立体几何坐标法教师版
坐标法解立体几何
(一)本周学习与研究中的三个重点(一)本周学习与研究中的三个重点1、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.空间直角坐标系是在仿射坐标系的基础上,选取空间任意一点O 和一个单位正交基底{}(按右手系排列)建立的坐标系.具体选择坐标系时,注意O 点的任意性,一方面既要有利于作图的直观性,另一方面又要注意有关要求点的坐标容易表示.有关要求点的坐标容易表示.在空间右手直角坐标系下的点,在空间右手直角坐标系下的点,向量坐标是唯一的,向量坐标是唯一的,向量坐标是唯一的,这一点的理解和证明可仿照向量分解定理的唯一性理解和证这一点的理解和证明可仿照向量分解定理的唯一性理解和证明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.空间向量的坐标运算,加法、减法和数量积等与平面向量类似,具有类似的运算法则,同学们学习中可类比的学习.虽然一个向量在不同空间的表达方式不同,但其实质没变,即向量在平面上是用唯一确定的有序实数对表示,即=(x,y),而在空间则用唯一确定的有序实数组表示,即=(x,y,z).如向量的数量积在二维、三维空间都是这样定义的.不同点仅是向量在不同空间具有不同的表达形式.如在平面上,,在空间=(a 1,a 2,a 3), ,不论在平面或空间都有.2、空间两向量平行、垂直的充要条件、空间两向量平行、垂直的充要条件空间两向量平行时与平面两向量平行的表达式不一样,但实质是一致的,即对应坐标成比例,且比值为λ,空间两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.3、空间两向量的夹角公式,距离公式,中点坐标公式、空间两向量的夹角公式,距离公式,中点坐标公式(1)(2)(3)为AB 的中点,的中点,则由可知夹角公式在平面向量正文里没有涉及,但可根据数量积的定义推出.这里应注意两向量夹角范围是:0°≤θ≤180°,当θ=0°时,表示两向量为同向共线向量,当θ=90°时,表示两向量垂直,当θ=180°时,表示两向量为反向共线向量.量为反向共线向量.两点间的距离公式是长度公式的推广.其推导过程是首先根据向量的减法,推出向量的坐标表示,然后再用长度公式推出.长度公式推出.这几个公式都与坐标原点的选取无关.这几个公式都与坐标原点的选取无关.(二)本周学习与研究中的两个难点(二)本周学习与研究中的两个难点1、空间任意一点的坐标确定、空间任意一点的坐标确定空间任一点P的坐标确定办法如下:过P分别作三个坐标平面的平行平面(或垂面),分别交坐标轴于A、B、C三点,|x|=OA,|y|=OB,|z|=OC,当方向相同时,x>0,反之x<0,同理,可确定y、z.具体理解,可以以长方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.这其中同学们应准确判断一点在各坐标平面内的射影的坐标,并比较它们间的关系,以及一些特殊点,如落在坐标轴上的点的坐标形式等.标轴上的点的坐标形式等.2、距离公式,夹角公式的应用、距离公式,夹角公式的应用应用距离公式、夹角公式解决立体几何问题,关键在于选择建立适当的空间直角坐标系.它们在立体几何中的应用有:计算两异面直线所成角时,当用几何方法较困难时,可以建立适当的空间直角坐标系后,利用向量方法求解,此时应注意异面直线所成的角的范围与向量夹角范围的区别;求线段的长度时,有时用几何方法较难构造三角形,此时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.。
三维立体几何中的坐标定位与距离计算
三维立体几何中的坐标定位与距离计算在三维立体几何中,坐标定位和距离计算是非常重要的概念和技巧。
通过准确的坐标定位,我们可以确定一个点在三维空间中的位置,而距离计算则可以帮助我们衡量两个点之间的距离。
本文将探讨三维立体几何中的坐标定位和距离计算,并介绍一些常用的方法和公式。
一、坐标定位在三维空间中,我们可以使用三个坐标轴(x、y、z)来定位一个点。
这些坐标轴相互垂直,并且通过原点(0,0,0)来确定位置。
例如,一个点的坐标可以表示为(x,y,z),其中x表示点在x轴上的位置,y表示点在y轴上的位置,z表示点在z轴上的位置。
通过坐标定位,我们可以准确地描述和定位一个点在三维空间中的位置。
这对于计算机图形学、建筑设计和物理模拟等领域非常重要。
例如,在计算机图形学中,我们可以通过给定的坐标来绘制一个点,从而创建出各种形状和物体。
二、距离计算在三维空间中,距离是一个重要的概念。
它可以帮助我们衡量两个点之间的距离,并在许多应用中起到关键作用。
距离的计算可以通过欧几里得距离公式来实现,即:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)其中,(x1,y1,z1)和(x2,y2,z2)分别表示两个点的坐标,d表示这两个点之间的距离。
距离计算在许多领域都有广泛的应用。
例如,在物理学中,我们可以使用距离计算来确定两个物体之间的距离,并根据它们之间的距离来计算力的大小。
在导航系统中,我们可以使用距离计算来确定两个地点之间的距离,并找到最短的路径。
三、坐标变换在三维立体几何中,坐标变换是一种常见的操作。
通过坐标变换,我们可以将一个点从一个坐标系转换到另一个坐标系。
这在计算机图形学和机器人学等领域中非常有用。
常见的坐标变换包括平移、旋转和缩放。
平移是将一个点沿着坐标轴移动一定的距离,旋转是将一个点绕着某个中心点旋转一定的角度,缩放是改变一个点的大小。
通过坐标变换,我们可以改变一个点在三维空间中的位置和大小,从而实现各种复杂的效果和动画。
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释1.引言1.1 概述空间立体几何是数学中的一个重要分支,它研究三维空间中的几何结构和性质。
在空间立体几何中,线和面是两个基本的几何元素,线面交点坐标的求解是一个常见且重要的问题。
本文主要介绍了两种方法来求解线面交点的坐标:坐标法和向量法。
通过这两种方法,可以方便地求解线面交点的坐标,进而解决一些实际问题。
通过本文的学习,读者将能够掌握空间立体几何中线面交点坐标的求解方法,为进一步深入学习和应用空间几何提供了基础。
同时,本文还将探讨线面交点坐标的应用和展望,展示其在现实生活中的重要性和价值。
1.2 文章结构:本文主要分为引言、正文和结论三部分。
引言部分将从概述、文章结构和目的三个方面介绍本文的主要内容和研究背景。
正文部分将分为三个小节,首先是关于空间立体几何概念的介绍,接着是详细讨论如何利用坐标法求解线面交点坐标的方法,最后则是向量法求解线面交点坐标的具体过程。
结论部分将总结本文的主要观点和研究成果,探讨该方法的应用前景,并进行最终的结语。
1.3 目的:本文旨在介绍如何利用空间立体几何中的坐标法和向量法来求解线面交点坐标的方法。
通过深入讨论这两种方法的原理和步骤,我们希望读者能够更加深入地理解空间几何中的相关概念,并能够灵活运用这些方法解决实际问题。
通过掌握线面交点坐标求解的技巧,读者能够提升空间几何解题的效率和准确性,同时也能够为进一步学习和研究提供一定的参考和指导。
希望本文能够为读者提供一定的启发和帮助,让大家在空间几何学习中取得更好的成绩和收获。
2.正文2.1 空间立体几何概念空间立体几何是几何学中研究三维空间中图形与几何体的一门学科,是平面几何的延伸和拓展。
在空间立体几何中,我们不再局限于研究平面上的图形,而是考虑到三维空间中的物体和结构。
在空间立体几何中,我们研究的主要对象包括点、线、面和体。
点是空间中的一个位置,用于确定空间中的一个具体位置;线是由无数个点按照一定规律连成的直线段;面是由无数个点和线按照一定规律组成的平面图形;而体则是由无数个面组成的一个三维实体。
解说立体几何中的“坐标法”
解说立体几何中的“坐标法”江苏省姜堰中学张圣官(225500)空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。
利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。
用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。
下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。
一、如何确定空间点的坐标空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。
要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。
1.点的坐标的符号判断点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。
如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。
2.点的坐标的绝对值确定过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。
如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。
二、常见特殊点的坐标特点1.坐标轴上点的坐标的特点①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。
2.坐标平面上点的坐标的特点①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。
三、利用“坐标法”解(证)立体几何题的步骤第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。
坐标法求立体几何题“四步曲”
\ 槡 迄 (槡, —x + y — 2 =0 , 取 y = 1 得 m =
1, 0).
] 迄 —4 =0.
烄 何仃= , MN = 0
—
0
烆狀 烄 狇 厂 狀 且
DN 所以 槡
,取 =—1得 = (2,0,—1).
烆 狆一 厂 A1N = 0.
— 2 =专题突破
微专题突破
坐标法 求立体 几何题“四步曲
南京市第九中学张荣彬
。乜 狓 、狔 、狕 犼 在空间直角坐标系 w中,分别取与 轴 轴 轴方向相同的单位向量i, ,k 狓 作为基底,对于空间任意一个向量a,根据空间向量基本定理,存在唯一的有序实数组( , 狔 狕 狓 狔 狕 , ),使a=xi+yj +zk,则称( , , )为向量a的坐标.空间向量的坐标化,为我们证明
“ 图形中的对称关系建系.不管何种情形,都是要利用、发现或构造图形中 三垂直”的关系. (1) ; 题目的背景是长方体、正四棱柱、正方体、直角四面体时,建系无悬念
(2) 正棱锥可以利用底面中心及高所在的直线建系;底面是菱形的直四棱柱,如例1,可
利用所给的菱形特征或利用菱形对角线性质(如图3)来建系;对于正三棱柱通常可以参照图
一
得
• DE = 0
+ +4c = 0, 取
=0,
, 広 , / c = 1得k = (4, 0, 1),由于k • MN = 0 因MN 平面C】DE 所以MN 平面C】DE.
犿 狕 狀 狆 厂 (2)设 = (x, y , )为平面A1MA的法向量, =( ,q , )为平面A1MN的法向量
烄 D \m • A1M = 0,
D
立体几何中的轨迹问题(总结+讲义+练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。
(完整版)立体几何坐标法教师版
立体几何坐标法:一:一般的公式:1、空间角(1)(线线)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)(线面)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|. (3)(面面)求二面角的大小(ⅰ)如图①,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.2、距离(1)点面距的求法:设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距(3)两异面直线的距离求法:d =|AB →·n ||n |.(AB 是异面直线上任意两点)二:如何选择建系:8、在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,且2AC BC BD AE ===,M 是AB 的中点. (Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角.11年重庆 19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB BC ⊥,AD CD =,CAD ∠=30︒.(Ⅰ)若AD =2,AB BC =2,求四面体ABCD 的体积;(Ⅱ)若二面角C AB D --为60︒,求异面直线AD 与BC 所成角的余弦值.28.【2012高考四川文19】(本小题满分12分)如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点PEDCM AB在平面ABC 内的射影O 在AB 上。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
立体几何建坐标系
立体几何建坐标系全文共四篇示例,供读者参考第一篇示例:立体几何建坐标系是描述和研究立体图形的重要工具之一。
在三维空间中,我们通常使用三维直角坐标系来描述立体图形的位置和形状。
这种坐标系由三个相互垂直的坐标轴组成,分别是x轴、y轴和z 轴,它们分别对应三维空间中的长度、宽度和高度。
在这个坐标系中,每个点都可以通过三个坐标值来表示,分别表示点在x轴、y轴和z轴上的位置。
用立体几何建坐标系描述一个物体时,首先需要确定一个原点,该原点是坐标轴的交点,通常我们取它为立体图形的重心或者其特定的某一个点。
然后,可以通过在坐标轴上确定一个单位长度来建立坐标系的比例尺。
接下来,可以通过测量物体在x、y、z三个方向上的长度、宽度和高度,来确定物体各个点的坐标值,从而描述整个物体的形状和位置。
利用立体几何建坐标系可以方便地计算立体图形的体积、表面积、中心质心等属性。
通过将三维立体图形分解成一系列的立方体、长方体或圆柱体等基本的几何图形,可以利用数学方法求解各部分的体积,并将它们相加得到整个立体图形的体积。
而对于复杂的立体图形,可以将其分解成多个简单的几何图形,再逐一计算其属性,最后综合得出结果。
这样的方法虽然有时会比较繁琐,但是却是一种较为准确和可靠的计算方式。
立体几何建坐标系不仅可以用于描述静态的立体图形,还可以用于描述立体图形的运动和变形。
通过不断变化物体各个点的坐标值,可以描述其在三维空间中的移动、旋转、缩放等动作。
通过改变一个立方体各个顶点的坐标值,可以实现它在空间中的旋转或者平移。
通过计算不同时间点上各个点的坐标值,可以还原出整个立体图形的运动轨迹,从而研究它的运动规律。
利用立体几何建坐标系还可以进行三维坐标系下的几何投影。
在三维空间中,物体的形状对应着它在每个坐标轴的投影,在三维坐标系下可以进行正投影、侧视投影等操作,将三维空间中的立体图形映射到二维平面上,便于我们观察和研究。
这种投影方法在建筑设计、工程制图等领域中有着广泛的应用。
建坐标系解立体几何(含解析)教程文件
立体几何——建坐标系1.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形. AB=BC=2, CD=SD=1.(Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.2.如图,在四面体ABOC中, OC⊥OA, OC⊥OB, ∠AOB=120°,且OA=OB=OC=1.(Ⅰ)设P为AC的中点, Q在AB上且AB=3AQ. 证明:PQ⊥OA;(Ⅱ)求二面角O-AC-B的平面角的余弦值.3.如图, 在正三棱柱ABC-A1B1C1中, AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.(Ⅰ)证明:平面A1DE⊥平面ACC1A1;(Ⅱ)求直线AD和平面A1DE所成角的正弦值.4.如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=AA1=3,∠ABC=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)求二面角A-A1C-B的大小.5.四棱锥A-BCDE中, 底面BCDE为矩形, 侧面ABC⊥底面BCDE, BC=2, CD=2, AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设侧面ABC为等边三角形, 求二面角C-AD-E的大小.6.如图, 正三棱柱ABC-A1B1C1的所有棱长都为2, D为CC1中点.(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求二面角A-A1D-B的大小.7.如图, 在三棱锥V-ABC中, VC⊥底面ABC, AC⊥BC, D是AB的中点, 且AC=BC=a,∠VDC=θ)(20πθ<<.(Ⅰ)求证:平面VAB ⊥平面VCD;(Ⅱ)试确定θ的值, 使得直线BC 与平面VAB 所成的角为6π.8.如图, △BCD 与△MCD 都是边长为2的正三角形, 平面MCD ⊥平面BCD, AB ⊥平面BCD, AB=2.(Ⅰ)求直线AM 与平面BCD 所成角的大小; (Ⅱ)求平面ACM 与平面BCD 所成二面角的正弦值.9.如图, 在四棱锥P-ABCD 中, PD ⊥平面ABCD, PD=DC=BC=1, AB=2, AB ∥DC, ∠BCD=90°.(Ⅰ)求证:PC ⊥BC;(Ⅱ)求点A 到平面PBC 的距离.10.如图, 直三棱柱ABC-A1B1C1中, AC=BC, AA1=AB, D为BB1的中点, E为AB1上的一点, AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°, 求二面角A1-AC1-B1的大小.11.如图, 四棱锥S-ABCD中, 底面ABCD为矩形, SD⊥底面ABCD, AD=2, DC=SD=2. 点M在侧棱SC上, ∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的大小.12.如图, 直三棱柱ABC-A1B1C1中, AB⊥AC, D、E分别为AA1、B1C的中点, DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°, 求B1C与平面BCD所成的角的大小.13.如图, 四棱锥P-ABCD的底面是正方形, PD⊥底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC⊥平面PDB;(Ⅱ)当PD=2AB且E为PB的中点时,求AE与平面PDB所成的角的大小.14. 如图, 在四棱锥P-ABCD中, 底面ABCD是矩形, PA⊥平面ABCD, PA=AD=4, AB=2.以BD的中点O为球心、BD为直径的球面交PD于点M.(Ⅰ)求证:平面ABM⊥平面PCD;(Ⅱ)求直线PC与平面ABM所成的角;(Ⅲ)求点O到平面ABM的距离.15.如图, 四棱锥S-ABCD 的底面是正方形, SD ⊥平面ABCD, SD=2a, AD=a 2, 点E 是SD 上的点, 且DE=a λ(0<λ≤2).(Ⅰ)求证:对任意的λ∈(0, 2],都有AC ⊥BE;(Ⅱ)设二面角C-AE-D 的大小为θ, 直线BE 与平面ABCD 所成的角为ϕ. 若1tan tan =•ϕθ, 求λ的值.16.如图, 在五面体ABCDEF 中, AB ∥DC, ∠BAD=2π, CD=AD=2. 四边形ABFE 为平行四边形, FA ⊥平面ABCD, FC=3, ED=7. 求:(Ⅰ)直线AB 到平面EFCD 的距离; (Ⅱ)二面角F-AD-E 的平面角的正切值.17.如图, 设动点P 在棱长为1的正方体ABCD-A 1B 1C 1D 1的对角线BD 1上, 记λ=BD PD 11. 当∠APC 为钝角时, 求λ的取值范围.答案与解析1.解法一:(Ⅰ)取AB中点E, 连结DE, 则四边形BCDE为矩形, DE=CB=2. 连结SE, 则SE⊥AB, SE=. 又SD=1, 故ED2=SE2+SD2, 所以∠DSE为直角. (3分)由AB⊥DE, AB⊥SE, DE∩SE=E, 得AB⊥平面SDE, 所以AB⊥SD, SD与两条相交直线AB、SE都垂直, 所以SD⊥平面SAB. (6分)(Ⅱ)由AB⊥平面SDE知, 平面ABCD⊥平面SDE. 作SF⊥DE, 垂足为F, 则SF⊥平面ABCD, SF==. 作FG⊥BC, 垂足为G, 则FG=DC=1. 连结SG, 则SG⊥BC. 又BC⊥FG, SG∩FG=G, 故BC⊥平面SFG, 平面SBC⊥平面SFG. (9分)作FH⊥SG, H为垂足, 则FH⊥平面SBC. FH==, 即F到平面SBC的距离为. 由于ED∥BC, 所以ED∥平面SBC, E到平面SBC的距离d也为.设AB与平面SBC所成的角为α, 则sin α==, α=arcsin. (12分)解法二:以C为坐标原点, 射线CD为x轴正半轴, 建立如图所示的空间直角坐标系C-xyz.设D(1, 0, 0), 则A(2, 2, 0)、B(0, 2, 0).又设S(x, y, z), 则x>0, y>0, z>0.(Ⅰ)=(x-2, y-2, z), =(x, y-2, z), =(x-1, y, z),由||=||得=, 故x=1. 由||=1得y2+z2=1, 又由||=2得x2+(y-2)2+z2=4, 即y2+z2-4y+1=0, 故y=, z=. (3分)于是S, =, ==·=0, ·=0. 故DS⊥AS, DS⊥BS, 又AS∩BS=S, 所以SD⊥平面SAB. (6分) (Ⅱ)设平面SBC的法向量a=(m, n, p),则a⊥, a⊥, a·=0, a·=0. 又==(0, 2, 0), 故(9分)取p=2得a=(-, 0, 2). 又=(-2, 0, 0), cos<, a>==. 故AB与平面SBC所成的角为arcsin. (12分)2.解法一:(Ⅰ)在平面OAB内作ON⊥OA交AB于N, 连结CN. 在△AOB中, ∵∠AOB=120°且OA=OB, ∴∠OAB=∠OBA=30°. 在Rt△AON中, ∵∠OAN=30°, ∴ON=AN. 在△ONB中, ∵∠NOB=120°-90°=30°=∠OBN, ∴NB=ON=AN. 又AB=3AQ, ∴Q为AN的中点. 在△CAN中, ∵P,Q分别为AC, AN的中点, ∴PQ∥CN. 由OA⊥OC, OA⊥ON知:OA⊥平面CON. 又NC⊂平面CON, ∴OA ⊥CN. 由PQ∥CN, 知OA⊥PQ.(Ⅱ)连结PN, PO.由OC⊥OA, OC⊥OB知:OC⊥平面OAB. 又ON⊂平面OAB, ∴OC⊥ON. 又由ON⊥OA知:ON⊥平面AOC. ∴OP是NP在平面AOC内的射影. 在等腰Rt△COA中, P为AC的中点, ∴AC⊥OP. 根据三垂线定理,知:AC⊥NP. ∴∠OPN为二面角O-AC-B的平面角. 在等腰Rt△COA中, OC=OA=1, ∴OP=. 在Rt△AON中, ON=OAtan 30°=, ∴在Rt△PON中, PN==, ∴cos∠OPN===.解法二:(Ⅰ)取O为坐标原点, 以OA, OC所在的直线为x轴, z轴, 建立空间直角坐标系O-xyz(如图所示).则A(1, 0, 0), C(0, 0, 1), B. ∵P为AC的中点, ∴P. ∵=, 又由已知, 可得==. 又=+=. ∴=-=, ∴·=·(1, 0, 0)=0. 故⊥.(Ⅱ)记平面ABC的法向量n=(n1, n2, n3), 则由n⊥, n⊥, 且=(1, 0, -1),得故可取n=(1, , 1). 又平面OAC的法向量为e=(0, 1, 0). ∴cos<n,e>= =. 二面角O-AC-B的平面角是锐角, 记为θ, 则cos θ=.3.(Ⅰ)如图所示, 由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE⊂平面ABC, 所以DE⊥AA1. 而DE⊥A1E, AA1∩A1E=A1, 所以DE⊥平面ACC1A1.又DE⊂平面A1DE, 故平面A1DE⊥平面ACC1A1. (Ⅱ)解法一:过点A作AF垂直A1E于点F, 连结DF. 由(Ⅰ)知, 平面A1DE⊥平面ACC1A1, 所以AF⊥平面A1DE. 故∠ADF是直线AD和平面A1DE所成的角.因为DE⊥平面ACC1A1, 所以DE⊥AC. 而△ABC是边长为4的正三角形, 于是AD=2, AE=4-CE=4-CD=3. 又因为AA1=, 所以A1E===4, AF==,sin∠ADF==. 即直线AD和平面A1DE所成角的正弦值为.解法二:如图所示, 设O是AC的中点, 以O为原点建立空间直角坐标系, 则相关各点的坐标分别是A(2, 0, 0), A1(2, 0, ),D(-1, , 0), E(-1, 0, 0).易知=(-3, , -), =(0, -, 0), =(-3, , 0). 设n=(x, y, z)是平面A1DE的一个法向量, 则解得x=-z, y=0. 故可取n=(, 0, -3).于是cos<n, >===-.由此即知, 直线AD和平面A1DE所成角的正弦值为.4.解法一:(Ⅰ)证明:∵三棱柱ABC-A1B1C1为直三棱柱, ∴AB⊥AA1. 在△ABC中, AB=1, AC=, ∠ABC=60°, 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC.∴AB⊥平面ACC1A1, 又A1C⊂平面ACC1A1, ∴AB⊥A1C. (Ⅱ)如图, 作AD⊥A1C交A1C于D点, 连结BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中, AD===,在Rt△BAD中, tan∠ADB==, ∴∠ADB=arctan, 即二面角A-A1C-B的大小为arctan.解法二:(Ⅰ)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AA1⊥AB, AA1⊥AC. 在△ABC中, AB=1, AC=, ∠ABC=60°. 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC. 如图, 建立空间直角坐标系, 则A(0, 0, 0), B(1, 0, 0),C(0, , 0), A1(0, 0, ), ∴=(1, 0, 0), =(0, , -). ∵·=1×0+0×+0×(-)=0, ∴AB⊥A1C.(Ⅱ)如图, 可取m==(1, 0, 0)为平面AA1C的法向量,设平面A1BC的法向量为n=(l, m, n), 则·n=0, ·n=0, 又=(-1, , 0), ∴∴l=m, n=m. 不妨取m=1, 则n=(, 1, 1).cos<m, n>===,∴二面角A-A1C-B的大小为arccos.5.解法一:(Ⅰ)作AO⊥BC, 垂足为O, 连结OD, 由题设知, AO⊥底面BCDE, 且O为BC中点. 由==知, Rt△OCD∽Rt△CDE, 从而∠ODC=∠CED, 于是CE⊥OD. 由三垂线定理知, AD⊥CE.(Ⅱ)作CG⊥AD, 垂足为G, 连结GE. 由(Ⅰ)知, CE⊥AD. 又CE∩CG=C, 故AD⊥平面CGE, AD⊥GE, 所以∠CGE是二面角C-AD-E的平面角. GE===, CE=,cos∠CGE===-. 所以二面角C-AD-E为arccos.解法二:(Ⅰ)作AO⊥BC, 垂足为O. 由题设知AO⊥底面BCDE, 且O为BC的中点. 以O为坐标原点, 射线OC为x轴正向, 建立如图所示的直角坐标系O-xyz. 设A(0, 0, t). 由已知条件有C(1, 0, 0), D(1, , 0), E(-1, , 0), =(-2, , 0), =(1, , -t). 所以·=0, 知AD⊥CE.(Ⅱ)△ABC为等边三角形, 因此A(0, 0, ).作CG⊥AD, 垂足为G, 连结CE. 在Rt△ACD中,求得|AG|=|AD|. 故G, ==, 又=(1, , -), ·=0, ·=0. 所以与的夹角等于二面角C-AD-E的平面角. 由cos<>==-知二面角C-AD-E为arccos.6.解法一:(Ⅰ)取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1.连结B1O, 在正方形BB1C1C中, O、D分别为BC、CC1的中点, ∴B1O⊥BD, ∴AB1⊥BD. 在正方形ABB1A1中, AB1⊥A1B, ∴AB1⊥平面A1BD.(Ⅱ)设AB1与A1B交于点G, 在平面A1BD中, 作GF⊥A1D于F, 连结AF, 由(Ⅰ)得AB1⊥平面A1BD, ∴AF⊥A1D. ∴∠AFG为二面角A-A1D-B的平面角. 在△AA1D中, 由等面积法可求得AF=, 又∵AG=AB1=, ∴sin∠AFG===, 所以二面角A-A1D-B的大小为arcsin.解法二:(Ⅰ)取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵在正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 取B1C1中点O1, 以O为原点, 的方向为x、y、z轴的正方向建立空间直角坐标系, 则B(1, 0, 0), D(-1, 1, 0), A1(0, 2, ), A(0, 0, ), B1(1, 2, 0), ∴=(1, 2, -), =(-2, 1, 0), =(-1, 2, ). ∵·=-2+2+0=0, ·=-1+4-3=0, ∴⊥⊥, ∴AB1⊥平面A1BD.(Ⅱ)设平面A1AD的法向量为n=(x, y, z). =(-1, 1, -), =(0, 2, 0).∵n⊥, n⊥, ∴∴∴令z=1得n=(-, 0, 1)为平面A1AD的一个法向量. 由(Ⅰ)知AB1⊥平面A1BD, ∴为平面A1BD的法向量. cos<n,>===-. ∴二面角A-A1D-B的大小为arccos.7.解法一:(Ⅰ)∵AC=BC=a, ∴△ACB是等腰三角形, 又D是AB的中点, ∴CD⊥AB, 又VC⊥底面ABC,∴VC⊥AB, 于是AB⊥平面VCD, 又AB⊂平面VAB, ∴平面VAB⊥平面VCD.(Ⅱ)过点C在平面VCD内作CH⊥VD于H, 则由(Ⅰ)知CH⊥平面VAB. 连结BH, 于是∠CBH就是直线BC与平面VAB所成的角. 依题意∠CBH=, 所以在Rt△CHD中, CH=asin θ;在Rt△BHC中,CH=asin=, ∴sin θ=, ∵0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法二:(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴, 建立如图所示的空间直角坐标系, 则C(0, 0, 0), A(a, 0, 0), B(0, a, 0), D, V. 于是, ===(-a, a, 0). 从而·=(-a, a, 0)·=-a2+a2+0=0, 即AB⊥CD. 同理·=(-a, a, 0)·=-a2+a2+0=0, 即AB⊥VD.又CD∩VD=D, ∴ AB⊥平面VCD, 又AB⊂平面VAB, ∴平面VAB⊥平面VCD.(Ⅱ)设平面VAB的一个法向量为n=(x, y, z),则由得可取n=(1, 1, cot θ), 又=(0, -a, 0), 于是sin===sin θ, 即sin θ=, ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法三:(Ⅰ)以点D为原点, 以DC、DB所在的直线分别为x轴、y轴, 建立如图所示的空间直角坐标系, 则D(0, 0, 0),A,B,C,V, 于是== =(0,a,0),从而·=(0 a,0)·=0, 即AB⊥DC. 同理·=(0, a, 0)·=0, 即AB⊥DV. 又DC∩DV=D, ∴ AB⊥平面VCD.又AB⊂平面VAB, ∴平面VAB⊥平面VCD.(Ⅱ)设平面VAB的一个法向量为n=(x, y, z), 则由得取n=(tan θ, 0, 1), 又=, 于是sin===sin θ,即sin θ=. ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.8. 解法一:(Ⅰ)取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD.又平面MCD⊥平面BCD, 则MO⊥平面BCD, 所以MO∥AB, A、B、O、M共面.延长AM、BO相交于E, 则∠AEB就是AM与平面BCD所成的角. OB=MO=, MO∥AB,则==, EO=OB=, 所以EB=2=AB, 故∠AEB=45°.∴直线AM与平面BCD所成角的大小为45°.(Ⅱ)CE是平面ACM与平面BCD的交线. 由(Ⅰ)知, O是BE的中点, 则BCED是菱形. 作BF⊥EC于F, 连AF, 则AF⊥EC, ∠AFB就是二面角A-EC-B的平面角, 设为θ. 因为∠BCE=120°, 所以∠BCF=60°. BF=BC·sin 60°=, tan θ==2, sin θ=. 所以, 所求二面角的正弦值是. 解法二:取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD, 又平面MCD⊥平面BCD, 则MO⊥平面BCD.以O为原点, 直线OC、BO、OM为x轴、y轴、z轴, 建立空间直角坐标系如图. OB=OM=, 则各点坐标分别为O(0, 0, 0), C(1, 0, 0), M(0, 0, ), B(0, -, 0), A(0, -, 2),(Ⅰ)设直线AM与平面BCD所成的角为α. 因=(0, , -), 平面BCD的法向量为n=(0, 0, 1). 则有sin α=cos<, n>===, 所以α=45°.∴直线AM与平面BCD所成角的大小为45°.(Ⅱ)=(-1, 0, ), =(-1, -, 2).设平面ACM的法向量为n1=(x, y, z), 由得解得x=z, y=z, 取n1=(, 1, 1). 平面BCD的法向量为n=(0, 0, 1). 则cos<n1, n>==. 设所求二面角为θ, 则sin θ==. 所以, 所求二面角的正弦值是.9.解法一:(Ⅰ)因为PD⊥平面ABCD, BC⊂平面ABCD,所以PD⊥BC. 由∠BCD=90°, 得BC⊥DC. 又PD∩DC=D, PD⊂平面PCD, DC⊂平面PCD, 所以BC⊥平面PCD. 因为PC⊂平面PCD, 所以PC⊥BC.(Ⅱ)连结AC. 设点A到平面PBC的距离为h. 因为AB∥DC, ∠BCD=90°, 所以∠ABC=90°. 从而由AB=2, BC=1, 得△ABC的面积S△ABC=1. 由PD⊥平面ABCD及PD=1, 得三棱锥P-ABC的体积V=S△·PD=. 因为PD⊥平面ABCD, DC⊂平面ABCD, 所以PD⊥DC. 又PD=DC=1, 所以PC==. ABC由PC⊥BC, BC=1, 得△PBC的面积S△PBC=. 由V=S△PBC h=··h=, 得h=. 因此, 点A到平面PBC的距离为.解法二:建立如图所示空间直角坐标系D-xyz, 则P(0, 0, 1), C(0, 1, 0), B(1, 1, 0).(Ⅰ)=(0, 1, -1), =(-1, 0, 0). ∵·=0×(-1)+1×0+(-1)×0=0, ∴PC⊥BC.(Ⅱ)设平面PBC的法向量n=(x, y, z), 则有即令y=1得n=(0, 1, 1). 又因为A(1, -1, 0), =(0, 2, 0), 所以点A到平面PBC的距离d===.解法三:(Ⅱ)取AB中点E, 连DE, 则DE∥BC, DE∥面PBC, 则A点到面PBC的距离等于E点到面PBC 距离的2倍, 即等于点到面PBC距离的2倍. 过D作DH⊥PC, 则DH⊥面PBC. 在Rt△PCD中, DH=, ∴A到面PBC的距离为.10.解法一:(Ⅰ)连结A1B, 记A1B与AB1的交点为F.因为面AA1B1B为正方形, 故A1B⊥AB1, 且AF=FB1. 又AE=3EB1, 所以FE=EB1. 又D为BB1的中点, 故DE∥BF, DE⊥AB1. 作CG⊥AB, G为垂足, 由AC=BC知, G为AB中点.又由底面ABC⊥面AA1B1B, 得CG⊥面AA1B1B. 连结DG, 则DG∥AB1, 故DE⊥DG, 由三垂线定理, 得DE⊥CD. 所以DE为异面直线AB1与CD的公垂线.(Ⅱ)因为DG∥AB1, 故∠CDG为异面直线AB1与CD的夹角, ∠CDG=45°. 设AB=2, 则AB1=2, DG=, CG=, AC=. 作B1H⊥A1C1, H为垂足. 因为底面A1B1C1⊥面AA1C1C, 故B1H⊥面AA1C1C, 又作HK⊥AC1, K为垂足, 连结B1K, 由三垂线定理, 得B1K⊥AC1, 因此∠B1KH为二面角A1-AC1-B1的平面角.B1H==, HC1==, AC1==, HK==,tan∠B1KH==, 所以二面角A1-AC1-B1的大小为arctan.解法二:(Ⅰ)以B为坐标原点, 射线BA为x轴正半轴, 建立如图所示的空间直角坐标系B-xyz.设AB=2, 则A(2, 0, 0), B1(0, 2, 0), D(0, 1, 0), E,又设C(1, 0, c), 则==(2, -2, 0), =(1, -1, c). 于是·=0, ·=0, 故DE⊥B1A, DE⊥DC, 所以DE为异面直线AB1与CD的公垂线.(Ⅱ)因为<>等于异面直线AB1与CD的夹角,故·=||·||cos 45°, 即2××=4, 解得c=, 故=(-1, 0, ). 又==(0, 2, 0), 所以=+=(-1, 2, ). 设平面AA1C1的法向量为m=(x, y, z), 则m·=0, m·=0, 即-x+2y+z=0且2y=0. 令x=, 则z=1, y=0, 故m=(, 0, 1). 设平面AB1C1的法向量为n=(p, q, r), 则n·=0, n·=0, 即-p+2q+r=0, 2p-2q=0. 令p=, 则q=, r=-1, 故n=(, -1).所以cos<m, n>==. 由于<m, n>等于二面角A1-AC1-B1的平面角, 所以二面角A1-AC1-B1的大小为arccos.11. (2009全国Ⅰ, 19, 12分)如图, 四棱锥S-ABCD中, 底面ABCD为矩形, SD⊥底面ABCD, AD=, DC=SD=2. 点M在侧棱SC上, ∠ABM=60°.11.解法一:(Ⅰ)作ME∥CD交SD于点E, 则ME∥AB, ME⊥平面SAD.连结AE, 则四边形ABME为直角梯形.作MF⊥AB, 垂足为F, 则AFME为矩形. 设ME=x, 则SE=x,AE==, MF=AE=, FB=2-x. 由MF=FB·tan 60°, 得=(2-x), 解得x=1. 即ME=1, 从而ME= DC, 所以M为侧棱SC的中点.(Ⅱ)MB==2, 又∠ABM=60°, AB=2, 所以△ABM为等边三角形.又由(Ⅰ)知M为SC中点, SM=, SA=, AM=2, 故SA2=SM2+AM2, ∠SMA=90°. 取AM中点G, 连结BG, 取SA中点H, 连结GH, 则BG⊥AM, GH⊥AM, 由此知∠BGH为二面角S-AM-B的平面角. 连结BH.在△BGH中, BG=AM=, GH=SM=, BH==, 所以cos∠BGH==-. 二面角S-AM-B的大小为arccos.解法二:以D为坐标原点, 射线DA为x轴正半轴, 建立如图所示的直角坐标系D-xyz.设A(, 0, 0), 则B(, 2, 0), C(0, 2, 0), S(0, 0, 2).(Ⅰ)设=λ(λ>0), 则M, =. 又=(0, 2, 0), <>=60°, 故·=||·||cos 60°, 即=, 解得λ=1, 即=. 所以M 为侧棱SC的中点.(Ⅱ)由M(0, 1, 1), A(, 0, 0), 得AM的中点G. 又==(0, -1, 1),=(-, 1, 1). ·=0, ·=0, 所以⊥⊥. 所以<>等于二面角S-AM-B 的平面角. 因为cos<>==-. 所以二面角S-AM-B的大小为arccos.12.解法一:(Ⅰ)取BC中点F, 连结EF, 则EF B1B, 从而EFDA.连结AF, 则ADEF为平行四边形, 从而AF∥DE. (2分)又DE⊥平面BCC1, 故AF⊥平面BCC1,从而AF⊥BC, 即AF为BC的垂直平分线, 所以AB=AC. (5分)(Ⅱ)作AG⊥BD, 垂足为G, 连结CG. 由三垂线定理知CG⊥BD, 故∠AGC为二面角A-BD-C的平面角. 由题设知, ∠AGC=60°. 设AC=2, 则AG=. 又AB=2, BC=2, 故AF=. 由AB·AD=AG·BD得2AD=·, 解得AD=, 故AD=AF. 又AD⊥AF, 所以四边形ADEF为正方形. (8分)因为BC⊥AF, BC⊥AD, AF∩AD=A, 故BC⊥平面DEF, 因此平面BCD⊥平面DEF. 连结AE、DF, 设AE∩DF=H, 则EH⊥DF, EH⊥平面BCD. 连结CH, 则∠ECH为B1C与平面BCD所成的角. 因ADEF为正方形, AD=,故EH=1, 又EC=B1C=2, 所以sin∠ECH==, 所以∠ECH=30°, 即B1C与平面BCD所成的角为30°. (12分)解法二:(Ⅰ)以A为坐标原点, 射线AB为x轴的正半轴, 建立如图所示的直角坐标系A-xyz. 设B(1, 0, 0),C(0, b, 0), D(0, 0, c), 则B1(1, 0, 2c), E. (2分)于是==(-1, b, 0). 由DE⊥平面BCC1知DE⊥BC, ·=0, 求得b=1, 所以AB=AC. (5分)(Ⅱ)设平面BCD的法向量=(x, y, z), 则·=0, ·=0. 又=(-1, 1, 0), =(-1, 0, c), 故(8分)令x=1, 则y=1, z==. 又平面ABD的法向量=(0, 1, 0). 由二面角A-BD-C为60°知, <>=60°, 故·=||·||·cos 60°, 求得c=. 于是=(1, 1, ), =(1, -1, ), cos<>==, <>=60°. 所以B1C与平面BCD 所成的角为30°. (12分)13.解法一:(Ⅰ)∵四边形ABCD是正方形, ∴AC⊥BD. ∵PD⊥底面ABCD, ∴PD⊥AC.∴AC⊥平面PDB. ∴平面AEC⊥平面PDB.(Ⅱ)设AC∩BD=O, 连结OE. 由(Ⅰ)知AC⊥平面PDB于O. ∴∠AEO为AE与平面PDB所成的角. ∵O, E分别为DB, PB的中点, ∴OE∥PD, OE=PD. 又∵PD⊥底面ABCD, ∴OE⊥底面ABCD, OE⊥AO. 在Rt△AOE中, OE=PD=AB=AO, ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.解法二:如图, 以D为原点建立空间直角坐标系D-xyz.设AB=a, PD=h, 则A(a, 0, 0), B(a, a, 0), C(0, a, 0), D(0, 0, 0), P(0, 0, h).(Ⅰ)∵=(-a, a, 0), =(0, 0, h), =(a, a, 0), ∴·=0, ·=0. ∴AC⊥DP, AC⊥BD. ∴AC⊥平面PDB. ∴平面AEC⊥平面PDB. (Ⅱ)当PD=AB且E为PB的中点时, P(0, 0, a), E. 设AC∩BD=O, 则O, 连结OE. 由(Ⅰ)知AC⊥平面PDB于O. ∴∠AEO为AE 与平面PDB所成的角. ∵==, ∴cos∠AEO==. ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.14.解法一:(Ⅰ)证明:依题设, M在以BD为直径的球面上, 则BM⊥PD. 因为PA⊥平面ABCD, 则PA⊥AB. 又AB⊥AD, 所以AB⊥平面PAD, 则AB⊥PD, 因此有PD⊥平面ABM, 所以平面ABM⊥平面PCD. (Ⅱ)设平面ABM与PC交于点N, 因为AB∥CD, 所以AB∥平面PCD, 则AB∥MN∥CD, 由(Ⅰ)知, PD⊥平面ABM, 则MN是PN在平面ABM上的射影, 所以∠PNM就是PC与平面ABM所成的角, 且∠PNM∠PCD, tan∠PNM=tan∠PCD==2, 所求角为arctan 2.(Ⅲ)因为O是BD的中点, 则O点到平面ABM的距离等于D点到平面ABM距离的一半, 由(Ⅰ)知, PD ⊥平面ABM于M, 则|DM|就是D点到平面ABM的距离. 因为在Rt△PAD中, PA=AD=4, PD⊥AM, 所以M为PD中点, DM=2, 则O点到平面ABM的距离等于.解法二:(Ⅰ)同解法一;(Ⅱ)如图所示,建立空间直角坐标系,则A(0,0,0),P(0,0,4),B(2,0,0),C(2,4,0),D(0,4,0),M(0,2,2),设平面ABM的一个法向量n=(x, y, z), 由n⊥, n⊥可得令z=-1, 则y=1, 即n=(0, 1, -1). 设所求角为α, 则sin α==, 所求角的大小为arcsin.(Ⅲ)设所求距离为h, 由O(1, 2, 0), =(1, 2, 0), 得h==.15.(1)如图,连接BE、BD,由底面ABCD是正方形可得AC⊥BD。
新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书
第一节 空间几何体考试要求:1.认识柱、锥、台及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形(长方体、球、圆锥、棱柱及其简易组合)的直观图.3.知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.一、教材概念·结论·性质重现1.多面体的结构特征互相平行且全等多边形互相平行平行且相等相交于一点但不一定相等延长线交于一点平行四边形三角形梯形相互平行且相等并垂直于底相交于一点延长线交于一圆空间几何体的直观图常用斜二测画法来画,其规则是:(1)“斜”:在直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线,在直观图中长度为原来的一半.画直观图要注意平行,还要注意长度及角度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl S圆锥侧=πrl圆台侧=π(r1+.空间几何体的表面积与体积公式名称表面积体积几何体柱体(棱柱和圆柱)S表面积=S侧+2S底V=S 底·h锥体(棱锥和圆锥)S表面积=S侧+S底V=S底·h台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解6.常用结论几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R.①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.解决与球“外接”问题的关键:二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 2.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱 D.简单组合体C 解析:由几何体的结构特征知,剩下的几何体为五棱柱.3.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cmB 解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,所以r2=4,所以r=2 cm.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.C.8π D.4πA 解析:由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π.故选A.5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为__________,面积为________cm2.矩形 8 解析:由斜二测画法的规则可知,在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.考点1 空间几何体的结构特征与直观图——基础性1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球体的组合体C 解析:截面是任意的,且都是圆面,则该几何体为球体.2.下列命题正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台C 解析:由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.3.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C ′D′=2 cm,则原图形是( )A.正方形 B.矩形C.菱形 D.一般的平行四边形C 解析:如图,在原图形OABC中,应有OD=2O′D′=2×2=4(cm),CD=C′D′=2 cm.所以OC===6(cm),所以OA=OC,所以四边形OABC是菱形.4.(多选题)下列命题中正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC 解析:A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1 ABC,四个面都是直角三角形;D不正确棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.1.解决空间几何体的结构特征的判断问题主要方法是定义法,即紧考点2 空间几何体的表面积与体积——综合性考向1 空间几何体的表面积问题(1)(2021·新高考全国Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 C.4 D.4B 解析:由题意知圆锥的底面周长为2π.设圆锥的母线长为l,则πl=2π,即l=2.故选B.(2)如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为()A .4+4B .4+4C .12D .8+4A 解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =2,所以BC =.又AB ⊥BC ,则AB =,则该三棱柱的侧面积为2×2+2×2=4+4.(3)在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S = cm 2.2 600π 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =×(50+80)×(π×40)=2 600π(cm 2).求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积1.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.12 解析:设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,所以h=1,所以斜高h′==2,所以S侧=6××2×2=12.2.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知一个堑堵的底面积为6,体积为的球与其各面均相切,则该堑堵的表面积为________.36 解析:设球的半径为r,底面三角形的周长为l,由已知得r=1,所以堑堵的高为2.则lr=6,l=12,所以表面积S=12×2+6×2=36.考向2 空间几何体的体积问题(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )A. B.C. D.A 解析:易知三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,又三棱锥AB1BC1的高为,底面积为,故其体积为××=.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π 解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′===3.据此可得圆台的体积V=π×3×(52+5×4+42)=61π.求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.通过选择合适的底面来求几何体体积,主要用来解决有关锥体的体积,特别是三棱锥的体积1.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.39π 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =×π×62×h =30π,解得h =.所以l ===,故圆锥的侧面积S =πrl =π×6×=39π.2.如图,已知体积为V 的三棱柱ABCA 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥PAA 1C 1C 的体积_________. 解析:如图,把三棱柱ABCA 1B 1C 1补成平行六面体A 1D 1B 1C 1ADBC .设点P 到平面AA 1C 1C 的距离为h ,则V =S ·h =V =·2V=.考点3 与球有关的切、接问题——综合性考向1 “相切”问题已知正四面体PABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则=________. 解析:设正四面体的棱长为a,则正四面体的表面积为S1=4××a2=a2,其内切球半径r为正四面体高的,即r=×a=a,因此内切球表面积为S2=4πr2=,则==.考向2 “相接”问题已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B. 2C. D.3C 解析:如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.1.已知三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,则三棱锥PABC的外接球的体积为( )A.π B.π C.27π D.27πB 解析:因为三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,所以△PAB≌△PBC≌△PAC.因为PA⊥PB,所以PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.因为正方体的体对角线长为=3,所以其外接球半径R=.因此三棱锥PABC的外接球的体积V=×=π.2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.π 解析:方法一:如图,在圆锥的轴截面ABC中,CD⊥AB,BD=1,BC=3,圆O内切于△ABC,E为切点,连接OE,则OE⊥BC.在Rt△BCD中,CD==2.易知BE =BD=1,则CE=2.设圆锥的内切球半径为R,则OC=2-R,在Rt△COE中,OC2-OE2=CE2,即(2-R)2-R2=4,所以R=,圆锥内半径最大的球的体积为πR3=π.方法二:如图,记圆锥的轴截面为△ABC,其中AC=BC=3,AB=2,CD⊥AB,在Rt△BCD中,CD==2,则S△ABC=2.设△ABC的内切圆O的半径为R,则R==,所以圆锥内半径最大的球的体积为πR3=π.。
第34讲 利用坐标法解决立体几何的角度与距离问题(解析版)
第34讲 利用坐标法解决立体几何的角度与距离问题参考答案与试题解析一.选择题(共1小题)1.(2021•南岗区校级期中)如图,三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,1AB AD AC ===,M ,N 分别为CD ,BC 的中点,则异面直线AM 与DN 所成角余弦值为( )A .16B C D .56【解答】解:三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,建立空间直角坐标系, 如图所示:由于1AB AD AC ===,M ,N 分别为CD ,BC 的中点, 所以(0A ,0,0),11(0,,)22M ,(0D ,0,1),11(,22N ,0),则11(0,,)22AM =,11(,,1)22DN =-,所以异面直线AM 与DN 所成角余弦值3cos ||||||AM DN AM DN θ== 故选:B .二.解答题(共21小题)2.(2021•凉山州模拟)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M 、N 分别为PC ,PB 的中点.(1)求证:PB DM ⊥;(2)求二面角A MD C --的正弦值.【解答】解:(1)证明:PA ⊥面ABCD ,AD ⊂面ABCD ,AD PA ∴⊥, 90BAD ∠=︒,AD AB ∴⊥, PAAB A =,PA ,AB ⊂面PAB ,AD ∴⊥面PAB ,PB ⊂面PAB ,AD PB ∴⊥,又PAB ∆中,AP AB =,N 为PB 的中点,AN PB ∴⊥, ANAD A =,AN ,AD ⊂平面AND ,PB ∴⊥面AND ,又N ,M 分别为PB ,PC 的中点, //MN BC ∴,//BC AD ,//MN AD ∴,N ∈面AND ,M ∴∈面AND ,MN ∴⊂面AND ,PB DM ∴⊥.(2)解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 设22PA AD AB BC ====,则(0A ,0,0),(0P ,0,2),(2C ,1,0),(0D ,2,0),(1M ,12,1), 设面AMD 的法向量(m x =,y ,)z , (0AD =,0,2),(1AM =,12,1), 20102AD m y AM m x y z ⎧==⎪⎨=++=⎪⎩,取1x =,得(1m =,0,1)-, 设面CMD 的法向量(n x =,y ,)z ,(2DC =,1-,0),(1DM =,32-,1),20302DC n x y DM n x y z ⎧=-=⎪⎨=-+=⎪⎩,取1x =,得(1n =,2,2), cos ,||||32m n m n m n <>==-∴二面角A MD C --.3.(2021•荔湾区校级期末)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C ''的中点.(1)求证://BF 平面A DE '.(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的大小. (3)若2BC =,求三棱锥A DEF '-的体积.【解答】解:(1)证明:取CD 中点G ,连结GF ,BG , 在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,//GF A D ∴',//BGDE, GFBG G =,A DDE D '=,∴平面//A DE '平面BGF ,BF BGF ⊂,//BF ∴平面A DE '.(2)解:取CD 中点G ,连结EG 、AG 、DE ,A M ', 设2BC =,则四边形AEGD 是边长为2的菱形,且60DAE ∠=︒,MA ME ∴⊥,由平面A DE '⊥平面BCD ,F 为线段A C ''的中点.A M ∴'⊥平面AEGD ,以M 为原点,MA 为x 轴,ME 为y 轴,MA '为z 轴,建立空间直角坐标系,则(0M ,0,0),(0A ',0,(0D ,1-,0),(C -,1,0),(F ,12,(3FM =,12-,,平面A DE '的法向量(1m =,0,0),设直线FM 与平面A DE '所成角为θ, 则||3sin ||||FM n FM n θ==,60θ∴=︒. ∴直线FM 与平面A DE '所成角的大小为60︒.(3)解:2BC =,∴由(2)得(F 12,平面A DE '的法向量(1m =,0,0),1(2MF =-,∴点F 到平面A DE '的距离||3||MF m d m ==. 122A DES'=⨯∴三棱锥A DEF '-的体积:113A DEF F A DE V V '--'===.4.(2021•和平区校级月考)如图,四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,222PC AD DC CB ====,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE与平面PAB间的距离.【解答】(1)证明:取PA的中点M,连接BM、EM,E为PD的中点,//EM AD∴,12EM AD BC==,∴四边形BCEM为平行四边形,//CE BM∴,CE⊂/平面PAB,BM⊂平面PAB,//CE∴平面PAB.(2)解://CE平面PAB,∴点E到平面PAB的距离即为所求.222PC AD DC CB====,取AD的中点N,连接BN、PN,则四边形BCDN为矩形,1BN CD==PAD∆是以AD为斜边的等腰直角三角形,PN AD∴⊥,112PN AD==,BN AD⊥,PN BN N=,PN、BN⊂平面PNB,AD∴⊥平面PNB,//BC AD,BC∴⊥平面PNB,BC⊂平面ABCD,∴平面ABCD⊥平面PNB,以B为原点,BC、BN分别为x、y轴,在平面PNB内,作Bz⊥平面ABCD,建立如图所示的空间直角坐标系,则(0B,0,0),(1A,1-,0),(1D,1,0)BC⊥平面PNB,BC PB∴⊥,在Rt PBC∆中,PB===1BN PN==,120PNB∴∠=︒,∴点3(2P ,0,5(4E ,12, ∴3(2BP =,0,(1BA =,1-,0),5(4BE =,12, 设平面PAB 的法向量为(n x =,y ,)z ,则00n BP n BA ⎧⋅=⎪⎨⋅=⎪⎩,即3020x x y ⎧+=⎪⎨⎪-=⎩, 令1x =,则1y =,z =∴(1n =,1,,∴点E 到平面PAB的距离514||||||n BE d n +⋅==, 故直线CE 与平面PAB. 5.(2021•沙坪坝区校级月考)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,PC 222AD DC CB ===,E 为PD 上一点. (1)若E 为PD 的中点,证明://CE 平面PAB ; (2)若直线CE 与底面ABCD ,求二面角P AB E --的正弦值.【解答】(1)证明:取线段PA 的中点M ,连结EM ,BM ,因为线段PD 的中点为E ,线段PA 的中点为M ,所以//EM AD 且12EM AD =, 又四边形ABCD 中,//BC AD ,2AD BC =,所以//EM BC ,EM BC =, 所以四边形BCEM 为平行四边形,所以//CE BM , 因为BM ⊂平面PAB ,CE⊂/平面PAB , 所以//CE 平面PAB ;(2)解:已知PAD ∆是以AD 为斜边的等腰直角三角形,2AD =, 所以PD 1PC CD ==,所以222PC PD CD =+, 由勾股定理的逆定理可得,CD PD ⊥,又CD AD ⊥,AD PD D =,AD ,PD ⊂平面PAD ,所以CD ⊥平面PAD ,因为CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,取AD 的中点O ,连结PO ,OB ,则PO AD ⊥,又PO ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以PO ⊥平面ABCD ,四边形ABCD 中,//BC AD ,2AD BC =,所以四边形BCDO 是平行四边形,所以//BO CD ,BO CD =,所以BO AD ⊥,以O 为坐标原点,以OB ,OD ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,所以(0A ,1-,0),(1B ,0,0),(1C ,1,0),(0D ,1,0),(0P ,0,1), 则(0,1,1),(1,0,0)DP CD =-=-, 设(0,,),(0,1)DE DP λλλλ==-∈, 所以(1,,)CE CD DE λλ=+=--, 平面ABCD 的法向量可取(0,0,1)n =, 因为直线CE 与底面ABCD,||||||CE n CEn ⋅=,解得13λ=, 所以11(1,,)33CE =--,则21(0,,)33E ,所以51(0,,),(1,1,0)33AE AB ==,设平面ABE 的法向量为(,,)m x y z =, 所以00m AE m AB ⎧⋅=⎪⎨⋅=⎪⎩,所以51033y z x y ⎧+=⎪⎨⎪+=⎩, 令1y =,则1x =-,5z =-,所以(1,1,5)m =--, 又(0,1,1)AP =,设平面PAB 的法向量为(,,)p a b c =, 则有00p AP p AB ⎧⋅=⎪⎨⋅=⎪⎩,所以00b c a b +=⎧⎨+=⎩,令1b =,则1c =-,1a =-,所以(1,1,1)p =--, 所以7cos ,||||9m p m p m p ⋅<>==,所以242sin ,1,m p cos m p <>=-<>=,所以二面角P AB E --.6.(2021•江苏一模)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,AB AD ⊥,222AD AB BC ===,PC =E 为PD 的中点. (1)求直线PB 与平面PAC 所成角的正弦值;(2)设F 是BE 的中点,判断点F 是否在平面PAC 内,并请证明你的结论.【解答】解:(1)取AD 中点O ,连接OP 、OC ,PAD ∆是以AD 为斜边的等腰直角三角形,所以OP AD ⊥,1OP OA OD ===,因为//BC AD ,AB AD ⊥,222AD AB BC ===,所以四边形ABCO 为边长为1的正方形,所以OC AD ⊥,又因为PC =,所以222PC OP OC =+,所以PO OC ⊥, 所以OA 、OC 、OP 两两垂直,建立如图所示的空间直角坐标系, (1A ,0,0),(1B ,1,0),(0C ,1,0),(0P ,0,1),平面PAC 的法向量为(1n =,1,1),(1PB =,1,1)-, 所以直线PB 与平面PAC 所成角的正弦值为||13||||3PB n PB n ⋅==⋅⋅.(2)连接AF ,(1D -,0,0),1(2E -,0,1)2,1(4F ,12,1)4,3(4AF =-,12,1)4,点F到平面PAC的距离为||||3AF nn⋅==,所以点F在平面PAC内.7.(2021•房山区一模)如图,四棱锥P ABCD-中,PAD∆是以AD为斜边的等腰直角三角形,PD CD==2PC=,//12BC AD=,CD AD⊥.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)若E为PD中点,求CE与面PBC所成角的正弦值;(Ⅲ)由顶点C沿棱锥侧面经过棱PD到顶点A的最短路线与PD的交点记为F.求该最短路线的长及PFFD的值.【解答】(Ⅰ)证明:PD CD=2PC=,222CD PD PC∴+=,CD PD∴⊥,又CD AD⊥,PD AD D=,CD∴⊥平面PAD.(Ⅱ)解:取AD的中点O,连接OP,OB,PA PD=,PO AD∴⊥.CD⊥平面PAD,PO⊂平面PAD,PO CD∴⊥,又AD CD D=,PO∴⊥平面ABCD,//12BC AD =,CD AD ⊥.∴四边形BCDO 是矩形,OB OD ∴⊥.以点O 为坐标原点建立空间直角坐标系O xyz -,如图所示则C ,(0P ,0,1),(0D ,1,0),B ,(0E ,12,1)2, ∴11(,)22CE =--,(2,0,1),(0,1,0)PB BC =-=,设面PBC 的法向量(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即00z y -==⎪⎩,令1x =可得(1n=,0.22cos ,||||5CE nCE n CE n -⋅∴<>===⋅设CE 与面PBC 所成角为θ,∴15sin |cos ,|CE n θ=<>=.(Ⅲ)解:CD ⊥平面PCD ,PD ⊂面PAD , CD PD ∴⊥,PDC ∴∆为等腰直角三角形,作出平面APD 和平面PCD 的侧面展开图,如图所示:连接AC 交PD 于F ,则AC 为最短路线,90APD PDC '∠=∠=︒,//AP DC '∴=,∴四边形ADC P '为平行四边形,F ∴与E 重合,∴最短路线长为22AF ==,此时1PF FD=.8.(2021春•湖北期末)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形,4AB BC ==,2CD SD ==. (1)求证:SD AB ⊥;(2)求AB 与平面SBC 所成的角的正弦值.【解答】解:(1)证明:四棱锥S ABCD -中,//AB CD ,BC CD ⊥, 侧面SAB 为等边三角形,4AB BC ==,2CD SD ==.AD ∴=4SA AB ==,222SA SD AD ∴+=,SD SA ∴⊥,同理得SD SB ⊥, SASB S =,SD ∴⊥平面SAB ,AB ⊂平面SAB ,SD AB ∴⊥.(2)解:以D 为原点,在平面ABCD 内过D 作DC 的垂线为x 轴,DC 为y 轴, 过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,(4A ,2-,0),(4B ,2,0),(0C ,2,0),(1S ,0,,(4CB =,0,0),(1CS =,2-,(0AB =,4,0),设平面SBC 的一个法向量是(n x =,y ,)z ,则4020n CB x n CS x y ⎧⋅==⎪⎨⋅=-=⎪⎩,取2z =,得(0n =2),设AB 与平面SBC 所成的角为θ,则||4sin ||||7n AB n AB θ⋅===⋅.AB ∴与平面SBC .9.(2021•天山区校级期末)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证://OD 平面PAB ;(2)求直线OD 与平面PBC 所成角的正弦值.【解答】证明:(1)点O ,D 分别是AC ,PC 的中点, //OD PA ∴又OD ⊂/平面PAB ,PA ⊂平面PAB //OD ∴平面PAB ;(2)连接OB ,AB BC =,点O 是AC 的中点, OB AC ∴⊥又OP ⊥底面ABC .故可以O 为坐标原点,建立如图所示的空间直角坐标系 令112AB BC PA ===,AB BC ⊥,则2OA OB OC ===,2OP =则(0O ,0,0),B 0,0),(0C ,0),(0P ,0,(0D∴(0OD =,(BC =-,0),(0PC =,设(m x =,y ,)z 是平面PBC 的一个法向量 则00m BC m PC ⎧=⎪⎨=⎪⎩,即00y y ⎧+=⎪⎪-=令1z =,则(7m =,1) 直线OD 与平面PBC 所成角θ满足: ||210sin ||||m OD m OD θ== 故直线OD 与平面PBC10.(2012秋•小店区校级月考)如图,四边形ABCD 中(图1),E 是BC 的中点,2DB =,1DC =,BC ,AB AD ==1)沿直线BD 折起,使二面角A BD C --为60︒(如图2)(1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.【解答】解:(1)如图1取BD 中点M,连接AM,ME.因AB AD==AM BD∴⊥(3)⋯(1分)因2DB=,1DC=,BC=满足:222DB DC BC+=,所以BCD∆是BC为斜边的直角三角形,BD DC⊥,因E是BC的中点,所以ME为BCD∆的中位线1//2ME CD,ME BD ∴⊥,12ME=⋯(2分)AME∴∠是二面角A BD C--的平面角,60AME∴∠=︒⋯(3分)AM BD⊥,ME BD⊥且AM、ME是平面AME内两相交于M 的直线BD∴⊥平面AEM AE⊂平面AEM,BD AE∴⊥⋯(4分)因AB AD==,2DB=,ABD∴∆为等腰直角三角形,∴112AM BD==,22212cos124AE AM ME AM ME AME=+-∠=+-⨯2221AE ME AM∴+==,AE ME∴⊥⋯(6分)BD M E∴,BD⊂面BDC,ME⊂面BDC,AE∴⊥平面BDC⋯(7分)(2)如图2,以M为原点MB为x轴,ME为y轴,建立空间直角坐标系,(8分)则由(1)及已知条件可知(1B ,0,0),1(0,,0)2E ,1(0,2A ,(1D -,0,0),(1C -,1,0), 13(1,,),(0,1,0)2AB CD =--=-,⋯(9分)设异面直线AB 与CD 所成角为θ, 则cos ||||||AB CDAB CD θ=⋯(10分)1==⋯(11分)(3)由13(1,,),(0,1,0)2AD CD =---=-,可知(3,0,2)n =-满足,0,0n AD n CD ==,n 是平面ACD 的一个法向量,⋯(12分) 记点B 到平面ACD 的距离d , 则AB 在法向量n 方向上的投影绝对值为d 则||||AB nd n =⋯(13分), 所以7d ==(14分)11.(2010•浙江)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====.沿直线EF 将AEF ∆翻折成△A EF ',使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.【解答】解:(Ⅰ)取线段EF 的中点H ,连接A H ',因为A E A F '='及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF . 如图建立空间直角坐标系A xyz -则(2A ',2,,(10C ,8,0), (4F ,0,0),(10D ,0,0).故(2FA '=-,2,,(6FD =,0,0). 设(n x =,y ,)z 为平面A FD '的一个法向量,22060x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,n =-. 又平面BEF 的一个法向量(0,0,1)m =, 故3cos ,||||n m n m n m ⋅〈>==⋅.(Ⅱ)设FM a =,则(4M a +,0,0), 因为翻折后,C 与A 重合,所以CM A M =',故,222222(6)80(2)2a a -++=--++,得214a =, 经检验,此时点N 在线段BC 上, 所以214FM =. 方法二:(Ⅰ)解:取线段EF 的中点H ,AF 的中点G ,连接A G ',A H ',GH . 因为A E A F '='及H 是EF 的中点, 所以A H EF '⊥又因为平面A EF '⊥平面BEF , 所以A H '⊥平面BEF , 又AF ⊂平面BEF , 故A H AF '⊥,又因为G 、H 是AF 、EF 的中点, 易知//GH AB , 所以GH AF ⊥, 于是AF ⊥面A GH ',所以A GH ∠'为二面角A DH C '--的平面角,在Rt △A GH '中,A H '=,2GH =,A G '=所以cos A GH '∠=.故二面角A DF C '--. (Ⅱ)解:设FM x =, 因为翻折后,C 与A '重合, 所以CM A M =',而222228(6)CM DC DM x =+=+-,222222222(2)2A M A H MH A H MG GH x '='+='++=+++,故222222(6)80(2)2x x -++=--++ 得214x =,经检验,此时点N 在线段BC 上, 所以214FM =.12.(2021•五莲县期中)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,//BE CF ,90BCF CEF ∠=∠=︒.AD =2EF =.(1)求证://AE 平面DCF ;(2)当AB 的长为何值时,二面角A EF C --的大小为60︒.【解答】证明:(1)过E 作EG CF ⊥于G ,连接DG ,则四边形BCGE 为矩形. 又ABCD 为矩形,AD ∴平行且等于EG ,∴四边形ADGE 为平行四边形,//AE DG ∴,AE ⊂/平面DCF ,DG ⊂平面DCF ,//AE ∴平面DCF .解:(2)分别以直线BE 、BC 、BA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系,依题意可得:(0B ,0,0),(0C 0),(3E ,0,0),(4F 0), 设AB m =,则(0A ,0,)m .(3AE =,0,)m -,(1EF =0),平面CEF 的法向量(0m =,0,1). 设平面AEF 的法向量(n x =,y ,)z ,则30n AE x mz n EF x ⎧⋅=-=⎪⎨⋅==⎪⎩,取9z =,得(3n m =,,9)(8分) 二面角A EF C --的大小为60︒, ||cos60||||12n m n m m ⋅∴︒==⋅92m =. ∴当92AB =时,二面角A EF C --的大小为60︒.(12分)13.(2014秋•成都校级月考)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点.(Ⅰ) 求证:CM EM ⊥;(Ⅱ) 求CM 与平面CAE 所成角的大小;(Ⅲ) 求平面ABC 与平面CDE 所成锐二面角的余弦值.【解答】证明:(Ⅰ)分别以CB ,CA 所在直线为x ,y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系C xyz -设AE a =,则(M a ,a -,0),(0E ,2a -,)a , 所以(CM a =,a -,0),(EM a =,a ,)a -,∴()0()0CM EM a a a a a =⨯+-⨯+⨯-=,CM EM ∴⊥.解:(2)平面CAE 的法向量(1n =,0,0),(CM a =,a -,0), 设CM 与平面CAE 所成角为θ,则||sin ||||2CM n CM n aθ===,45θ=︒,∴直线CM 与平面CAE 所成的角为45︒.(3)(2D a ,0,2)a ,(2CD a =,0,2)a ,(0CE =,2a -,)a , 设平面CDE 的法向量(m x =,y ,)z ,则20220m CE ay az m CD ax az ⎧=-+=⎪⎨=+=⎪⎩,令1y =,得(2m =-,1,2),平面ABC 的法向量(0p =,0,1), 设平面ABC 与平面CDE 所成锐二面角为θ, 则||2cos ||||3m p m p θ==.∴平面ABC 与平面CDE 所成锐二面角的余弦值为23.14.(2021•天津二模)如图,DC ⊥平面ABC ,//EB DC ,24AC BC EB DC ====,90ACB ∠=︒,P 、Q 分别为AE ,AB 的中点.(1)证明://PQ 平面ACD .(2)求异面直线AB 与DE 所成角的余弦值; (3)求平面ACD 与平面ABE 所成锐二面角的大小.【解答】(1)证明:P 、Q 分别是AE 、AB 的中点, //PQ BE ∴,12PQ BE =, 又//DC BE ,12DC BE =, //PQ DC ∴,PQ ⊂/平面ACD ,DC ⊂平面ACD , //PQ ∴平面ACD ;(2)解:DC ⊥平面ABC ,90ACB ∠=︒,以点C 为坐标原点,分别以CD ,CA ,CB 的方向为x ,y ,z 轴的正方向建立空间直角坐标系.则(0C ,0,0),(0A ,4,0),(0B ,0,4),(2D ,0,0),(4E ,0,4), (0,4,4)AB =-,(2,0,4)DE =,10cos ,||||AB DE AB DE AB DE ∴<>==,∴异面直线AB 与DE ; (3)解:由(Ⅱ)可知(0,4,4)AB =-,(4,4,4)AE =-, 设平面ABE 的法向量为(,,)n x y z =.则4404440n AB y z n AE x y z ⎧=-+=⎪⎨=-+=⎪⎩,取1z =,得(0,1,1)n =. 由已知可得平面ACD 的法向量为(0CB =,0,4), 2cos ,||||n CB n CB n CB ∴<>== 故所求平面ACD 与平面ABE 所成锐二面角的大小为45︒.15.(2011•浙江)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知8BC =,4PO =,3AO =,2OD = (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【解答】解:以O 为原点,以AD 方向为Y 轴正方向,以射线OP 的方向为Z 轴正方向,建立空间坐标系,则(0O ,0,0),(0A ,3-,0),(4B ,2,0),(4C -,2,0),(0P ,0,4) ()I 则(0AP =,3,4),(8BC =-,0,0)由此可得0AP BC ⋅=∴AP BC ⊥即AP BC ⊥()II 设PM PA λ=,1λ≠,则(0PM λ=,3-,4)- (4BM BP PM BP PA λ=+=+=-,2-,4)(0λ+,3-,4)- (4AC =-,5,0),(8BC =-,0,0)设平面BMC 的法向量(a a =,b ,)c 则00BM a BC a ⎧⋅=⎪⎨⋅=⎪⎩ 4(23)(44)080a b c a λλ--++-=⎧⎨-=⎩令1b =,则(0a =,1,23)44λλ+- 平面APC 的法向量(b x =,y ,)z 则00AP b AC b ⎧⋅=⎪⎨⋅=⎪⎩ 即340450y z x y +=⎧⎨-+=⎩令5x =则(5b =,4,3)- 由0a b ⋅= 得2343044λλ+-⋅=- 解得25λ=故3AM =综上所述,存在点M 符合题意,此时3AM =16.(2015秋•江西月考)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,111AA A B AC ===. (1)证明:平面ABC ⊥平面1A BC ;(2)在线段1BB 上是否存在点E ,使得二面角1E AC B --?若存在确定点E 的位置,若不存在,说明理由.【解答】证明:(Ⅰ)设BC 的中点为O ,11A B A C ==,BC = 1AO BC ∴⊥,且12A O =, 又90BAC ∠=︒,2AB AC ==,AO BC ∴⊥,且AO =,2221124AO AO AA ∴+=+=, 1AO AO ∴⊥,1AO ∴⊥面ABC ,又1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC .解:(Ⅱ)如图,以OA ,OB ,1OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A ,(0B0),(0C,0),1(0A ,0,2), 平面1A BC 的法向量(1m =,0,0), 设11BE BB AA λλ==,(01)λ,则(BE =-,0,2)λ,点E 的坐标为(,2)λ, 设平面1EAC 的法向量为(n x =,y ,)z , 由1n CA ⊥,n CE ⊥,得2020z x z λ+=++=⎪⎩,取1z =,得22(n =-+1),10|cos ,|m n <>=,∴=解得1λ=,∴在线段1BB 上存在点E ,使得二面角1E AC B --,且点E 与点1B 重合.17.(2021春•东湖区校级期中)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(1)证明:1A D ⊥平面1A BC ;(2)求二面角11B A D B --的平面角的正切值.【解答】(1)证明:2AB AC ==,D 是11B C 的中点.111A D B C ∴⊥,11//BC B C ,1A D BC ∴⊥,1A O ⊥面ABC ,1//A D AO ,1AO AO ∴⊥,1AO BC ⊥ BCAO O =,11AO A D ⊥,1A D BC ⊥ 1A D ∴⊥平面1A BC(2)解,如图,以BC 中点O 为坐标原点,以OB 、OA 、1OA 所在直线分别为x 、y 、z 轴建系.则1BC AO =易知1(A B C ,1(0,A D B ,1(0,A D =,(BD =-设平面1A BD 的法向量为(,,)m x y z =,由,100m A D m BD ⎧=⎪⎨=⎪⎩得00⎧=⎪⎨+=⎪⎩,取1z =,得(7,0,1)m =又平面11A DB 的法向量为(0,0,1)n =,cos ,412m n ∴<>==⨯∴二面角11A BD B --18.(2021•舒城县校级开学)如图,已知多面体111ABC A B C -,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:111AB AC ⊥;(2)求直线1AC 与平面1ABB 所成的角的正弦值.【解答】(1)证明:以A 为原点,AC ,1AA 所在直线分别为y ,z 轴,在平面ABC 内作Ax AC ⊥,建立如图所示的空间直角坐标系,则(0A ,0,0),1(1B 2),1(0A ,0,4),1(0C ,1),∴1(1AB =2),11(0A C =,3)-,∴11132(3)0AB A C ⋅=⨯⨯-=,即111AB AC ⊥.(2)解:由(1)可知,1(0AC =,1),(1AB =0),1(1AB =2), 设平面1ABB 的法向量为(n x =,y ,)z ,则100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩,即020x x z ⎧=⎪⎨+=⎪⎩,令1y =,则x =0z =,∴(3n =-,1,0), 设直线1AC 与平面1ABB 所成的角为θ,则sin |cos n θ=<,111||||||||2n AC AC n AC ⋅>===⋅⨯, 故直线1AC 与平面1ABB . 19.(2021•滁州期末)如图,已知在直四棱柱(侧棱垂直底面的棱柱)1111ABCD A B C D -中,AD DC ⊥,//AB DC ,1222DC DD AD AB ====(1)求证:DB ⊥平面11B BCC .(2)求1BC 与平面1A BD 所成的角的余弦值; (3)求二面角11A DB C --的正弦值.【解答】证明:(1)以D 为原点,DA 、DC 、1DD 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,则(0D ,0,0),(1B ,0,0),1(0C ,2,2),(0C ,2,0), (1DB =,1,0),(1BC =-,1,0),1(0BB =,0,2), 1100DB BC =-++=,BD BC ∴⊥,10DB BB =,1BD BB ∴⊥, 1BB BC B =,DB ∴⊥平面11B BCC .解:(2)设(n x =,y ,)z 为平面1A BD 的一个法向量, 1(1DA =,0,2),(1DB =,1,0),则1200n DA x z n DB x y ⎧=+=⎪⎨=+=⎪⎩,取1z =,得(2n =-,2,1), 又1(1BC =-,1,2),设1BC 与平面1A BD 所面1A BD 所成角为θ, 则11||6sin ||||n BC n BC θ== 1BC ∴与平面1A BD . (3)由(2)知平面1A BD 的一个法向量为(2n =-,2,1), 设(m x =,y ,)z 为平面1C BD 的一个法向量, 1(1BC =-,1,2),(1DB =,1,0),则1200n BC x y z n DB x y ⎧=-++=⎪⎨=+=⎪⎩,取1x =-,得(1m =,1-,1), 设二面角11A DB C --的平面角为θ, 则|cos |||||||33m n m n θ===,sin θ∴==. ∴二面角11A DB C --.20.(2015秋•辽宁校级月考)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==PA ,G 为线段PC 上的点,120ABC ∠=︒(Ⅰ)证明:BD ⊥面PAC ; (Ⅱ)求PC 与面PBD 所成的角; (Ⅲ)若G 满足PC ⊥面GBD ,求PGGC的值.【解答】解:(1)设ACBD O =,2AB BC ==,AD CD =ABD CBD ∴∆≅∆,ABD CBD ∴∠=∠,ABO CBO ∴∆≅∆,BD AC ∴⊥,PA ⊥面ABCD ,PA BD ∴⊥,PAAC A =,BD ∴⊥面PAC .解:(2)以O 为坐标原点,以OC 和OD 所在直线为x 轴和y 轴,建立空间直角坐标系Oxyz ,(P 0,(0B ,1-,0),(0D ,2,0),C 0,0),设面PBD 的法向量为(,,)n x y z =,则(3,1,PB =-,(0,3,0)BD =,(23,0,PC =, n PBn BD⎧⊥⎪⎨⊥⎪⎩由,得030y y -==⎪⎩,取1x =,得(1,0,1)n =, ∴10cos ,10||||PC n PC n PC n 〈〉==,∴10sin |cos ,|PC n θ=〈〉=, 即PC 与面PBD所成角为, (3)设(G x ,y ,)z ,CG CP λ=,得(,)(x y z λ=-得0x y z ⎧=⎪=⎨⎪=⎩,即)G , ∴(3)BG =由BG PC ⊥,得25λ=,即32PG GC =.21.(2021•龙岗区校级期中)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:BC BD ⊥;(2)求二面角F CD B --的正弦值.【解答】(1)证明:如图,过点D 作DO AC ⊥,交AC 与点O ,连接OB , 由45ACD ∠=︒,DO AC ⊥,所以CD =,由平面ACFD ⊥平面ABC ,平面ACFD ⋂平面ABC AC =,DO ⊂平面ACFD , 故DO ⊥平面ABC ,又BC ⊂平面ABC , 所以DO BC ⊥,由45ACB ∠=︒,12BC CD ==,则BO BC ⊥, 又DOBO O =,DO ,BO ⊂平面BDO ,所以BC ⊥平面BDO , 又DB ⊂平面BDO , 故BC DB ⊥;(2)解:以点O 为坐标原点,建立空间直角坐标系如图所示,设2CD BC ==则(0O ,0,0),(1B ,1,0),(0C ,2,0),(0D ,0,2), 所以(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-,(0,2,0)OD =, 设平面BCD 的法向量为(,,)n x y z =,则00n BC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即0220x y y z -+=⎧⎨-+=⎩, 令1x =,则1y z ==,故(1,1,1)n =,设平面FCOD 的法向量为(,,)m a b c =,则00m OC m OD ⎧⋅=⎪⎨⋅=⎪⎩,即2020c b =⎧⎨=⎩, 令1x =,则(1,0,0)m =,所以|||cos ,|||||13m n m n m n ⋅<>===⨯故二面角F CD B --=.22.(2021•新疆模拟)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)求证:DB ⊥平面ABC ; (2)求平面ABE 与平面ADC 所成二面角大小的余弦值.【解答】证明:(1)以D 为原点,DE 为x 轴,DC 为y 轴,在过D 作平面BCDE 垂线为z 轴,建立空间直角坐标系,则(0D ,0,0),(1B ,1,0),(0A ,2,(0C ,2,0),(1DB =,1,0),(0CA =,0,(1CB =,1-,0), 0DB CA =,0DB CB =,DB CA ∴⊥,DB CB ⊥,CA CB C =,DB ∴⊥平面ABC .解:(2)平面ADC 的法向量(1n =,0,0),(1E ,0,0),(1EA =-,2,(0EB =,1,0), 设平面ABE 的法向量(m x =,y ,)z ,则200m EA x y m EB y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(2,0,1)m =, 设平面ABE 与平面ADC 所成二面角大小为θ,则||2cos ||||3m n m n θ===.∴平面ABE 与平面ADC .。
高中数学 第3章 空间向量与立体几何 3.2 空间向量的坐标讲义(含解析)湘教版选修2-1-湘教版高
3.2空间向量的坐标[读教材·填要点]1.定理1设e1,e2,e3是空间中三个两两垂直的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.2.定理2(空间向量基本定理)设e1,e2,e3是空间中三个不共面的单位向量,则(1)空间中任意一个向量v可以写成这三个向量的线性组合:v=xe1+ye2+ze3.(2)上述表达式中的系数x,y,z由v唯一决定,即:如果v=xe1+ye2+ze3=x′e1+y′e2+z′e3,则x=x′,y=y′,z=z′.3.空间向量运算的坐标公式(1) 向量的加减法:(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2),(x1,y1,z1)-(x2,y2,z2)=(x1-x2,y1-y2,z1-z2).(2)向量与实数的乘法:a(x,y,z) =(ax,ay,az).(3)向量的数量积:(x1,y1,z1)·(x2,y2,z2)=x1x2+y1y2+z1z2.(4)向量v=(x,y,z)的模的公式:|v|=x2+y2+z2.(5)向量(x1,y1,z1),(x2,y2,z2)所成的角α的公式:cos α=x1x2+y1y2+z1z2x21+y21+z21x22+y22+z22.4.点的坐标与向量坐标(1)一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.(2)两点A (x 1,y 1,z 1),B (x 2,y 2,z 2)的距离d AB 为:d AB =x 2-x 12+y 2-y 12+z 2-z 12.(3)线段的中点坐标,等于线段两端点坐标的平均值.[小问题·大思维]1.空间向量的基是唯一的吗?提示:由空间向量基本定理可知,任意三个不共面向量都可以组成空间的一组基,所以空间的基有无数个,因此不唯一.2.命题p :{a ,b ,c }为空间的一个基底;命题q :a ,b ,c 是三个非零向量,则命题p 是q 的什么条件?提示:p ⇒q ,但qp ,即p 是q 的充分不必要条件.3.空间向量的坐标运算与坐标原点的位置是否有关系?提示:空间向量的坐标运算与坐标原点的位置选取无关,因为一个确定的几何体,其线线、线面、面面的位置关系是固定的,坐标系的不同,只会影响其计算的繁简.4.平面向量的坐标运算与空间向量的坐标运算有什么联系与区别?提示:平面向量与空间向量的坐标运算均有加减运算,数乘运算,数量积运算,其算理是相同的.但空间向量要比平面向量多一竖坐标,竖坐标的处理方式与横、纵坐标是一样的.空间向量基本定理的应用空间四边形OABC 中,G ,H 分别是△ABC ,△OBC 的重心,设OA ―→=a ,OB ―→=b ,OC ―→=c ,试用向量a ,b ,c 表示向量OG ―→和GH ―→.[自主解答] ∵OG ―→=OA ―→+AG ―→, 而AG ―→=23AD ―→,AD ―→=OD ―→-OA ―→.∵D 为BC 的中点, ∴OD ―→=12(OB ―→+OC ―→)∴OG ―→=OA ―→+23AD ―→=OA ―→+23(OD ―→-OA ―→)=OA ―→+23·12(OB ―→+OC ―→)-23OA ―→=13(OA ―→+OB ―→+OC ―→)=13(a +b +c ). 而GH ―→=OH ―→-OG ―→,又∵OH ―→=23OD ―→=23·12(OB ―→+OC ―→)=13(b +c )∴GH ―→=13(b +c )-13(a +b +c )=-13a .∴OG ―→=13(a +b +c );GH ―→=-13a .本例条件不变,若E 为OA 的中点,试用a ,b ,c 表示DE ―→和EG ―→. 解:如图,DE ―→=OE ―→-OD ―→=12OA ―→-12(OB ―→+OC ―→) =12a -12b -12c . EG ―→=OG ―→-OE ―→=13(OA ―→+OB ―→+OC ―→)-12OA ―→ =-16OA ―→+13OB ―→+13OC ―→=-16a +13b +13c .用基表示向量时:(1)若基确定,要充分利用向量加法、减法的三角形法则和平行四边形法则,以及数乘向量的运算律进行.(2)若没给定基时,首先选择基,选择时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.1.如图所示,已知平行六面体ABCD A 1B 1C 1D 1,设AB ―→=a ,AD ―→=b ,AA 1―→=c ,P 是CA 1的中点,M 是CD 1的中点.用基底{a ,b ,c }表示以下向量:(1)AP ―→;(2)AM ―→. 解:连接AC ,AD 1, (1)AP ―→=12(AC ―→+AA 1―→)=12(AB ―→+AD ―→+AA 1―→) =12(a +b +c ). (2)AM ―→=12(AC ―→+AD 1―→)=12(AB ―→+2AD ―→+AA 1―→) =12a +b +12c . 空间向量的坐标运算已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB ―→,b =AC ―→.(1)设|c |=3,c ∥BC ―→,求c .(2)若ka +b 与ka -2b 互相垂直,求k .[自主解答] (1)∵BC ―→=(-2,-1,2)且c ∥BC ―→, ∴设c =λBC ―→=(-2λ,-λ,2λ). ∴|c |=-2λ2+-λ2+2λ2=3|λ|=3.解得λ=±1,∴c =(-2,-1,2)或c =(2,1,-2). (2)∵a =AB ―→=(1,1,0),b =AC ―→=(-1,0,2), ∴ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4). ∵(ka +b )⊥(ka -2b ),∴(ka +b )·(ka -2b )=0.即(k -1,k,2)·(k +2,k ,-4)=2k 2+k -10=0. 解得k =2或k =-52.本例条件不变,若将(2)中“互相垂直”改为“互相平行”,k 为何值? 解:∵ka +b =(k -1,k,2),ka -2b =(k +2,k ,-4),设ka +b =λ(ka -2b ),则⎩⎪⎨⎪⎧k -1=λk +2,k =λk ,2=-4λ,∴k =0.已知两个向量垂直(或平行)时,利用坐标满足的条件可得到方程(组)进而求出参数的值.这是解决已知两向量垂直(或平行)求参数的值的一般方法.在求解过程中一定注意合理应用坐标形式下的向量运算法则,以免出现计算错误.2.若a =(1,5,-1),b =(-2,3,5).分别求满足下列条件的实数k 的值: (1)(ka +b )∥(a -3b ); (2)(ka +b )⊥(a -3b ).解:ka +b =(k -2,5k +3,-k +5),a -3b =(1+3×2,5-3×3,-1-3×5)=(7,-4,-16). (1)若(ka +b )∥(a -3b ), 则k -27=5k +3-4=-k +5-16,解得k =-13.(2)若(ka +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0, 解得k =1063.点的坐标与向量坐标在直三棱柱ABO A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图所示的空间直角坐标系中,求DO ―→,A 1B ―→的坐标.[自主解答] (1)∵DO ―→=-OD ―→=-(OO 1―→+O 1D ―→) =-⎣⎢⎡⎦⎥⎤OO 1―→+12(OA ―→+OB ―→)=-OO 1―→-12OA ―→-12OB ―→.又|OO 1―→|=4,|OA ―→|=4,|OB ―→|=2, ∴DO ―→=(-2,-1,-4).(2)∵A 1B ―→=OB ―→-OA 1―→=OB ―→-(OA ―→+AA 1―→) =OB ―→-OA ―→-AA 1―→.又|OB ―→|=2,|OA ―→|=4,|AA 1―→|=4, ∴A 1B ―→=(-4,2,-4).用坐标表示空间向量的方法步骤为:3.如图所示,PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA =AB =1.试建立适当的空间直角坐标系,求向量MN ―→的坐标.解:∵PA =AB =AD =1,PA ⊥平面ABCD ,AB ⊥AD , ∴AB ―→,AD ―→,AP ―→是两两垂直的单位向量.设AB ―→=e 1,AD ―→=e 2,AP ―→=e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz .法一:∵MN ―→=MA ―→+AP ―→+PN ―→=-12AB ―→+AP ―→+12PC ―→=-12AB ―→+AP ―→+12(PA ―→+AC ―→)=-12AB ―→+AP ―→+12(PA ―→+AB ―→+AD ―→)=12AD ―→+12AP ―→=12e 2+12e 3, ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.法二:如图所示,连接AC ,BD 交于点O . 则O 为AC ,BD 的中点,连接MO ,ON , ∴MO ―→=12BC ―→=12AD ―→,ON ―→=12AP ―→,∴MN ―→=MO ―→+ON ―→ =12AD ―→+12AP ―→ =12e 2+12e 3. ∴MN ―→=⎝ ⎛⎭⎪⎫0,12,12.解题高手多解题条条大路通罗马,换一个思路试一试已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M ,N 分别为PC ,PD 上的点,且PM ―→=2MC ―→,N 为PD 的中点,求满足MN ―→=x AB ―→+y AD ―→+z AP ―→的实数x ,y ,z 的值.[解] 法一:如图所示,取PC 的中点E ,连接NE ,则MN ―→=EN ―→-EM ―→.∵EN ―→=12CD ―→=12BA ―→=-12AB ―→,EM ―→=PM ―→-PE ―→=23PC ―→-12PC ―→=16PC ―→,连接AC ,则PC ―→=AC ―→-AP ―→=AB ―→+AD ―→-AP ―→, ∴MN ―→=-12AB ―→-16(AB ―→+AD ―→-AP ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.法二:如图所示,在PD 上取一点F ,使PF ―→=2FD ―→,连接MF , 则MN ―→=MF ―→+FN ―→, 而MF ―→=23CD ―→=-23AB ―→,FN ―→=DN ―→-DF ―→=12DP ―→-13DP ―→=16DP ―→=16(AP ―→-AD ―→), ∴MN ―→=-23AB ―→-16AD ―→+16AP ―→.∴x =-23,y =-16,z =16.法三:MN ―→=PN ―→-PM ―→=12PD ―→-23PC ―→=12(PA ―→+AD ―→)-23(PA ―→+AC ―→) =-12AP ―→+12AD ―→-23(-AP ―→+AB ―→+AD ―→)=-23AB ―→-16AD ―→+16AP ―→,∴x =-23,y =-16,z =16.[点评] 利用基向量表示空间中某一向量的方法步骤为: ①找到含有空间向量的线段为一边的一个封闭图形;②结合平行四边形法则或三角形法则,用基向量表示封闭图形的各边所对应的向量; ③写出结论.1.已知空间四边形OABC ,其对角线为AC ,OB ,M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG ―→等于( )A.16OA ―→+13OB ―→+13OC ―→B.14(OA ―→+OB ―→+OC ―→)C.13(OA ―→+OB ―→+OC ―→)D.16OB ―→+13OA ―→+13OC ―→ 解析:如图,OG ―→=12(OM ―→+ON ―→)=12OM ―→+12×12(OB ―→+OC ―→) =14OA ―→+14OB ―→+14OC ―→ =14(OA ―→+OB ―→+OC ―→). 答案:B2.已知a =(1,-2,1),a +b =(-1,2,-1),则b 等于( ) A .(2,-4,2) B .(-2,4,-2) C .(-2,0,-2) D .(2,1,-3)解析:b =(a +b )-a=(-1,2,-1)-(1,-2,1)=(-2,4,-2). 答案:B3.a =(2x,1,3),b =(1,-2y,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32解析:∵a =(2x,1,3)与b =(1,-2y,9)共线,故有2x 1=1-2y =39,∴x =16,y =-32.答案:C4.已知点A (-1,3,1),B (-1,3,4),D (1,1,1),若AP ―→=2PB ―→,则|PD ―→|的值是________. 解析:设点P (x ,y ,z ),则由AP ―→=2PB ―→, 得(x +1,y -3,z -1)=2(-1-x,3-y,4-z ),则⎩⎪⎨⎪⎧x +1=-2-2x ,y -3=6-2y ,z -1=8-2z ,解得⎩⎪⎨⎪⎧x =-1,y =3,z =3,即P (-1,3,3), 则|PD ―→|=-1-12+3-12+3-12=12=2 3. 答案:2 35.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB ―→与CA ―→的夹角θ的大小是________.解析:AB ―→=(-2,-1,3),CA ―→=(-1,3,-2),cos 〈AB ―→,CA ―→〉=-2×-1+-1×3+3×-214·14=-714=-12, ∴θ=〈AB ―→,CA ―→〉=120°. 答案:120°6.已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的三等分点且|PN ―→|=2|NC ―→|,|AM ―→|=2|MB ―→|,PA =AB =1,求MN ―→的坐标.解:法一:∵PA =AB =AD =1,且PA 垂直于平面ABCD ,AD ⊥AB ,∴可设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k为单位正交基底建立如图所示的空间直角坐标系.∵MN ―→=MA ―→+AP ―→+PN ―→ =-23AB ―→+AP ―→+23PC ―→=-23AB ―→+AP ―→+23(-AP ―→+AD ―→+AB ―→)=13AP ―→+23AD ―→=13k +23(-DA ―→) =-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.法二:设DA ―→=i ,AB ―→=j ,AP ―→=k ,以i ,j ,k 为单位正交基底建立如图所示的空间直角坐标系,过M 作AD 的平行线交CD 于点E ,连接EN .∵MN ―→=ME ―→+EN ―→=AD ―→+13DP ―→=-DA ―→+13(DA ―→+AP ―→)=-i +13(i +k )=-23i +13k ,∴MN ―→=⎝ ⎛⎭⎪⎫-23,0,13.一、选择题1.已知a ,b ,c 是不共面的三个向量,则能构成空间的一个基的一组向量是( ) A .3a ,a -b ,a +2b B .2b ,b -2a ,b +2a C .a,2b ,b -cD .c ,a +c ,a -c解析:对于A ,有3a =2(a -b )+a +2b ,则3a ,a -b ,a +2b 共面,不能作为基;同理可判断B 、D 错误.答案:C2.以正方体ABCD A 1B 1C 1D 1的顶点D 为坐标原点,如图建立空间直角坐标系,则与DB 1―→共线的向量的坐标可以是( )A .(1,2,2)B .(1,1,2)C .(2,2,2)D .(2,2,1)解析:设正方体的棱长为1,则由图可知D (0,0,0),B 1(1,1,1), ∴DB 1―→=(1,1,1),∴与DB 1―→共线的向量的坐标可以是(2,2,2). 答案:C3.空间四边形OABC 中,OA ―→=a ,OB ―→=b ,OC ―→=c ,点M 在OA 上,且OM ―→=2MA ―→,N 为BC 中点,则MN ―→为( )A.12a -23b +12c B .-23a +12b +12cC.12a +12b -23c D.23a +23b -12c 解析:MN ―→=MA ―→+AB ―→+BN ―→ =13OA ―→+OB ―→-OA ―→+12(OC ―→-OB ―→) =-23OA ―→+12OB ―→+12OC ―→=-23a +12b +12c .答案:B4.若a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ=( )A .2B .-2C .-2或255D .2或-255解析:因为a ·b =1×2+λ×(-1)+2×2=6-λ,又因为a ·b =|a ||b |·cos〈a ,b 〉=5+λ2·9·89=835+λ2,所以835+λ2=6-λ.解得λ=-2或255.答案:C 二、填空题5.已知a =(2,-1,3),b =(-4,2,x ),c =(1,-x,2),若(a +b )⊥c ,则x =________. 解析:∵a +b =(-2,1,x +3), ∴(a +b )·c =-2-x +2(x +3)=x +4. 又∵(a +b )⊥c , ∴x +4=0,即x =-4. 答案:-46.已知向量a =(2,-1,3),b =(-1,4,-2),c =(7,0,λ),若a ,b ,c 三个向量共面,则实数λ=________.解析:由a ,b ,c 共面可得c =xa +yb , ∴⎩⎪⎨⎪⎧7=2x -y ,0=-x +4y ,λ=3x -2y ,解得λ=10.答案:107.若a =(x,2,2),b =(2,-3,5)的夹角为钝角,则实数x 的取值X 围是________. 解析:a ·b =2x -2×3+2×5=2x +4,设a ,b 的夹角为θ,因为θ为钝角,所以cosθ=a ·b|a ||b |<0,又|a |>0,|b |>0,所以a ·b <0,即2x +4<0,所以x <-2,所以实数x 的取值X 围是(-∞,2).答案:(-∞,-2)8.已知M 1(2,5,-3),M 2(3,-2,-5),设在线段M 1M 2上的一点M 满足M 1M 2―→=4MM 2―→,则向量OM ―→的坐标为________.解析:设M (x ,y ,z ),则M 1M 2―→=(1,-7,-2),MM 2―→=(3-x ,-2-y ,-5-z ).又∵M 1M 2―→=4MM 2―→,∴⎩⎪⎨⎪⎧1=43-x ,-7=4-2-y ,-2=4-5-z ,∴⎩⎪⎨⎪⎧x =114,y =-14,z =-92.答案:⎝⎛⎭⎪⎫114,-14,-92三、解答题9.已知△ABC 三个顶点的坐标分别为A (1,2,3),B (2,-1,5),C (3,2,-5). (1)求△ABC 的面积; (2)求△ABC 中AB 边上的高.解:(1)由已知得AB ―→=(1,-3,2),AC ―→=(2,0,-8), ∴|AB ―→|= 1+9+4=14, |AC ―→|=4+0+64=217,AB ―→·AC ―→=1×2+(-3)×0+2×(-8)=-14,cos 〈AB ―→,AC ―→〉=AB ―→·AC ―→|AB ―→|·|AC ―→|=-1414×217=-14217,sin 〈AB ―→,AC ―→〉=1-1468=2734. ∴S △ABC =12|AB ―→|·|AC ―→|·sin〈AB ―→,AC ―→〉=12×14×217×2734=321. (2)设AB 边上的高为CD , 则|CD ―→|=2S △ABC |AB ―→|=3 6.10.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是⎝⎛⎭⎪⎫32,12,0,点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD ―→的坐标;(2)设向量AD ―→和BC ―→的夹角为θ,求cos θ的值.解:(1)如图所示,过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD ·sin 30°=32. OE =OB -BD ·cos 60°=1-12=12,∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即向量OD ―→的坐标为⎝ ⎛⎭⎪⎫0,-12,32.(2)依题意:OA ―→=⎝ ⎛⎭⎪⎫32,12,0,OB ―→=(0,-1,0),OC ―→=(0,1,0). 所以AD ―→=OD ―→-OA ―→=⎝ ⎛⎭⎪⎫-32,-1,32,BC ―→=OC ―→-OB ―→=(0,2,0). 设向量AD ―→和BC ―→的夹角为θ,则 cos θ=AD ―→·BC―→|AD ―→|·|BC ―→|=⎝ ⎛⎭⎪⎫-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫322·02+22+02=-210=-105.∴cos θ=-105.。
【新高考】高三数学一轮基础复习讲义:第八章 8.7立体几何中向量方法-(学生版+教师版)
立体几何中向量方法1、判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面的单位法向量是唯一确定的.( ) (2)若两平面的法向量平行,则两平面平行.( ) (3)若两直线的方向向量不平行,则两直线不平行.( )(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(5)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( )(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( )2、已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1)B .(1,-1,1)C .(-33,-33,-33) D .(33,33,-33) 3、如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( ) A.55 B.53 C.56D.544、设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________.5、如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________. 题型一 利用空间向量证明平行问题例1如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 【同步练习】1、正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD . 题型二 利用空间向量证明垂直问题例2 如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证: (1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C . 【同步练习】1、如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点. (1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 4.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围(0,π2][0,π]求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |5.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 6.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).题型三 利用空间向量求空间角命题点1 求直线和平面所成的角例3 如图1,在Rt △ACB 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2. (1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 上的点,试确定点M 的位置,使得直线CM 与平面A 1BE 所成角的正弦值为51428.命题点2 求二面角例4 已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABCD 所成的二面角的正切值为________. 【同步练习】1、如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.2、如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示. (1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论. 一、证明垂直问题的方法重点题型训练(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 二、利用向量法求空间角的方法(1)先求出直线的方向向量和平面的法向量,将求空间角转化为求两个向量的夹角.(2)利用数量积求向量的夹角,然后根据和所求角的关系得到空间角,但要注意所求角的大小. 1.若平面α,β的法向量分别是n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上答案均不正确2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0)D .P (3,-3,4)3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行C .在平面内D .平行或在平面内4.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( ) A .3 B .4 C .5 D .65.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .MN 在平面BB 1C 1C 内6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.227.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是_______________.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.9.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.*10.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.11.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且 AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证: (1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .12.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.*13.如图,长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =CC 1=1,点P 是CD 上的一点,PC =λPD . (1)若A 1C ⊥平面PBC 1,求λ的值;(2)设λ1=1,λ2=3所对应的点P 为P 1,P 2,二面角P 1—BC 1—P 2的大小为θ,求cos θ的值.立体几何中向量方法1、判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面的单位法向量是唯一确定的.( × ) (2)若两平面的法向量平行,则两平面平行.( √ ) (3)若两直线的方向向量不平行,则两直线不平行.( √ )(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )(5)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )2、已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( ) A .(-1,1,1)B .(1,-1,1)C .(-33,-33,-33) D .(33,33,-33) 答案 C解析 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.3、如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( ) A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=0+4-14+4+1×0+4+1=15=55,故选A. 4、设u ,v 分别是平面α,β的法向量,u =(-2,2,5),当v =(3,-2,2)时,α与β的位置关系为________;当v =(4,-4,-10)时,α与β的位置关系为________. 答案 α⊥β α∥β解析 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β. 当v =(4,-4,-10)时,v =-2u ⇒α∥β.5、如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 的位置关系是________.答案 垂直解析 以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系,设正方体棱长为1,则A (0,0,0),M (0,1,12),O (12,12,0),N (12,0,1),AM →·ON →=(0,1,12)·(0,-12,1)=0, ∴ON 与AM 垂直. 无题型一 利用空间向量证明平行问题例1如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG . 证明 ∵平面P AD ⊥平面ABCD ,ABCD 为正方形, △P AD 是直角三角形,且P A =AD ,∴AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz , 则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2,∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →,FE →与FG →共面. ∵PB ⊄平面EFG ,∴PB ∥平面EFG . 引申探究本例中条件不变,证明平面EFG ∥平面PBC . 证明 ∵EF →=(0,1,0),BC →=(0,2,0), ∴BC →=2EF →,∴BC ∥EF .又∵EF ⊄平面PBC ,BC ⊂平面PBC , ∴EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC . 又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG , ∴平面EFG ∥平面PBC . 【同步练习】1、正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1C ,B 1C 1的中点.求证:MN ∥平面A 1BD . 证明 如图所示,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设正方体的棱长为1,则M (0,1,12),N (12,1,1),D (0,0,0),A 1(1,0,1),B (1,1,0),于是MN →=(12,0,12),DA 1→=(1,0,1),DB →=(1,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ),则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1. 所以n =(1,-1,-1).又MN →·n =(12,0,12)·(1,-1,-1)=0,所以MN →⊥n .又MN ⊄平面A 1BD ,所以MN ∥平面A 1BD . 题型二 利用空间向量证明垂直问题例2 如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1-AB -C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ;(2)AB 1∥平面A 1C 1C .证明 (1)∵二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形,∴AA 1⊥平面BAC .又∵AB =AC ,BC =2AB ,∴∠CAB =90°,即CA ⊥AB ,∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系,点A 为坐标原点,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2),∴A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0).设平面AA 1C 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -2z =0,2x =0,即⎩⎪⎨⎪⎧ x =0,z =0,取y =1,则n =(0,1,0).∴A 1B 1→=2n ,即A 1B 1→∥n .∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1).∴AB 1→·m =0×1+2×(-1)+2×1=0,∴AB 1→⊥m .又AB 1⊄平面A 1C 1C ,∴AB 1∥平面A 1C 1C .【同步练习】1、如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点. (1)求证:EF ∥平面P AD ;(2)求证:平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点,所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD .因为P A =PD =22AD ,所以P A ⊥PD ,OP =OA =a 2. 以O 为原点,OA ,OF ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A (a 2,0,0),F (0,a 2,0),D (-a 2,0,0),P (0,0,a 2),B (a 2,a,0),C (-a 2,a,0). 因为E 为PC 的中点,所以E (-a 4,a 2,a 4).易知平面P AD 的一个法向量为OF →=(0,a 2,0), 因为EF →=(a 4,0,-a 4), 且OF →·EF →=(0,a 2,0)·(a 4,0,-a 4)=0, 所以OF ⊥EF ,又因为EF ⊄平面P AD ,所以EF ∥平面P AD .(2)因为P A →=(a 2,0,-a 2),CD →=(0,-a,0), 所以P A →·CD →=(a 2,0,-a 2)·(0,-a,0)=0, 所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ⊂平面PDC ,CD ⊂平面PDC ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.4.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ a 与b 的夹角β 范围 (0,π2] [0,π] 求法cos θ=|a ·b ||a ||b | cos β=a ·b |a ||b | 5.设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 6.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).题型三 利用空间向量求空间角命题点1 求直线和平面所成的角例3 如图1,在Rt △ACB 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 上的点,试确定点M 的位置,使得直线CM 与平面A 1BE 所成角的正弦值为51428. (1)证明 因为∠C =90°,DE ∥BC ,所以BC ⊥CD ,BC ⊥A 1D ,因为CD ∩A 1D =D ,CD ⊂平面A 1CD ,A 1D ⊂平面A 1CD ,所以BC ⊥平面A 1CD ,因为A 1C ⊂平面A 1CD ,所以BC ⊥A 1C ,DE ⊥A 1C ,又A 1C ⊥CD ,CD ∩BC =C ,CD ∩DE =D ,DE ∥BC ,所以A 1C ⊥平面BCDE .(2)解 以C 为原点,以CB ,CD ,CA 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系(图略),因为AD AC =DE CB,所以AD =4,CD =2,A 1C =23, 所以A 1(0,0,23),B (3,0,0),E (2,2,0),D (0,2,0),A 1E →=(2,2,-23),BE →=(-1,2,0),DA 1→=(0,-2,23).设M 点的坐标为(0,y 0,z 0),DM →=λDA 1→,则⎩⎨⎧ y 0-2=-2λ,z 0=23λ,所以CM →=(0,2-2λ,23λ), 设平面A 1BE 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A 1E →=0,n ·BE →=0,即⎩⎨⎧2x +2y -23z =0,-x +2y =0, 令x =2,则y =1,z =3,即n =(2,1,3).设直线CM 与平面A 1BE 所成角为θ,则sin θ=|2-2λ+6λ|(2-2λ)2+12λ2·12+22+3=51428, 即|2+4λ|16λ2-8λ+4=57,解得λ=34或13, 所以M 为线段A 1D (靠近点A 1)四分之一处的点或三分之二处的点.命题点2 求二面角例4 已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABCD 所成的二面角的正切值为________.答案 23 解析 如图,建立空间直角坐标系Dxyz , 设DA =1,由已知条件得A (1,0,0),E (1,1,13),F (0,1,23),AE →=(0,1,13),AF →=(-1,1,23),设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABCD 所成的二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧ n ·AE →=0,n ·AF →=0,得⎩⎨⎧ y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,即n =(-1,1,-3),取平面ABCD 的法向量为m =(0,0,-1),则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 【同步练习】1、如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.(1)证明 由已知得AM =23AD =2. 取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)解 取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝⎛⎭⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎫52,1,2,PM →=(0,2,-4),PN →=⎝⎛⎭⎫52,1,-2,AN →=⎝⎛⎭⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则 ⎩⎪⎨⎪⎧ n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1). 于是|cos 〈n ,AN →〉|=|n ·AN →||n ||A N →|=8525. 设AN 与平面PMN 所成的角为θ,则sin θ=8525, ∴直线AN 与平面PMN 所成角的正弦值为8525. 2、如图1所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图2所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.规范解答解 (1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .[2分](2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),[3分]易知平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA →,n 〉=DA →·n |DA →|·|n |=217, ∴二面角E -DF -C 的余弦值为217.[8分] (3)设P (x ,y,0),则AP →·DE →=3y -2=0,∴y =233. 又BP →=(x -2,y,0),PC →=(-x,23-y,0),∵BP →∥PC →,∴(x -2)(23-y )=-xy ,∴3x +y =2 3.[10分] 把y =233代入上式得x =43,∴P (43,233,0), ∴BP →=13BC →, ∴在线段BC 上存在点P (43,233,0),使AP ⊥DE .[14分] 一、证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.二、利用向量法求空间角的方法(1)先求出直线的方向向量和平面的法向量,将求空间角转化为求两个向量的夹角.(2)利用数量积求向量的夹角,然后根据和所求角的关系得到空间角,但要注意所求角的大小.1.若平面α,β的法向量分别是n 1=(2,-3,5),n 2=(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上答案均不正确 答案 C解析 ∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0,∴n 1与n 2不垂直,且不共线.∴α与β相交但不垂直.2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4) 答案 A解析 逐一验证法,对于选项A ,MP →=(1,4,1),∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内. 3.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面内D .平行或在平面内答案 D解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,∴AB 与平面CDE 平行或在平面CDE 内.4.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t 等于( )A .3B .4C .5D .6答案 C解析 ∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0,∴t =5.5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( ) A .斜交 B .平行C .垂直D .MN 在平面BB 1C 1C 内 答案 B解析 建立如图所示的空间直角坐标系,由于A 1M =AN =2a 3, 则M (a ,2a 3,a 3),N (2a 3,2a 3,a ),MN →=(-a 3,0,2a 3). 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量.因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=(1,0,-12). 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则有⎩⎪⎨⎪⎧ A 1D →·n 1=0,A 1E →·n 1=0, 即⎩⎪⎨⎪⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.即n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23, 即所成的锐二面角的余弦值为23. 7.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是_______________.答案 α∥β解析 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1,∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β.8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.答案 ①②③解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确.∵BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.9.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.答案 1解析 以D 1为原点,D 1A 1,D 1C 1,D 1D 所在直线分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),∵B 1E ⊥平面ABF ,∴FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.*10.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.答案 72解析 由题意可知,建立空间直角坐标系,如图所示.则A (0,-1,0),B (0,1,0),S (0,0,3),M (0,0,32),设P (x ,y,0), ∴AM →=(0,1,32),MP →=(x ,y ,-32),即y =34, ∴点P 的轨迹方程为y =34. 根据圆的弦长公式,可得点P 形成的轨迹长度为2 1-(34)2=72. 11.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .证明 (1)以A 为坐标原点,AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系Axyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC ⊂平面ABC ,DE ⊄平面ABC .故DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0).B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0,B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF ,又∵AF ∩EF =F ,AF ⊂平面AEF ,EF ⊂平面AEF ,∴B 1F ⊥平面AEF .12.在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图所示.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD .∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12), 则BC →=(1,1,0),BM →=(0,12,12),AD →=(0,1,-1). 设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧ n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧ x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=|n ·AD →||n ||AD →|=63, 即直线AD 与平面MBC 所成角的正弦值为63. *13.如图,长方体ABCD —A 1B 1C 1D 1中,AB =2,BC =CC 1=1,点P 是CD 上的一点,PC =λPD .(1)若A 1C ⊥平面PBC 1,求λ的值;(2)设λ1=1,λ2=3所对应的点P 为P 1,P 2,二面角P 1—BC 1—P 2的大小为θ,求cos θ的值. 解 方法一 (1)∵A 1C ⊥BC 1,若A 1C ⊥PB ,则A 1C ⊥平面PBC 1,只需A 1C ⊥PB 即可,在矩形ABCD 中,CP BC =BC AB ,解得CP =12,PD =32,λ=13. (2)过点C 作CH ⊥BC 1交BC 1于点H ,连接P 1H ,P 2H (图略),则∠P 1HP 2就是所求二面角的一个平面角θ.∵P 1C =1,P 2C =32,CH =22, ∴tan ∠P 1HC =2,tan ∠P 2HC =32, tan θ=tan(∠P 2HC -∠P 1HC )=28, 所求余弦值为46633. 方法二 (1)建立如图所示空间直角坐标系Oxyz ,则B (1,2,0),C 1(0,2,1),A 1(1,0,1),C (0,2,0),设P (0,21+λ,0), 则A 1C →=(-1,2,-1),BC 1→=(-1,0,1),BP →=(-1,21+λ-2,0), 若A 1C ⊥平面PBC 1,则⎩⎪⎨⎪⎧ A 1C →·BP →=0,A 1C →·BC 1→=0,即⎩⎪⎨⎪⎧ 1+41+λ-4=0,1+0-1=0,解得λ=13. (2)由P 1(0,1,0),P 2(0,12,0), 得BP 1→=(-1,-1,0),BC 1→=(-1,0,1),BP 2→=(-1,-32,0). 设平面BC 1P 1与平面BC 1P 2的法向量分别是n 1,n 2,由⎩⎪⎨⎪⎧ n 1·BP 1→=0,n 1·BC 1→=0,得n 1=(1,-1,1), 由⎩⎪⎨⎪⎧ n 2·BP 2→=0,n 2·BC 1→=0,得n 2=(3,-2,3), ∴cos θ=|n 1·n 2||n 1||n 2|=4233=46633.。
2022学年高三上(编号1-25)立体几何大题汇编(教师版)
,即
令 ,则
面 法向量为
平面 与平面 夹角的余弦值为
,即
, (舍)
4:(2023届广东梅州中学高三上阶段性考试解析第20题)
4:如图,在四棱锥 中,四边形 为直角梯形, , ,平面 平面 , , , .
(1)证明: ;
(2)若四棱锥 的体积为 ,
求平面 与平面 所成的锐二面角的余弦值.
方法提供与解析:(浙江绍兴+谢柏军)
方法提供与解析:(浙江绍兴+谢柏军)
(1)解析: 是正方形
,
直三棱柱
, , 、 面 ,
面
面
面 面
(2)解析: 面
、 分别为 、 中点
以 为原点, 为 轴, 为 轴, 为 轴建立坐标系
, , ,
设面 的法向量为
,即
令 ,则 ,
面
面 的法向量为
平面 与平面 夹角的余弦值为
10:(2023届重庆市巴蜀中学月考卷(一)解析第19题)
方法提供与解析:(衢州张小臣)
解析:(1)证明:取 的中点 ,连接 .
因为 是等边 的中线,所以 .
因为 是棱 的中点, 为 的中点,
所以 ,且 .
因为 ,所以 ,且 ,
所以四边形 是平行四边形,所以 .
因为 , 为 的中点,所以 ,从而 .
2023年人教版高考数学总复习第一部分考点指导第八章立体几何第五节空间向量的运算及其坐标表示
3.空间向量有关运算
(1)坐标运算:设a=x1,y1,z1 ,b=x2,y2,z2 , 则a+b= (x1 x2,y1 y2,z1 z2 ) ; a-b= (x1 x2,y1 y2,z1 z2 ) ; λa= (x1, y1,z1) .
(2)数量积运算:a·b= x1x2+y1y2+z1z2 = |a||b|cos〈a,b〉.
B.共面 C.共线 D.不共线
②对空间中四点 A,B,C,P,若A→P =81 A→B +18 A→C ,则 P,A,B,C 四点( )
A.不共面
B.共面 C.共线 D.不共线
பைடு நூலகம்
③对空间中四点 A,B,C,P,若空间任意一点 O 都有O→P =43 O→A +81 O→B +
1 8
O→ C
,则 P,A,B,C 四点(
(2)已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共
面,则实数λ等于(
A.672
B.673
) C.674
D.675
【解析】选D.由a,b,c三向量共面,设a=mb+nc,
则(2,-1,3)=m(-1,4,-2)+n(7,5,λ),
2=-m+7n
即 -1=4m+5n ,解得λ=675 . 3=-2m+nλ
=12
O→ A
+23
1 (2
O→ B
+12
O→ C
-21
O→ A
)=61
O→ A
+13
O→ B
+13
O→ C
,
所以x=16 ,y=13 ,z=13 .
答案:16 ,31 ,13
2.如图,在长方体ABCD-A1B1C1D1中,O为AC的中点. ①化简 A1O -12 A→B -21 A→D =________. ②用A→B ,A→D , AA1 表示 OC1 ,则 OC1 =________.
高考数学大一轮复习-第七章 立体几何 第6课时 空间直角坐标系课件 北师大版
(2)已知M点坐标为(x,y,z)确定点M位置的步骤:①在x轴、y 轴、z轴上依次取坐标为x,y和z的点P、Q、R;②过P、Q、R分别作 垂直于x轴、y轴和z轴的平面;③三个平面的唯一交点就是M.
考点三 空间中两点间的距离 [例 3] 如图所示,以棱长为 a 的正方体的三条棱所在的直线 为坐标轴建立空间直角坐标系,点 P 在正方体的体对角线 AB 上, 点 Q 在棱 CD 上.当点 P 为对角线 AB 的中点,点 Q 在棱 CD 上 运动时,探究|PQ|的最小值为______.
审题视点 确定点 P、Q 的坐标,利用两点间的距离公式得到 |PQ|,然后利用函数知识解决.
C.
3 2
D.
6 3
解析:构造正方体,则从正方体一个顶点出发的相邻三个面
上的对角线长都是1,则此正方体的对角线长为
6 2.
答案:A
3.以点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是
A.等腰直角三角形 B.等边三角形
()
C.直角三角形
D.无法判断
解析:依题意有|AB|= 4-102+1+12+9-62 = 49 = 7,同理可得
(3)点 P 关于原点 O(0,0,0)对称的点 P3(3,-2,-1). (4)点 P(-3,2,1)关于点 Q(1,1,1)对称的点 P4(5,0,1).
(1)关于原点对称,三个坐标变为原坐标的相反数; (2)关于哪条轴对称,对应坐标不变,另两个坐标变为原来的相 反数.如 M(1,3,-2)关于 x 轴的对称点坐标为 M′(1,-3,2); (3)关于坐标平面的对称点,由 x,y,z,O 中的三个字母表示的 坐标平面,缺少哪个字母的对应坐标变为原来的相反数,其它不变, 如 N(1,3,-2)关于坐标平面 xOz 的对称点 N′(1,-3,-2).
68.立体几何讲义3:求方向向量、求法向量、建系、求点的坐标 课件-2021届高三数学一轮复习
A1
C1
B1
A
D
C
B
ቤተ መጻሕፍቲ ባይዱ
题目 5:如图,在等腰梯形 ABCD 中, AB∥CD , AD DC CB 1,ABC 60 , CF 平面 ABCD ,且CF 1,建立适当的直角坐标系并确定各点坐标。 F
题目 6:已知四边形 ABCD 满足 AD∥BC,BA AD DC 1 BC a ,E 是 BC 中点, D 2
等边三角形,侧面 ABB1A1 为菱形且BAA1 60o , E, F 分别为 BB1 和C1B1 的中点,
建立适当的直角坐标系并求向量C1B1 的坐标。
五、怎样设点的坐标
题目 10:已知斜三棱柱 ABC A1B1C1,BCA 90 , AC BC 2, A1 在底面 ABC 上的 射影恰为 AC 的中点 D ,又知BA1 AC1 ,建立如下图所示的坐标系并确定各点坐标。
立体几何讲义3:垂直问题
一、求直线的方向向量和平面的法向量
题目 1:已知点 A2,4,6, B3,0,2 ,求直线AB 的一个方向向量。
题目 2:已知点 A0,0,0, B1, 2,0,C 2,1,3 ,求平面 ABC 的一个法向量。
二、不同建系法的比较
题目 3:如图 1,在三棱柱 ABC A1B1C1 中, H 是正方形 AA1B1B 的中心,
将 BAE 翻折成 B1AE ,使得平面 B1AE 平面 AECD , F 为B1D 中点,建立适当的直 A
角坐标系并确定各点坐标。
B'
A
D
F
A
D
B
E
C
E
C
C B
三、求点的坐标
题目 7:已知四棱锥 P ABCD 的底面是菱形,对角线 AC, BD 交于点O,OA 4, OB 3, OP 4 ,且OP 平面 ABCD ,点 M 为 PC 的三等分点(靠近P ),建立适当的直角坐
立体几何点的求法
立体几何点的求法立体几何是研究三维空间中物体的形状、大小和位置关系的数学分支。
在立体几何中,点是最基本的元素,而求解点的位置是解决许多立体几何问题的关键。
下面将介绍立体几何点的求法。
一、坐标表示法在三维坐标系中,每个点都可以用一组有序数表示其位置。
这组有序数就是该点在三个坐标轴上的坐标值。
设一个点P(x,y,z),其中x、y、z分别为该点在x轴、y轴和z轴上的坐标值,则P可以表示为一个有序三元组(x,y,z)。
利用坐标表示法可以求解两个点之间的距离。
设两个点P1(x1,y1,z1)和P2(x2,y2,z2),则它们之间的距离d为:d = √[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]二、向量表示法向量是指具有大小和方向的量,用箭头来表示。
在三维空间中,每个向量都可以用一个有序三元组(a,b,c)来表示。
利用向量表示法可以求解线段或线段所在直线上某一点的位置。
设一个线段AB,其起始端点为A(x1,y1,z1),终止端点为B(x2,y2,z2),则该线段的向量为:AB = (x2-x1, y2-y1, z2-z1)如果需要求解线段AB上距离A点m倍长度的点P,则可以用以下公式计算P的坐标值:P = A + m(AB)其中,m为实数。
三、平面方程表示法平面是指在三维空间中,由无限多个点组成的一个二维图形。
在立体几何中,平面通常用方程表示。
设一个平面P,其方程为ax+by+cz+d=0。
其中a、b、c是平面法向量的三个分量,d是平面与原点的距离。
对于一个给定的点Q(x,y,z),如果Q在该平面上,则有:ax+by+cz+d=0如果需要求解过三个已知点A(x1,y1,z1)、B(x2,y2,z2)和C(x3,y3,z3)的平面方程,则可以用以下公式计算a、b、c和d:a = (y2-y1)(z3-z1)-(z2-z1)(y3-y1)b = (z2-z1)(x3-x1)-(x2-x1)(z3-z1)c = (x2-x1)(y3-y1)-(y2-y1)(x3-x1)d = -ax_0-by_0-cz_0其中,(x_0, y_0, z_0)为三个点的重心坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为
的中点; (2)求二面角
的大小 ; (3)求点
到平面
的距离.
答案:
28.【2012高考四川文19】(本小题满分12分) 如图,在三棱锥中,,,,点在平面内的射影在上。
(Ⅰ)求直线与平面所成的角的大小; (Ⅱ)求二面角的大小。 命题立意:本题主要考查本题主要考查直线与平面的位置关系,线面角 的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决 立体几何问题的能力. 【答案】 【解析】
…………12分
在Rt△B1OB中,BB1=2,∴BO=
BB1=1 又∵BB1=AB,∴BO=
AB ∴O是AB的中点。 即点B1在平面ABC上的射影O为AB的中点 …………4分
(2)连接AB1过点O作OM⊥AB1,连线CM,OC, ∵OC⊥AB,平面ABC⊥平面AA1BB1 ∴OC⊥平面AABB。 ∴OM是斜线CM在平面AA1B1B的射影 ∵OM⊥AB1 ∴AB1⊥CM ∴∠OMC是二面角C—AB1—B的平面角 在Rt△OCM中,OC=
19.解法一: (I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,
连结SE,则 又SD=1,故, 所以为直角。 …………3分 由, 得平面SDE,所以。 SD与两条相交直线AB、SE都垂直。 所以平面SAB。 …………6分 (II)由平面SDE知, 平面平面SED。 作垂足为F,则SF平面ABCD,
(Ⅰ)证明:; (Ⅱ)求与平面所成角的大小.
三:经典练习; 26.【2012高考全国文19】(本小题满分12分)(注意:在试题卷上作 答无效)
如图,四棱锥中,底面为菱形,底面,,,是上的一点,。 (Ⅰ)证明:平面; (Ⅱ)设二面角为,求与平面所成角的大小。 成都二诊:
19.如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1
从而,即 设 , 在中, 这与GB=GD矛盾。 所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都 相等, 从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离 都相等
19. 解:(1)以D为原点,DA,DC,DD1分别为x轴,y轴,z轴建立 空间直角坐标系.
设DG=a,DH=b,则E(4,0,4),F(0,4,4),G(a,0, 0),H(0,b,0).
∴=(-4,b,-4),=(a,-4,-4).
∵EH⊥FG.
∴·=-4a-4b+16=0,则a+b=4,即b=4-a.
又G1H在棱DA,DC上,则0≤a≤8,0≤b≤8,从而0≤a≤4.
∴GH==.
∴GH取值范b=2.
∴=(-2,2,0),=(-4,4,0),即=2.
设点C到平面的距离为 则由得,从而……4分 (2)如图所示,分别以所在的直线 为x,y,z轴,建立空间直角坐标系, 则A(1,0,0), C(0,-2,0), A1(0.0,2),B(0,2,0), ,.
设平面的法向量, 又 由,得, 令,得,即。 设平面的法向量, 又 由,得,令,得,即。 所以 ,……7分 由图形观察可知,二面角为钝角, 所以二面角的余弦值是. ……9分 (3)方法1.在中,作于点E,因为,得. 因为平面ABC,所以,因为, 得,所以平面,所以,
所以平面PAD。 又平面PAB,所以平面平面PAD。
(II)以A为坐标原点,建立空间直角坐标系 A—xyz(如图) 在平面ABCD内,作CE//AB交AD于点E,则 在中,DE=, 设AB=AP=t,则B(t,0,0),P(0,0,t) 由AB+AD=4,得AD=4-t, 所以, (i)设平面PCD的法向量为, 由,,得 取,得平面PCD的一个法向量, 又,故由直线PB与平面PCD所成的角为,得 解得(舍去,因为AD),所以 (ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的 距离都相等, 设G(0,m,0)(其中)
作,垂足为G,则FG=DC=1。 连结SG,则, 又, 故平面SFG,平面SBC平面SFG。 …………9分 作,H为垂足,则平面SBC。 ,即F到平面SBC的距离为 由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有
设AB与平面SBC所成的角为α, 则 …………12分 解法二: 以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标
28.【2012高考四川文19】(本小题满分12分) 如图,在三棱锥中,,,,点在平面内的射影在上。
(Ⅰ)求直线与平面所成的角的大小; (Ⅱ)求二面角的大小。
三:添加 轴,通过公式算出来的: 点。 全国的
19.(本小题满分12分)(注意:在试题卷上作答无效) 如图,四棱锥中, ,,侧面为等边三角形,.
(ⅱ)如图②③,n1,n2分别是二面角αlβ的两个半平面α,β的
法向量,则二面角的大小θ满足cos
θ=cos〈n1,n2〉或-
cos〈n1,n2〉.
2、 距离
(1) 点面距的求法:设AB为平面α的一条斜线段,n为平面α
的法向量,则B到平面α的距离d=.
(2) 线面距、面面距均可转化为点面距
(3) 两异面直线的距离求法:d=.(AB是异面直线上任意两
系C—xyz。 设D(1,0,0),则A(2,2,0)、B(0,2,0)。 又设 (I),,
由得 故x=1。 由 又由 即 …………3分 于是, 故 所以平面SAB。 …………6分
(II)设平面SBC的法向量, 则 又 故 …………9分 取p=2得。 故AB与平面SBC所成的角为
4、如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形 ABCD中,AB⊥AD,AB+AD=4,CD=,.
立体几何坐标法:
一:一般的公式:
1、空间角 (1)(线线)设异面直线l1,l2的方向向量分别为m1,m2,则l1 与l2的夹角θ满足cos θ=|cos〈m1,m2〉|. (2)(线面)设直线l的方向向量和平面α的法向量分别 为m,n,则直线l与平面α的夹角θ满足sin θ=|cos〈m,n〉|. (3)(面面)求二面角的大小 (ⅰ)如图①,AB、CD是二面角αlβ的两个面内与棱l垂直的直 线,则二面角的大小θ=〈,〉.
中点,G、H分别为棱DA,DC上动点,且EH⊥FG. (1)求GH长的取值范围; (2)当GH取得最小值时,求证:EH与FG共面;
并求出此时EH与FG的交点P到直线的距离.
19、如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中, AB⊥AD,AB+AD=4,CD=,. (I)求证:平面PAB⊥平面PAD; (II)设AB=AP. (i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的 距离都相等?说明理由。
∴EF∥GH,即EH与FG共面.
所以EF=2GH,EF∥GH,则.
设P(x1,y1,z1),则=(x1-4,y,z1-4).
∴x1=,y1=,z1=,即P(,,).
则P(,,)在底面上ABCD上的射影为M(,,0).又B(8,
8,0),
所以为点P到直线的距离.
……12分
22.解:(1)连接AO, 因为平面ABC,所以,因为, 得,在中, 在中,则又
则, 由得,(2) 由(1)、(2)消去t,化简得(3) 由于方程(3)没有实数根,所以在线段AD上不存在一个点G, 使得点G到点P,C,D的距离都相等。 从而,在线段AD上不存在一个点G, 使得点G到点P,B,C,D的距离都相等。 解法二: (I)同解法一。 (II)(i)以A为坐标原点,建立空间直角坐标系A—xyz(如图) 在平面ABCD内,作CE//AB交AD于E, 则。 在平面ABCD内,作CE//AB交AD于点E,则
点)
二:如何选择建系: 8、在如图所示的几何体中,平面,平面,,且,是的中点.
(Ⅰ)求证:; (Ⅱ)求与平面所成的角.
11年重庆
19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 如题(19)图,在四面体中,平面平面,,,.
(Ⅰ)若,,求四面体的体积; (Ⅱ)若二面角为,求异面直线与所成角的余弦值.
22. 在三棱柱中,已知,在在底面的投影是线段的中点。 (1)求点C到平面的距离; (2)求二面角的余弦值; (3)若M,N分别为直线上动点,求MN的最小值。
用向量法做几何题: 2010 年河南 预赛:
6.已知一个正三棱柱的底面边长为1,两个侧面的异面对角 线互相垂直.该正三棱柱的侧棱长为 .
(I)求证:平面PAB⊥平面PAD;
(II)设AB=AP. (i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的 距离都相等?说明理
由。
本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基 础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算 求解能力,考查函数与方程思想、数形结合思想、化归与转化思 想,满分14分。 解法一: (I)因为平面ABCD, 平面ABCD, 所以, 又
在中,DE=, 设AB=AP=t,则B(t,0,0),P(0,0,t) 由AB+AD=4,得AD=4-t, 所以, 设平面PCD的法向量为, 由,,得 取,得平面PCD的一个法向量, 又,故由直线PB与平面PCD所成的角为,得 解得(舍去,因为AD), 所以 (ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的 距离都相等, 由GC=CD,得,
所以平面.从而 在中, 为异面直线的距离,即为MN的最小值。……14分
方法2.设向量,且 令,得,即。 所以异面直线的距离即为MN的最小值。……14分
59、(1)证明:过B1点作B1O⊥BA。∵侧面ABB1A1⊥底面ABC ∴A1O⊥面ABC ∴∠B1BA是侧面BB1与底面ABC倾斜角 ∴∠B1BO=