3.第7课时 一元二次方程及其应用

合集下载

一元二次方程课件ppt

一元二次方程课件ppt

y=ax²+bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?
① y x2
② y x2 1 x
③ y xx2 ④ yx2 x1
⑤ y1x2 2x4
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
只含有一个未知数,并且未知 数的最高次数是2的整式方程叫做一元二 次方程。
一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
特征:方程的左边按x的降幂排列, 右边=0
• 练习:下列方程中哪些是一元二次方程?试 说明理由。
3x25x3 不是
x2 4

x 2 x2 x 1
不是
根公式,得出方程的根 x b b2 4ac 2a
注意:
• ①当时 b24ac0,方程无解;
• ②公式法是解一元二次方程的万能方法;
• ③利用
的值,可以不解方程
就能判断b方2 程4a根c 的情况;
一元二次方程的根的判别式
• 一元二次方程 ax2bxc0(a0)的根的判
别式△= b2 4ac • 当△>0时,方程有两个不相等的实数根; • 当△=0时,方程有两个相等的实数根, • 当△<0时,方程没有实数根.
3 1 2 不是等式 x
2、我们学过哪些方程? • 一元一次方程、二元一次方程、分式方程。
3、什么叫一元一次方程?方程的“元”和 “次”是什么意思?
一元
一次
只含有一个未知数,并且未知数的次数是1次 的整式方程叫一元一次方程。

一元二次方程的简单应用

一元二次方程的简单应用

课题一元二次方程的简单应用教学目标1.经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型.2.能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力.重点了解一元二次方程及其相关概念,会用配方法、公式法、分解因式法解简单的一元二次方程(数字系数人并在解一元二次方程的过程中体会转化等数学思想难点经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力考点讲解:1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1 ,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.一元二次方程的简单应用1.若关于x的方程(k+1)x2-(k-2)x-5+k=0只有唯一的一个解,则k=______,此方程的解为______.2.如果(m-2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( ).A.2或-2 B.2 C.-2 D.以上都不正确3.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.4.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.5.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)6.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?7.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.8.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.9.求证:不论m 取任何实数,方程02)1(2=++-m x m x 都有两个不相等的实根.10.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.11.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.12.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.13.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.14.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.15.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m 的值.16.已知:x 2+3xy -4y 2=0(y ≠0),求yx y x +-的值.17.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)18.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.19.在实数范围内把x 2-2x -1分解因式为____________________.20.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).21、若方程2x 2-3x -1=0的两根为x 1和x 2,不解方程求x 41+x 42的值;22、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2-=△和完全平方式2)2(b at M +=的关系式()A △=MB △>MC △<MD 大小关系不能确定23、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______24、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______25、在实数范围内因式分解:=--742x x __________________26、已知03442=+--x x ,则=-+31232x x __________________27、m mx x ++24是一个完全平方式,则m=________________________28、已知,)21(822m x a x ax ++=++则a 和m 的值分别是__________________ 29、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程?30、关于x 的方程032)4()16(22=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。

苏科版九年级数学上册23章一元二次方程第7课时

苏科版九年级数学上册23章一元二次方程第7课时

初中数学试卷第7课时一元二次方程的解法(六)1.如图,用一块长80cm、宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成如图所示的底面积为1500cm2的没有盖的长方体盒子,如果设截去的小正方形的边长为x cm,那么长方体盒子底面的长为,底面的宽为,为了求出x的值,可列出方程.2.四周有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18rn2,那么花边有多宽?如果设花边的宽为xm,那么地毯中央长方形图案的长为m,宽为m.根据题意,可得方程.3.在一幅长90cm、宽40cm、的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金边的宽应该是多少?4.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为l米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2米,现已知购买这种铁皮每平方米需20元,问张大叔购回这张矩形铁皮共花了多少元?5.如图,要在长32m、宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570 m2,问道路宽应为多少?6.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2︰1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元,如果制作这面镜子共花了195元,求这面镜子的长和宽.7.某中学有一块长am、宽bm的矩形场地,计划在该场地上修筑宽都为2m的两条互相垂直的道路,余下的4块矩形小场地建成草坪.(1)如图,请分别写出每条道路的面积;(2)已知a︰b=2︰1,并且4块草坪的面积之和为312 m2,试求原来矩形场地的长与宽各是多少?(3)在(2)的条件下,为进一步美化校园,根据实际情况,学校决定对整个矩形场地作如下设计(要求同时符合下述两个条件):①在每块草坪上各修建一个面积尽可能大的菱形花圃,花圃各边必须分别与所在的草坪的对角线平行,并且其中有两个花圃的面积之差为13m2;②整个矩形场地(包括道路、草坪、花圃)为轴对称图形。

第七讲--一元二次方程的性质

第七讲--一元二次方程的性质
一、知识要点
1、一元二次方程ax2+bx+c=0(a≠0)根的 判别式为 Δ=b2-4ac
当Δ>0时
,方程有两个不等的实数根x1’2= b
2a

当Δ= 0时
,方程有两个相等的实数根
x1=x2=

b 2a
当Δ<0时 ,方程无实数根
2、韦达定理
若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根
例2、填空
4(x 1 2 )(x 1 2 )
(1)分解因式4x2-4x-1=______2________2____
(2)若方程x2+kx+3=0有一根为-1,则k=_4___,另一根_-_3__
(3)、在☉o中,弦AB,CD相交于点P,若PA=3,PB=4,CD=9, 则以PC、PD的长为根的一元二次方程是______X__2-_9_x+12=0
; 宠物DR https:///a/360133199_120472838 宠物DR

文章要坚决抵制。 (2)立意:勤奋不一定能成功,但不勤奋就一定不能成功; 勤奋+思考=成功 2.阅读下面的材料,作文。 从前,有一对仙人夫妻常在山顶下围棋。旁边有一棵树,树上住了一只金丝猴。它长年累月地躲在树上观看这对仙人下围棋,终于练就了非凡的棋艺。不久 这只猴子下山了。它到处找人挑战,未逢敌手。最后,竟连一流的高手也成为他的手下败将。后来一位大臣自告奋勇要求应战,宣称自己有绝对的取胜把握。比赛那一天,大臣在桌子上放了一盘鲜艳的水蜜桃。比赛中猴子始终盯着桃子,结果它输了。 要求全面的理解材料,可以选择一 个侧面、一个角度构思作文。自主确定立意,确定标题,写一篇议;不要脱离材料的含义作文,不要套作,不得抄袭,不少于800字。 【写作指

一元二次方程及其应用

一元二次方程及其应用

一元二次方程及其应用
一元二次方程是只含有一个未知数,并且未知数的最高次数为2的整式方程。

一元二次方程的一般形式是 $ax^2 + bx + c = 0$,其中 $a \neq 0$。

一元二次方程的解法包括直接开平方法、配方法、公式法和因式分解法。

一元二次方程的应用非常广泛,包括解决实际问题、数学建模、物理问题等。

例如,在解决几何问题时,常常需要用到一元二次方程来求解面积、周长等。

在解决代数问题时,一元二次方程也是非常重要的工具,例如求解线性方程组的解、求解不等式等。

在解决物理问题时,一元二次方程也经常被用来描述物理现象,例如求解物体的运动轨迹、求解电路中的电流等。

总之,一元二次方程是数学中非常重要的概念之一,它不仅在数学中有广泛的应用,而且在其他领域中也具有非常重要的意义。

中考数学总复习第7课 一元二次方程

中考数学总复习第7课 一元二次方程

5.(2013·浙江衢州)如图 7-1,在长和宽分别是 a,b 的矩形纸片的四个 角都剪去一个边长为 x 的正方形. (1)用含 a,b,x 的代数式表示纸片剩余部分的面积; (2)当 a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方 形的边长.
图 7-1 【解析】 (1)面积=ab-4x2. (2)根据题意,得 ab-4x2=4x2(或 4x2=1ab龙江牡丹江)若关于 x 的一元二次方
程为 ax2+bx+5=0(a≠0)的解是 x=1,则 2013-a-b 的
值是
()
A.2018
B.2008
C .2014
D.2012
点评:(1)本题主要考查一元二次方程的解的概念,难度较小.
(2)解题的关键是把已知方程的解直接代入方程得到待定系数
3.解一元二次方程时,方程两边不能同时约去一个相同 的式子,因为这个式子可能为 0,如果约去,会造成漏 解.
【精选考题 2】 (2013·江苏无锡)解方程:x2-3x+2=0.
点评:(1)本题考查一元二次方程的解法,难度较小. (2)求解本题的关键是根据题目特征选择最适合的方法(因 式分解法)求解. 解析:x 2-3x +2=0,(x -1)(x -2)=0,∴x 1=1,x 2=2.
3.配方法:解一元二次方程时,先把方程的常数项移到方程的右边,再在方程两边同时 加上某一常数,使得左边刚好能配成一个完全平方式,即将方程化为(x+a)2=b 的形式, 如果 b≥0,就可以用直接开平方法来求出它的解,这种解一元二次方程的方法叫做配 方法.
4.公式法:一元二次方程 ax2+bx+c=0(a≠0)的求根公式:x=-b± b2-4ac(b2-4ac≥0). 2a
拓展提高
1.(2012·山东泰安)方程 2x2+5x-3=0 的解是

2013年中考数学复习 第二章方程与不等式 第7课 一元二次方程课件

2013年中考数学复习 第二章方程与不等式 第7课 一元二次方程课件
4+2m+n=0, 2m+n=-4, 即 16+4m+n=0, 4m+n=-16, m=-6, 解得 n=8.
(3)(2010· 广州)已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两
ab2 个相等的实数根,求 的值. 2 2 a-2 +b -4
分析:对于(3),由于这个方程有两个相等的实数根,因此△=b2
(2)已知a是方程x2-2009x+1=0的一个根,试求a2-2008a + 2009 值. a2+1 解:∵x=a,∴a2-2009a+1=0,
∴a2-2008a=a-1,a2+1=2009a, 2009 = 2009 =1 . a2+1 2009a a 1 a2-a+1 a2+1-a ∴原式=a-1+ = = a a a = 2009a-a = 2008a =2008. a a
∴x2+x-2=0,x1=1,x2=-2,另一个根是-2.
4.(2011· 大理)三角形的两边长分别是3和6,第三边的长是方程 x2-6x+8=0的一个根,则这个三角形的周长是( C ) A.9 C.13 B.11 D.11或13
解析:方程x2-6x+8=0的根为x=2或4,而第三边3<x<9,
故x=4,三角形周长为3+6+4=13.
的说法?说明你的理由. 解:不同意小聪的说法. 理由如下:x2-10x+36=x2-10x+25+11=(x-5)2+11≥11, 当x=5时,x2-10x+36有最小值11.
题型三
应用方程根的定义解题
【例 3】(1)(2010· 绵阳)若实数m是方程x2- 10 x+1=0的一个根, 则m4+m-4=________. 62 解析: ∵x=m, ∴m2- 10 m+1=0, 1 ∴m2+1= 10m,m+ = 10 , m 1 1 两边平方,得m2+2+ 2 =10,m2+ 2=8, m m 再平方,得m4+2+ 14=64,m4+ 14 =62, m m 即m4+m-4=62.

2019-2020年中考数学复习考点精练:第7课时 一元二次方程及其应用

2019-2020年中考数学复习考点精练:第7课时 一元二次方程及其应用

2019-2020年中考数学复习考点精练:第7课时一元二次方程及其应用命题点1 解一元二次方程(近3年39套卷,2015年考查3次,2014年考查3次,2013 年考查3次)1. (2015徐州20(1)题5分)解方程:x2-2x-3=0.2. (2014徐州20(1)题5分)解方程:x2+4x-1=0.3. (2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(近3年39套卷,2015年考查6次,2014年考查6次,2013年考查5次)1. (2014苏州7题3分)下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=02. (2015连云港6题3分)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<13B.k>-13C. k<13且k≠0 D. k>-13且k≠03. (2013镇江8题2分)写一个你喜欢的实数m的值_______,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4. (2015南通12题3分)已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于_______.5. (2015南京12题2分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m 的值是________.6. (2015镇江9题2分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.7. (2015徐州13题3分)已知关于x的方程x2x-k=0有两个相等的实数根,则k的值为_________.8. (2014扬州17题3分)已知a、b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为.9. (2015泰州18题8分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.命题点3 一元二次方程的应用(近3年39套卷,2015年考查2次,2014年考查1次, 2013年考查3次)1. (2013南京14题2分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:__________.第1题图2. (2014南京22题8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.3. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm2.”他的说法对吗?请说明理由.4. (2015淮安26题10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售是_______斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】命题点1 解一元二次方程 1. 解:因式分解得:(x +1)(x -3)=0,…………………………………………………………(3分)即x +1=0或x -3=0,…………………………………………………………………………(4分)解得:x 1=-1 ,x 2=3.……………………………………………………………………………(5分)2. 解:原式可化为(x 2+4x +4-4)-1=0,即(x +2)2=5,…………………………………(3分)两边开方得,x +2=4分)解得x 1x 2.…………………………………………………………………(5分)3. 解:这里a =2,b =-4,c =-1,……………………………………………………………(2分)∵b 2-4ac =16+8=24,…………………………………………………………………………(4分)∴x =424b a -±±=.即x 1,x 2=22-.…………………………………………………………………(6分)命题点2 一元二次方程根的判别式及根与系数的关系1. C 【解析】A .b 2-4ac =(-1)2-4×1×1=-3<0,方程没有实数根,所以A 选项错误;B .b 2-4ac =12-4×1×1=-3<0,方程没有实数根,所以B 选项错误;C .x -1=0或x +2=0,则x 1=1,x 2=-2,所以C 选项正确;D .(x -1)2+1=0,方程左边为正数,方程右边为0,所以方程没有实数根,所以D 选项错误.2. A 【解析】∵方程x 2-2x +3k =0有两个不相等的实数根,∴b 2-4ac >0,即(-2)2-4×3k >0,解得k <13. 3. 0(答案不唯一)【解析】根据题意得:b 2-4ac =1-4m >0,解得:m <14,则m 可以为0,答案不唯一. 4. -2【解析】本题考查了一元二次方程根与系数的关系,∵a =2,b =4,c =-3,∴x 1+x 2=ba=-2. 5. 3,-4【解析】由题意及一元二次方程根与系数的关系知x 1x 2=3,得另一根为3,再由x 1+x 2=-m ,得m =-4.6. a >0【解析】本题考查了一元二次方程根的判别式,本题中的判别式b 2-4ac =-4a ,∵方程没有实数根,则-4a <0,∴a >0.7. -3【解析】本题考查了一元二次方程根的判别式,由于方程有两个相等的实数根,则)2-4×1×(-k )=0,解得k =-3.8. 23【解析】∵a ,b 是方程x 2-x -3=0的两个根,∴a 2-a -3=0,b 2-b -3=0,即a 2=a +3,b 2=b +3,∴2a 3+b 2+3a 2-11a -b +5=2a (a +3)+b +3+3(a +3)-11a -b +5=2a 2-2a +17=2(a +3)-2a +17=2a +6- 2a +17=23. 9. 解:(1)∵a =1,b =2m ,c =m 2-1,……………………………………………………………(1分)∴b 2-4ac =(2m )2-4×1×(m 2-1)=4>0,………………………………………………………(3分)∴方程x 2+2mx +m 2-1=0有两个不相等的实数根;…………………………………………(4分)(2)∵x 2+2mx +m 2-1=0有一个根是3,∴32+2m ×3+m 2-1=0,…………………………………………………………………………(6分)解得,m =-4或m =-2.…………………………………………………………………………(8分)命题点3 一元二次方程的应用1. (x +1)2=25(本题答案不唯一)【解析】解法一:分割法,如解图①,将图形分割成两个长方形,由题意,x (x +1)+x ×1=24即x 2+2x =24,∴x 2+2x -24=0.解法二:补图法,如解图②,将图形补成一个正方形,由题意,(x +1)2-1=24,∴(x +1)2=25.第1题解图2.4分)(2)【思路分析】由题意,等量关系为第三年养殖成本4+2.6(1+x )2万元等于7.146万元,可解方程得结论.解:根据题意,得4+2.6(1+x )2=7.146.解方程,得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率是10%.……………………………………………(8分)3. (1)【思路分析】设剪成的较短的一段为x cm ,较长的一段就为(40-x )cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可.解:设剪成的较短的一段为xcm ,较长的一段则为(40-x ) cm ,由题意,得:(4x )2+(404x -)2=58, ………………………………………………………………………………………………(2分)解得:x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm ,………………………………………………………(3分)当x =28时,较长的为40-28=12<28(舍去),…………………………………………(4分)∴较短的一段为12 cm ,较长的一段为28 cm .……………………………………………(5分)(2)【思路分析】设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确.解:设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm ,由题意,得: (4m )2+(404m -)2=48,……………………………………………………………………(7分)变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416=-64<0, ∴原方程无实数根,…………………………………………………………………………(9分)∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.……………………(10分)4. (1)【思路分析】因为售价每降低0.1元,每天可多售出20斤,售价降低x 元,每天可多售出20×0.1x 斤,每天销售量为100+20×0.1x =(200x +100)(斤). 解:200x +100;………………………………………………………………………………(2分)(2)【思路分析】根据:每天销售利润=(原销售价-成本价-销售价降低部分)×每天销售量,建立方程求解.解:根据题意,得(200x+100)(4-2-x)=300,………………………………………………………………(4分)整理,得2x2-3x+1=0,………………………………………………………………………(6分)(x-1)(2x-1)=0,解得x1=1,x2=0.5,…………………………………………………………………………(8分)当x=0.5时,每天销售量为200×0.5+100=200<260,不合题意,舍去.………………(9分)答:销售这种水果要想每天销售盈利300元,张阿姨需将每斤销售价降低1元.……(10分)2019-2020年中考数学复习考点精练:第8课时分式方程及其应用命题点1 解分式方程(近3年39套卷,2015年考查5次,2014年考查7次,2013年考查9次)解分式方程考查的题型有选择题、填空题和解答题,其中以解答题为主,所给的分式方程有3种形式:①等号两边均为分式;②等号左边为分式,等号右边为常数项或分式与常数项的和或差;③等号左边为两个分式或常数项与分式,等号右边为常数项.1. (2015淮安9题3分)方程1x-3=0的解是__________.2. (2015宿迁12题3分)方程3x-22x-=0的解为________.3. (2015镇江19(1)题5分)解方程:3+4xx-=12.4. (2015南通19(2)题5分)解方程12x=1+5x.5. (2014苏州22题6分)解分式方程:2311xx x+=--.6. (2014连云港19题6分)解方程21322x x x-+=--.7. (2013泰州18题8分)解方程:22 222222x x xx x x x++--=--.命题点2 分式方程的应用(近3年39套卷,2015年考查3次,2014年考查2次,2013年考查2次)1. (2015苏州22题6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?2. (2015扬州24题10分)扬州建城2500年之际,为了加速美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?3. (2013扬州24题10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况.(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.4. (2015连云港23题10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【答案】命题点1 解分式方程1. x=13【解析】去分母得1-3x=0,移项得-3x=-1,系数化成1得x=13,因为x=13≠0,所以x =13是方程1x-3=0的解. 2. x =6【解析】给分式方程两边同时乘以x (x -2),得3(x -2)-2x =0,解得x =6,经检验x =6是原分式方程的根.3. 解:去分母,得6+2x =4-x ,……………………………………………………………(2分)解得x =-23,……………………………………………………………………………………(4分) 经检验,x =-23是原方程的解.所以,原方程的解为x =-23.………………………………………………………………(5分)4. 解:方程两边同时乘以2x (x +5),得x +5=6x ,………………………………………(2分) 解得x =1,……………………………………………………………………………………(3分) 检验:当x =1时,2x (x +5)≠0,……………………………………………………………(4分) 所以,原分式方程的解为x =1.………………………………………………………………(5分)5. 解:去分母得:x -2=3x -3, ………………………………………………………………(2分)解得:x =12,…………………………………………………………………………………(4分) 经检验x =12是分式方程的解.∴原分式方程的解为x =21. ………………………………………………………………(6分)6. 【思路分析】按照解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数 化为1求解.在去分母时,不要漏掉乘常数项,最后检验.解:去分母,得 2+3(x -2)=-(1-x ),……………………………………………………(2分) 去括号,得2+3x -6=-1+x , 移项,得3x -x =-1+6-2, 合并同类项,得2x =3,系数化为1,得x =32.………………………………………………………………………(4分) 检验:将x =32代入公分母x -2中,得x -2=32-2=-12≠0,……………………………(5分)∴原分式方程的解为x =32.…………………………………………………………………(6分)7. 解:方程两边同时乘以x (x -2)得:(2x +2)(x -2)-x (x +2)=x 2-2,……………(2分) 化简得:-4x =2,解得:x=-12,………………………………………………………………………………(4分)检验:把x=-12代入x(x-2)=54≠0,…………………………………………………(6分)故方程的解是:x=-12 .……………………………………………………………………(8分)命题点2 分式方程的应用1. 【思路分析】根据相等关系“甲做60面彩旗与乙做50面彩旗所用时间相等”列出方程求解,注意不能忘记检验.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,…………………………(1分)根据题意,得6050x+=50x,………………………………………………………………(3分)解方程,得x=25,…………………………………………………………………………(4分)经检验,x=25是分式方程的解,∴x+5=30.……………………………………………………………………………………(5分)答:甲每小时做30面彩旗,乙每小时做25面彩旗.……………………………………(6分)2. 【思路分析】本题基本的关系是工作量除以工作效率即为工作的时间,关键的等量关系就是实际比原计划提前两天完成,理顺这两个关系即可,但注意解出分式方程的根后要进行验根.解:设原计划每天栽树x棵.………………………………………………………………(1分)根据题意,得1200x-(1120)20%x+=2,……………………………………………………(5分)解得x=100,………………………………………………………………………………(7分)经检验,x=100是原方程的解,…………………………………………………………(9分)答:原计划每天栽树100棵.………………………………………………………………(10分)3. 【思路分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:1200x-(1120)20%x+=8,解此方程即可求得答案.解:设九(1)班人均捐款数为x元,则九(2)班人均捐款数为(1+20%)x元,…(1分)由题意,得1200x-(1120)20%x+=8,………………………………………………………(5分)解得x =25,…………………………………………………………………………………(7分) 经检验,x =25是原分式方程的解,………………………………………………………(8分) 九(2)班的人均捐款数为:(1+20%)x =30.……………………………………………(9分) 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.………………………(10分)4.(1)【信息梳理】设每张门票的原定票价为x 元,解:设每张门票的原定票价为x 元.……………………………………………………(1分) 由题意得:6000480080x x =-, 解得:x=400,经检验,x =400是原方程的解.答:每张门票的原定票价为400元.………………………………………………………(5分)(2)【信息梳理】设平均每次降价的百分率为y ,由(1)知原定票价为400元.解:设平均每次降价的百分率为y .由题意得:400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去),答:平均每次降价10%.……………………………………………………………………(10分)。

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)

数学教案一元二次方程的应用(6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!数学教案一元二次方程的应用(6篇)在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。

第7课一元二次方程及根的判别式

第7课一元二次方程及根的判别式

第7课 一元二次方程及根的判别式[考点透视]一元二次方程的解法和根的判别式的应用是重点,各地中考主要题型是填空题和选择题,将二次项的系数(含字母)进行分类,要引起足够的重视. [课前回顾]1. 一元二次方程的一般形式是)0(02≠=++a c bx ax ,其根的别式是ac b 42-=∆.2.根的判别式与根的情况关系如下: ⇔>∆0有两个不相等的实数根; ⇔=∆0有两个相等的实数根;⇔<∆0没有实数根;3、二元二次方程组解的情况与一元二次方程根的判别式相关. [课堂选例]例1 解方程01042=--x x分析 从方程的结构特征可以发现,此方程用配方法和求根公式法解较宜. 解法一:配方法014)44(2=-+-x x14)2(2=-x即142±=-x142,14221-=+=∴x x .解法二:求根公式法10,4,1-=-==c b a144)10(14)4(2>⨯=-⨯⨯--=∆14212144)4(±=⨯⨯±--=∴x142,14221-=+=∴x x例2 解方程631)13(2=-+-x x 分析 从方程结构的特征可以发现,用换元法解较宜. 解:原方程变形为:06)13()13(2=----x x062=--y y (其中13-=x y )0)2)(3(=+-y y02,03=+=-y y 或即 2,321-==y y31,3421-==∴x x 评注 若把原方程变为一般形式,得04992=-+x x .用求根公式法和因式分解法解这个方程也比较合适,但都没有上面的解法简捷. 例3 解关于x 的方程02)1(2=+--m mx x m分析 此题是含字母系数的方程,对字母系数没作说明时,应分类讨论. 解:(1)当01=-m ,即1=m 时,原方程为012=+-x ,21=∴x . (2)当01≠-m ,即1≠m 时,原方程为一元二次方程.m m m m 4)1(4)2(2=---=∆.讨论:若0>m ,且1≠m 时,0>∆,解得1,121--=-+=m mm x m m m x . 若0=m 时,0=∆,解得021==x x .若0<m 时, 0<∆,原方程无实数根.综上所述:当1=m 时,21=x ; 当0<m 时,方程无实数根; 当0>m 且1≠m 时,11-+=m m m x , 12--=m mm x当0=m 时,021==x x .例4若方程组⎩⎨⎧=+++=y x y mx y 21422没有实数解,则实数m 的取值范围是:( )A .1>mB .1-<mC .01≠<m m 且D .01≠->m m 且分析 原方程组是二元二次方程组,通过消元可转化为一元方程,应理解到:原方程组没有实数解,就是这个一元方程没有实数解. 解:用代入消元法,可得01)42(22=+++x m x m(1) 当0=m 时,此方程为 014=+x ,此方程有实数根,这不符合题意,0=∴m 舍去.(2)当0≠m 时,此方程为一元二次方程,)1(164)42(22+=-+=∆m m m原方程组没有实数解.∴此一元二次方程没有实数解,即0<∆,故:1-<m .综上所述:1-<m ,故:选B.[课堂小结]1.会把含数字系数和含字母系数的方程整理成一般形式,这对解题和分析问题可带来方便,如例4.2.解一元二次方程的方法较多,选择最佳方法的依据是方程本身的结构特征,这就需要多多观察方程的特点,并注意联想和经验的发挥.如例1、例2.3、解方程组可化归为解一元方程,当一元方程(包含一次,二次)含字母系数时,一定要分类讨论.在一元二次方程和二元二次方程组的解的联系上,∆显得十分重要,要灵活,正确使用.如例3、例4.4、例3、例4中用到了分类和化归的数学思想,例2用到了换元法.[课后测评] 一.选择题1.一元二次方程532+=x x 的二次项系数,一次项系数和常数项分别是( ) A .3,1,5 B .3,-1,-5 C .-3,1,5 D .-3,0,52.已知方程02=++n mx x 的两根分别是4,321-==x x ,则二次三项式n mx x ++2分解因式得( )A .)4)(3(-+x xB .)4)(3(++x xC .)4)(3(+-x xD .)4)(3(--x x3.若方程0162=+-x kx 有两个不相等的实根,则k 的取值范围是: A .9>k B .9<k C .09≠≤k k 且 D .09≠<k k 且二.填空题4、某人解方程02=++c bx x 时,把求根公式错用为2142c b b ⋅⋅-±结果得到的解是3,221-==x x ,则方程的正确解是.5、某商品按原价八折出售后,又降价a 元,现每件售价为b 元.那么该商品原售价是 . 三.解答题7.已知方程01sin 52=+-x x θ有两个相等实数根,且θ为锐角,求θtan 的值.6.解方程02)13(2=+-x x8.解关于x 的方程2)5()5(22=-+-x m x m .9.当m 是什么整数时,关于x 的一元二次方程0442=+-x mx 与0544422=--+-m m mx x 的解都是整数?10.当0>a ,且c a b +>时,试证:方程02=++c bx ax 必有两个不相等的实数根.。

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用

中考数学一轮复习专题解析—一元二次方程及其应用复习目标 1、理解配方法2、会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 考点梳理一、一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).例1.下列是一元二次方程的有( )个.①240x =;②()200++=≠ax bx c a ;③223(1)32x x x -=+;④2120x -=. A .1 B .2 C .3 D .4【答案】B 【分析】一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.进而可以判断. 【详解】解:①240x =,是一元二次方程;②()200++=≠ax bx c a ,是一元二次方程;③223(1)32x x x -=+,整理得830x -=,是一元一次方程,不是一元一次方程; ④2120x -=,不是整式方程,不是一元二次方程;综上,是一元二次方程的是①②,共2个, 故选:B .二、一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+=⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.注意:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.例2.关于x 的一元二次方程21x =的根是( ) A .1x = B .11x =,21x =- C .1x =- D .121x x ==【答案】B 【分析】利用直接开平方法求解即可. 【详解】解:∵x 2=1, ∴x 1=1,x 2=-1, 故选:B .三、一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 注意: △≥0⇔方程有实数根.例3.一元二次方程2310x x --=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根【答案】B 【分析】计算出一元二次方程根的判别式,根据判别式的符号即可判断根的情况. 【详解】∵a =1,b =-3,c =-1∴224(3)41(1)130b ac ∆=-=--⨯⨯-=>∴一元二次方程2310x x --=有两个不相等的实数根 故选:B.四、一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x a b x x 2121=⋅-=+,.例4.方程22x -5x +m =0没有实数根,则m 的取值范围是( ) A .m >258B .m <258C .m ≤258D .m ≥258【答案】A 【分析】利用判别式的意义得到△=(-5)2﹣4×2m <0,然后解关于m 的不等式即可. 【详解】解:∵方程22x -5x +m =0没有实数根, ∴△=(-5)2﹣4×2m <0, 解得m>258. 故选:A .1.(2022·福建省福州杨桥中学九年级开学考试)方程()50x x -=的根是( ) A .5 B .-5,5C .0,-5D .0,5【答案】D 【分析】利用因式分解法求解即可. 【详解】解:∵x (x -5)=0∴x =0或x -5=0, ∴10x =,25x =. 故选D .2.(2022·福建省福州延安中学九年级开学考试)若0x =是一元二次方程2240x b ++-=的一个根,则b 的值是( )A .2B .2-C .2±D .4【答案】A 【分析】根据一元二次方程的解的定义,把0x =代入2240x b ++-=得240b -=,然后解关于b 的方程即可. 【详解】解:把x =0代入2240x b ++-=得b 2-4=0, 解得b =±2, ∵b -1≥0, ∴b ≥1, ∴b =2. 故选:A .3.(2022·云南师范大学实验中学九年级期末)如图,用长为20m 的篱笆,一面利用墙(墙的最大可用长度为11m ),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m 的两扇小门.若花圃的面积刚好为240m ,设AB 长为x m ,则可列方程为( )A .()22340x x -=B .()20240x x -=C .()18340x x -=D .()20340x x -=【答案】A 【分析】设AB =x 米,则BC =(20-3x +2)米,根据围成的花圃的面积刚好为40平方米,即可得出关于x 的一元二次方程. 【详解】解:设AB =x 米,则BC =(20-3x +2)米=(22-3x )米, 依题意,得:x (22-3x )=40, 故选A .4.(2022·蒙城县第六中学九年级开学考试)国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x .则可列方程为( ) A .()5000127500x += B .()5000217500x ⨯+= C .()2500017500x +=D .()()2500050001500017500x x ++++= 【答案】C 【分析】设我国2017年至2019年快递业务收入的年平均增长率为x ,根据增长率的定义即可列出一元二次方程. 【详解】解:设我国2017年至2019年快递业务收入的年平均增长率为x , ∵2017年至2019年我国快递业务收入由5000亿元增加到7500亿元, 即2019年我国快递业务收入为7500亿元, ∴可列方程:()2500017500x +=, 故选:C .5.(2022·厦门海沧实验中学九年级开学考试)判断关于x 的方程()2110kx k x -++=(k 是常数,1k <)的根的情况( )A .存在一个k ,使得方程只有一个实数根B .无实数根C .一定有两个不相等的实数根D .一定有两个相等的实数根【答案】A 【分析】当k =0时,可求出方程的根;k ≠0时,利用,Δ=[-(k +1)]2-4k =(k -1)2>0即可判断原方程有实数根. 【详解】 解:∵k <1,∴当k =0时,原方程为-x +1=0, 解得:x =1;当k ≠0时,Δ=[-(k +1)]2-4k =(k -1)2>0, ∴原方程有两个不相等的实数根,故选:A.6.(2022·厦门海沧实验中学九年级开学考试)为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,某市今年第一季度进行宣传准备工作,从第二季度开始到今年年底全市全面实现垃圾分类.已知该市一共有285个社区,第二季度已有60个社区实现垃圾分类,第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则下面所列方程正确的是()A.()2x601285-=x+=B.()2601285C.()()2+++=D.()()2 601601285x x++++=60601601285x x【答案】D【分析】设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,根据年底全市共285个社区实现垃圾分类,即可得出关于x的一元二次方程,此题得解.【详解】解:设第三、四季度实现垃圾分类的社区个数较前一季度平均增长率均为x,则第三季度有60(1+x)个社区实现垃圾分类,第四季度有60(1+x)2个社区实现垃圾分类,依题意得:60+60(1+x)+60(1+x)2=285.故选:D.7.(2022·深圳市新华中学九年级期末)已知关于x的一元二次方程230+-=x x c没有实数根,即实数c的取值范围是________.【答案】94c <- 【分析】根据题意可知,判别式∆<0,求解即可. 【详解】解:∵方程没有实数根, ∴2340c =+<,解得94c <-故答案为94c <-8.(2022·全国九年级课时练习)已知关于x 的一元二次方程2(21)20ax a x a +++-=有两个不相等的实数根,则a 的取值范围是______. 【答案】112a >-且0a ≠ 【分析】根据一元二次方程的定义,以及根的判别式确定a 的取值范围即可. 【详解】根据题意得0a ≠且2Δ(21)4(2)0a a a =+-->, 解得112a >-且0a ≠. 故答案为:112a >-且0a ≠. 9.(2022·山东省青岛第二十六中学九年级期中)解下列方程: (1)2x 2+7x +3=0(用配方法). (2)5(x +3)2=x 2﹣9.【答案】(1)12132x x =-=-,;(2)x 1=−3,x 2=−92. 【分析】(1)利用配方法求解即可; (2)利用因式分解法求解即可. 【详解】解:(1)方程整理得:27322x x +=-,配方得:22277372424x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即2725416x ⎛⎫+= ⎪⎝⎭,开方得:7544x +=±,解得:12132x x =-=-,; (2)∵5(x +3)2=(x +3) (x -3), ∴5(x +3)2-(x +3) (x -3)=0, ∴(x +3) [5(x +3)-(x -3)]=0, 即(x +3) (4x +18)=0, ∴x 1=−3,x 2=−92.10.(2020·沭阳县怀文中学九年级月考)某玩具商店以每件50元为成本购进一批新型玩具,以每件80元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为多少元?最多?最多盈利多少元?【答案】(1)65元;(2)每件玩具的售价定为70元时,商店每天盈利最多,最多盈利为800元【分析】(1)根据题意和题目中的数据,可以写出相应的方程,然后求解即可,注意又要使顾客得到更多的实惠,也就是售价越低越好;(2)根据题意,可以写出利润和售价之间的函数关系,然后根据二次函数的性质解答即可.【详解】解:(1)设每件玩具的售价为a元,由题意可得,(a﹣50)[20+2(80﹣a)]=750,解得a1=65,a2=75,∵要使顾客得到更多的实惠,∴a=65,答:商店打算每天盈利750元,同时又要使顾客得到更多的实惠,那么每件玩具的售价应定为65元;(2)设每件玩具的售价定为x元,商店每天盈利为w元,由题意可得,w=(x﹣50)[20+2(80﹣x)]=﹣2(x﹣70)2+800,∵a=﹣2,∴该函数开口向下,有最大值,∴当x=70时,该函数取得最大值,此时w=800,最多盈利为800元.。

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)

《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

第7课 一元二次方程——根的判别式

第7课 一元二次方程——根的判别式

第7课 一元二次方程根的判别式班别: 姓名: 学号:一、问题引领:掌握一元二次方程的根的判别式,并能运用判别式判定根的情况。

二、交流启发:1、写出一元二次方程ax 2+bx +c =0(a ≠0)的求根公式:x =2、用公式法解下列一元二次方程(1)y 2+2y -4=0 (2)y 2+4y+4=0(3)y 2+2y+4=0三、自主探究★在上面(1)、(2)、(3)练习我们发现:(1)当b 2-4 ac >0时,方程有 个 的实数根(填相等或不相等)(2)当b 2-4 ac =0时,方程有 个 的实数根(填相等或不相等)即x 1=x 2=(3)当b 2-4 ac < 0时,方程 实数根★这里的b 2-4 a c 叫做一元二次方程的根的判别式,用“∆”表示,用它可以直接判断一个一元二次方程是否有实数根★方法点拨:当题目出现“有两个不相等的实数根”,则暗示:b 2-4 ac ;当题目出现“有两个相等的实数根”,则暗示:b 2-4 ac ;当题目出现“没有实数根”,则暗示:b 2-4 ac 。

解:∵a= ,b= ,c=∴ac b 42-=∴x =解:∵a= ,b= ,c= ∴ac b 42-= ∴x = 解:∵a= ,b= ,c=∴ac b 42-=∴x =四、探究升华例1:不解方程,判别方程根的情况;(1) 0822=-+x x (2) 0122=++x x解:∵ac b 42-=∆ = = 0∴原方程有 的实数根(3)012=++x x (4)1432-=x x例2、应用判别式来确定方程中的待定系数(1)当m 取什么值时,关于x 的方程0222=-++m x x 有两个不等的实数根。

(2)说明不论m 取何值时,关于x 的方程0322=-+m x x 总有两个不相等的实根1、不解方程,判别方程根的情况;(1) 0752=+-x x (2)21342-=--x x x(3) 0)23(62=--x x x (4) 0)13(2=++x x2、已知关于x 的方程2x 2-(4k +1)x +2k 2-1=0当k 取何值时,方程有两个相等的实数根3、求证关于x 的方程x 2+(2k +1)x +k -1=0有两个不相等的实数根;4、【2006·北京】)若关于x 的一元二次方程230x x m -+=有实数根, 则m 的取值范围是_________________1、试判别方程x 2+2mx +m -1=0 的根的情况;2、说明不论k 取何值,关于x 的方程01)1(2=-+++k k x 总有两个不相等的实根3、(2006 韶关课改)当c =__________时,关于x 的方程2280x x c ++=有实数根.4、(2006 荆州课改)已知关于x 的二次方程()21210k x ---=有实数根.则k 的取值范围是_________________.。

一元二次方程的应用

一元二次方程的应用

一元二次方程的应用一元二次方程是高中数学中的重要内容,也是实际问题求解中常用的工具之一。

它的应用涉及到多个领域,如物理学、经济学和工程等。

本文将通过实际案例,介绍一元二次方程的应用。

1. 抛物线运动假设一个物体从离地面h高度抛出,初速度为v,抛物线运动的路径可以用一元二次方程表示。

设物体从时间t=0开始运动,那么物体在t时刻的高度可以用以下方程表示:h = -gt^2 + vt + h0其中g为重力加速度,h0为起始高度。

这就是一元二次方程的典型应用之一。

2. 经济学中的应用在经济学中,一元二次方程可以用来描述生产成本、销售收入等与产量之间的关系。

例如,假设某企业生产某种产品的成本函数为C(x)= ax^2 + bx + c,其中x为产量,a、b和c分别为常数。

通过求解这个二次方程,可以找到产量与成本之间的最优关系,帮助企业制定最佳的生产计划。

3. 工程中的应用在工程领域,一元二次方程也有广泛的应用。

例如,考虑一个抛物线形状的拱桥,为了确定拱桥的形状和尺寸,需要利用一元二次方程求解。

通过分析桥墩高度、跨度等因素,可以建立一元二次方程模型,求解该方程可以得到最优的桥墩高度和跨度,以保证拱桥的坚固和美观。

4. 声音传播的应用在声学中,一元二次方程可以用来描述声音在空气中的传播过程。

假设一个声源位于坐标原点,声音的传播距离为d,传播时间为t,声音的速度为v。

根据声音传播的基本原理,可以得到以下一元二次方程:d = vt - at^2通过求解这个方程,可以推导出声音传播的速度、时间和距离之间的关系。

综上所述,一元二次方程在物理学、经济学和工程等领域中有着广泛的应用。

通过求解一元二次方程,可以解决实际问题,帮助人们做出正确的决策和计划。

因此,掌握一元二次方程的应用是非常重要的。

希望本文的介绍能够对读者有所帮助,进一步加深对一元二次方程的理解和应用能力。

初中复习方略数学第七讲 一元二次方程

初中复习方略数学第七讲 一元二次方程

1.一元二次方程二次项系数不为 0. 2.找各项系数时,要将方程化为一般形式,并注意每项的符号.
解一元二次方程
解法
形式
直接
x2=p(p≥0)或(mx+n)2=
开平方法
p(p≥0,m≠0)Fra bibliotek配方法
(x-m)2=n(n≥0)
公式法
ax2+bx+c=0(a≠0,b2- 4ac≥0)
因式分解法
(x-x1)(x-x2)=0
D.有两个不相等的实数根
2.(2021·广安中考)关于 x 的一元二次方程(a+2)x2-3x+1=0 有实数根,
则 a 的取值范围是( A )
A.a≤14 且 a≠-2
B.a≤41
C.a<14 且 a≠-2
D.a<41
3.(2021·济宁中考)已知 m,n 是一元二次方程 x2+x-2 021=0 的两个实数根,
【例题变式】某超市经销一种商品,每千克成本为 50 元,经试销发现,该种商品的
每天销售量 y(千克)与销售单价 x(元/千克)满足一次函数关系,其每天销售单价,销
售量的四组对应值如下表所示:
销售单价 x(元/千克)
55 60 65 70
销售量 y(千克)
70 60 50 40
(1)求 y(千克)与 x(元/千克)之间的函数表达式.
第七讲 一元二次方程
知识清单·熟掌握
一元二次方程的有关概念 1.定义的三要素: (1)只含有___一___个未知数. (2)所含未知数的最高次数是___2___ . (3)必须是__整__式__方程. 2.一般形式:y= __a_x_2_+__b_x_+__c_(a,b,c是常数,a≠0),a为二次项系数, b为一次项系数,c为常数项. 3.一元二次方程的解(根):使一元二次方程左右两边_相__等___的未知数的值.

专题7一元二次方程及应用(共30题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期

专题7一元二次方程及应用(共30题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期

2021年中考数学真题分项汇编【全国通用】(第01期)专题7一元二次方程及应用(共30题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·山东临沂市·中考真题)方程256x x -=的根是( )A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-, 【答案】C【分析】利用因式分解法解方程即可得到正确选项.【详解】解:∵256x x -=,∵2560x x --=,∵()()780x x +-=,∵x +7=0,x -8=0,∵x 1=-7,x 2=8.故选:C .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.2.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x += 【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++=,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方. 3.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】 根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( )A .14a ≤且2a ≠-B .14a ≤C .14a <且2a ≠-D .14a < 【答案】A【分析】根据一元二次方程的定义和判别式的意义得到a +2≠0且∵≥0,然后求出两不等式的公共部分即可.【详解】解:∵关于x 的一元二次方程()22310a x x +-+=有实数根, ∵∵≥0且a +2≠0,∵(-3)2-4(a +2)×1≥0且a +2≠0,解得:a ≤14且a ≠-2, 故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的两个实数根;当∵=0时,方程有两个相等的两个实数根;当∵<0时,方程无实数根. 5.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∵m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且∵=2414b ac m -=-,∵m <0,∵-4m >0,∵1-4m >1>0,∵∵>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( )A .7-B .3-C .2D .5【答案】A【分析】根据一元二次方程根的定义,得211310x x -+=,结合根与系数的关系,得1x +2x =3,进而即可求解. 【详解】解:∵一元二次方程2310x x -+=的两根为1x ,2x ,∵211310x x -+=,即:21131x x -=-,1x +2x =3,∵211252x x x --=2113x x --2(1x +2x )=-1-2×3=-7.故选A .【点睛】本题主要考查一元二次方程根的定义以及根与系数的关系,熟练掌握20ax bx c ++=(a ≠0)的两根为1x ,2x ,则1x +2x =b a -,1x 2x =c a,是解题的关键. 7.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x =-和21y x =-+ 【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m --+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.8.(2021·浙江台州市·中考真题)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4【答案】D【分析】根据方程x 2-4x +m =0有两个不相等的实数根,可得()24410m ∆=--⨯⨯>,进而即可求解.【详解】解:∵关于x 的方程x 2-4x +m =0有两个不相等的实数根,∵()24410m ∆=--⨯⨯>,解得:m <4,故选D .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.9.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( )A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠ 【答案】D【分析】根据一元二次方程的定义和判别式的意义得到a ≠0且∵=22-4a >0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a ≠0且∵=22-4a >0,解得a <1且a ≠0.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.10.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.11.(2021·四川南充市·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( )A .1B .1-C .2021D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解. 【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∵211202110x x -+=,121x x ⋅=,∵21120211x x =-, ∵2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1. 故选B .【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.12.(2021·四川凉山彝族自治州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定【答案】C【分析】 根据一次函数图象经过的象限找出k 、b 的正负,再结合根的判别式即可得出∵>0,由此即可得出结论.【详解】解:观察函数图象可知:函数y =kx +b 的图象经过第二、三、四象限,∵k <0,b <0.在方程210x bx k ++-=中,∵=()2241440b k b k --=-+>,∵一元二次方程210x bx k ++-=有两个不相等的实数根.故选:C .【点睛】本题考查了一次函数图象与系数的关系以及根的判别式,根据一次函数图象经过的象限找出k 、b 的正负是解题的关键.13.(2021·四川泸州市·中考真题)直线l 过点(0,4)且与y 轴垂直,若二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,且其对称轴在y 轴右侧,则a 的取值范围是( )A .a >4B .a >0C .0<a ≤4D .0<a <4【答案】D【分析】由直线l :y =4,化简抛物线2231212y x ax a a =-++,令22312124x ax a a -++=,利用判别式∆12480a =-+>,解出4a <,由对称轴在y 轴右侧可求0a >即可.【详解】解:∵直线l 过点(0,4)且与y 轴垂直,直线l :y =4,222222()(2)(3)231212y x a x a x a a a x ax a a =-+-+--+=-++,∵22312124x ax a a -++=,∵二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,∵()()221243124a a a ∆=--⨯⨯+-, 12480a =-+>,∵4a <,又∵对称轴在y 轴右侧,1212=20236a a x a --=-=->⨯, ∵0a >,∵0<a <4.故选择D .【点睛】本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛物线对称轴公式是解题关键.二、填空题14.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 【答案】98c >【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯<0,然后求出c 的取值范围.【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∵()2243420b ac c =-=--⨯<, 解得98c >, ∵c 的取值范围是98c >. 故答案为:98c >. 【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∵=b 2-4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根.15.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“∵=0”,即2640k -=;∵9k =;故答案为:9. 【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:∵>0时,该方程有两个不相等的实数根;∵=0时,该方程有两个相等的实数根;∵<0时,该方程无实数根.16.(2021·江西中考真题)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=______. 【答案】1 【分析】直接利用根与系数的关系求解即可. 【详解】解:∵1x ,2x 是一元二次方程2430x x -+=的两根, ∵124x x +=,123x x =, ∵1212431x x x x +-=-=. 故答案为:1. 【点睛】本题考查了一元二次方程的根与系数的关系,若12x x 、是方程20ax bx c ++=(0a ≠)的两根,则12b x x a +=-,12c x x a=.17.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20 【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∵第20个图形共有210个小球. 故答案为:20. 【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·四川广安市·中考真题)一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长为_____. 【答案】12 【分析】先求方程x 2-6x+8=0的根,再由三角形的三边关系确定出三角形的第三边的取值范围,即可确定第三边的长,利用三角形的周长公式可求得这个三角形的周长. 【详解】∵三角形的两边长分别为3和5,∵5-3<第三边<5+3,即2<第三边<8, 又∵第三边长是方程x 2-6x+8=0的根,∵解之得根为2和4,2不在范围内,舍掉, ∵第三边长为4.即勾三股四弦五,三角形是直角三角形. ∵三角形的周长:3+4+5=12. 故答案为12.本题考查了解一元二次方程和三角形的三边关系.属于基础题型,应重点掌握.19.(2021·甘肃武威市·中考真题)已知关于x 的方程2x 2x m 0-+=有两个相等的实数根,则m 的值是_________. 【答案】1 【详解】试题分析:根据一元二次方程根的判别式,可由方程有两个相等的实数根可的∵=b 2-4ac=4-4m=0,解得m=1. 故答案为1.考点:一元二次方程根的判别式20.(2021·江苏连云港市·中考真题)已知方程230x x k -+=有两个相等的实数根,则k =____. 【答案】94【详解】试题分析:∵230x x k -+=有两个相等的实数根, ∵∵=0, ∵9-4k=0, ∵k=94. 故答案为94. 考点:根的判别式.21.(2021·四川成都市·中考真题)若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n++的值是______. 【答案】-3. 【分析】先根据一元二次方程的解的定义得到2210m m +-=,则221m m ,根据根与系数的关系得出2m n +=-,再将其代入整理后的代数式计算即可.【详解】解:∵m ,n 是一元二次方程2210x x +-=的两个实数根, ∵2210m m +-=,2m n +=-∵221m m ,∵242m m n ++=2222m m m n=1+2×(-2) =-3故答案为:-3. 【点睛】本题主要考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.22.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题: 已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b aa b+的值.结合他们的对话,请解答下列问题: (1)当a b =时,a 的值是__________. (2)当ab 时,代数式b aa b+的值是__________. 【答案】2-或1 7 【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b aa b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∵,∵,∵-∵得,22330a b a b -+-=∵()(3)0a b a b -++= ∵0a b -=或30++=a b ∵+∵得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =- ∵11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立; 把=2a b =-代入222b b a +=+得,0=0,成立; ∵当a b =时,a 的值是1或-2 故答案为:1或-2; (2)当ab 时,则30++=a b ,即=3a b +-∵22+=4a b a b -- ∵22+=7a b∵222()=+2+9a b a ab b += ∵1ab =∵227=71b a a b a b ab ++== 故答案为:7. 【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题23.(2021·四川南充市·中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值.【答案】(1)见解析;(2)0或-2或1或-1 【分析】(1)计算判别式的值,然后根据判别式的意义得到结论; (2)先利用因式分解法得出方程的两个根,再结合k 与12x x 都为整数,得出k 的值; 【详解】解:(1)22(21)0x k x k k -+++= ∵∵=[]()22(21)41k k k -+-⨯⨯+=224+1-4+4-4=10k k k k >∵无论k 取何值, 方程都有两个不相等的实数根. (2)∵22(21)0x k x k k -+++= ∵()()-1=0x k x k -- ∵=0-1x k x k --,=0∵1x k =,2=+1x k 或1+1x k =,2=x k 当1x k =,2=+1x k 时,121==1-+1+1x k x k k ∵k 与12x x 都为整数, ∵k =0或-2当1+1x k =,2=x k 时,∵12+11==1+x k x k k, ∵k 与12x x 都为整数, ∵k =1或-1∵k 所有可能的值为0或-2或1或-1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当∵>0时,方程有两个不等的实数根”;(2)利用因式分解法求出方程的解.24.(2021·浙江嘉兴市·中考真题)小敏与小霞两位同学解方程()()2333x x -=-的过程如下框:你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程. 【答案】两位同学的解法都错误,正确过程见解析 【分析】根据因式分解法解一元二次方程 【详解】 解:正确解答:()()2333x x -=- 移项,得()()23330x x ---=, 提取公因式,得()()3330x x ⎡--⎤⎣⎦-=, 去括号,得()()3330x x --+=,则30x -=或60x -=, 解得13x =,26x =. 【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键.25.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元? 【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元 【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案. 【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18 ∵要尽可能减少库存, ∵x 2=18不合题意,故舍去 ∵T 恤的销售单价应提高2元; (2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+ ∵当x =10时,M 最大值=4000元 ∵销售单价:40+10=50元∵当服装店将销售单价50元时,得到最大利润是4000元. 【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.26.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几; (2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)∵798万元,∵当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元 【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)∵分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案. 【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)∵由题意,丙种门票价格下降10元,得: 购买丙种门票的人数增加:0.6+0.4=1(万人), 购买甲种门票的人数为:20.6 1.4-=(万人), 购买乙种门票的人数为:30.4 2.6-=(万人), 所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元, 由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∵当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元. 【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.27.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩,解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元. (2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯-=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.28.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.【答案】(1)14m >-;(2)11x =,22x =- 【分析】 (1)根据∵>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>, ∵14m >-. (2)由图知20x x m +-=的一个根为1,∵2110m +-=,∵2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∵一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.29.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A 产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A 产品的销售单价比B 产品的销售单价高100元,1件A 产品与1件B 产品售价和为500元.(1)A 、B 两种产品的销售单价分别是多少元?(2)随着5G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B 产品的生产车间.预计A 产品在售价不变的情况下产量将在去年的基础上增加a %;B 产品产量将在去年的基础上减少a %,但B 产品的销售单价将提高3a %.则今年A 、B 两种产品全部售出后总销售额将在去年的基础上增加2925a %.求a 的值. 【答案】(1)A 产品的销售单价为300元,B 产品的销售单价为200元;(2)20【分析】(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元,根据题意列出方程解出即可;(2)设去年每个车间生产产品的数量为t 件,根据题意根据题意列出方程()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭解出即可; 【详解】解:(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元.根据题意,得()100500x x ++=.解这个方程,得200x =.则100300x +=.答:A 产品的销售单价为300元,B 产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t 件,根据题意,得()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭设a %=m ,则原方程可化简为250m m -=. 解这个方程,得121,05m m ==(舍去). ∵a=20.答:a 的值是20.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元二次方程.30.(2021·四川泸州市·中考真题)一次函数y =kx +b (k ≠0)的图像与反比例函数m y x=的图象相交于A (2,3),B (6,n )两点(1)求一次函数的解析式(2)将直线AB 沿y 轴向下平移8个单位后得到直线l ,l 与两坐标轴分别相交于M ,N ,与反比例函数的图象相交于点P ,Q ,求PQ MN的值 【答案】(1)一次函数y=142x -+,(2)12PQ MN =. 【分析】(1)利用点A (2,3),求出反比例函数6y x=,求出 B (6,1),利用待定系数法求一次函数解析式; (2)利用平移求出y=142x --,联立1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,求出P (-6,-1),Q (-2,-3),在Rt ∵MON 中,由勾股定理MN=PQ=【详解】解:(1)∵反比例函数my x =的图象过A (2,3),∵m =6,∵6n =6,∵n =1,∵B (6,1)一次函数y =kx +b (k ≠0)的图像与反比例函数6y x =的图象相交于A (2,3),B (6,1)两点,∵6123k b k b +=⎧⎨+=⎩, 解得124k b ⎧=-⎪⎨⎪=⎩,一次函数y=142x -+,(2)直线AB 沿y 轴向下平移8个单位后得到直线l ,得y=142x --,当y =0时,1402x ,8x =-,当x =0时,y =-4,∵M (-8,0),N (0,-4),1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,消去y 得28120x x ++=,解得122,6x x =-=-,解得1123x y =-⎧⎨=-⎩,2261x y =-⎧⎨=-⎩,∵P (-6,-1),Q (-2,-3),在Rt ∵MON 中,∵MN =2245OM ON +=,∵PQ =()()22261325-++-+=, ∵251245PQ MN ==.【点睛】本题考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.。

一元二次方程及其解法应用

一元二次方程及其解法应用

活动1
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm. 在它的四个角分别切去一个正方形,然后将四周突出 的部分折起,就能制作一个无盖方盒.如果要制作的 无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去 多大的正方形?(课件:制作盒子)
例 已知:关于x的方程 (2m-1)x2-(m-1)x=5m
3、说明多项式 x2 2mx 2m2 1 的值恒大于0
x m2 m2 1
4、先用配方法说明:不论x取何值,代数式 x2 5x 7 值总大于0,再求出当x取何值时,代数式 x2 5x 7 的值
最小?最小值是多少?
随堂练习 1 解下列方程. 1.x2 – 2 = 0;
2.x2 -3x- 1 =0 ;
根,你能求出a的值吗?
根的作用: 可以使等号成立.
活动3
巩固练习
1.你能根据所学过的知识解出下列方程的解吗?
(1) x2 36 0;
(2) 4x2 9 0 .
形如 ax2 c 0(a≠0,c ≠ 0)的 一元二次方程的解法:
ax2 c.
x2 c .
a
当ac<0时 , x
c.
3
拓展与提高:
2、解方程: (x 1)2 4(x 2)2
练习 (1) (x 1)2 36(1 2x)2 0 (2) 4(3x 1)2 9(3x 1)2 0
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数
一半的平方;
开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
❖ (2)方程3 X2+2X=1的常数项是1,方程 3 X2-2X+6=0的一次项系数是2,这种说法对 吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章方程(组)与不等式第7课时一元二次方程及其应用(建议时间:分钟)基础过关1. (2019山西)一元二次方程x2-4x-1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x-2)2=3D. (x-2)2=52. (2019怀化)一元二次方程x2+2x+1=0的解是()A. x1=1,x2=-1B. x1=x2=1C. x1=x2=-1D. x1=-1,x2=23. (苏科九上P29习题第3题改编)某农场的粮食产量在两年内从3000 t增加到3630 t,设这两年的平均增长率为x,则下列方程正确的是()A. 3000(1+x)=3630B. 3000(1+2x)=3630C. 3000(1+x)2=3630D. 3000(1+x)+3000(1+x)2=36304. (2019自贡)关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是()A. m<1B. m≥1C. m≤1D. m>15. (2019遂宁)已知关于x的一元二次方程(a-1)x2-2x+a2-1=0有一个根为x=0,则a的值为()A. 0B. ±1C. 1D. -16. (2019河南)一元二次方程(x+1)(x-1)=2x+3的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根7. (2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为( )A. 12x (x -1)=36B. 12x (x +1)=36 C. x (x -1)=36 D. x (x +1)=368. (2019哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )A. 20%B. 40%C. 18%D. 36%9. 若关于x 的一元二次方程(m -6)x 2-2x +3=0有两个实数根,则整数m 的最大值是( )A. 4B. 5C. 6D. 710. (2019广西北部湾经济区)扬帆中学有一块长30 m ,宽20 m 的矩形空地,计划在这块空地上划出四分之一的区域种花.小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为x m ,则可列方程为( )第10题图A. (30-x )(20-x )=34×20×30 B. (30-2x )(20-x )=14×20×30 C. 30x +2×20x =14×20×30 D. (30-2x )(20-x )=34×20×30 11. (2019桂林)一元二次方程(x -3)(x -2)=0的根是 .12. (2019县区二模)若x=a是方程x2+2x-2=0的其中一个根,则2a2+4a-1=.13. (2019济宁)已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是.14. (2019吉林省卷)若关于x的一元二次方程(x+3)2=c有实数根,则c的值可以为(写出一个即可).15. (2019江西)设x1,x2是一元二次方程x2-x-1=0的两根,则x1+x2+x1x2=.16. (2019安徽)解方程(x-1)2=4.17. (2018徐州黑白卷)解方程:x2-3x=4.18. (2019呼和浩特)用配方法求一元二次方程(2x+3)(x-6)=16的实数根.19. 解方程:3x(x-4)=4x(x-4).20. (2019随州)已知关于x的一元二次方程x2-(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.21. (2019襄阳)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16 m,宽(AB) 9 m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112 m2.则小路的宽应为多少?第21题图满分冲关1. (2019龙东地区)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A. 4B. 5C. 6D. 72. (2019威海)已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b +2019的值是( )A. 2023B. 2021C. 2020D. 20193. (2019连云港)已知关于x 的一元二次方程ax 2+2x +2-c =0有两个相等的实数根,则1a+c 的值等于 .4. (2019长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导.某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导.据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?5. (2019东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?参考答案第7课时 一元二次方程及其应用基础过关1. D2. C3. C4. D 【解析】∵一元二次方程x 2-2x +m =0无实数根,∴b 2-4ac =(-2)2-4m <0,解得m >1.5. D 【解析】把x =0代入方程(a -1)x 2-2x +a 2-1=0中,可得a 2-1=0,∵a -1≠0,∴a =-1,故选择D .6. A 【解析】将一元二次方程(x +1)(x -1)=2x +3转化为一般式为x 2-2x -4=0,∵b 2-4ac =(-2)2-4×1×(-4)=20>0,∴该方程有两个不相等的实数根.7. A8. A 【解析】设降价的百分率为x ,根据题意可列方程为25(1-x )2=16,解方程得x 1=15,x 2=95(舍),∴每次降价得百分率为20%.故选A .9. B 【解析】根据题意得m -6≠0且b 2-4ac =(-2)2-4·(m -6)·3≥0,解得m ≤193且m ≠6,∴整数m 的最大值为5.10. D 【解析】花带宽度是x m ,∴去掉花带后余下矩形的长是(30-2x )m ,宽是(20-x )m ,∵花带部分占原矩形面积的四分之一,∴余下矩形的面积是原矩形面积的四分之三,列方程为(30-2x )(20-x )=34×20×30.11. x 1=2,x 2=3 【解析】由(x -3)(x -2)=0得:x -3=0或x -2=0,解得x 1=2,x 2=3.12. 3 【解析】将x =a 代入x 2+2x -2=0中得a 2+2a =2,∴2a 2+4a =4.∴2a 2+4a -1=4-1=3.13. -2 【解析】解法一:∵x =1是方程x 2+bx -2=0的一个根,∴将x =1代入方程x 2+bx -2=0得1+b -2=0,∴b =1,∴原方程为x 2+x -2=0,∴解得x 1=1,x 2=-2.∴方程的另一个根为-2.解法二:设方程的另一个根为a ,∵x =1是方程x 2+bx -2=0的一个根,∴1×a =-21=-2,∴a =-2.14. 任意一个非负数皆可 【解析】∵一元二次方程(x +3)2=c 有实数根,(x +3)2≥0,∴c ≥0.15. 0 【解析】由根与系数的关系,得x 1+x 2=1,x 1·x 2 =-1,则x 1+x 2+x 1·x 2=1+(-1)=0.16. 解:由题得:x -1=±2,∴x 1=-1,x 2=3.17. 解:移项得x 2-3x -4=0,a =1,b =-3,c =-4,b 2-4ac =(-3)2-4×1×(-4)=25>0,∴x =-b ±b 2-4ac 2a =3±252×1=3±52, ∴x 1=-1,x 2=4,∴原方程的解为-1或4;【一题多解】将方程变形为x 2-3x -4=0,分解因式得(x +1)(x -4)=0,∴x +1=0或x -4=0,解得x 1=-1,x 2=4.∴原方程的解为-1或4.18. 解:(2x +3)(x -6)=162x 2-9x -18=16∴x 2-92x =17.∴(x -94)2=17+(94)2.∴x -94=±3534.解得x 1=9+3534,x 2=9-3534.19. 解:3x (x -4)=4x (x -4).原方程可化为:(x -4)(3x -4x )=0.∴x -4=0或3x -4x =0.∴x 1=4,x 2=0.20. 解:(1)∵关于x 的一元二次方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,∴b 2-4ac >0,∴(2k +1)2-4(k 2+1)>0,整理得,4k -3>0,解得k >34, 故实数k 的取值范围为k >34;(2)∵方程的两个根分别为x 1、x 2,∴x 1+x 2=2k +1=3,解得k =1,∴原方程为x 2-3x +2=0,解得x 1=1,x 2=2.21. 解:设小路的宽为xm ,则草坪的总长度为(16-2x )m ,总高度为(9-x )m ,根据题意得,(16-2x )(9-x )=112,解得x 1=1,x 2=16(舍去).答:小路的宽应为1 m .满分冲关1. C 【解析】设每个支干长出的小分支个数是x 个,根据题意可列方程x 2+x +1=43,解得x =6或x =-7(舍),∴每个支干长出的小分支个数是6个.2. A 【解析】∵a ,b 是方程x 2+x -3=0的两个实数根,∴a +b =-1,a 2+a -3=0,∴a 2+a =3,∴a 2-b +2019=a 2+a -a -b +2019=3-(-1)+2019=2023.3. 2 【解析】∵方程有两个相等的实数根,∴b 2-4ac =4-4a (2-c )=0,∴2a -ac =1,∴1a+c =2. 4. 解:(1)设增长率为x ,由题意可得,2(1+x )2=2.42,解得x 1=-2.1(舍),x 2=0.1,答:增长率为10%;(2)2.42×(1+0.1)=2.662(万人),答:按照这个增长率,预计第四批公益课受益学生将达到2.662万人次.5. 解:设降价后的销售单价为x 元,根据题意得:(x -100)[300+5(200-x )]=32000.整理得:(x -100)(1300-5x )=32000.即:x 2-360x +32400=0.解得x 1=x 2=180.x =180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.。

相关文档
最新文档