时平面向量的数量积及平面向量的应用举例431第4课时复数433第五章数列第1课时数列的概念及其简单表示法435第2课时等差数列436第3课时等比数列437第4课时数列的求和439第5课时数列的简单应用441第6课时数列的综合应用442第六章不等式第1课时一元二次不等式及其解法445第2课时二元一次不等式(组)与简单的线性规划446第3课时基本不等式448第4课时不等式的综合应用450第七章推理与证明第1课时合情推理与演绎推理452第2课时直接证明与间接证明454第3课时数学归纳法(理科专用)455第八章立体几何初步第1课时空间点、直线、平面之间的位置关系458第2课时直线与平面的位置关系(1)460第3课时直线与平面的位置关系(2)461第4课时平面与平面的位置关系463第5课时空间几何体的表面积和体积465第6课时空间向量在立体几何中的应用(理科专用)467第九章平面解析几何第1课时直线的倾斜角与斜率470第2课时直线的方程471第3课时直线与直线的位置关系474第4课时圆的方程476第5课时直线与圆的位置关系477第6课时椭圆(1)480第7课时椭圆(2)482第8课时双曲线484第9课时抛物线486第10课时直线与圆锥曲线的综合应用(1)488第11课时直线与圆锥曲线的综合应用(2)490第十章算法、统计与概率第1课时算法493第2课时统计初步(1)495第3课时统计初步(2)496第4课时古典概型(1)498第5课时古典概型(2)500第6课时几何概型与互斥事件501第十一章计数原理、随机变量及分布列第1课时分类加法计数原理与分步乘法计数原理(理科专用)504第2课时排列与组合(理科专用)505第3课时二项式定理(理科专用)507第4课时离散型随机变量及分布列、超几何分布(理科专用)508第5课时独立性及二项分布(理科专用)510第6课时离散型随机变量的均值与方差(理科专用)512选修4-1几何证明选讲第1课时相似三角形的进一步认识(理科专用)515第2课时圆的进一步认识(理科专用)517选修4-2矩阵与变换第1课时线性变换、二阶矩阵及其乘法(理科专用)520第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)522选修4-4坐标系与参数方程第1课时坐标系(理科专用)525第2课时参数方程(理科专用)526选修4-5不等式选讲第1课时绝对值不等式(理科专用)529第2课时不等式证明的基本方法(理科专用)530。

空间点、直线、平面之间的位置关系(2个课时)(课件)(人教A版2019 必修第二册)

空间点、直线、平面之间的位置关系(2个课时)(课件)(人教A版2019 必修第二册)

作用:证明点共线、线共点.
证:P,Q,R三点共线 证:AB,CD,l三线共点
点共线的证明
课本P132-8.已知△ABC在平面α外,AB∩α=P,
AC∩α=R,BC∩α=Q,求证:P,Q,R三点共线.
证明:∵ AB P,P 且P AB,
又∵ AB 平面ABC,P 平面ABC.
设平面ABC 平面 l,P l.
l
A
①直线l在平面α内:直线l上的所有点都在平面α上. 记为l
l ②直线l与平面α相交:直线l与平面α只有一个公共点A. 记为l A ③直线l与平面α平行:直线l与平面α没有公共点.记为l //.
3.点、直线、平面的关系
a
(4)直线与直线的位置关系:
o
b
共面直线平 相行 交::
a a
// b b
D
αβ
C
空间四边形
例.三个平面最多能把空间分成____部分,最少能把空 间分成____部分。 [考]三个平面能把空间分成4或6或7或8部分.
面与面的交线
例.正方体中,平面ACC1与平面BDC1的交线是_____.
D1C1基本Fra bibliotek实2.若一条直线
A1
B1
上的两点在一个平面内,
那么这条直线在此平面
内.
(√) P131-4.直线a⊂α,b⊂β,α//β,判断直线a,b的位置关系. 平行或异面
[考]若a⊂α,b⊂β,α//β,则a与b平行或异面.
P131-132习题8.4
2.若直线a不平行于平面α,且a⊂α,则下列结论成立的是( B ) a
A.α内的所有直线与a是异面直线 B.α内不存在与a平行的直线
O
(a
b)

部编版高中数学必修二第八章立体几何初步解题方法技巧

部编版高中数学必修二第八章立体几何初步解题方法技巧

(名师选题)部编版高中数学必修二第八章立体几何初步解题方法技巧单选题1、如图所示的正方形SG1G2G3中,E , F分别是G1G2,G2G3的中点,现沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3重合为点G,则有()A.SG⊥平面EFG B.EG⊥平面SEFC.GF⊥平面SEF D.SG⊥平面SEF答案:A解析:根据正方形的特点,可得SG⊥FG,SG⊥EG,然后根据线面垂直的判定定理,可得结果.由题意:SG⊥FG,SG⊥EG,FG∩EG=G,FG,EG⊂平面EFG所以SG⊥平面EFG正确,D不正确;.又若EG⊥平面SEF,则EG⊥EF,由平面图形可知显然不成立;同理GF⊥平面SEF不正确;故选:A小提示:本题主要考查线面垂直的判定定理,属基础题.2、下图是一个圆台的侧面展开图,若两个半圆的半径分别是1和2,则该圆台的体积是()A .7√2π24B .7√3π24C .7√2π12D .7√3π12答案:B分析:先计算出上下底面的半径和面积,再求出圆台的高,按照圆台体积公式计算即可.如图,设上底面的半径为r ,下底面的半径为R ,高为ℎ,母线长为l ,则2πr =π⋅1,2πR =π⋅2,解得r =12,R =1,l =2−1=1,ℎ=√l 2−(R −r )2=√12−(12)2=√32, 设上底面面积为S ′=π⋅(12)2=π4,下底面面积为S =π⋅12=π,则体积为13(S +S ′+√SS ′)ℎ=13(π+π4+π2)⋅√32=7√3π24. 故选:B.3、在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P −ABCD 为阳马,侧棱PA ⊥底面ABCD ,且PA =2√2,AB =BC =2,则该阳马的外接球的表面积为( )A .4πB .8πC .16πD .32π答案:C分析:补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.解:因为四棱锥P −ABCD 为阳马,侧棱PA ⊥底面ABCD ,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R,则(2R)2=AB2+BC2+PA2=4+4+8=16,所以R=2,所以该阳马的外接球的表面积为4πR2=16π.故选:C.4、锐角△ABC中,角A、B、C所对的边分别为a、b、c,若a=7、b=8,m⃑⃑ =(12,cosA),n⃑=(sinA,−√32),且m⃑⃑ ⊥n⃑,则△ABC的面积为()A.√3B.3√3C.5√3D.10√3答案:D分析:先由向量垂直得到A=π3,利用余弦定理求出c=3或c=5,利用锐角三角形排除c=3,从而c=5,利用面积公式求出答案.由题意得:12sinA−√32cosA=0,故tanA=√3,因为A∈(0,π2),所以A=π3,由余弦定理得:cosA=64+c2−492×8c =12,解得:c=3或c=5,当c=3时,最大值为B,其中cosB=49+9−642×7×3<0,故B为钝角,不合题意,舍去;当c=5时,最大值为B,其中cosB=49+25−642×7×5>0,故B为锐角,符合题意,此时S△ABC=12bcsinA=12×8×5×√32=10√3.故选:D5、下列空间图形画法错误的是()A.B.C.D.答案:D分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.6、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面.故选: D.7、已知正方体ABCD−A1B1C1D1的棱长为2,点P在棱AD上,过点P作该正方体的截面,当截面平行于平面B1D1C且面积为√3时,线段AP的长为()A.√2B.1C.√3D.√32答案:A分析:过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,即可得到△PQR为截面,且为等边三角形,再根据截面面积求出PQ的长度,即可求出AP;解:如图,过点P作DB,A1D的平行线,分别交棱AB,AA1于点Q,R,连接QR,BD,因为BD//B1D1,所以PQ//B1D1,B1D1⊂面B1D1C,PQ⊄面B1D1C,所以PQ//面B1D1C因为A1D//B1C,所以PR//B1C,B1C⊂面B1D1C,PR⊄面B1D1C,所以PR//面B1D1C又PQ∩PR=P,PQ,PR⊂面PQR,所以面PQR//面B1D1C,则PQR为截面,易知△PQR是等边三角形,则12PQ2⋅√32=√3,解得PQ=2,∴AP=√22PQ=√2.故选:A.8、如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则直线AB与平面MNQ 不平行的是()A.B.C.D.答案:A分析:利用线面平行的判定定理逐项判断可得出合适的选项.对于A选项,连接CD、BE交于点O,则O为BE的中点,设BE∩MN=F,连接FQ,因为Q、O分别为AE、BE的中点,则OQ//AB,若AB//平面MNQ,AB⊂平面ABE,平面ABE∩平面MNQ=FQ,则FQ//AB,在平面ABE内,过该平面内的点Q作直线AB的平行线,有且只有一条,与题设矛盾,假设不成立,故A选项中的直线AB与平面MNQ不平行.对于B选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于C选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于D选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以CD//AB,因为N、Q分别为CE、DE的中点,则NQ//CD,所以NQ//AB,因为AB⊄平面MNQ,NQ⊂平面MNQ,所以,AB//平面MNQ;故选:A多选题9、已知直线l和不重合的两个平面α,β,且l⊂α,下列命题正确的是()A.若l∥β,则α∥βB.若α∥β,则l∥βC.若l⊥β,则α⊥βD.若α⊥β,则l⊥β答案:BC分析:结合面面平行的判定定理、面面平行的定义、面面垂直的判定定理和面面垂直的性质定理可分别判断四个选项的正误.对于A,由l∥β可得α与β平行或相交,故错误;对于B,若α∥β,则由面面平行的定义可得l∥β,故正确;对于C,若l⊥β,则由面面垂直的判定定理可得α⊥β,故正确;对于D,当α⊥β时,l可能在β内,可能与β平行,也可能与β相交,所以不一定有l⊥β,故错误.故选:BC.10、如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ABC=∠BAD=π,AP=AD=2BC=2AB,PA⊥底2面ABCD,M为PA的中点,则下列叙述中正确的是()A.PC//平面MBDB.BD⊥平面PACC.异面直线BC与PD所成的角是π4D.直线PC与底面ABCD所成的角的正切值是√2答案:CD分析:利用反证法,根据线面平行的性质定理,结合题意,可判断A的正误;利用反证法,根据线面垂直的性质定理,可判断B的正误;根据异面直线成角的几何求法,即可判断C的正误;根据线面角的几何求法,可判断D的正误,即可得答案.设AC∩BD=E,则E不是AC中点,假设PC∕∕平面MBD因为PC⊂平面PAC,平面PAC∩平面MBD=ME,所以PC∕∕ME,因为M为AP中点,所以E是AC中点,与题意矛盾,所以A错;假设BD⊥平面PAC,则BD⊥AC,因为直角梯形ABCD所,AB=BC,所以知BD与AC不垂直,与假设矛盾,故B错;因为BC∕∕AD,所以异面直线BC与PD所成的角就是直线AD与PD所成的角,为∠PDA,,因为△PAD是等腰直角三角形,所以∠PDA=π4故异面直线BC与PD所成的角是π,所以C对.4因为PA⊥底面ABCD,所以直线PC与底面ABCD所成的角为∠PCA,又因为AC=√2AB,PA=2AB,=√2,所以D对.所以tan∠PCA=PAAC故选:CD.11、如图PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论中正确的是()A.PC⊥BC B.AC⊥平面PCBC.平面PAB⊥平面PBC D.平面PAC⊥平面PBC答案:AD解析:根据线面垂直、面面垂直的判定与性质判断各选项.AB是圆直径,C在圆上,则AC⊥BC,PA⊥平面ABC,BC⊂平面ABC,则PA⊥BC,PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴PC⊥BC,A正确;又BC⊂平面PBC,∴平面PBC⊥平面PAC.D正确;若AC⊥平面PCB,则AC⊥PC,而PA⊥平面ABC,则PA⊥AC,PA,PC重合,矛盾,B错;若平面PAB⊥平面PBC,作CD⊥PB于D,∵平面PAB∩平面PBC=PB,∴CD⊥平面PAB,而PA⊂平面PAB,∴CD⊥PA,CD∩BC=C,∴PA⊥平面PBC,于是平面PBC与平面ABC重合.矛盾,C错.故选:AD.小提示:易错点睛:本题考查空间线面、面面垂直的判定定理和性质定理.由于是多选题,仅仅判断AD正确还不够,必须说明(证明)BC为什么是错误的.否则会出错.填空题12、已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 答案:135°分析:首先根据题意将图画出,然后根据α=45°,AB∥CD,可得∠BCD=180°−α,进而得出结论.解:如图,由题意知α=45°,AB∥CD,∴∠BCD=180°−α=135°,即β=135°.所以答案是:135°.小提示:本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 立体几何初步第4课时平面与平面的位置关系1. (必修2P 50习题1改编)设a 、b 为不重合的两条直线,α、β为不重合的两个平面,给出下列命题:① 若a ∥α且b ∥α,则a ∥b ;② 若a ⊥α且b ⊥α,则a ∥b ;③ 若a ∥α且a ∥β,则α∥β;④ 若a ⊥α且a ⊥β,则α∥β.其中为真命题的是________.(填序号) 答案:②④解析:①错,a ∥α,b ∥α,直线a 与b 可能相交、平行或异面;③错,若α∩β=l ,a ∥l ,a Ëα,a Ëβ,则a ∥α,a ∥β.2. (必修2P 49练习4改编)如果平面α⊥平面β,直线l ⊥平面β,则直线l 与平面α的位置关系是________.答案:直线l 与平面α平行或直线l 在平面α内 解析:不要忽略直线l 在平面α内的情况.3. (必修2P 48习题12改编)已知直线a 和两个不同的平面α、β,且a⊥α,a ∥β,则α、β的位置关系是________.答案:垂直解析:运用两平面垂直的判定方法.4. (必修2P 51习题16改编)已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γÞβ⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题的个数是________.答案:2解析:若α、β换为直线a 、b ,则命题化为“a ∥b ,且a ⊥γÞb ⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a ∥β,且a ⊥b Þb ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则命题化为“a ∥α,且b ⊥αÞa ⊥b ”,此命题为真命题,故真命题共2个.5. (必修2P 49练习4改编)a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题:① ⎩⎪⎨⎪⎧a ∥c ,b ∥c Þa ∥b ;② ⎩⎪⎨⎪⎧a ∥γ,b ∥γÞa ∥b ;③ ⎩⎪⎨⎪⎧c ∥α,c ∥βÞα∥β; ④ ⎩⎪⎨⎪⎧α∥γ,β∥γÞα∥β;⑤ ⎩⎪⎨⎪⎧α∥c ,a ∥c Þα∥a ;⑥ ⎩⎪⎨⎪⎧α∥γa ∥γÞa ∥α. 其中正确的命题是________.(填序号) 答案:①④解析:②错在a 、b 可能相交或异面.③错在α与β可能相交.⑤、⑥错在a 可能在α内.1. 两平面平行的定义:如果两个平面没有公共点,那么我们就说这两个平面互相平行.2. 两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.3. 两平面垂直的定义:如果两个平面所成的二面角是直二面角,我们就说这两个平面互相垂直.4. 两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.[备课札记]题型1两平面的平行例1(2013·江苏)如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、SC的中点.求证:(1) 平面EFG∥平面ABC;(2) BC⊥SA.证明:(1) ∵AS=AB,AF⊥SB,∴F是SB的中点.∵E、F分别是SA、SB的中点,∴EF∥AB.∵EFË平面ABC,ABÍ平面ABC,∴EF∥平面ABC.同理FG∥平面ABC.∵EF∩FG=F,EF、FGË平面ABC,∴平面EFG∥平面ABC.(2) ∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AFÍ平面SAB,AF⊥SB,∴AF⊥平面SBC.∵BCÍ平面SBC,∴AF⊥BC.∵AB⊥BC,AB∩AF=A,AB、AFÍ平面SAB,∴BC⊥平面SAB.∵SAÍ平面SAB,∴BC⊥SA.变式训练如图,在四棱锥PABCD 中,M 、N 分别是侧棱PA 和底面BC 边的中点,O 是底面平行四边形ABCD 的对角线AC 的中点.求证:过O 、M 、N 三点的平面与侧面PCD 平行.证明:∵ O 、M 分别是AC 、PA 的中点,连结OM ,则OM ∥PC.∵ OM PCD ,PC 平面PCD ,∴ OM ∥平面PCD.同理,知ON ∥CD.∵ ON 平面PCD ,CD 平面PCD ,∴ ON ∥平面PCD.又OM ∩ON =O ,∴ OM 、ON 确定一个平面OMN.由两个平面平行的判定定理知平面OMN 与平面PCD 平行,即过O 、M 、N 三点的平面与侧面PCD 平行.备选变式(教师专享)在直四棱柱ABCDA 1B 1C 1D 1中,底面ABCD 是菱形. 求证:平面B 1AC ∥平面DC 1A 1. 证明:因为ABCDA 1B 1C 1D 1是直四棱柱, 所以A 1C 1∥AC.又A 1C 1Ë平面B 1AC ,AC Ì平面B 1AC , 所以A 1C 1∥平面B 1AC. 同理,A 1D ∥平面B 1AC.因为 A 1C 1、A 1D Ì平面DC 1A 1,A 1C 1∩A 1D =A 1, 所以平面B 1AC ∥平面DC 1A 1. 题型2 两平面的垂直关系例2 如图,三棱锥A-BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB=60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AFAD=λ(0<λ<1).(1) 求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (2) 当λ为何值时,平面BEF ⊥平面ACD.(1) 证明:∵ AB ⊥平面BCD ,∴ AB ⊥CD.∵ CD ⊥BC ,且AB ∩BC =B ,∴ CD ⊥平面ABC.∵ AE AC =AF AD=λ(0<λ<1),∴ 不论λ为何值,恒有EF ∥CD. ∴ EF ⊥平面ABC ,EF Ì平面BEF.∴ 不论λ为何值恒有平面BEF ⊥平面ABC. (2) 解:由(1)知,BE ⊥EF ,∵ 平面BEF ⊥平面ACD ,∴ BE ⊥平面ACD.∴ BE ⊥AC. ∵ BC =CD =1,∠BCD =90°,∠ADB =60°, ∴ BD =2,AB =2tan60°= 6. ∴ AC =AB 2+BC 2=7.由AB 2=AE·AC ,得AE =67.∴ λ=AE AC =67.故当λ=67时,平面BEF ⊥平面ACD.备选变式(教师专享)(2013江宁高中期中)如图,直三棱柱ABC -A 1B 1C 1中,D 、E 分别是棱BC 、AB 的中点,点F 在棱CC 1上,已知AB =AC ,AA 1=3,BC =CF =2.(1) 求证: C 1E ∥平面ADF ;(2) 设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF? (1) 证明:连结CE 交AD 于O ,连结OF.因为CE ,AD 为△ABC 中线,所以O 为△ABC 的重心,CF CC 1=CO CE =23.从而OF//C 1E.OF Ì平面ADF ,C 1E Ë平面ADF ,所以C 1E ∥平面ADF. (2) 解: 当BM =1时,平面CAM ⊥平面ADF.在直三棱柱ABC -A 1B 1C 1中,由于B 1B ⊥平面ABC ,BB 1Ì平面B 1BCC 1,所以平面B 1BCC 1⊥平面ABC.由于AB =AC ,D 是BC 中点,所以AD ⊥BC.又平面B 1BCC 1∩平面ABC =BC, 所以AD ⊥平面B 1BCC 1.而CM Ì平面B 1BCC 1,于是AD ⊥CM.因为BM =CD =1,BC = CF =2,所以Rt △CBM ≌Rt △FCD ,所以CM ⊥DF. DF 与AD 相交,所以CM ⊥平面ADF.CM ⊥平面CAM ,所以平面CAM ⊥平面ADF.当BM =1时,平面CAM ⊥平面ADF.题型3 平行与垂直的综合问题例3 如图①,E 、F 分别是直角三角形ABC 边AB 和AC 的中点,∠B =90°,沿EF 将三角形ABC 折成如图②所示的锐二面角A 1EFB ,若M 为线段A 1C 中点.求证:(1) 直线FM ∥平面A 1EB ; (2) 平面A 1FC ⊥平面A 1BC.证明:(1) 取A 1B 中点N ,连结NE 、NM ,则MN ∥=12BC ,EF ∥=12BC ,所以MN ∥=FE ,所以四边形MNEF 为平行四边形,所以FM ∥EN , 因为FM Ë平面A 1EB ,EN Ì平面A 1EB , 所以直线FM ∥平面A 1EB.(2) 因为E 、F 分别为AB 和AC 的中点, 所以A 1F =FC ,所以FM ⊥A 1C. 同理,EN ⊥A 1B.由(1)知,FM ∥EN ,所以FM ⊥A 1B.因为A 1C ∩A 1B =A 1,所以FM ⊥平面A 1BC. 因为FM Ì平面A 1FC , 所以平面A 1FC ⊥平面A 1BC. 备选变式(教师专享)如图①,E 、F 分别是直角三角形ABC 边AB 和AC 的中点,∠B =90°,沿EF 将三角形ABC 折成如图②所示的锐二面角A 1EFB ,若M 为线段A 1C 的中点.求证:(1) 直线FM ∥平面A 1EB ; (2) 平面A 1FC ⊥平面A 1BC.证明:(1) 取A 1B 中点N ,连结NE 、NM ,则MN ∥=12BC ,EF ∥=12BC ,所以MN ∥=FE ,所以四边形MNEF 为平行四边形,所以FM ∥EN.又FM 平面A 1EB ,EN Ì平面A 1EB ,所以直线FM ∥平面A 1EB.(2) 因为E 、F 分别为AB 和AC 的中点,所以A 1F =FC ,所以FM ⊥A 1C.同理,EN ⊥A 1B.由(1)知FM ∥EN ,所以FM ⊥A 1B.又A 1C ∩A 1B =A 1,所以FM ⊥平面A 1BC.因为FM Ì平面A 1FC ,所以平面A 1FC ⊥平面A 1BC.【示例】 (本题模拟高考评分标准,满分14分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,G 、H 分别为DC 、BC 的中点.(1) 求证:平面FGH ∥平面BDE ; (2) 求证:平面ACF ⊥平面BDE. 学生错解: 证明:(1) 如图,设AC 与BD 交于点O ,连结OE 、OH.由已知EF =12AB ,得EF ∥12AB.∵ OH ∥=12AB ,∴ EF ∥=OH ,∴ 四边形OEFH 为平行四边形,∴ FH ∥EO. ∵ G 、H 分别为DC 、BC 的中点,∴ GH ∥DB. ∴ 平面FGH ∥平面BDE.(2) 由四边形ABCD 为正方形,有AB ⊥BC. 又EF ∥AB ,∴ EF ⊥BC , 而EF ⊥FB ,∴ EF ⊥平面BFC. ∵ FH Ì平面BFC ,∴ EF ⊥FH.∴ AB ⊥FH.又BF =FC ,H 为BC 的中点, ∴ FH ⊥BC ,∴ FH ⊥平面ABCD. ∴ FH ⊥AC.又FH ∥EO ,∴ AC ⊥EO. 又AC ⊥BD ,∴ AC ⊥平面BDE.又AC Ì平面ACF ,∴ 平面ACF ⊥平面BDE.审题引导: (1) 探索求解过程的关键是弄清线线平行线面平行面面平行;线线垂直线面垂直面面垂直;不要跳步造成错误,如本例(1),易出现由线线平行直接推得面面平行,从而导致证明过程错误.(2) 正确理解运用线线、线面、面面的平行、垂直关系的判定定理和性质定理,特别注意将条件写完整,不可遗漏,如本例(2)在证明线、面垂直时,没有指出线线相交,就直接写出线面垂直,造成导致证明过程不严谨.规范解答: 证明: (1) 如图,设AC 与BD 交于点O ,连结OE 、OH ,由已知EF =12AB ,得EF ∥12AB.(2分)∵ OH ∥=12AB ,∴ EF ∥=OH ,∴ 四边形OEFH 为平行四边形,∴ FH ∥EO.(4分)∵ FH 平面BDE ,EO 平面BDE ,∴ FH ∥平面BDE. ∵ G 、H 分别为DC 、BC 的中点,∴ GH ∥DB.∵ GH Ë平面BDE ,DB Ì平面BDE ,∴ GH ∥平面BDE. 又∵ FH ∩GH =H ,∴ 平面FGH ∥平面BDE.(6分)(2) 由四边形ABCD 为正方形,有AB ⊥BC. 又EF ∥AB ,∴ EF ⊥BC ,(8分)而EF ⊥FB ,BC ∩FB =B ,∴ EF ⊥平面BFC. FH Ì平面BFC ,∴ EF ⊥FH.(10分)∴ AB ⊥FH ,又BF =FC ,H 为BC 的中点, ∴ FH ⊥BC ,AB ∩BC =B ,∴ FH ⊥平面ABCD. ∴ FH ⊥AC ,又FH ∥EO ,∴ AC ⊥EO.(12分) 又AC ⊥BD ,EO ∩BD =O ,∴ AC ⊥平面BDE. 又AC Ì平面ACF ,∴平面ACF ⊥平面BDE.(14分) 错因分析:证明两平面平行、垂直关系时一定要正确运用两平面平行或垂直的判定定理,并将相应的条件写全.本题(1)直接由线线平行推得面面平行,不符合面面平行的判定定理,导致证明过程不严谨.(2)在证明线、面垂直时,没有指出相交的条件;导致证题过程不正确.1. (2013·常州调研)给出下列命题:① 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;② 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ③ 若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,真命题是________.(填序号) 答案:①③④ 解析:由面面垂直的判定定理可得若一个平面经过另一个平面的垂线,那么这两个平面相互垂直,故①正确;如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面相互平行,但两条直线平行时,得不到平面平行,故②错误;根据空间直线夹角的定义,可得两条平行直线与第三条直线的夹角相等,故若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直,即③正确;根据面面垂直的性质定理,若两个平面垂直,那么一个平面内与它们的交线垂直的直线与另一个平面也垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,故④正确.因此真命题是①③④.2. 下列命题错误的是________.(填序号)① 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β;② 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β; ③ 如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ; ④ 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β. 答案:④3. 如图所示,在四棱锥PABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案:DM⊥PC(或BM⊥PC等)解析:由已知条件可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC属于平面PCD,∴平面MBD⊥平面PCD.4. 如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证:(1) AE⊥BD;(2) 平面PEF⊥平面AECD.图①图②证明:(1) 取AE中点M,连结BM、DM、DE.∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点,∴△ABE与△ADE都是等边三角形,∴BM⊥AE,DM⊥AE.∵BM∩DM=M,BM,DMÌ平面BDM,∴AE⊥平面BDM.∵BDÌ平面BDM,∴AE⊥BD.(2) 连结CM交EF于点N,连结PN.∵ME∥FC,且ME=FC,∴四边形MECF是平行四边形,∴N是线段CM的中点.∵P是线段BC的中点,∴PN∥BM.∵BM⊥平面AECD,∴PN⊥平面AECD.∵PNÌ平面PEF,∴平面PEF⊥平面AECD.5. 如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB =2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.解:存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形.∴AD∥CF.又ADÌ平面ADD1A1,CFË平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1Ë平面ADD1A1,DD1Ì平面ADD1A1,∴CC1∥平面ADD1A1.又CC1、CFÌ平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.1. 在如图所示的多面体中,已知正三棱柱ABCA 1B 1C 1的所有棱长均为2,四边形ABDC 是菱形.(1) 求证:平面ADC 1⊥平面BCC 1B 1; (2) 求该多面体的体积.(1) 证明:由正三棱柱ABCA 1B 1C 1,得BB 1⊥AD. 而四边形ABDC 是菱形,所以AD ⊥BC. 又BB 1Ì平面BB 1C 1C ,BC Ì平面BB 1C 1C ,且BC ∩BB 1=B ,所以AD ⊥平面BCC 1B 1. 又由AD Ì平面ADC 1,得平面ADC 1⊥平面BCC 1B 1. (2) 解:因为正三棱柱ABCA 1B 1C 1的体积为 V 1=S △ABC ×AA 1=23, 四棱锥DB 1C 1CB 的体积为V 2=13S 平面BCC 1B 1×⎝⎛⎭⎫12AD =433, 所以该多面体的体积为V =1033.2. 如图,正方形ABCD 和三角形ACE 所在的平面互相垂直.EF ∥BD ,AB =2EF.求证:(1) BF ∥平面ACE ; (2) BF ⊥BD.证明: (1) AC 与BD 交于O 点,连结EO.正方形ABCD 中,2BO =AB ,又因为AB =2EF , ∴ BO =EF ,又因为EF ∥BD ,∴ EFBO 是平行四边形 ∴ BF ∥EO ,又∵ BF Ë平面ACE ,EO Ì平面ACE , ∴ BF ∥平面ACE.(2) 正方形ABCD 中,AC ⊥BD ,又因为正方形ABCD 和三角形ACE 所在的平面互相垂直,BD Ì平面ABCD ,平面ABCD ∩平面ACE =AC ,∴ BD ⊥平面ACE ,∵ EO Ì平面ACE∴ BD ⊥EO ,∵ EO ∥BF ,∴ BF ⊥BD.3. 如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N.(1) 求证:MN∥平面CDE;(2) 当平面PAB⊥平面CDE时,求t的值.(1) 证明:因为AB∥DE,AB在平面FDE外,所以AB∥平面FDE.又MN是平面PAB 与平面FDE的交线,所以AB∥MN,故MN∥DE.因为MN平面CDE,DEÌ平面CDE,所以MN∥平面CDE.(2) 解:取AB中点G、DE中点H,连结GH,则由GH∥PC知P、C、G、H在同一平面上,并且由PA=PB知PG⊥AB.而与(1)同理可证AB平行于平面PAB与平面CDE的交线,因此,PG也垂直于该交线.又平面PAB⊥平面CDE,所以PG⊥平面CDE,所以PG⊥CH,于是△CGH∽△PCG,所以PCCG=CGGH,即1+t3=31,解得t=2.4. (2013·徐州三模)如图,AB、CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE.求证:(1) 平面BCEF⊥平面ACE;(2) 直线DF∥平面ACE.证明:(1) 因为CE⊥圆O所在的平面,BCÌ圆O所在的平面,所以CE⊥BC.因为AB为圆O的直径,点C在圆O上,所以AC⊥BC,因为AC∩CE=C,AC,CEÌ平面ACE,所以BC⊥平面ACE,因为BCÌ平面BCEF,所以平面BCEF⊥平面ACE.(2) 由(1)AC⊥BC,又因为CD为圆O的直径,所以BD⊥BC,因为AC、BC、BD在同一平面内,所以AC∥BD,因为BDË平面ACE,ACÌ平面ACE,所以BD∥平面ACE.因为BF∥CE,同理可证BF∥平面ACE,因为BD∩BF=B,BD、BFÌ平面BDF,所以平面BDF∥平面ACE,因为DF平面BDF,所以DF∥平面ACE.1. 判断或证明面面平行的常用方法:(1) 利用两个平面平行的定义;(2) 利用两个平面平行的判定定理(aÌα,bÌα,a∩b=A,a∥β,b∥βÞα∥β).2. 判定面面垂直的方法:(1) 利用两个平面垂直的定义,两个平面所成的二面角是直二面角;(2) 利用平面与平面垂直的判定定理(l⊥α,lÌβÞα⊥β).3. 平面与平面平行、垂直的性质的作用:(1) 两平面平行常常用来作为判定直线与平面平行或直线与直线平行的依据;(2) 两平面垂直常常用来作为判定直线与平面垂直的一个途径.4. 证明平行、垂直问题时要注意“转化思想”的应用,要抓住线线、线面、面面之间平行或垂直关系的相互转化,达到解题目的.。

相关文档
最新文档