立体几何平面的基本性质
立体几何平面的基本性质
一、知识点:1.平面的概念:平面就是没有厚薄的,可以无限延伸,这就是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45o ,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚)②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等3.空间图形就是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法)A a A a ∈点A 在直线a 上 a αa α⊂ 直线a 在平面α内 A a A a ∉点A 不在直线a 上 a αa α=∅I 直线a 与平面α无公共点AαA α∈点A 在平面α内 a A αa A α=I 直线a 与平面α交于点AA αA α∉点A 不在平面α内 b a A a b A =I 直线a 、b 交于A 点l αβ=I 平面α、β相交于直线lα⊄a (平面α外的直线a )表示a α=∅I (a αP )或a A α=I4 平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:就是判定直线就是否在平面内的依据,也可用于验证一个面就是否就是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既就是判断直线在平面内,又就是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其她公共点,且所有这些公共点的集合就是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,就是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面BA α推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈ 应用:①确定平面;②证明两个平面重合 “有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”就是同义词,因此,在证明有关这类语句的命题时,要从“存在性”与“唯一性”两方面来论证. 5 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形 6公理的推论:推论1 经过一条直线与直线外的一点有且只有一个平面、推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂推论2 经过两条相交直线有且只有一个平面 推理模式:P b a =I ⇒存在唯一的平面α,使得,a b α⊂推论3 经过两条平行直线有且只有一个平面推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂二、基本题型:1 下面就是一些命题的叙述语,其中命题与叙述方法都正确的就是( )A.∵αα∈∈B A ,,∴α∈AB .B.∵βα∈∈a a ,,∴a =βαI .C.∵α⊂∈a a A ,,∴A α∈.D.∵α⊂∉a a A ,,∴α∉A .2.下列推断中,错误的就是( )A.ααα⊂⇒∈∈∈∈l B l B A l A ,,, C.βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合B.AB B B A A =⇒∈∈∈∈βαβαβαI ,,, D.αα∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( )(7)一条直线与一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )5.瞧图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定就是平面图形的就是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形O 11D 1B C 1O D B A(2)空间四条直线每两条都相交,最多可以确定平面的个数就是( )A 1个 B 4个C 6个 D 8个(3)空间四点中,无三点共线就是四点共面的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要7.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面、 答案:1、 C 2、 D 3、 2,4,8 4、 ⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×5、⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 16、 答案:⑴ D ⑵ C ⑶ D7、 证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂下面用反证法证明直线c α⊂:假设c α⊄,则c C α=I ,在平面α内过点C 作c b 'P ,因为b //c,则c c 'P ,此与c c C '=I 矛盾、故直线c α⊂、综上述,a 、b 、c 、d 四线共面、。
9.1.1平面的基本性质
练习 下列命题:
(1)书桌面是平面;(2)8个平面重叠起来要比6个平面
重叠起来厚;(3)有一个平面的长是50m,宽是20m;
(4)平面是绝对的平、无厚度、可以无限延展的抽象
的数学概念.其中正确命题的个数为( A )
A .1
B .2
C .3
D .4
1.常把希腊字母α、β、γ等写在代表平面的平行四边形的 一个角上,如平面α、平面β等 2.用代表平面的四边形的四个顶点 3.用相对的两个顶点的大写英文字母作为这个平面的名称
数学中的“平面”是指光滑并且可以无限延展的图形
思考:将一条直线向两端无限伸展得到 的图形是什么?将课桌面、平静的水面、 田径场地面向四周无限伸展得到的图形 是什么? 直线是否有长短、粗细之分?平面 是否有大小、厚薄之别?
平面的特点:
1.平的 2.四周无限延展 3.不计大小 4.不计厚薄 不是凹凸不平 没有边界 无所谓面积 没有体积
D A
C B
记作:平面 平面 ABCD 平面 AC 或平面 BD
动脑思考
探索新知
当平面水平放置的时候,通常把平行四边形的锐角画成45°, 横边画成邻边的2倍长. 当平面竖直放置的时候,通常把平面画成矩形.
D
C
A
B
巩固知识
典型例题
例1 表示出正方体 ABCD A1B1C1D 1 (如图)的 6个面. 解 这6个面可以分别表示为:平面AC 、平面 A1C1、
生活中经常看到用三角架支撑照相机.
文字语言:
基本性质3 图像语言:
存在性
唯一性
过不在一条直线上的三点,有且只有一个平面.
B
A
C
符号语言: A, B, C三点不共线 有且只有一个平面
立体几何知识点
立体几何知识点1平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
公理3:经过不在同一条直线上的三点,有且只有一个平面即不共线的三点在同一平面内。
推论1:经过一条直线和这条直线外的一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
2 空间两条直线(1)空间两条直线的位置关系有相交,平行,异面。
(2)平行直线①公理4:平行于同一条直线的两条直线互相平行。
②等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
(3)异面直线①定义:不同在任何一个平面内,无公共点叫做异面直线。
②两条异面直线所成的角(或夹角):对于两条异面直线a,b,经过空间任一点O作直线'a//a,'b//b,则'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)。
若两条异面直线所成的角是90°,则称这两条异面直线互相垂直。
异面直线所成的角的范围0°<θ≤90°。
③这条异面直线的距离:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线。
4直线和平面的位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点;(3)直线和平面平行——没有公共点。
5直线和平面平行的判定与性质直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
6两个平面平行的定义:如果两个平面没有公共点,那么这两个平面叫做平性平面。
高中数学 第1章 立体几何初步 1.2.1 平面的基本性质高一数学教案
[探究问题]
1.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点?为什么?
[提示]由下边的图可知它们不是相交于一点,而是相交于一条直线.
2.如图所示,在正方体ABCDA1B1C1D1中,E为AB的中点,F为AA1的中点.试问CE,D1F,DA三线是否交于一点?为什么?
③A a,a α⇒A α;④A∈a,a α⇒A α.
A.1B.2
C.3D.4
D[①不正确,如a∩α=A;②不正确,“a∈α”表述错误;③不正确,如图所示,A a,a α,但A∈α;④不正确,“A α”表述错误.]
2.如图所示,点A∈α,B α,C α,则平面ABC与平面α的交点的个数是______个.
①公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
用符号表示为: ⇒AB α.
②公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.
用符号表示为: ⇒α∩β=l且P∈l.
③公理3:经过不在同一条直线上的三点,有且只有一个平面.
(2)α∩β=l,m∩α=A,m∩β=B,A l,B l
点线共面问题
【例2】 已知一条直线与另外三条互相平行的直线都相交,证明:这四条直线共面.
思路探究:法一: → →
→
法二: → →
[证明]如图.
法一:∵a∥b,∴a,b确定平面α.
又∵l∩a=A,l∩b=B,
∴l上有两点A,B在α内,即直线l α.
2.证明:两两相交且不共点的三条直线在同一平面内.
[解]已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.
求证:直线l1,l2,l3在同一平面内.
平面及其基本性质
向量数量积运算规则
数量积定义
两个向量的数量积是一个标量,等于两向量模的乘积与它们夹角的余弦的乘积。
数量积运算规则
数量积满足交换律、分配律和结合律,且数量积的结果与两向量的夹角有关,当两向量垂直时数量积为零。
平面上标系建立与特点
直角坐标系的建立
在平面上选定两条互相垂直的数轴,分别作为x轴和y轴,两轴的交点O为坐标原点。对于平面上的任 意一点P,其位置可以用从O点到P点的有向线段的数量来表示,该数量即为点P的坐标。
VS
极坐标系的特点
极坐标系在处理某些问题时具有独特的优 势,如描述圆的方程、研究点的轨迹等。 在极坐标系中,点的位置由其到极点的距 离和与极轴的夹角确定,这种表示方式在 某些情况下比直角坐标系更为简便。
坐标变换公式及应用
坐标变换公式
在平面上的不同坐标系之间,可以通过一定 的数学公式进行坐标的转换。例如,在直角 坐标系和极坐标系之间,点的坐标可以通过 以下公式进行转换:x = rcosθ, y = rsinθ, r = √(x² + y²), θ = arctan(y/x)。
向量表示方法
在平面直角坐标系中,向量可以用坐 标形式表示,起点为坐标原点,终点 坐标即为向量坐标。
向量加减法运算规则
向量加法
向量加法遵循平行四边形法则或三角形法则,结果向量以两 个加向量为邻边作平行四边形,其对角线即为和向量。
向量减法
向量减法可以转化为向量加法来处理,即减去一个向量相当 于加上这个向量的相反向量。
圆及其性质
圆的定义
平面上到定点的距离等于定长的所有 点组成的图形。
圆的性质
圆的任意一条直径所在的直线都是圆 的对称轴;圆的周长与直径的比值是 一个常数,称为圆周率;圆内接四边 形的对角互补,外角等于它的内对角 。
数学拓展模块一下册电子课件第六章立体几何
当我们说“有且只有一条直线”或“确定一条直线”时,都是把重合的
直线看成一条直线.
6.1
平面的基本性质
静止的水面、课桌面、黑板面、教室的地面等等,它们有一个共同的特征:
平坦、没有起伏.由大量这样的实际例子抽象出平面的概念,它是平坦而且可
• •
以无限伸展的图形,并且没有厚度.平面是空间的又一个基本要素,平面通常
由于四边形1 1 是平行四边形,因此 ∕∕ 1 1 .
于是根据命题2得,1 1 ∕∕ .
6.3
两条异面直线所成
的角,异面直线垂
直的判定
6.3
两条异面直线所成的角,异面直线垂直的判定
探索
如图6.3-1所示,在棱长为1的正方体 −
1 1 1 1 中,由于 ⊂平面1 1 ,1 ∈平面
两条直线的位置关系
在上面的例子中,直线
1 是异面直线,观察这一对直线的特点,猜想
出下述命题,并且可以证明这个命题为真.
命题1 平面内一点与平面外一点的连线,与
平面内不经过该点的直线是异面直线.
已知:平面α内一条直线1 ,点 ∈ ,且 ∉
1 ,点 ∉ ,如图6.2-2所示.
求证:直线与1 是异面直线.
个接触点,共有不在同一条直线上的三个点,它们确定一个平面,从而自
行车立得稳.
6.1
例
证明
平面的基本性质
证明:两两相交且不过同一个点的三
条直线共面.
己知:如图6.1-9所示,三条直线两
两相交,交点分别为,,.
求证:直线,,共面.
由于相交直线与确定一个平面,
于是点 ∈ ,且点 ∈ ,
此时称直线在平面内或平面经过直线,如图
6.1-3所示.
名师辅导 立体几何 第1课 平面的概念与性质(含答案解析)
名师辅导立体几何第1课平面的概念与性质(含答案解析)●考试目标主词填空1.平面(1)平面是理想的、绝对的平且无限延展的.(2)平面是由它内部的所有点组成的点集,其中每个点都是它的元素.2.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.(2)公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且这些公共点的集合是一条过这个公共点的直线.(3)公理3:经过不在同一直线上的三点,有且只有一个平面.推论1 经过一条直线和这条直线外的一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.●题型示例点津归纳【例1】在空间内,可以确定一个平面的条件是 ( )A.两两相交的三条直线B.三条直线,其中的一条与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点E. 两条直线【解前点津】 A中的两两相交的三条直线,它们可能相交于同一点,也可能不交于同一点;若交于同一点,则三直线不一定在同一个平面内.∴应排除A.B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,三条直线是不能确定一个平面的.∴应排除B.对于C来说,三个点的位置可能不在同一直线上,也可能在同一直线上,只有前者才能确定一个平面,后者是不能的.∴应排除C.条件E中的两条直线可能共面,也可能不共面.∴应排除E.只有条件D中的三条直线,它们两两相交且不交于同一点,可确定一个平面.【规范解答】 D.【解后归纳】平面的基本性质(三个公理及公理3的三个推论)是研究空间图形性质的理论基础,必须认真理解,熟练地掌握本题主要利用公理3及其推论来解答的.【例2】把下列用文字语言叙述的语句,用集合符号表示,并画直观图表示.(1)点A在平面α内,点B不在平面α内,点A、B都在直线l上;(2)平面α与平面β相交于直线l,直线a在平面α内且平行于直线l.【解前点津】注重数学语言(文字语言、符号语言、图形语言)间的相互转化训练,有利于提高分析问题、解决问题的能力.正确使用⊂、⊄、∈、∉、⋂等符号表示空间基本元素之间的位置关系是解决本题的关键.【规范解答】 (1)A ∈α,B ∉α,A ∈l ,B ∈l ,如图(1);(2)α∩β=l ,a ⊂α,a ∥l ,如图(2).例2题解图【例3】 如图,已知:l 不属于α,A 、B 、C …∈l ,AA 1⊥α,BB 1⊥α,CC 1⊥α.求证:AA 1、BB 1、CC 1…共面.【解前点津】 证明n 条直线共面,首先,选择适当的条件,确定一个平面,然后分别证明直线都在此平面内.【规范解答】 证法一 ∵AA 1⊥α,CC 1⊥α,∴AA 1∥CC 1.∴AA 1与CC 1确定平面β,且β⊥α.∵AC ⊂β,即l ⊂β,而B ∈l,∴B ∈β,又知BB 1⊥α,∴BB 1⊂β.∴AA 1、BB 1、CC 1…共面.证法二 反证法由证法1得β⊥α于A 1C 1,假设BB 1不属于β,在β内作BB ′⊥A 1C 1(如图).∴BB ′⊥α,已知BB 1⊥α,与过一点引面的垂线,有且只有一条矛盾.∴BB 1不属于β是不可能的,∴BB 1⊂β,∴AA 1、BB 1、CC 1…共面.【解后归纳】 证明共面的一般方法有直接法和间接法两种.【例4】 设平行四边形ABCD 的各边和对角线所在的直线与平面α依次相交于A 1,B 1,C 1,D 1,E 1,F 1六点,求证:A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【规范解答】 设平行四边形ABCD 所在平面为α,∵A ∈β,B ∈β,∴AB ⊂β,又A 1∈AB,∴A 1∈β,又A 1∈α∴A 1在平面α与平面β的交线上,设交线为l ,则A 1∈l ,同理可证B 1,C 1,D 1,E 1,F 1都在直线l 上,∴A 1,B 1,C 1,D 1,E 1,F 1六点在同一条直线上.【解后归纳】 证明点共线通常证明这些点都在两平面的交线 上,或先由某两点作一条直线再证明其他点也在这条直线上,选此题的意图,就是使学生掌握证点共线的一般方法.●对应训练 分阶提升一、基础夯实1.α、β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以确定平面的个数为 ( ).32 C 例3题图例4题图2.下列说法正确的是 ( )A.如果两个平面α、β有一条公共直线a ,就说平面α、β相交,并记作α∩β=aB.两平面α、β有一公共点A ,就说α、β相交于过A 的任意一条直线C.两平面α、β有一个公共点,就说α、β相交于A 点,并记作α∩β=AD.两平面ABC 与DBC 交于线段BC3.下列命题正确的是 ( )A.一点和一条直线确定一个平面B.两条直线确定一个平面C.相交于同一点的三条直线一定在同一平面内D.两两相交的三条直线不一定在同一个平面内4.设α、β是不重合的两个平面,α∩β=a ,下面四个命题:①如果点P ∈α,且P∈β,那么P ∈a ;②如果点A ∈α,点B ∈β,那么AB α;③如果点A ∈α,那么点B ∈β;④如果线段AB α,且AB β,那么AB a .其中正确命题的个数是 ( ).1 C5.空间四点A 、B 、C 、D 共面但不共线,那么这四点中 ( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线6.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长为1的等腰梯形,则这个平面图形的面积是 ( ) A.221+ B. 222+ C.21+ D.22+ 7.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原三角形ABC 的面积为 ( )A.223aB. 243aC. 223a D.26a 8.两条相交直线l 、m 都在平面α内且都不在平面β内.命题甲:l 和m 中至少有一条与β相交,命题乙:平面α与β相交,则甲是乙的什么条件 ( )A.充分不必要B.必要不充分C.充要D.不充分不必要二、思维激活9.如果一条直线上有一个点不在平面上,则这条直线与这个平面的公共点最多有 个.10.不重合的三个平面把空间分成n 个部分,则n 的可能值为 .11.四条线段首尾相连,它们最多确定平面的个数是 .12.与空间不共面四点距离相等的平面为 个.13.四边形ABCD 中,AB =BC =CD =DA =BD =1,则成为空间四面体时,AC 的取值范围是 .三、能力提高14.如图,已知l 1∥l 2∥l 3,l ∩l 1=A,l ∩l 2=B,l ∩l 3=C .求证:l 1、l 2、l 3、l 共面.第14题图15.四个点不共面,证明它们中任何三点都不在同一条直线上.它的逆命题正确吗 已知:A 、B 、C 、D 是不共面四点.求证:它们中任何三点都不共线.16.已知△ABC 的三个顶点都不在平面α上,它的三边AB 、AC 、BC 的延长线交平面α于P 、R 、Q 三点.求证:P 、R 、Q 三点共线.17.已知空间四边形ABCD ,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF .求证:直线EF 、GH 、AC 交于一点.18.已知直线a,b,c ,其中b,c 为异面直线,试就a 与b,c 的不同位置关系,讨论可以确定平面的情况.第1课 平面的概念与性质习题解答C 24C 13+C 23C 13+2=32. 排除法.有三个交点或只有一个交点.②③错在条件不充分.分有三点共线和只有两点共线两类.第17题图根据平面图形斜二测直观图的画法,所求平面图形为四边形,由“横不变”知,四边形为梯形,且上底边长为1.容易求得下底边长为1+2,由直观图的底角为45°知这个梯形为直角梯形.再由“竖取半”知,直腰长为2,∴S=2211++·2=2+2. 按斜二测画法还原.充分性根据公理2进行判断,必要性用反证法得到证明.公共点最多1个,否则直线在平面内,得知直线上所有的点在平面内.,6,7,8.个 可确定C 24-2=4个.个 这四点构成一个四面体,当平面平行于四个面中某一个面时有四个;当平面平行于三对异面直线时有三个.13.(0,3) AC>0,ABCD 为菱形时AC =3.14.由l 1∥l 2,知l 1与l 2确定一个平面α,同理l 2、l 3确定一个平面β,由A ∈l 1,l 1α,知A ∈α,同理B ∈α,又A 、B ∈l ,故l α,同理l β.由上知l ∩l 2=B,且l 、l 2α,l 、l 2β,因两相交直线l 、l 2确定一个平面,故α与β重合,所以l 1、l 2、l 3、l 共面.15.证明:假设其中有三点共线,如A 、B 、C 在同一直线a 上,点D ∉a .∴点D 和a 可确定一平面α,∴A 、B 、C 、D ∈α.与A 、B 、C 、D 不共面矛盾.逆命题是:如果四点中任何三点都不共线,那么这四点不共面.逆命题不正确.16.如图,∵AP ∩AR =A ,∴AP 与AR 确定平面APR又P 、R ∈α,∴α∩平面APR =PR .又B ∈平面APR ,C ∈平面APR ,∴BC 平面APR ,即Q ∈平面APR .又Q ∈α,∴Q ∈α∩平面APR =PR .∴P 、Q 、R 三点共线.点评:欲证三点共线,可以证明某点在经过其余两点的直线上即可.17.∵E 、H 分别是AB 、AD 的中点,∴EH ∥BD ,EH =21BD , ∵F 、G 分别是边BC 、CD 上的点,且32==CD CG CB CF , ∴EH ∥FG ,EH ≠FG ,∴四边形EFGH 为梯形,则EF 与GH 必相交,设交点为P .∵EF 平面ABC ,∴P ∈平面ABC .又P ∈平面DAC ,平面BAC ∩平面DAC =AC .故P ∈AC ,即EF 、GH 、AC 交于一点P .18.(1)若a 与b,c 都相交,a 与b ,a 与c 都能确定平面,故可确定两个平面.(2)若a 与b ,c 之一相交,不妨设a 与b 相交.①a ∥c ,a 与b ,a 与c 都可确定平面故可确定两个平面.②a 与c 不平行,只a 与b 确定平面,故可确定一个平面.(3)若a 与b ,c 都不相交. 第16题图解①若a与b,c之一平行,不妨设a与b平行,只a与b可确定平面,故确定一个平面.②若a与b,c都不平行,又因为都不相交,故不能确定平面.点评:此题应用启发、引导、归纳法讲解,这样才能达到使学生建立空间概念,加强严密的逻辑思维,并达到复习,巩固“分类讨论”的思想方法.本资料来源于《七彩教育网》。
平面的基本性质:三个公理,三个推论.
资源信息表14.1 (2)平面及其基本性质——三个公理三个推论一、教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理1确定直线在平面上;公理2明确两平面相交于一直线;公理3及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三个公理,三个推论.四、教学过程设计一、讲授新课(一)公理1如果直线l上有两个点在平面α上,那么直线l在平面α上.(直线在平面上)用集合语言表述:,,,A l B l A B l ααα⊂∈∈∈∈⇒≠ (二)公理2如果不同的两个平面α、β有一个公共点A ,那么α、β的交集是过点A 的直线l .(平面与平面相交)用集合语言表述:l A l A ∈=⋂⇒⋂∈且βαβα (三)公理3和三个推论公理3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”用集合语言表述:A ,B ,C 不共线=>A ,B ,C 确定一个平面 推论1:一条直线和直线外的一点确定一个平面. 证明:设A 是直线l 外的一点,在直线l 上任取两点B 和C ,由公理3可知A ,B 和C 三点能确定平面α.又因为点,B C α∈,所以由公理1可知B ,C 所在直线l α⊂≠,即平面α是由直线l 和点 A 确定的平面.用集合语言表述:,A l A l α∉⇒确定平面 推论2:两条相交的直线确定一个平面. 用集合语言表述:,a b A a b α⋂=⇒确定平面 推论3:两条平行的直线确定一个平面. 用集合语言表述://,a b a b α⇒确定平面 (四)例题解析例1如图,正方体1111ABCD A BC D -中,E ,F 分别是111,B C BB 的中点,问:直线EF 和BC 是否相交?如果相交,交点在那个平面内?解:111111E B C E B C EF B C F B B F B C ∈⇒∈⎫⇒⊂⎬∈⇒∈⎭≠平面平面平面 又1BC B C ⊂≠平面,则直线EF 和BC 共面; 1111//EF BC BC B C EF BC EF B C E ⎫⎪⇒⎬⎪⋂=⎭与共面与相交 设直线EF 和BC 相交于点p ,则p 在直线BC 上,即点P 在平面ABCD 上.1D 1C 1B 1A DCBA FE[说明]利用公理1确定直线在平面内.例2 如图,若,,,a b c a b P αβαχβχ⋂=⋂=⋂=⋂=,求证:直线C 必过点P.解:a P b P P c P c c αββαχβχχβχβχ⋂=⎫⎫∈⎧⎪⎪⋂=⇒⇒∈⋂⎬⎨⎪⇒∈∈⎬⎩⎪⋂=⎭⎪⎪⋂=⎭[结论]三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定1个或3个平面.所以四点可以确定1个或3个或无数个平面.[说明]公理3的简单应用.例4空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面? 解:三条直线相交于一点可以确定1个或3个平面; 四条直线相交于一点可以确定1个、4个或6个平面. [说明]推论2的简单应用.例5 如图,AB//CD ,,AB E CD F αα⋂=⋂=,求作BC 与平面α的交点.解:连接EF 和BC ,交点即为所求BC 与平面 的交点.(公理3和公理2)[说明]推论3的简单应用.三、课堂小结1.公理1:确定直线在平面内;2.公理2:平面与平面相交于一直线;3.公理3和三个推论确定平面的条件;四、课后作业练习14.1(1)2 练习14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象——平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.αFBCDEA公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.。
数学立体几何——10.1平面的基本性质
在以后的学习中,我们将经常用到这些记号.
课内练习1
1.能不能说一个平面长2米,宽1米,为什么?
2.画一个平行四边形表示平面,并分别用希腊字母和大写英文字母表示这个平面.
3.分别用大写字母表示图示长方体的六个面所在的平面.
4.用符号表示下列点、线、面间的关系:
1.判断题
(1)如图,我们能说平面与平面只有一个交点A吗?
(2)如图,我们能说平面与平面相交于线段AB吗?
(3)如图,我们能说线段AB在平面内,但直线AB不全在平面内吗?
2.三角形一定是平面图形吗?为什么?
3.一扇门可以自由转动,如果锁住,就固定了,如何解释?
4.怎样检查一张桌子的四条腿的下端是否在同一平面内?
济宁技师学院教案
教师姓名
郑理
授课班级
18计算机
授课形式
新授
授课日期
2019年10月日第周
授课时数
2
授课章节
名称
§9.1平面的基本性质
教学目的
了解平面的表示方法和基本性质
教学重点
平面的基本性质
教学难点
用集合符号表示空间点、直线和平面的关系
更新、补充、删节内容
使用教具
课外作业
课后体会
教案授课教师:郑理
章节内容
基本性质:
(1)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
如图5-29,直线l上两点A,B在平面内,那么 l上所有的点都在平面内,这时我们可以说,直线l在平面内或平面经过直线l.
这个性质常用来判断一条直线是否在一个平面内.
因为平面是可以无限延展的,因此两个平面如果有公共的点,那么延展的结果,它们必定相交于一条直线.由此得平面的第二个基本性质:
平面的基本性质
4.对于四面体ABCD,给出下列四个命题 ①若AB=AC,BD=CD,则BC⊥AD. ②若AB=CD,AC=BD,则BC⊥AD. ③若AB⊥AC,BD⊥CD,则BC⊥AD. ④若AB⊥CD,BD=AC,则BC⊥AD. 其中真命题的序号是__①___④___.定位置 关系的一种较好方法,它的一般步骤是:
平面的基本性质 两条直线的位置关系
知识梳理
一、平面的基本性质
1.公理1:A∈l,B∈l,A∈α,B∈α=>l α
2.公理2:A∈α,A∈β => α∩β=l且A∈l
3.公理3:A、B、C不共线=> A、B、C确定α 4.推论1:Al => A、l 确定α 5.推论2:a∩b=A => a、b确定α 6.推论3:a∥b => a、b确定α
若CD=2AB=2,EF⊥AB,则EF与CD所成的角等于_3_0_°_
3.设a、b是异面直线,则下列四个命题中:
①过a至少有一个平面平行于b; ②过a至少有一个平面垂直于b;
③至少有一条直线与a、b都垂直; ④至少有一个平面分别与a、b
正确的序号是_______①__③__④________
5.空间四点A,B,C,D每两点的距离都为a,动点P,Q PQ 2 a
(2)归谬——由反设及原命题的条件,经过严密的推理,导出矛盾;
【解题回顾】利用两平面交线的惟一性,证明诸点在两
、 平面(的2交)线成上是角证明:空间设诸点共a线的常b用是方法异. 面直线,经过空间任一点O,分别引
直线 a/a /,b/b /,则直线a、b所成的锐角(或直角)叫异面 【解题回顾】据此可思考,若有n条直线互相平行,且都与另一直线相交,欲证这n+1条直线共面该如何进行.
立体几何常见结论
立体几常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面 ,推出点在面), 这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面,或者用同一法证明两平面重合 2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面,无公共点[注]:①两条异面直线在同一平面射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α. ④两条平行线在同一平面的射影图形是一条直线或两条平行线或两点.⑤在平面射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面一点的直线和平面不经过该点的直线是异面直线.(不在任一个平面的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面. (1L 或2L 在这个做出的平面不能叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5).a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面的射影在这个角的平分线上。
第1讲平面及其基本性质讲义
平面及其基本性质知识点1 平面的概念平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象指出: 平面的两个特征:①无限延展②平的(没有厚度)。
平面的表示:一般用一个希腊字母α、β、γ……来表示,还可用平行四边形对角顶点的字母来表示。
平面的画法:在立体几何中,通常画平行四边形来表示平面。
一个平面,通常画成水平放置,通常把平行四边形的锐角画成45 ,横边画成邻边的2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
集合中“∈”的符号只能用于点与直线,点与平面的关系,“⊂”和“ ”的符号只能用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂.知识点3 公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:符号语言:P ∈α,且P ∈β⇒α∩β=l ,且P ∈l .知识点4 公理3 经过不在同一条直线上的三点,有且只有一个平面指出:符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 一条直线和直线外的一点确定一个平面.(证明见课本)指出:推论1的符号语言:A a ∉⇒有且只有一个平面α,使得A α∈,l α⊂推论2 两条相交直线确定一个平面推论3 两条平行直线有且只有一个平面三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 求证:两两相交而不通过同一点的四条直线必在同一平面内。
例3 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.例4 已知平面α、β、γ两两相交于三条直线l 1、l 2、l 3,且l 1、l 2、l 3不平行.求证:l 1、l 2、l 3相交于一点.基础练习:一、选择题:1.下面给出四个命题: ①一个平面长4m, 宽2m; ②2个平面重叠在一起比一个平面厚; ③一个平面的面积是25m 2; ④一条直线的长度比一个平面的长度大, 其中正确命题的个数是( )A. 0B.1C.2D.32.若点N 在直线a 上,直线a 又在平面α内,则点N ,直线a 与平面α之间的关系可记作( ) A、N α∈∈a B、N α⊂∈a C、N α⊂⊂a D、N α∈⊂a3.A,B,C表示不同的点,a, 表示不同的直线,βα,表示不同的平面,下列推理错误的是( ) A.A ααα⊂⇒∈∈∈∈ B B A ,;,B.βαβαβα⋂⇒∈∈∈∈B B A A ,;,=ABC.αα∉⇒∈⊄A A ,D.A,B,C α∈,A,B,C β∈且A ,B ,C 不共线α⇒与β重合4. 空间不共线的四点,可以确定平面的个数为( )A.0 B.1 C.1或4 D. 无法确定5. 空间 四点A ,B ,C ,D 共面但不共线,则下面结论成立的是( )A. 四点中必有三点共线 B. 四点中必有三点不共线C. AB ,BC ,CD ,DA 四条直线中总有两条平行D. 直线AB 与CD 必相交6. 空间不重合的三个平面可以把空间分成( )A. 4或6或7个部分B. 4或6或7或8个部分C. 4或7或8个部分D. 6或7或8个部分7.下列说法正确的是( )①一条直线上有一个点在平面内, 则这条直线上所有的点在这平面内; ②一条直线上有两点在一个平面内, 则这条直线在这个平面内; ③若线段AB α⊂, 则线段AB 延长线上的任何一点一点必在平面α内; ④一条射线上有两点在一个平面内, 则这条射线上所有的点都在这个平面内.A. ①②③B. ②③④C. ③④D. ②③8.空间三条直线交于同一点,它们确定平面的个数为n ,则n 的可能取值为( )A. 1B.1或3C. 1或2或3D.1或 4二、填空题:9.水平放置的平面用平行四边形表示时,通常把横边画成邻边的___________倍.10.设平面α与平面β交于直线 , A αα∈∈B ,, 且直线AB C =⋂ ,则直线AB β⋂=_____________.11.设平面α与平面β交于直线 , 直线α⊂a , 直线β⊂b ,M b a =⋂, 则M_______ .12.直线AB 、AD α⊂,直线CB 、CD β⊂,点E ∈AB ,点F ∈BC ,点G ∈CD ,点H ∈DA ,若直线HE ⋂直线FG=M ,则点M 必在直线___________上.三、解答题:13.判断下列说法是否正确?并说明理由.(1)平行四边形是一个平面; (2)任何一个平面图形都是一个平面;(3)空间图形中先画的线是实线,后画的线是虚线.14.如图,E、F、G、H分别是空间四边形AB、BC、CD、DA上的点,且EH与FG交于点O. 求证:B、D、O三点共线.15.证明梯形是平面图形。
立体几何常见结论
立体几何常见结论1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上.(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3)。
证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2。
空间直线。
(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点。
⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等。
(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线。
(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图)。
(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内。
立体几何基础知识要点
立体几何基础知识要点一、平面.1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
2 .证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样,可根据公理2证明这些点都在这两个平面的公共直线上。
3 .证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
4 .证共面问题一般用落入法或重合法。
5. 经过不在同一条直线上的三点确定一个面.二、空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a,是夹在两平行平面间的线段,若ba=,则b a,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).12方向相同12方向不相同(二面角的取值范围[)180,0∈θ) (直线与直线所成角(]90,0∈θ) (斜线与平面成角()90,0∈θ) (直线与平面所成角[]90,0∈θ) (向量与向量所成角])180,0[∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内.(1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.PO Aa●若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上一、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1图1θθ1θ2图2P αβθM A B O条或者没有.五、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:ChS=(C为底面周长,h是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l CS1=(1C是斜棱柱直截面周长,l是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.正四棱柱侧面与底面边长相等⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩....形..②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分.[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S=(侧面与底l ab c面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:AB⊥CD,AC⊥BD⇒BC⊥AD. 令bACcADaAB===,,得-=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅cabbca=-⇒c bc a则0=⋅ADBC. B CDiii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'F G H BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=.⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)FEH GB CDAO'Or②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V底底侧ACDB ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式. 六、空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若与共线,与共线,则与共线.(×) [当=时,不成立]②向量c b a ,,共面即它们所在直线共面.(×) [可能异面] ③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(≠a , ∥的OR充要条件是存在实数λ(具有唯一性),使λ=.(3)共面向量:若向量使之平行于平面α或在α内,则与α的关系是平行,记作a∥α.(4)①共面向量定理:如果两个向量b a,不共线,则向量P与向量,共面的充要条件是存在实数对x、y使b ya xP+=.②空间任一点...O.和不共线三点......A.、.B.、.C.,则)1(=++++=zyxOCzOByOAxOP是PABC四点共面的充要条件.(简证:→+==++--=zyzyzy)1(P、A、B、C四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x、y、z,使c zb ya xp++=.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使OC zOByOAxOP++=(这里隐含x+y+z≠1).DOABCD注:设四面体ABCD 的三条棱,,,,===其 中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用+=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C =++,则四点P 、A 、B 、C 是共面⇔1x y z ++=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b bb b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔332211=++⇔⊥b a b a b a b a222321a a a ++==(用到常用的向量模与向量之间的转化:a a =⇒⋅=)空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<(a =123(,,)a a a ,b =123(,,)b b b ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). ③.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). ④直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量). ⑤利用法向量求二面角的平面角定理:设21,n n分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n 方向相同,则为补角,21,n 反方,则为其夹角).二面角l αβ--的平面角cos ||||m narc m n θ⋅=或cos ||||m n arc m n π⋅-(m ,n 为平面α,β的法向量).(4)证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB与平面相交).A B七.思想方法:1.计算问题:(1)空间角的计算步骤:一作、二证、三算异面直线所成的角范围:0°<θ≤90°方法:①平移法;②补形法.直线与平面所成的角范围:0°≤θ≤90°方法:关键是作垂线,找射影.二面角方法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;;②三垂线定理及其逆定理;③垂面法. ④射影面积法:S′=S cosθ来计算,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。
高考数学复习之立体几何必考知识点汇总
高考数学复习之立体几何平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定1.定义:若两直线成90°角,则这两直线互相垂直.2.一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a ⊥b,则a⊥c3.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a ⊥α,b⊂α,a⊥b.4.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.5.三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l⊄α,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A∉α,B∉α,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a⊄α,a⊄β,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,bα,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b⊂α)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB⊂α.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∉α,P∈β,β∥α,P∈a,a∥α,则a⊂β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则b⊂α.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S ′=S ·cos α其中S 为二面角一个面内平面图形的面积,S ′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.空间的各种距离点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之. ②将线面距离转化为点面距离,然后运用解三角形或体积法求解之. ③作辅助垂直平面,把求线面距离转化为求点线距离.空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等3直观图:斜二测画法(角度等于45或者135)4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x 轴的线长度不变;(3).画法要写好。
立体几何知识归纳+典型例题+方法总结
立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。
职高数学——立体几何
平面的基本性质一、高考要求:理解平面的基本性质.二、知识要点:1.平面的表示方法:平面是无限延展的,是没有边界的.通常用平行四边形表示平面,平面一般用希腊字母α、β、γ、…来命名,还可以用表示平行四边形的对角顶点的字母来命名.2.平面的基本性质:(1)如果一条直线上的两点在一个平面,那么这条直线上的所有点都在这个平面.这时我们说,直线在平面或平面经过直线.用符号语言表示为:如果A∈a,B∈a,且A∈α,B∈α,则a⊂α.(2)经过不在同一条直线上的三点,有且只有一个平面.也可简单地说成,不共线的三点确定一个平面.它有三个推论:推论1:经过一条直线和直线外的一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.(3)如果两个平面有一个公共点,那么它们就有另外的公共点,并且这些公共点的集合是经过这个点的一条直线.这时我们称这两个平面相交. 用符号语言表示为:如果A∈α,A∈β,则α∩β= ,且A∈ .3.有关概念:如果空间的几个点或几条直线都在同一平面,那么我们就说它们共面;如果构成图形的所有点都在同一平面,则这类图形叫做平面图形;如果构成图形的点不全在同一平面,则这类图形叫做立体图形.直线和平面都是空间的子集,直线又是平面的子集.三、典型例题:例1:已知E、F、G、H分别是空间四边形ABCD各边AB、AD、BC、CD上的点,且EF与GH 相交于点P.求证:点B、D、P在同一直线上.证明: ∵E∈AB, F∈AD又AB∩AD=A∴E、F∈平面ABD∴EF⊂平面ABD同理GH⊂平面CBD∵EF与GH相交于点P∴P∈平面ABD,P∈平面CBD, 又平面ABD∩平面ABD=BD∴P∈BD即点B、D、P在同一直线上.例2:如图,已知直线a∥b,直线m与a、b分别交于点A、B,求证:a、b、m三条直线在同一平面.证明:∵a∥b ∴a、b可以确定一个平面α.∵m∩α=A,m∩β=B, ∴A∈α,B∈α又A∈m,B∈m∴m⊂α. ∴a、b、m三条直线在同一平面.四、归纳小结:1.证明点共线问题常用方法有二:(1)证明这些点都是某两个平面的公共点;(2)由其中两点确定一条直线再证明其它点在这条直线上.2.共面问题证明常用“纳入平面法”一般分为两点:(1)确定平面;(2)证明其余点、线在确定的平面,解题中应注意确定平面的条件.五、基础知识训练:(一)选择题:1.下列说确的是( )A.平面和平面只有一个公共点B.两两相交的三条直线共面C.不共面的四点中,任何三点不共线D.有三个公共点的两平面必重合2.在空间,下列命题中正确的是( )A.对边相等的四边形一定是平面图形B.四边相等的四边形一定是平面图形C.有一组对边平行的四边形一定是平面图形D.有一组对角相等的四边形一定是平面图形3.过空间一点作三条直线,则这三条直线确定的平面个数是( )A.1个B.2个C.3个D.1个或3个4.空间四点,其中三点共线是这四点共面的( )A.充分条件B.必要条件C.充要条件D.既非充分也非必要条件(二)填空题:5.空间三条直线互相平行,但不共面,它们能确定个平面,三条直线相交于一点,它们最多可确定个平面.6.检查一桌子的四条腿的下端是否在同一个平面的方法是. (三)解答题:7.已知A、B、C是平面α外三点,且AB、BC、CA分别与α交于点E、F、G,求证:E、F、G三点共线.8.已知1 ∥2 ∥3 ,且m∩1 =A1,m∩2 = A2,m∩3 =A3,求证: 1 、2 、3 、m四线共面.直线与直线的位置关系一、高考要求:1.掌握两直线的位置关系.掌握空间两条直线的平行关系、平行直线的传递性;2.了解异面直线概念.了解异面直线的夹角、垂直和距离的概念.二、知识要点:1.两条直线的位置关系有三种:(1)平行:没有公共点,在同一平面;(2)相交:有且仅有一个公共点,在同一平面;(3)异面:没有公共点,不同在任何一个平面.2.平行直线的传递性:空间三条直线,如果其中两条直线都平行于第三条直线,那么这两条直线也互相平行.3.异面直线的夹角、垂直和距离的概念:经过空间任意一点,分别作与两条异面直线平行的直线,这两条直线的夹角叫做两条异面直线所成的角.成90º角的两条异面直线叫做相互垂直的异面直线,异面直线a与b垂直,记作a⊥b.和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线,对任意两条异面直线有且只有一条公垂线,两条异面直线的公垂线夹在异面直线间的部分叫做这两条异面直线的公垂线段,公垂线段的长度叫做两条异面直线的距离.三、典型例题:例1:已知空间四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点,求证:EFGH是平行四边形.思考:如果AC=BD,四边形EFGH的形状是;如果AC⊥BD, 四边形EFGH的形状是;如果AC=BD且AC⊥BD, 四边形EFGH的形状是 .例2:如图,长方体ABCD-A1B1C1D1中,已知AA1=1cm,AB=AD=2cm,E是AA1的中点.(1)求证:AC1、BD1、CA1、DB1共点于O,且互相平分;(2)求证:EO⊥BD1,EO⊥AA1;(3)求异面直线AA1和BD1所成角的余弦值;(4)求异面直线AA1和BD1间的距离.四、归纳小结:1.平行线的传递性是论证平行问题的主要依据;等角定理表明角在空间平行移动,它的大小不变.2.两条异面直线所成的角θ满足0º<θ≤90º,且常用平移的方法化为相交直线所成的角,在三角形中求解.五、基础知识训练:(一)选择题:1.在立体几何中,以下命题中真命题的个数为( )(1)垂直于同一直线的两直线平行; (2)到定点距离等于定长的点的轨迹是圆;(3)有三个角是直角的四边形是矩形; (4)自一点向一已知直线引垂线有且只有一条.A.0个B.1个C.2个D.3个2.下列命题中,结论正确的个数是( )(1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等;(3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;(4)如果两条直线同平行于第三条直线,那么这两条直线互相平行.A.1个B.2个C.3个D.4个3.下列关于异面直线的叙述错误的个数是( )(1)不同在任何一个平面的两条直线是异面直线;(2)既不平行也不相交的两条直线是异面直线;(3)连结平面一点与平面外一点的直线和这个平面不经过该点的任意直线是异面直线;(4)分别和两条异面直线同时相交的两条直线一定是异面直线.A.0个B.1个C.2个D.3个4.下列命题中,结论正确的个数是( )(1)若a∥b, a∥c,则b∥c; (2)若a⊥b, a⊥c,则b∥c;(3)若a∥b, a⊥c,则b⊥c; (4)若a⊥b, a⊥c,则b⊥c;A.1个B.2个C.3个D.4个5.教室有一直尺,无论怎样放置,在地面总有这样的直线,它与直尺所在直线( )A.垂直B.平行C.相交D.异面6.设a、b、c为空间三条直线, a∥b, a、c异面,则b与c的位置关系是( )A.异面B.相交C.不相交D.相交或异面7.设a、b、c为空间三条直线, 且c与a、b异面,若a与c所成的角等于b与c所成的角,则a与b的位置关系是( )A.平行B.平行或相交C.平行或异面D.平行或相交或异面8.(2002高职-4)已知m,n是异面直线,直线 平行于直线m,则 和n( )A.不可能是平行直线B.一定是异面直线C.不可能是相交直线D.一定是相交直线(二)填空题:9.平行于同一直线的两直线的位置关系是;垂直于同一直线的两直线的位置关系是.10.若a∥b,c⊥a,d⊥b,则c与d的关系为.11.空间两个角α和β,若α和β两边对应平行,当α=50º时,则角β= .(三)解答题:12..已知A、B和C、D分别是异面直线a、b上的两点,求证:AC和BD是异面直线(要求画出图形,写出已知,求证和证明过程)13.已知正方体ABCD-A1B1C1D1的棱长为1.(1)求直线DA1与AC的夹角;(2)求直线DA1与AC的距离.14.已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE.(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.直线与平面的位置关系一、高考要求:1.掌握直线与平面的位置关系.2.了解直线与平面平行的判定和性质,理解平行投影概念.掌握空间图形在平面上的表示方法.3.掌握直线与平面垂直的判定和性质.理解正射影和三垂线定理及其逆定理.掌握直线与平面所成的角及点到平面距离的概念.二、知识要点:1.直线与平面的位置关系有以下三种:(1)直线在平面:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.2.直线与平面平行的判定:如果平面外一条直线与平面一条直线平行,那么这条直线与这个平面平行.用符号语言表述为:如果a∥b,b⊂α,a α,那么a∥α.直线与平面平行的性质:如果一条直线平行于一个已知平面,且过这条直线的平面和已知平面相交,那么这条直线就和交线平行.用符号语言表述为:如果a∥α,a⊂β,α∩β=b,那么a∥b.3.当直线或线段不平行于投射线时,平行射影具有下述性质:(1)直线或线段的平行射影仍是按或线段;(2)平行线的平行射影仍是平行线;(3)在同一直线或平行直线上,两条线段平行射影的比等于这两条线段的比.4.表示空间图形的平面图形,叫做空间图形的直观图.画直观图通常用斜二测画法.5.直线与平面垂直的判定:如果一条直线垂直于平面两条相交直线,那么这条直线就垂直于这个平面.用符号语言表述为:如果 ⊥a, ⊥b, a⊂α,b⊂α,a∩b=P,那么 ⊥α.直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线互相平行.用符号语言表述为:如果a⊥α, b⊥α,那么a∥b.6.斜线及其在平面的射影:一条直线和一个平面相交但不和它垂直,这条直线称为平面的斜线,斜线和平面的交点称为斜足.从平面外一点向平面引垂线和斜线,从这点到斜足间的线段长,称为从这点到平面间的斜线的长,斜足和垂足之间的线段称为斜线在平面的射影.这点到垂足的距离称为这个点到平面的距离.斜线和它在平面的射影所成的角称为这条斜线与平面所成的角.定理:从平面外一点向平面引垂线和斜线.(1)如果两斜线的射影的长相等,那么两斜线的长相等,射影较长的斜线也较长.(2)如果两斜线长相等,那么射影的长也相等,斜线较长的射影也较长.7.三垂线定理及其逆定理:三垂线定理:平面的一条直线,如果和一条斜线在这个平面的射影垂直,那么这条直线也和这条斜线垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥AO,那么a⊥PA.三垂线逆定理:平面的一条直线,如果和在这个平面的一条斜线垂直,那么这条直线也和这条斜线在平面的射影垂直.用符号语言叙述为:如果PO和PA分别是平面α的垂线和斜线,AO是斜线PA在平面α上的射影,而直线a⊂α,且a⊥PA,那么a⊥AO.三、典型例题:例1:已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.例2: AD、BC分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为30º, AD =8cm,AB⊥BC,DC⊥BC,求线段BC的长.例3:(99高职-22)(本题满分10分)已知平面α,A∈α、B∈α、P α、 ⊂α,在以下三个关系中:AB ⊥ ,PA⊥α,PB⊥ ,以其中的两个作为条件,余下的一个作为结论,构造一个真命题(用文字语言表述,不得出现字母及符号,否则不得分),并予以证明.四、归纳小结:1.在直线与平面的位置关系中,注意掌握通过“线线平行”去判定“线面平行”,反过来由“线面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.平行射影的性质是假定已知线段或直线不平行于投射线得出的.如果平行于投射线,则线段或直线的像是一个点.3.由直线和平面垂直的判定定理可推出许多关于“垂直”的重要性质,其中最重要的有两个:一个是,到两点距离相等的点的轨迹是连结这两点的线段的垂直平分面;另一个是,三垂线定理及其逆定理.这个定理是判定空间线线垂直的一个重要方法,是计算空间中两条直线的夹角和线段长度等有关问题的重要基础.它的证明的思想方法十分重要.4.在直线和平面所成的角中要重点掌握公式:cos θ=cos θ1cos θ2.在公式的基础上得到了“斜线和它在平面的射影所成的角是斜线和这个平面所有直线所成的角中最小的角”的结论.直线与平面所成的角θ满足0º≤θ≤90º.五、基础知识训练:(一)选择题:1.如图,PO ⊥平面ABC,O 为垂足,OD ⊥AB,则下列关系式不成立的是( )A. AB ⊥PDB. AB ⊥PCC. OD ⊥PCD. AB ⊥PO2.直线 与平面α成3π的角,直线a 在平面α,且与直线 异面,则 与a 所成角的取值围是( ) A.⎪⎭⎫⎢⎣⎡32,0π B.⎪⎭⎫⎢⎣⎡32,3ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D.⎥⎦⎤⎢⎣⎡2,3ππ 3.由距离平面α为4cm 的一定点P 向平面α引斜线PA 与平面α成30º的角,则斜足A 在平面α的轨迹图形是( )A.半径为34cm 的圆B.半径为24cm 的圆C.半径为334cm 的圆 D.半径为22cm 的圆 4.设a 、b 是两条异面直线,在下列命题中正确的是( )A.有且仅有一条直线与a 、b 垂直B.有一个平面与a 、b 都垂直C.过直线a 有且仅有一个平面与b 平行D.过空间任一点必可作一条直线与a 、b 都相交5.下列命题中正确的是( )A.若一条直线垂直于一个平面的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面的无数条直线,则这条直线必定垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线平行于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面6.两条直线a 、b 与平面α成的角相等,则a 、b 的关系是( )A.平行B.相交C.异面D.以上三种情况都有可能7.PA,PB,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成角的余弦值为( )A.21 B.36 C.33 D.238.直线a 是平面α的斜线,b ⊂α,当a 与b 成60º的角,且b 与a 在α的射影成45º角时,a 与α所成的角是( )A.60ºB.45ºC.90ºD.135º9.矩形ABCD,AB=3,BC=4,PA ⊥ABCD 且PA=1, P 到对角线BD 的距离为( )A.513B.517C.921 D.12951 10.在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC,PA=8,则P 到BC 的距离为( )A.5B.52C.53D.5411.在直角三角形ABC 中, ∠B=90º,∠C=30º,D 是BC 边的中点,AC=2,DE ⊥平面ABC,且DE=1,则E 到斜边AC 的距离是( )A.25B.27 C.211 D.419 12.已知SO ⊥平面α,垂足O, △ABC ⊂α,点O 是△ABC 的外心,则( )A. SA=SB=SCB. SA ⊥SB,且SB ⊥SCC.∠ASB=∠BSC=∠CSAD. SA ⊥BC(二)填空题:13.如图,C 为平面PAB 外一点,∠APB=90º,∠CPA=∠CPB=60º,且PA=PB=PC=1,则C 到平面PAB 的距离为 .14.在空间四边形ABCD 中,如果AB ⊥CD,BC ⊥AD,那么对角线AC 与BD 的位置关系是 .15.两条直线a 、b 在同一个平面上的射影可能是 .(三)解答题:16.证明直线与平面平行的判定定理.17.从平面外一点P 向平面引垂线PO 和斜线PA,PB.(1)如果PA=8cm,PB=5cm,它们在平面的射影长OA:OB=4:3,求点P 到平面的距离;(2)如果PO=k,PA 、PB 与平面都成30º角,且∠A PB=90º,求AB 的长;(3)如果PO=k,∠OPA=∠OPB=∠A PB=60º,求AB 的长.18.一个正三角形的边长为a,三角形所在平面外有一点P.(1)P 到三角形三顶点的距离都是332a,求这点到三角形各顶点连线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离;(2)P 到三角形三条边的距离都是66a,求这点到三角形各边所作垂线与三角形所在平面成的角的大小以及这点到三角形所在平面的距离.19.已知直角△ABC 在平面α上, D 是斜边AB 的中点, DE ⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA,EB,EC 的长.20.如图,平面α∩β=CD,EA ⊥α,EB ⊥β,且A ∈α,B ∈β.求证:(1)CD ⊥平面EAB;(2)CD ⊥直线AB.21.已知PO ⊥平面ABO,PB ⊥AB,又知∠PAB=α,∠PAO=β,∠OAB=γ.求证:cos α=cos βcos γ.22. 已知正方体ABCD-A 1B 1C 1D 1.(1)求直线DA 1与AC 1的夹角;(2)求证:AC 1⊥平面A 1BD.平面和平面的位置关系一、高考要求:1.掌握平面和平面的位置关系.2.了解平面与平面的判定与性质,理解二面角概念,掌握平面与平面垂直的判定与性质.二、知识要点:1.平面和平面有以下两种位置关系:(1)平行:没有公共点;(2)相交:有一条公共直线.2.平面与平面平行的判定:如果一个平面的两条相交直线都平行于另一个平面,那么这两个平面互相平行.用符号语言表述为:如果a∩b≠Φ, a⊂α,b⊂α,且a∥β,b∥β,那么α∥β.平面与平面平行的性质:如果两个平行平面同时与第三个平面相交,则它们的交线平行.用符号语言表述为:如果α∥β,γ∩α=a,γ∩β=b,那么a∥b.3.二面角:由一条直线引两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,构成二面角的两个半平面称为二面角的面.在二面角的棱上任取一点,过这点在二面角的两个半平面分别作棱的垂线,这两条垂线相交所成的角称为二面角的平面角.二面角的大小可用它的平面角来度量.平面角是直角的二面角叫做直二面角.4.平面与平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.用符号语言表述为:如果直线AB⊂平面α,AB⊥β,垂足为B,那么α⊥β.平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面.用符号语言表述为:如果α⊥β, α∩β=CD,AB⊂α, AB⊥CD,B为垂足,那么AB⊥β.三、典型例题:例1:试证明:如果两个平面垂直,那么在一个平面,垂直于它们交线的直线垂直于另一个平面. 例2:已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.例3:已知平面β⊥平面α,平面γ⊥平面α,且平面β∩平面γ=a,求证:a⊥α.四、归纳小结:1.在平面与平面的位置关系中,注意掌握通过“线面(或线线)平行”去判定“面面平行”,反过来由“面面平行”去判定“线线平行”;通过“线线垂直”去判定“线面垂直”,反过来由“线面垂直”去判定“线线垂直”.2.二面角θ满足0º≤θ≤180º.求二面角的大小分两步:(1)找出二面角的平面角;(2)在三角形中求解平面角.五、基础知识训练:(一)选择题:1.设a、b、c表示直线,α、β、γ表示平面,下面四个命题中,;①若a⊥c, b⊥c,则a∥b ②若α⊥γ,β⊥γ,则α∥β③若a⊥c, b⊥α,则a∥α④若a⊥α, a⊥β,则α∥βA.①和②B.③和④C.②D.④2.如图,木工师傅在检查工件相邻的两个面是否垂直时,常用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.这种检查方法的依据是( )A.平面的基本性质B.三垂线定理C.平面和平面垂直的判定定理D.直线和平面垂直的判定定理3.已知直线 ⊥平面α,直线m⊂平面β,有下面四个命题:①α∥β⇒ ⊥m;② ∥m ⇒α⊥β;③α∥β⇒ ∥m;④ ⊥m⇒α∥β.其中正确的两个命题是( )A.①与②B.③与④C.②与④D.①与③4.如果直线 ,m与平面α、β、γ满足: =β∩γ, ∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且 ⊥mB.α⊥γ且m∥βC. m∥β且 ⊥mD.α∥β且α⊥γ5.对于平面α、β和直线 、m,则α⊥β的一个充分条件是( )A. ⊥m, ∥α,m∥βB. ⊥m,α∩β= ,m⊂αC. ∥m, m⊥β, ⊂αD. ∥m, ⊥α,m⊥β6.若异面直线a、b, a⊂α, b⊂β,则平面α、β的位置关系一定是( )A.平行B.相交C.平行或相交D.平行或相交或重合7.下列命题中,正确的是( )(1)平行于同一直线的两平面平行 (2)平行于同一平面的两平面平行 (3)垂直于同一直线的两平面平行 (4)垂直于同一平面的两平面平行A.(1)(2)B.(2) (3)C.(3)(4)D.(2)(3)(4)8. 过平面外一点P,(1)存在无数个平面与平面α平行 (2)存在无数个平面与平面α垂直(3)存在无数条直线与平面α垂直 (4)只存在一条直线与平面α平行其中正确的有( )A.1个B.2个C.3个D.4个9. 设正方形ABCD 的边长为64,PA ⊥平面AC,若PA=12,则二面角P-BD-C 的大小为( )A.3πB.4πC.2πD.32π (二)填空题:10. 已知二面角是60º,在它的部有一点到这个二面角的两个半平面的垂线段长都是a,则两个垂足间的距离是 .11. 在二面角的一个面有一个已知点A,它到棱的距离是它到另一个面的距离的2倍,则这个二面角的度数是 .12. 有如下几个命题:①平面α与平面β垂直的充分必要条件是α有一条直线与β垂直;②平面α与平面β平行的一个必要而不充分的条件是α有无数条直线与β平行;③直线a 与平面β平行的一个充分而不必要的条件是β有一条直线与直线a 平行.其中正确命题的序号是 .13. 设m 、 为直线,α、β为平面,给出下列命题: ① 垂直于α的两条相交直线,则 ⊥α;②若m ∥α,则m 平行于α的所有直线;③若 ⊥α,α∥β,则 ⊥β;④若m ⊂α, ⊂β,且 ⊥m ,则α⊥β;⑤若m ⊂α, ⊂β,且α∥β,则m ∥ .其中正确的命题是(只写序号) .14. 已知直线 和平面α、β,给出三个论断:① ⊥α,② ∥β,③α⊥β,以其中的二个论断作为条件,余下的一个作为结论,写出你认为正确的一个命题 .15. α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .16. 设X,Y,Z 是空间不同的直线或平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y ”为真命题的是 .①X,Y,Z 是直线; ②X,Y 是直线,Z 是平面; ③X,Y 是平面,Z 是直线; ④X,Y,Z 是平面. 设两个平面α、β相交于m,且直线a ∥α,a ∥β则直线a 与m 的关系是 .17. 如图,直线AC 、DF 被三个平行平面α、β、γ所截,AC=15cm,DE=5cm,AB:BC=1:3,则AB 的长是 ,EF 的长是 .18. 二面角α- -β的度数为θ(0≤θ≤2π),在α面有△ABC, △ABC 在β的正射影为△A ´B ´C ´, △ABC 的面积为S,则△A ´B ´C ´的面积S ´= .(三)解答题:19.已知一个二面角是60º,在它的部一点到这个二面角的两个半平面的距离都是3,求两个垂足间的距离.20.已知:在60º二面角的棱上,有两个点A、B,AC、BD分别在这个二面角的两个面,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长.翻折问题 一、高考要求: 掌握立体几何中图形翻折问题的解法.二、知识要点:解决翻折问题要求:①根据题意作出折叠前、后的图形; ②分析折叠前、后边、角及其之间的关系哪些发生变化,哪些未发生变化;③寻找解决问题的方法并正确解答问题.三、典型例题:例1:已知△ABC 中,AB=AC=2,且∠A=90º(如图(1)所示),以BC 边上的高AD 为折痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C 到平面ABD 的距离;③求平面ABD 与平面ABC 所成的二面角的正切值.例2:已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成60º的二面角,求B 、D 两点之间的距离.四、归纳小结:1.折叠前一般是平面图形,用平面几何知识解答即可,折叠后是立体图形,要用立体几何知识解答;2.未发生变化的量可在折叠前的图形中解答,发生变化的量在折叠后的图形中解答.五、基础知识训练:(一)选择题:1. 以等腰直角△ABC 斜边BC 上的高AD 为折痕,折叠时使二面角B-AD-C 为90º,此时∠BAC 为( )A.30ºB.45ºC.60ºD.90º2. 把边长为a 的正△ABC 沿高AD 折成60º的二面角,则点A 到BC 的距离是( )A.aB.a 26C.a 33D.a 4153. 已知边长为a 的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120º的二面角,则AC 的长为( )A.a 22B.a 23C.a 23 D.a 2 (二)填空题:4. E 、F 分别是正方形ABCD 的边AB 和CD 的中点,EF 交BD 于O,以EF 为棱将正方形折成直二面角,则∠BOD= .5. 如图,ABCD 是正方形,E 是AB 的中点,如将△DAE 和△CBE 分别沿虚线DE 和CE 折起,使AE 与BE 重合,记A 与B 重合后的点为P,则面PCD 与面ECD 所成的二面角为 度.(三)解答题:6. 一个直角三角形的两条直角边各长a 与b,沿其斜边上的高h 折成直二面角,试求此时a 与b 两边夹角α的余弦.7. 把长宽各为4与3的长方形ABCD 沿对角线AC 折成直二面角,试求顶点B 与D 的距离.8. 已知等腰梯形ABCD,AB ∥CD,上底=4,下底=6,高=3,沿它的对角线AC 折成90º的二面角,求B 、D 两点之间的距离.空间图形性质的应用一、高考要求:掌握空间图形的性质在测量和实际问题中的应用.二、知识要点:1.空间图形的性质在测量中的应用;2.空间图形的性质在实际问题中的应用.三、典型例题:例1:如图,道路 旁有一条河,对岸有一铁塔CD高a米,如果你手中只有测角器和皮尺(刻度米尺),不渡河能否测量出塔顶C与道路的距离.请说出你的测量方法,并求出该距离.例2:斜坡平面α与水平平面β相交于坡脚 ,且成30º的二面角,在平面α沿一条与 垂直的小路上坡,每前进100米升高多少米?如果沿一条与坡脚 成45º角的小路上坡,仍升高这么高,前进了多少米?四、归纳小结:空间图形的性质在测量和实际问题中的应用,重点在于理解题意,画好能正确表示题意的图形,并运用空间图形的性质解题.五、基础知识训练:(一)填空题:1.正方体的棱长为a,有一小虫,在正方体的表面上从顶点A爬到顶点C´,则小虫爬行的最短距离是 .2.在一长方体形的木块的面A1C1上,有一点P,过点P在平面A1C1画一条直线和CP垂直.(二)解答题:3.如图,所测物体BB´垂直于水平面α于点B´,底端B´不能到达.在α取一点A,测得∠BAB´=θ1,引基线AC,使∠B´AC=θ2,在AC上取一点D,使BD⊥AC,又测得AD=a,求物体BB´的高度.。
高考一轮复习第七章 第三节 平面的基本性质及两直线的位置关系
返回
怎 么 考 1.从高考内容上来看,多以空间几何体为载体考查点、线面 间的位置关系及异面直线问题.
2.高考中各种题型均有涉及,难度中、低档.
返回
返回
一、平面的基本性质及推论 1.平面的基本性质: 基本性质1:如果一条直线上的 两点在一个平面内,那么 这条直线上的所有点都在这个平面内. 基本性质2:经过 不在同一直线上 的三点,有且只有一个平 面.
(1)求AH∶HD;
(2)求证:EH、FG、BD三线共点.
返回
AE CF 解:(1)∵EB=FB=2,∴EF∥AC. ∴EF∥平面 ACD. 而 EF⊂平面 EFGH,且平面 EFGH∩平面 ACD=GH, ∴EF∥GH.而 EF∥AC.∴AC∥GH. AH CG ∴HD=GD=3,即 AH∶HD=3∶1.
返回
EF 1 GH 1 (2)证明:∵EF∥GH,且AC= , AC = , 3 4 ∴EF≠GH.∴四边形 EFGH 为梯形. 令 EH∩FG=P,则 P∈EH,而 EH⊂平面 ABD,P∈ FG,FG⊂平面 BCD,平面 ABD∩平面 BCD=BD, ∴P∈BD.∴EH、FG、BD 三线共点.
返回
[高手点拨] 找与三条异面直线都相交的直线,可以转化成在一
个平面内作与三条直线都相交的直线,因而可考虑过一
条直线及另外一条直线上的一点作平面,进而研究公共 交线问题,本题解法较多,但关键在于构造平面,要求 考生具有较强的空间想象能力.
返回
点击此图进入
返回
1 1 是直角梯形,∠BAD=∠FAB=90° ,BC 綊 AD,BE 綊 2 2 FA,G、H 分别为 FA、FD 的中点.
返回
(1)证明:四边形BCHG是平行四边形; (2)C、D、F、E四点是否共面?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识点:
1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚)②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等
3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:
图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法)
A a A a ∈点A 在直线a 上 a α
a α⊂ 直线a 在平面α内 A a A a ∉点A 不在直线a 上 a αa α=∅直线a 与平面α无公共点
A α∈点A 在平面α内
a A α= 直线a 与平面α交于点A A αA α∉点A 不在平面α内
a b A = 直线a 、b 交于A
点 l αβ=平面α、β相交于直线l
α⊄a (平面α外的直线a )表示a α=∅(a α)或a A α=
4
公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内
推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.
公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:
应用:①确定两相交平面的交线位置;②判定点在直线上
公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.
公理3 经过不在同一条直线上的三点,有且只有一个平面
推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈
应用:①确定平面;②证明两个平面重合
“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形
6公理的推论:
推论1 经过一条直线和直线外的一点有且只有一个平面.
推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂
推论2 经过两条相交直线有且只有一个平面
推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂
推论3 经过两条平行直线有且只有一个平面
推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂二、基本题型:
1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( )
A .∵αα∈∈
B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα .
C .∵α⊂∈a a A ,,∴A α∈.
D .∵α⊂∉a a A ,,∴α∉A .
2.下列推断中,错误的是( )
A .αα⊂⇒∈∈∈∈l
B l B A l A ,,,
C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合
B .B B A A =⇒∈∈∈∈βαβαβα ,,, D .α∉⇒∈⊄A l A l ,
3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.
4.判断下列命题的真假,真的打“√”,假的打“×”
(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )
(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )
(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( ) (7)一条直线和一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )
5.看图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =
(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =
(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题
(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形
(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个 B 4个C 6个 D 8个
(3)空间四点中,无三点共线是四点共面的 ( )
(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要
7.已知直线a //b //c ,直线
d 与
a 、
b 、
c 分别相交于A 、B 、C ,求证:a 、b 、c 、
d 四线共面.
1
答案:1. C 2. D 3. 2,4,8 4. ⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×
5.⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 1
6. 答案:⑴ D ⑵ C ⑶ D
7. 证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂ 又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂ 下面用反证法证明直线c α⊂:
假设c α⊄,则c C α=,在平面α内过点C 作c b ',
因为b //c ,则c c ',此与c
c C '=矛盾.故直线c α⊂. 综上述,a 、b 、c 、
d 四线共面.。