鲁教版八年级上学期数学期中测试卷A卷
鲁教版八年级数学上学期期中试卷及答案
A.— cm
6
根据图中所标注的尺寸,
这支蜡烛在暗盒中所成的
)
D1
B.—cm
3
C.
二、填空题(每小题
3分,
1 ,
cmI
2
共24分)
D. 1cm
13.已知-.=1,则分式
的值为•
2x-你-13
14.某市今年起调整居民用水价格,每立方米水费上涨20%小方家去年12月份的水费是
26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为,.元/立方米,则所列方程为.
bkm/h的速度行走另一半
3.
半路程;小刚骑自行车以km/h的速度行走全程时间的一半,又以
时间(■工b),则谁走完全程所用的时间较少?()
A.小明B.小刚C.时间相同D.无法确定
4.某商店销售一种玩具,每件售价92元,可获利15%求这种玩具的成本价.设这种玩具
的成本价为,元,依题意列方程正确的是()
A.9cmB 14cmC 15cmD 18cm
11.如图,在平行四边形ABCD^(AB^ BC),直线EF经过其对角线的交点O,且分别交AD
BC
③厶EAMh^EBN④厶EA3ACNO其中正确的是()
A.①②B.②③C.②④D.③④
F
第11题图
第12题图
12.如图所示是小孔成像原理的示意图, 像CD的长是(
7.如图,设
)
左下C.右上
M N分别是直角梯形
如图是视力表的一部
E”中的哪一个是位
D.
ABCD
右下
标准对数视力夷
4.0
居
O Q11134 2
【鲁教版】初二数学上期中试卷(及答案)(1)
一、选择题1.若实数a ,b 满足a 2-4a +4+(b -4)2=0,且a ,b 恰好是等腰△ABC 两条边的长,则△ABC 周长为( )A .8B .8或10C .12D .102.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .3.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°4.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线5.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA6.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等7.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .128.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 9.一个多边形的外角和是360°,这个多边形是( ) A .四边形B .五边形C .六边形D .不确定 10.如果一个三角形的三边长分别为5,8,a .那么a 的值可能是( ) A .2B .9C .13D .15 11.下列每组数分别三根小木棒的长度,用它们能摆成三角形的是( )A .3,4,8cm cm cmB .7,8,15cm cm cmC .12,13,22cm cm cmD .10,10,20cm cm cm12.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°二、填空题13.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.14.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°.15.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD △与ABC 全等,点D 的坐标是______.16.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)17.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.18.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .19.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题21.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C .(1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,32-)、3(8484)P +-,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)22.如图,在平面直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)作出ABC 关于y 轴的对称图形A B C ''';(2)写出点A ',B ',C '的坐标;(3)在y 轴上找一点P ,使PA PC +最短(不写作法).23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.25.如图,BP 平分ABC ∠,交CD 于点F ,DP 平分ADC ∠交AB 于点E ,AB 与CD 相交于点G ,42A ∠=︒.(1)若60ADC ∠=︒,求AEP ∠的度数;(2)若38C ∠=︒,求P ∠的度数.26.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由已知等式,结合非负数的性质求a 、b 的值,再根据等腰三角形的性质,分类求解即可.【详解】解:∵a 2-4a +4+(b -4)2=0,∴(a -2)2+(b -4)2=0,∴a−2=0,b−4=0,解得:a =2,b =4,当a =2作腰时,三边为2,2,4,不符合三角形三边关系定理;当n =4作腰时,三边为2,4,4,符合三角形三边关系定理,周长为:2+4+4=10. 故选:D .【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求a ,b 的值,再根据a 或b 作为腰,分类求解.2.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A .【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.3.A解析:A【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.4.D解析:D【分析】对每个选项一一分析即可得到正确答案.【详解】解:A 、错误,正确的说法是:含30°的直角三角形中 30°的对边等于最长边的一半; B 、错误,例如a =1,b=2,满足a + b = 3 , ab = 2,但不满足a - b = 1;C 、错误,到三角形三边所在直线距离相等的点有4个,在三角形内部的有一个,是三个内角角平分线的交点,在三角形的外部还有三个,是三角形的外角角平分线的交点;D 、正确,等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线,都在等腰三角形的底边的垂直平分线上,故选:D .【点睛】本题考查了含30°的直角三角形的性质,等腰三角形的性质,三角形的角平分线的性质,熟练掌握相关图形的性质是解决本题的关键.5.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.6.B解析:B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A 、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B 、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C 、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D 、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B .【点睛】此题考查全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.7.A解析:A【分析】根据两条平行线之间的距离可知当CD ⊥OM 时,CD 取最小值,先利用角平分线的性质得出AD =AE =3,利用全等三角形的判定和性质得出AC =AD =AE =3,进而解答即可.【详解】解:由题意得,当CD ⊥OM 时,CD 取最小值,∵OB 平分∠MON ,AE ⊥ON 于点E ,CD ⊥OM ,∴AD =AE =3,∵BC ∥OM ,∴∠DOA =∠B ,∵A 为OB 中点,∴AB =AO ,在△ADO 与△ABC 中B DOA AB AO BAC DAO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADO ≌△ABC (SAS ),∴AC =AD =3,∴336CD AC AD =+=+=,故选A .【点睛】此题考查角平分线的性质、全等三角形的判定和性质、平行线之间的距离,关键是利用全等三角形的判定和性质得出AC =AD =AE =3.8.D解析:D【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可.【详解】解:设点Q 的运动速度是x cm/s ,∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况:①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.9.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.10.B解析:B【分析】根据三角形三边关系得出a的取值范围,即可得出答案.【详解】解:8-5<a<8+53<a<13,故a的值可能是9,故选:B.【点睛】本题考查了三角形三边关系,掌握知识点是解题关键.11.C解析:C【分析】根据三角形两边之和大于第三边,两边之差小于第三边计算判断即可.【详解】∵3+4<8,∴A选项错误;∵7+8=15,∴B选项错误;∵12+13>22,∴C选项正确;∵10+10=20,∴D选项错误;故选C.【点睛】本题考查了三角形的存在性,熟练掌握三角形的三边关系定理是解题的关键.12.A解析:A【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,即可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-510°=30°.故选:A.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.二、填空题13.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC为等腰三角形AD为底边上的高∴AB=ACBD=DC∵△ABC的周长等于36∴AB+BD+DC+A解析:30【分析】△的周长.根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD【详解】∵△ABC为等腰三角形,AD为底边上的高,∴AB=AC,BD=DC,∵△ABC的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.14.【分析】先根据三角形的内角和定理求出∠A的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC≌△DEF∴∠D=∠A=故答案为:【点睛】此题考查全等三角解析:70︒【分析】先根据三角形的内角和定理求出∠A 的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.15.或【分析】分情况:当△ABC ≌△ABD 时△ABC ≌△BAD 时利用全等三角形的性质解答即可【详解】分两种情况:当△ABC ≌△ABD 时AB=ABAD=ACBD=BC ∵点AB 在y 轴上∴△ABC 与△ABD 关解析:()4,3-或()4,2-【分析】分情况:当△ABC ≌△ABD 时,△ABC ≌△BAD 时,利用全等三角形的性质解答即可.【详解】分两种情况:当△ABC ≌△ABD 时,AB=AB ,AD=AC ,BD=BC ,∵点A 、B 在y 轴上,∴△ABC 与△ABD 关于y 轴对称,∵C (4,3),∴D (-4,3);当△ABC ≌△BAD 时,AB=BA ,AD=BC ,BD=AC ,作DE ⊥AB ,CF ⊥AB ,∴DE=CF=4,∠AED=∠BFC=90︒,∴△ADE ≌△BCF ,∴AE=BF=4-3=1,∴OE=OA+AE=1+1=2,∴D (-4,2),故答案为:()4,3-或()4,2-.【点睛】此题考查全等三角形的判定及性质,确定直角坐标系中点的坐标,轴对称的性质,熟记全等三角形的性质是解题的关键.16.AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB =∠ACD ,则△ABC ≌△ADC (ASA );若添加条件∠ABC =∠ADC ,则△ABC ≌△ADC (AAS );故答案为:AB =AD (答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答. 17.2【分析】通过证明≌得到即可求解【详解】解:∵∴∵∴∴∴在和中∴≌∴∴故答案为:2【点睛】本题考查全等三角形的判定与性质掌握全等三角形的判定与性质是解题的关键解析:2【分析】通过证明CBE △≌BAD ,得到7BD CE ==,5BE AD ==,即可求解. 【详解】解:∵90ABC ∠=︒,∴90ABD CBE ∠+∠=︒,∵AD BD ⊥,CE BD ⊥,∴90CEB D ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∴CBE BAD ∠=∠,在CBE △和BAD 中,CEB D CBE BAD CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌BAD ,∴7BD CE ==,5BE AD ==,∴2DE BD BE =-=,故答案为:2.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键. 18.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵ F 是CE 的中点,23AEF S cm ∆=∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆= , ∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.19.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数再由三角形内角与外角的性质可求出∠ADF 的度数由AF ⊥BC 可求出∠AFD=90°再由三角形的内角和定理即可解答【详解】∵AF 是的高∴在中∴解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒ 20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 20.15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数再由补角的定义得出∠BDF 的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题21.(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴∴∠ABO=90°∵A 在y x =-上∴设(,)A a a -则AB=OB=a即△ABO 为等腰直角三角形在Rt △AOB 中∵222AB OB OA +=∴2232a a +=∴a=±4(负值舍去)∴(44)A -,(2)如图,过点C 作CM ⊥x 轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM ⊥x 轴,CG ⊥AB∴CM= CG∵OC 平分∠AOB ,CM ⊥x 轴 CH ⊥OE∴CM= CH∴CG =CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5°∵OC 平分∠AOB ,BC ∥OE∴∠BOC=∠COA ,∠BCO=∠COA∴∠BOC=∠BCO∴BO=BC=AB又∠ABC =45°∴∠BAC=∠BCA=67.5°∴∠ACP=112.5°∴∠ACP=∠BDC又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB∴∠APC=∠DBC=45°∴△APB 为等腰直角三角形∴AP=AB=OB=4∴P (8,-4)②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P -∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上,连接1CP,45CG AB CBG ⊥∠=︒BCG ∴是等腰直角三角形,CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+==4BG CG BC ∴===(4C ∴+-144CP ∴=+=11,//CP BC CP x ∴=轴145CP A BOA CBD ∴∠=∠=∠=︒190,PGA ∠=︒ 145P AG ∴∠=︒1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=,2P ∴在BA 的延长线上,连接22,AP CP67.5BAC ∠=︒2180112.5CAP BAC ∴∠=︒-∠=︒2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴=CG AB ⊥245AP C ∴∠=︒2AP C ABC ∴∠=∠在BCD △与2P CA 中,22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅3P,点C的横坐标为4,3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -3444(4)AQ PQ ∴=-==--=3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)见解析;(2)(1,5)A ',(1,0)B ',3)(4,C ';(3)见解析【分析】(1)根据轴对称的性质确定点,,A B C ''',顺次连线即可得到图形;(2)根据点的位置直接得解;(3)连接AC '与y 轴交于一点即为点P ,连接PC ,此时AP+PC 最短.【详解】解:(1)如图所示,A B C '''为所求作.(2)由图可得,(1,5)A ',(1,0)B ',4,3)C '.(3)如图所示,点P 即为所求作.【得解】此题考查轴对称的性质,轴对称作图,点的坐标,最短路径问题,正确理解轴对称的性质作出图形是解题的关键.23.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.(1)见解析;(2)A(32,52)或(52,-32). 【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.(1)72︒;(2)40︒.【分析】(1)根据角平分线的定义可得∠ADP=12ADC ∠ ,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF ,∠CBP=∠PBA ,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,所以∠A+∠C=2∠P ,即可得解.【详解】解:(1)∵DP 平分∠ADC ,∴∠ADP=∠PDF=12ADC ∠, ∵60ADC ∠=︒,∴30ADP ∠=︒,∴304272AEP ADP A ∠=∠+∠=︒+︒=︒;(2)∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠ADP=∠PDF ,∠CBP=∠PBA ,∵∠A+∠ADP=∠P+∠ABP ,∠C+∠CBP=∠P+∠PDF ,∴∠A+∠C=2∠P ,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°. 【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.26.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P ∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.。
【鲁教版】初二数学上期中试卷(含答案)
一、选择题1.如图,在等腰三角形ABC 中,,36,AB AC A D =∠=是AC 的中点,ED AC ⊥交AB 于点E ,已知6,2AC DE ==,则BC 的长为( )A .13B .32C .40D .20 2.已知点A 是直线l 外的一个点,点B ,C ,D ,E 是直线l 上不重合的四个点,再添加①AB AC =;②AD AE =;③BD CE =中的两个作为题设,余下的一个作为结论组成一个命题,组成真命题的个数为( ).A .0B .1C .2D .3 3.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .40 4.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30 B .60︒ C .40︒或50︒ D .30或60︒ 5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 6.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.110<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .37.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠D .PC PE =8.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等 9.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .12 10.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 11.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 12.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米二、填空题13.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)14.如图,在四边形ABCD 中,130DAB ∠=︒,90D B ∠=∠=︒,点M ,N 分别是CD ,BC 上两个动点,当AMN 的周长最小时,AMN ANM ∠+∠的度数为_________.15.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.16.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.17.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.18.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).19.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线20.如图,把ABC 折叠,点B 落在P 点位置,若12120∠+∠=︒,则B ∠=______.三、解答题21.如图,网格中小正方形的边长为1,(1)画出△ABC 关于x 轴对称的△A 1B 1C 1(其中A 1、B 1、C 1分别为A 、B 、C 的对应点); (2)△ABC 的面积为 ;点B 到边AC 的距离为 ;(3)在x 轴上是否存在一点M ,使得MA +MB 最小,若存在,请直接写出MA +MB 的最小值;若不存在,请说明原因22.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.23.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.24.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.25.如果一个n 边形的内角都相等,且它的每一个外角与内角的比为2:5,求这个多边形的边数n .26.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A,再根据三角形内角和等于180°求出∠B=72°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,然后根据等角对等边的性质和勾股定理解答.【详解】解:∵D是AC的中点,ED AC⊥交AB于点E,∴ED垂直平分AC,∴AE=CE,∴∠ECD=∠A,∵∠A=36°,∴∠ECD=36°,∵AB=AC,∠A=36°,∴∠B=12(180°-36°)=72°,∵∠ECD=∠A=36°,∴∠BEC=∠ECD+∠A=36°+36°=72°,∴∠B=∠BEC,∴BC=CE,∵AE=CE,ED⊥AC,∴CD=12AC=3,在Rt△CED中,22222313 DE CD++∴BC=13,故选A.【点睛】本题考查了等腰三角形三线合一的性质,勾股定理,线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角以及等角对等边的性质,熟练掌握有关性质是解题的关键.2.D解析:D【分析】写出所组成的三个命题,然后根据等腰三角形的判断与性质对各命题进行判断.【详解】解:根据题意吧,如图:由等腰三角形的性质和全等三角形的判定定理,易证△ABD≌△ACE;命题1:若AB=AC,AD=AE,则BD=CE,此命题为真命题;命题2:若AB=AC,BD=CE,则AD=AE,此命题为真命题;命题3:若AD=AE,BD=CE,则AB=AC,此命题为真命题.故选:D.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,以及命题真假的判断,解题的关键是熟练掌握所学的知识,正确的判断命题的真假.3.C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C.【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想.4.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 5.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.B解析:B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.110<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B .【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提. 7.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.8.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.9.B解析:B【分析】根据三角形的三边关系定理可得7-4<x<7+4,计算出不等式的解集,再确定x的值即可.【详解】设第三边长为x,则7-4<x<7+4,3<x<11,∴A、C、D选项不符合题意.故选:B.【点睛】考查了三角形的三边关系,解题关键是掌握第三边的范围:大于已知的两边的差,而小于两边的和.10.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】︒÷=︒,3601036∴正五边形的每个外角等于36︒,故选:A.【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.11.C解析:C【分析】设选取的木棒长为xcm,再根据三角形的三边关系求出x的取值范围,选出合适的x的值即可.【详解】解:设选取的木棒长为xcm,∵两根木棒的长度分别为5cm和13cm,∴13cm-5cm<x<13cm+5cm,即8cm<x<18cm,∴12cm的木棒符合题意.故选:C.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.12.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×9=72(m).故选:A.【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.二、填空题13.①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ为AD的垂直平分线∴PA=PDQA=QD∴在△APQ和△DPQ中∴△APQ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ为AD的垂直平分线,∴PA=PD,QA=QD,∴在△APQ和△DPQ中,PA PD PQ PQ QA QD =⎧⎪=⎨⎪=⎩,∴△APQ ≌△DPQ (SSS ),①正确;②如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,∴在△APQ 和△DQP 中,AQ DP AQP DPQ QP PQ =⎧⎪∠=∠⎨⎪=⎩,∴△APQ ≌△DQP (SAS ),②正确 ;③如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,同理∠DQP=∠APQ ,∴在△APQ 和△DQP 中,DPQ AQP PQ PQDQP APQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APQ ≌△DQP (ASA ),③正确 ;④如图,△APQ≌△DPQ不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.14.100°【分析】作点A关于BC的对称点A′关于CD的对称点A″根据轴对称确定最短路线问题连接A′A″与BCCD的交点即为所求的点MN利用三角形的内角和定理列式求出∠A′+∠A″再根据轴对称的性质和三解析:100°【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【详解】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°-∠130°=50°,由轴对称的性质得:A′N= AN,A″M=AM∴∠A′=∠A′AN,∠A″=∠A″AM,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M 、N 的位置是解题的关键,要注意整体思想的利用.15.61°【分析】首先利用直角三角形的性质求得∠ABC 的度数然后利用角平分线的判定方法得到BD 为∠ABC 的平分线再求出∠ABD 的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC 的度数,然后利用角平分线的判定方法得到BD 为∠ABC 的平分线,再求出∠ABD 的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB =90°,∴∠CBA=58°,∵DE ⊥AB ,DC ⊥BC ,DC=DE ,∴BD 为∠ABC 的平分线,∴∠CBD=∠EBD ,∴∠CBD=12∠CBA=12×58°=29°, ∴∠BDC=∠A+∠ABD=32°+29°=61°. 故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD 为∠ABC 的平分线,难度不大.16.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.17.2【分析】通过证明≌得到即可求解【详解】解:∵∴∵∴∴∴在和中∴≌∴∴故答案为:2【点睛】本题考查全等三角形的判定与性质掌握全等三角形的判定与性质是解题的关键解析:2【分析】通过证明CBE △≌BAD ,得到7BD CE ==,5BE AD ==,即可求解. 【详解】解:∵90ABC ∠=︒,∴90ABD CBE ∠+∠=︒,∵AD BD ⊥,CE BD ⊥,∴90CEB D ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∴CBE BAD ∠=∠,在CBE △和BAD 中,CEB D CBE BAD CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌BAD ,∴7BD CE ==,5BE AD ==,∴2DE BD BE =-=,故答案为:2.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键. 18.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD ∥OB ∠EFD =α∴∠EOB =∠EFD =α∵OE 平分∠AOB ∴∠COF =∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD ∥OB ,∠EFD =α,∴∠EOB =∠EFD =α,∵OE 平分∠AOB ,∴∠COF =∠EOB =α,故①正确;∠AOB =2α,∵∠AOB +∠AOH =180°,∴∠AOH =180°﹣2α,故②正确;∵CD ∥OB ,CH ⊥OB ,∴CH ⊥CD ,故③正确;∴∠HCO +∠HOC =90°,∠AOB +∠HOC =180°,∴∠OCH =2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.19.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n=14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.20.60°【分析】先根据折叠的性质得∠3=∠4∠5=∠6再利用平角的定义得∠3+∠4+∠1=180°∠5+∠6+∠2=180°根据等式的性质得到2∠4+∠1+2∠6=360°把∠1+∠2=120°代入得解析:60°【分析】先根据折叠的性质得∠3=∠4,∠5=∠6,再利用平角的定义得∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,根据等式的性质得到2∠4+∠1+2∠6=360°,把∠1+∠2=120°代入得到∠4+∠6=120°,然后根据三角形内角和定理可计算出∠B的度数.【详解】∵把△ABC的∠B折叠,点B落在P的位置,∴∠3=∠4,∠5=∠6,∵∠3+∠4+∠1=180°,∠5+∠6+∠2=180°,∴2∠4+∠1+∠2+2∠6=360°,而∠1+∠2=120°,∴∠4+∠6=120°,∵∠4+∠6+∠B=180°,∴∠B=180°−120°=60°.故答案为60°.【点睛】本题考查了三角形内角和定理,也考查了折叠的性质,“数形结合”是关键.三、解答题21.(1)见解析;(2)112,113434;(317【分析】(1)根据对称点的坐标规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数,找出对称点,顺次连接即可;(2)利用△ABC 所在矩形面积减去周围三角形面积,计算后即可得出答案,点B 到边AC 的距离即为△ABC 的AC 边上的高,利用勾股定理求得AC 的长,再根据已求得的△ABC 的面积从而求解结果;(3)根据两点之间线段最短,利用轴对称的性质先作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于点M ,此时MA +MB 最小,且最小值为线段A 'B 的长度,利用勾股定理计算即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =11111451235342222⨯-⨯⨯-⨯⨯-⨯⨯=. 设点B 到边AC 的距离为h ,∵网格中小正方形的边长为1, ∴AC 223534+= ∵11122ABC S h AC ==, 即1113422h =, 解得1134h =. 故答案为:112,113434. (3)如图,在x 轴上存在一点M ,使得MA +MB 最小,作点A 关于x 轴的对称点A ',连接A 'B 与x 轴相交于一点,此交点即为点M ,由两点之间线段最短可得,此时MA +MB 最小.根据轴对称的性质可得:MA =MA ', ∴22'4117MA MB A B +==+【点睛】此题考查了轴对称变换、三角形面积的计算等知识,掌握轴对称与坐标变换并根据题意得出对应点位置是解题关键.22.(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =.()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.23.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解. 【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE =⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.24.(1)见解析;(2)EC 与O 相切,理由见解析,4π-【分析】(1)连接BE ,OF ,易得出BE 是圆的直径,根据全等三角形的判定证得△EAB ≌△EDC ,继而根据平行线的性质和切线的判定即可求证结论;(2)连接EF ,易求得四边形OFHE 的边长,再利用面积的和差即可求解.【详解】(1)连接BE ,OF∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∵90A ∠=︒,∴BE 是O 的直径,∵点E 是AD 中点,∴EA EC =,∴△EAB ≌△EDC ,∴EB EC =,∴EBC ECB ∠=∠,∵OB OF =,∴ECB OFB ∠=∠,∴ECB OFB ∠=∠,∴//OF EC ,∴OFH FHC ∠=∠,∵FH CE ⊥,∴90FHC OFH ∠=∠=︒,又∵OF 是O 的半径,∴直线FH 是O 的切线.(2)EC 与O 相切. 理由如下:连接EF ,由(1)知,BE 是O 直径,∴90EFB EFC ∠=∠=︒,∵点H 是CE 中点,∴FH EH HC ==,∵FH CE ⊥,∴90FHC ∠=︒,∴45ECF HFC ∠=∠=︒,∴90BEC ∠=︒,又∵OE 是O 的半径,∴直线EC 与圆O 相切.由上可知四边形ABFE 和四边形OFHE 都是正方形, ∴11422222AE AB AD ===⨯= ∴224BE AB AE =+=,∴2OE OF ==, ∴2290π224π360OFHE OEFS S S ⨯=-=-=-正方形扇形. 【点睛】本题考查直线与圆的位置关系,矩形的性质,全等三角形的判定和性质、切线的判定、勾股定理,解题的关键是综合运用所学知识.25.7【分析】先根据外角与内角的比为2:5,求出每个外角度数,再依据外角和360°求边数n .【详解】解:因为多边形的每一个外角与内角之和为180°,所以每个外角度数为180°27⨯=(3607)°. 又n 边形每个内角度数相等,则每个外角度数也相等, 根据多边形外角和360°,可得n =3603607÷=7. 答:这个多边形的边数n 是7.【点睛】本题主要考查多边形的内角和外角关系以及多边形外角和,运用外角计算边数是这一类题的通用方法.26.(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠. BE 平分ABC ∠,DF 平分CDN ∠, 12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠, 90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒. BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角, 1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.。
鲁教版(五四学制)八年级数学上册期中复习检测题(含答案详解)
期中检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分) 1. 若,都是实数,且则的值为( ) A.0 B. C.2 D.不能确定 2. 当=2时,下列分式有意义的是( ) A .B .C .D .3. 小明骑自行车沿公路以km/h 的速度行走全程的一半,又以bkm/h 的速度行走余下的一半路程;小刚骑自行车以km/h 的速度行走全程时间的一半,又以bkm/h 的速度行走另一半时间(≠b),则谁走完全程所用的时间较少?( ) A .小明B .小刚C .时间相同D .无法确定4. 某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为元,依题意列方程正确的是( ) A .=15%B .=15%C .92-=15%D .=92×15%5. 下列各组数中,成比例的是( ) A .-7,-5,14,5B .-6,-8,3,4 C .3,5,9,12D .2,3,6,126.“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )A.左上B.左下C.右上D.右下7. 如图,设M 、N 分别是直角梯形ABCD 两腰AD 、CB 的中点,DE ⊥AB 于点E ,将△ADE 沿DE 翻折,M 与N 恰好重合,则AE ∶BE 等于( )A .2∶1B .1∶2C .3∶2D .2∶38. 如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )A .都扩大为原来的5倍B .都扩大为原来的10倍C .都扩大为原来的25倍D .都与原来的相等 9. 如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP=1,点D 为AC 边上一点,若∠APD=60°,则CD 的长为( ) A. B. C. D.110. 如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于G ,AF=2cm ,DF=4cm ,AG=3cm ,则AC 的长为( )A .9cmB .14cmC .15cmD .18cm11. 如图,在平行四边形ABCD 中(AB≠BC),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ;③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是( ) A .①② B .②③ C .②④ D .③④第6题图第7题图第9题图第10题图12. 如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( ) A .16cm B .13cm C .12cm D .1cm二、填空题(每小题3分,共24分) 13. 已知=1,则分式的值为.14. 某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为元/立方米,则所列方程为.15.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书本.16. 现有含盐20%的盐水50千克,在此盐水中再加入千克水后,盐水的浓度(用表示)是.17. 现有四个代数式,分别为2+1、35、、2π,从中取出两个代数式,则可以组成的分式是.(写出一种即可)18. 某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工120个零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工个零件,则根据题意可列方程为.19. 为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测者沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.7m ,观测者目高CD=1.6m ,则树高AB约是.(精确到0.1m ) 20. 如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1,取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去,则正六角星形A n F n B n D n C n E n 的面积为.第11题图 第12题图第19题图三、解答题(共60分)21.(6分)先化简,再求值:,其中满足2--1=0.22.(6分)已知a 、b 、c 为实数,且满足,求的值.23.(8分)已知:如图,是上一点,∥,,分别交于点,∠1=∠2,探索线段之间的关系,并说明理由.24.(8分)小明的数学作业中有一道题为:“如图,E 为平行四边形ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .若AE=2,EF=1.4,CF=3.5,DF=5,求平行四边形ABCD 的周长.”小明已经探索出△AEF ∽△DCF ,请你继续帮他完成本题. 25.(8分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系. (1)点A 的坐标为,点C 的坐标为.(2)将△ABC 向左平移7个单位,请画出平移后的△A 1B 1C 1.若M 为△ABC 内的一点,其坐标为(,b ),则平移后点M 的对应点M 1的坐标为.(3)以原点O 为位似中心,将△ABC 缩小,使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1∶2.请在格内画出△A 2B 2C 2,并写出点A 2的坐标:.26.(8分)甲、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路匀速驶向C 城.已知A 、C 两城的距离为360km ,B 、C 两城的距离为320km ,甲车比乙车的速度快10km/h ,结果两辆车同时到达C 城.设乙车的速度为km/h . (1)根据题意填写下表: 行驶的路程(km )第20题图第24题图第25题图 第23题图27.(8分)如图是小红设计的钻石形商标,△ABC 是边长为2的等边三角形,四边形ACDE 是等腰梯形,AC ∥ED ,∠EAC=60°,AE=1. (1)证明:△ABE ≌△CBD ;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC ,请证明此结论; (4)求线段BD 的长.28.(8分) 如图,D 是△ABC 的边BC 的中点,过AD 延长线上的点E 作AD 的垂线EF ,E 为垂足,EF 与AB 的延长线相交于点F ,点O 在AD 上,AO=CO ,BC ∥EF . (1)证明:AB=AC ; (2)证明:AO=BO=CO ;(3)当AB=5,BC=6时,连接BE ,若∠ABE=90°,求AE 的长.第27题图 第28题图期中检测题参考答案1.C解析:要使原式有意义则,则,所以,所以,所以故选C.2.D 解析:A 、当=2时,-2=0,无意义; B 、当=2时,||-2=0,无意义;C 、当=2时,2-3+2=4-6+2=0,无意义;D 、当=2时,2-+2=4-2+2=(-1)2+3>0,有意义.故选D . 3.B 解析:设全程为1,小明所用时间是. 设小刚走完全程所用时间是小时.根据题意,得+b =1,=.则小刚所用时间是.小明所用时间减去小刚所用时间得>0,即小明所用时间较多.故选B . 4.A 解析:设这种玩具的成本价为元,则=15%.故选A .5.B 解析:因为只有B 中,故选B .6.B 解析:根据位似变换的特点可知:最上面较大的“E”与左下角较小的“E”是位似图形.故选B .7.A 解析:连接MN ,设DE 与MN 交于点F , ∵ M 、N 分别是AD 、CB 上的中点,∴ MN ∥AB. 又∵ M 是AD 的中点,∴ MF=AE.又∵ 翻折后M 、N 重合,∴ MF=NF.又∵ 梯形ABCD 是直角梯形,DE ⊥AB ,∴ FN=EB ,∴ AE ∶BE=2MF ∶NF=2∶1,故选A .8.D 解析:三角形的每条边都扩大为原来的5倍,则扩大后的三角形与原三角形相似,两个相似的三角形,对应角相等,所以三角形的每个角都与原来的相等,故选D.9.B 解析:∵ ∠APC=∠ABP+∠BAP=60°+∠BAP=∠APD+∠CPD=60°+∠CPD ,∴ ∠BAP=∠CPD .又∵ ∠ABP=∠PCD=60°,∴ △ABP ∽△PCD .∴,即.∴ CD=.故选B .10.C 解析:如图,延长CB 交FE 的延长线于点H.∵ 四边形ABCD 是平行四边形, ∴ BC=AD=AF+FD=6(cm),BC ∥AD . ∴ ∠EAF=∠EBH ,∠AFE=∠BHE.又AE=BE ,∴ △AFE ≌△BHE ,∴ BH=AF=2cm . ∵ BC ∥AD ,∴,即,则CG=12 cm ,则AC=AG+CG=15(cm ).故选C .11.B 解析:①平行四边形中邻边垂直,则该平行四边形为矩形,则对角线相等,本题没体现此四边形为矩形,故本题中AC≠BD,即AO ≠BO,第7题答图第10题答图故①错误;②∵ AB∥CD,∴∠E=∠F.又∵∠EOA=∠FOC,AO=CO,∴△AOE≌△COF,∴ OE=OF,故②正确;③∵ AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO不相似,故△EAO和△CNO不相似,故④错误.即②③正确.故选B.12.D 解析:过O作直线OE⊥AB,交CD于F,依题意AB∥CD,∴ OF⊥CD,∴ OE=12,OF=2.而AB∥CD可以得△AOB∽△COD.∵ OE,OF分别是它们的高, ∴,∴∴ CD=1(cm).故选D.13.解析:当=1时,分子2-2-9=-10,分母22-4-13=-15,∴原分式=.14.=815.20 解析:设张明平均每分钟清点图书本,则李强平均每分钟清点图书(本,由题意列方程得,解得=20.经检验=20是方程的解.16.解析:因为含的盐有20%×50=10千克.加入千克水后,盐水有(50+)千克.浓度.17.解析:可以组成的分式是:,等,答案不唯一,应注意为常数.18.19.5.2 m解析:由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB,∴,∴,∴AB≈5.2 m.20.解析:∵ A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1,且相似比为2∶1.∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为.同理可得,正六角星形A2F2B2D2C2E2的面积为,正六角星形A3F3B3D3C3E3的面积为,…,正六角星形A n F n B n D n C n E n的面积为.21.解:原式=×=×=.∵ 2--1=0,∴ 2=+1,将2=+1代入化简后的式子得:==1.22.解:由题设有()()()⎪⎩⎪⎨⎧=-+-+-≠--,0432,023222c b a c b 可解得a =2,3-=b ,c = -2.∴c b b a -+-11=321321-++=3232++-=4. 23.解:. 理由:∵∥∴ ∠∠,又∴.又∵∴ △∽△,∴即.24.分析:根据相似三角形的对应边的比相等求得CD 、AF 的长,即可求得平行四边形的一组邻边,从而求其周长. 解:∵ △AEF ∽△DCF , ∴ ,即. ∴ DC=5,AF=2. ∴ AD=AF+DF=2+5=7.∴ 平行四边形的周长=2(AD+DC )=2×(5+7)=24. 25.分析:(1)直接根据图形即可写出点A 和C 的坐标;(2)找出三角形平移后各顶点的对应点,然后顺次连接即可,根据平移的规律即可写出点M 平移后的坐标;(3)根据位似变换的要求,找出变换后的对应点,然后顺次连接各点即可,注意有两种情况. 解:(1)A 点的坐标为(2,8),C 点的坐标为(6,6);(2)所画图形如图所示,其中△A 1B 1C 1即为所求,根据平移规律:向左平移7个单位,可知M 1的坐标为(-7,b );(3)所画图形如图所示,其中△A 2B 2C 2即为所求,点A 2的坐标为(1,4)或(-1,-4). 26.分析:(1)设乙车的速度是km/h ,那么甲车的速度是(+10)km/h ,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以以时间作为等量关系列方程求解. 解:(1)由题意可求出甲的速度是(+10)km/h ,甲车所需时间是,乙车所需时间是.(2)依题意得:=,解得=80.第25题答图经检验:=80是原方程的解,+10=90.答:甲车的速度是90千米/时,乙车的速度是80千米/时.27.(1)证明:∵△ABC是等边三角形,∴ AB=BC,∠BAC=∠BCA=60°.∵四边形ACDE是等腰梯形,∠EAC=60°,∴ AE=CD,∠ACD=∠CAE=60°,∴∠BAC+∠CAE=120°=∠BCA+∠ACD,即∠BAE=∠BCD.在△ABE和△CBD中,AB=BC,∠BAE=∠BCD,AE=CD,∴△ABE≌△CBD.(2)解:如△ABN∽△CDN.(答案不唯一)证明如下:∵∠BAN=60°=∠DCN,∠ANB=∠DNC,∴△ANB∽△CND.∵ AB=2,DC=AE=1,∴ AB∶DC= 2∶1=2.∴△ANB与△CND的相似比为2.(3)证明:由(2)得 AN∶CN= AB∶CD=2,∴ CN= AN= AC,同理AM= AC,∴ AM=MN=NC.(4)解:作DF⊥BC交BC的延长线于F,∵∠BCD=120°,∴∠DCF=60°.在Rt△CDF中,∵∠DCF=60°,∴∠CDF=30°,∴ CF= CD= ,∴ DF= ==.在Rt△BDF中,∵ BF=BC+CF=2+ = ,DF=,∴ BD= =.28.分析:(1)由BC∥EF,AD⊥EF,可证得AD⊥BC,又由D是△ABC的边BC的中点,即可得AD是线段BC的垂直平分线,则可证得AB=AC;(2)由AD是线段BC的垂直平分线,可证得OB=OC,又由AO=CO,则可得AO=BO=CO;(3)首先求得AD的长,又由△ABE∽△ADB,根据相似三角形的对应边成比例,即可求得AE的长.(1)证明:∵ D是△ABC的边BC的中点,∴ BD=CD.∵ BC∥EF,AD⊥EF,∴ AD⊥BC,∴ AB=AC.(2)证明:∵ BD=CD,AD⊥BC,∴ BO=CO.∵ AO=CO,∴ AO=BO=CO.(3)解:∵ AB=5,BC=6,AD⊥BC,BD=CD,∴ BD=BC=3.∴在Rt△ABD中,AD=4.∵∠ABE=∠ADB=90°,∠BAE=∠DAB,∴△ABE∽△ADB,∴,即,∴ AE=.。
鲁教版(五四制)八年级数学上册期中达标测试卷含答案
鲁教版(五四制)八年级数学上册期中达标测试卷一、选择题(每题3分,共36分)1.下列各式可以用完全平方公式进行因式分解的是( )A .a 2+2a +14B .a 2-a +14 C .x 2-2x +4 D .x 2-xy +y 22.若多项式x 2+mx -8因式分解的结果为(x +4)(x -2),则常数m 的值为( )A .-2B .2C .-6D .6 3.已知当x =-2时,分式x -1□无意义,则□中可以是( )A .2-xB .x -2C .2x +4D .x +4 4.若实数x 满足x 2-2x -1=0,则2x 3-7x 2+4x -2 022的值为( )A .2 024B .-2 024C .2 025D .-2 025 5.能使分式x 2-1x 2-2x +1的值为0的x 的值是( )A .x =-1B .x =1C .x =±1D .x =06.国产大飞机C919用数学建模的方法预测的价格(单位:万美元)是:5 098,5 099,5 001,5 002,4 990,4 920,5 080,5 010,4 901,4 902,这组数据的平均数是( )A .5 000.3B .4 999.7C .4 997D .5 003 7.下列计算结果正确的是( )A .(a 3)2=a 5B .(-bc )4÷(-bc )2=-b 2c 2C .a ÷b ·1b =a b 2 D .1+1a =2a8.山西苹果产地主要集中在曲沃、襄汾、新绛、万荣、临猗、平陆等地,其中,以临猗苹果和万荣苹果较为著名.为了解不同品种苹果树的产量及稳定程度,某果园随机从甲、乙、丙、丁四个品种中各采摘了10棵树的苹果,每棵产量的平均数x -(单位:千克)及方差2如下表所示.若计划从这四个品种中选择一种进行种植,根据苹果树的产量及稳定程度,较为合适的品种是( )A .甲B .乙C .丙D .丁9.自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x 元,则列出的方程正确的是( )A.720x =540x -15B.720x =540x +15C.720x -15=540x D.720x =540x +15 10.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( )A .众数B .中位数C .平均数D .方差11.为迎接中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖了.下列关于成绩的统计量中,与被遮盖的数据无关的是( )A.平均数,方差 B .中位数,方差 C .中位数,众数 D .平均数,众数12.若关于x 的方程m x +1-2x =0的解为负数,则m 的取值范围是( )A .m <2B .m <2且m ≠0C .m >2D .m >2且m ≠4 二、填空题(每题3分,共18分)13.分解因式:3x 2-6x 2y +3xy 2=__________________.14.分式4x -3与1x 的差为0,则x 的值为________.15.化简⎝ ⎛⎭⎪⎫x y -y x ÷x 2-y2x 的结果是________.16.为了践行“首都市民卫生健康公约”,某班级举办“七步洗手法”比赛活动,李明的单项成绩如下表所示:若按书面测试占30%、实际操作占50%、宣传展示占20%计算参赛个人的综合成绩,则李明的综合成绩是________分.17.已知一组数据1,2,4,3,x 的众数是2,则这组数据的中位数是______. 18.若关于y 的方程y y -1-m 2y 2-y =y -1y 有增根,则m 的值为________.三、解答题(19题9分,20题7分,21题8分,25题12分,其余每题10分,共66分) 19.因式分解:(1)4a 3b 2-10ab 3c ; (2)a 4-b 4; (3)a 4b -6a 3b +9a 2b .20.先化简,再求值:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1),其中a =4.21.若数a 使关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,且使关于y 的分式方程3y y -2+a +122-y =1有整数解,求满足条件的所有a 的值之和.22.对于二次三项式a 2+6a +9,可以用公式法将它因式分解成(a +3)2的形式,但对于二次三项式a 2+6a +8,就不能直接应用公式法因式分解了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9-9+8=(a+3)2-1=[(a+3)+1][(a+3)-1]=(a+4)(a+2).请仿照上面的做法,将下列各式因式分解:(1)x2-6x-16;(2)x2+2ax-3a2.23.某学校为了了解八年级学生对“八礼四仪”的掌握情况,对该年级的500名学生进行了问卷测试,并随机抽取了10名学生的问卷,成绩统计如下:(1)计算这10名学生这次测试的平均成绩.(2)如果成绩不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数.(3)小明所在班级共有40名学生,他们全部参加了这次测试,平均成绩为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?24.为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动.去年学校通过采购平台在某体育用品店购买A品牌足球共花费2 880元,B品牌足球共花费2 400元,且购买的A品牌足球数量是B品牌足球数量的1.5倍,A品牌每个足球的售价比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A,B两种品牌的足球共50个,今年该店对每个足球的售价进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A,B两种品牌足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?25.为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:(1)收集数据.从该校七、八年级中各随机抽取20名学生的分数,其中八年级学生的分数如下:8183848586878788899092929395959599 99100100(2)整理、描述数据.按下表分段整理、描述样本数据:(3)分析数据.两组样本数据的平均数、中位数、众数、方差如下表所示:根据以上提供的信息,解答下列问题:(1)填空:a=________,b=________,c=________;(2)样本数据中,七年级甲学生和八年级乙学生的分数都为90分,________学生的分数在本年级抽取的学生的分数中从高到低排序更靠前;(填“甲”或“乙”)(3)从样本数据分析来看,分数较整齐的是________年级;(填“七”或“八”)(4)如果七年级共有400名学生参赛,估计该年级有多少名学生的分数不低于95.答案一、1.B 2.B 3.C 4.D 5.A 6.A 7.C 8.B 9.A 10.D 11.C 12.B 点拨:m x +1-2x =0, 方程两边同乘x (x +1), 得mx -2(x +1)=0, 去括号,得mx -2x -2=0, 解得x =2m -2. ∵方程的解为负数, ∴2m -2<0, ∴m <2.由题意知x ≠0且x ≠-1, 即2m -2≠0且2m -2≠-1, ∴m ≠0.∴m 的取值范围是m <2且m ≠0. 二、13.3x (x -2xy +y 2) 14.-115.1y 16.97 17.2 18.±1三、19.解:(1)4a 3b 2-10ab 3c =2ab 2(2a 2-5bc ).(2)a 4-b 4=(a 2+b 2)(a 2-b 2)=(a 2+b 2)(a +b )(a -b ). (3)a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)=a 2b (a -3)2. 20.解:⎝ ⎛⎭⎪⎫1+1a 2-1÷a 3(a +1)=a 2-1+1(a +1)(a -1)·3(a +1)a=a 2(a +1)(a -1)·3(a +1)a =3a a -1. 当a =4时,原式=3×44-1=4. 21.解:解关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3, 得-4<x ≤a +35.∵关于x 的不等式组⎩⎨⎧3x -12<4(x -2),5x -a ≤3有且仅有三个整数解,∴-1≤a +35<0, 解得-8≤a <-3. 解关于y 的分式方程3y y -2+a +122-y=1, 得y =a +102.∵关于y 的分式方程有整数解, ∴y =a +102为整数, ∵-8≤a <-3,∴a =-8或a =-6或a =-4.当a =-6时,y =2,原分式方程无解,故将a =-6舍去. ∴满足条件的所有a 的值之和是-8-4=-12. 22.解:(1)x 2-6x -16=x 2-6x +9-9-16 =(x -3)2-25 =(x -3+5)(x -3-5) =(x +2)(x -8). (2)x 2+2ax -3a 2=x 2+2ax +a 2-a 2-3a 2 =(x +a )2-(2a )2 =(x +a +2a )(x +a -2a ) =(x +3a )(x -a ). 23.解:(1)10×3+9×3+8×2+7×1+6×13+3+2+1+1=8.6(分).答:这10名学生这次测试的平均成绩是8.6分. (2)500×3+33+3+2+1+1=300(名).答:估计这500名学生对“八礼四仪”掌握情况优秀的人数为300名.(3)不同意.因为成绩中等偏上,指小明的成绩超过了班级一半以上学生的成绩,也就是说他的成绩应超过班级成绩的中位数.虽然小明的成绩超过了平均成绩,但未必能超过成绩的中位数.24.解:设去年A 品牌每个足球的售价为x 元,则B 品牌每个足球的售价为(x +12)元.由题意,得2 880x =32·2 400x +12,解得x =48.经检验,x =48是原分式方程的解,且符合题意. ∴x +12=60.∴去年A 品牌每个足球的售价为48元,B 品牌每个足球的售价为60元. 设今年学校购买B 品牌足球a 个,根据题意,得(50-a )×48×(1+5%)+a ×60×(1-10%)≤(2 880+2 400)×12, 解得a ≤1003.∵a 为正整数,∴学校最多可购买33个B 品牌足球. 25.解:(1)6;91;95(2)甲 (3)八(4)400×820=160(名).答:估计该年级有160名学生的分数不低于95.。
【鲁教版】八年级数学上期中试题(带答案)
一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75° B .90° C .105° D .120°或20° 2.如图,在平面直角坐标系xOy 中,点A 的坐标为()4,3-,点P 在x 轴上,且使AOP 为等腰三角形,符合题意的点P 的个数为( ).A .2B .3C .4D .53.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒4.已知一个等腰三角形ABC 的两边长为5,7,另一个等腰三角形ABC 的两边为23x -,35x -,若两个三角形全等,则x 的值为( )A .5B .4C .4或5D .1035.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒7.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 8.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个 9.一个多边形的外角和是360°,这个多边形是( ) A .四边形 B .五边形 C .六边形 D .不确定 10.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .5 11.三角形的两条边长为3和7,那么第三边长可能是( )A .1B .4C .7D .10 12.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .7二、填空题13.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.14.如图,在△ABC 中,直线l 垂直平分BC ,射线m 平分∠ABC ,且l 与m 相交于点P ,若∠A =60°,∠ACP =24°,则∠ABP =_____°.15.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可)16.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.17.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____18.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠G =_____.19.如图,∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K =________.20.如图,P 为正五边形ABCDE 的边AE 上一点,过点P 作PQ //BC ,交DE 于点Q ,则∠EPQ 的度数为_____.三、解答题21.如图,ABC 中,90BAC ∠=︒,AB AC =,AD 是高,E 是AB 上一点,连接DE ,过点D 作DF DE ⊥,交AC 于点F ,连接EF ,交AD 于点G .(1)若6AB =,2AE =,求线段AF 的长;(2)求证:AGF AED ∠=∠.22.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.23.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.24.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)25.如图,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于点E ,∠ABC =∠ACE .(1)求证:AB//CE ;(2)猜想:若∠A =50°,求∠E 的度数.26.在△ABC中,∠B=40°,∠C=60°,AD平分∠BAC,点E为AD延长线上的点,EF⊥BC 于F,求∠DEF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设两内角的度数为x、4x,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x、4x,当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30°,4x=120°;因此等腰三角形的顶角度数为20°或120°.故选:D.【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.C解析:C【分析】以O为圆心,AO长为半径画圆可得与x轴有2个交点,再以A为圆心,AO长为半径画圆可得与x轴有1个交点,然后再作AO的垂直平分线可得与x轴有1个交点.【详解】解:如图所示:点P在x轴上,且使△AOP为等腰三角形,符合题意的点P的个数共4个,故选:C .【点睛】此题主要考查了等腰三角形的判定,关键是考虑全面,作图不重不漏.3.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.4.B解析:B【分析】根据等腰ABC 的两边长为5,7,得到ABC 的三边长为5,7,7;或5,5,7;之后根据全等分2x-3=5,2x-3=7,3x-5=5,3x-5=7四种情况分类讨论,舍去不合题意的即可求解.【详解】解:∵等腰ABC 的两边长为5,7,∴ABC 的三边长为5,7,7;或5,5,7;由题意得另一个等腰三角形的两边为23x -,35x -,且与等腰ABC 全等(1)当2x-3=5时,解得x=4,则3x-5=7,符合题意;(2)当2x-3=7时,解得x=5,则3x-5=10,不合题意;(3)当3x-5=5时,解得103x =,则2x-3=113,不合题意; (4)当3x-5=7时,解得x=4,则2x-3=5,符合题意;综上所述:x 的值为4.故答案为:B【点睛】 本题考查了等腰三角形的定义,全等三角形的性质,根据题意分类讨论是解题关键. 5.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.7.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理. 9.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D .【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.10.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.11.C解析:C【分析】根据三角形的两边之和大于第三边,确定第三边的取值范围即可.【详解】解:三角形的两条边长为3和7,设第三边为x,则第三边的取值范围是:7-3<x<7+3,解得,4<x<10,故选:C.【点睛】本题考查了三角形的三边关系,根据两边长确定第三边的取值范围是解题关键.12.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.二、填空题13.25【分析】设∠ADC=α然后根据AC=AD=DB∠BAC=105°表示出∠B和∠BAD的度数最后根据三角形的内角和定理求出∠ADC的度数进而求得∠B的度数即可【详解】解:∵AC=AD=DB∴∠B=解析:25【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=105°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.14.32【分析】根据角平分线定义求出∠ABP =∠CBP 根据线段的垂直平分线性质得出BP =CP 根据等腰三角形的性质得到∠CBP =∠BCP 根据三角形内角和定理得出方程3∠ABP+24°+60°=180°解方解析:32【分析】根据角平分线定义求出∠ABP =∠CBP ,根据线段的垂直平分线性质得出BP =CP ,根据等腰三角形的性质得到∠CBP =∠BCP ,根据三角形内角和定理得出方程3∠ABP +24°+60°=180°,解方程得到答案.【详解】解:∵BP 平分∠ABC ,∴∠ABP =∠CBP ,∵直线l 是线段BC 的垂直平分线,∴BP =CP ,∴∠CBP =∠BCP ,∴∠ABP =∠CBP =∠BCP ,∵∠A +∠ACB +∠ABC =180°,∠A =60°,∠ACP =24°,∴3∠ABP +24°+60°=180°,解得:∠ABP =32°,故答案为:32.【点睛】本题考查角平分线的定义和垂直平分线的性质,解题的关键是掌握角平分线的定义和垂直平分线的性质.15.AB=CD(或∠A=∠D或∠ACB=∠DBC)【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB及公共边BC再添加任意一组角或是AB=CD即可【详解】∵∠ABC=∠DCBBC=CB∴当AB=解析:AB=CD(或∠A=∠D或∠ACB=∠DBC)【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB及公共边BC,再添加任意一组角,或是AB=CD即可.【详解】∵∠ABC=∠DCB,BC=CB,∴当AB=CD时,利用SAS证明△ABC≌△DCB;当∠A=∠D时,利用AAS证明△ABC≌△DCB;当∠ACB=∠DBC时,利用ASA证明△ABC≌△DCB,故答案为:AB=CD(或∠A=∠D或∠ACB=∠DBC).【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理是解题的关键.16.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 17.【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过 解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】 解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.18.540°【分析】连接GD 根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F 进而可求解【详解】解:连解析:540°【分析】连接GD ,根据多边形的内角和定理可求解∠A+∠B+∠C+∠CDG+∠DGA =540°,再利用三角形的内角和定理结合对顶角的性质可求得∠FGD+∠EDG =∠E+∠F ,进而可求解.【详解】解:连接GD ,∠A+∠B+∠C+∠CDG+∠DGA =(5﹣2)×180°=540°,∵∠1+∠FGD+∠EDG =180°,∠2+∠E+∠F =180°,∠1=∠2,∴∠FGD+∠EDG =∠E+∠F ,∴∠A+∠B+∠C+∠CDE+∠E+∠F+∠FGA =540°,故答案为540°.【点睛】本题主要考查多边形的内角和定理,三角形的内角和定理,掌握相关定理是解题的关键. 19.540°【分析】连接AGGD 先根据∠H+∠K=∠HGA+∠KAG∠E+∠F=∠EDG+∠FGD最后根据多边形的面积公式解答即可【详解】解:连接AGGD∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG、GD,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG、GD,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=∠BAK+∠B+∠C+∠CDE+∠EDG+∠FGD+∠MGN+∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.20.36°【分析】连接AD由正五边形的性质可得∠B=∠BAE=∠E∠EDC=∠C =108°AE=DE由等腰三角形的性质可求∠AED=∠EDA=36°可证AD∥PQ由平行线的性质可求解【详解】解:连接AD解析:36°【分析】连接AD,由正五边形的性质可得∠B=∠BAE=∠E∠EDC=∠C=108°,AE=DE,由等腰三角形的性质可求∠AED=∠EDA=36°,可证AD∥PQ,由平行线的性质可求解.【详解】解:连接AD,∵五边形ABCDE 是正五边形,∴∠B =∠BAE =∠E=∠EDC =∠C =108°,AE =DE ,∴∠AED =∠EDA =36°,∴∠BAD =72°,∵∠BAD +∠ABC =180°,∴BC ∥AD ,∵PQ ∥BC ,∴AD ∥PQ ,∴∠EPQ =∠EAD =36°,故答案为:36°.【点睛】本题考查了多边形的内角和外角,等腰三角形的性质,平行线的性质,灵活运用这些性质解决问题是本题的关键.三、解答题21.(1)4;(2)见解析【分析】(1)证△ADE ≌△CDF (ASA ),得AE=CF=2,即可得出答案;(2)由全等三角形的性质得DE=DF ,则△DEF 是等腰直角三角形,得∠DEF=∠DFE=45°,再由三角形的外角性质即可得出结论.【详解】(1)解:∵△ABC 中,∠BAC=90°,AB=AC ,AD 是高,∴BD=CD=AD=12BC ,∠B=∠C=45°,∠BAD=∠CAD=12∠BAC=45°, ∵DF ⊥DE ,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中, ADE CDF AD CDBAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CDF (ASA ),∴AE=CF=2,∵AC=AB=6,∴AF=AC-CF=6-2=4;(2)证明:由(1)得:△ADE≌△CDF,∴DE=DF,又∵∠EDF=90°,∴△DEF是等腰直角三角形,∴∠DEF=∠DFE=45°,∵∠AGF=∠DAE+∠AEG=45°+∠AEG,∠AED=∠DEF+∠AEG=45°+∠AEG,∴∠AGF=∠AED.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.22.AB=AC+BD,证明见详解.【分析】延长AE,交BD的延长线于点F,先证明AB=BF,进而证明△ACE≌△FDE,得到AC=DF,问题得证.【详解】解:延长AE,交BD的延长线于点F,AC BD,∵//∴∠F=∠CAF,∠,∵AE平分CAB∴∠CAF=∠BAF,∴∠F=∠BAF,∴AB=BF,∠,∵BE平分ABF∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.23.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.24.(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠, ∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒, ∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠, 即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠, ∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠= 故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.25.(1)见解析;(2)25°【分析】(1)根据角平分线的定义得到∠ECD=∠ACE,得到∠ABC=∠ECD,根据平行线的判定定理证明结论;(2)根据三角形的外角性质、角平分线的定义计算,得到答案.【详解】(1)证明:∵CE平分∠ACD,∴∠ECD=∠ACE,∵∠ABC=∠ACE,∴∠ABC=∠ECD,∴AB∥CE;(2)∵∠ACD是△ABC的一个外角,∴∠ACD=∠ABC+∠A,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠ECD﹣∠EBC=12∠ACD﹣12∠ABC=12∠A=25°.【点睛】本题考查的是三角形的外角性质及平行线的判定、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.10°【分析】利用三角形的外角的性质求出∠ADC,再利用三角形内角和定理求出∠DEF即可.【详解】解:∵∠B=40°,∠C=60°,∴∠BAC=180°-∠B-∠C=80°.∵AD平分∠BAC,∴∠BAD=12∠BAC=40°∴∠ADC=∠B+∠BAD=80°∴∠EDF=∠ADC=80°∵EF⊥BC,∴∠EFD=90°∴∠DEF=90°-80°=10°【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.。
鲁教版初二数学上册期中测试试卷
② ① ③ 5题初二数学测试试卷一、精心选一选。
(认真思考,通过计算或推理后再做选择!你一定能成功!)1、有下列长度的三条线段,能组成三角形的是( ) A 、 2cm ,3cm ,4cm B 、 1cm ,4cm ,2cm C 、1cm ,2cm ,3cm D 、 6cm ,2cm ,3cm2、下列说法中错误的是( ) A 、三角形三条角平分线都在三角形的内部 B 、三角形三条中线都在三角形的内部C 、三角形三条高都在三角形的内部D 、三角形三条高至少有一条在三角形的内部 3、如图,△ABC ≌△BAD ,点A 和点B ,点C 和点D 是对应点,如果AB=6㎝,BD=5㎝,AD=4㎝,那么BC 的长是( ) A 、4㎝; B 、5㎝; C 、6㎝; D 、无法确定. 4、如图:PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E , 且AP 平分∠BAC ,则△APD ≌△APE 的理由是( )A 、SASB 、ASAC 、SSSD 、AAS5、如图所示,某同学把一块三角形玻璃 打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去;B. 带②去;C. 带③去;D. 带①和②去 6. 如图所示, 将两根钢条AA ’、BB ’的中点O 连在一起, 使AA ’、BB ’可以绕着点O 自由旋转, 就做成了一个测量工件, 则A ’B ’的长等于内槽宽AB, 那么判定△OAB ≌△OA ’B ’的理由是( )A. 边角边B. 角边角C. 边边边D. 角角边 7、下列图形中,轴对称图形的个数是( )A .4个B .3个C .2个D .1个 8、下列说法中正确的是( )①角平分线上任意一点到这个角的两边的距离相等 ②角是轴对称图形 ③线段不是轴对称图形④线段垂直平分线上的点到这条线段两个端点的距离相等 A.①②③④ ; B.①②③ ; C. ①②④ ;D.②③④ 9、等腰三角形的一个内角是50。
2022-2023学年鲁教版五四制八年级上期中复习数学试卷含答案解析
2022-2023学年鲁教版(五四制)八年级上册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1D.x2﹣8x+16=(x﹣4)22.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+x+1D.x2+4x+43.下列因式分解正确的是()A.x n+1﹣3x n=x n+1(1﹣)B.2﹣8a2=2(1﹣2a)(1﹣2a)C.x2+2x+1=(x﹣1)2D.a2﹣a=(a+4)(a﹣4)4.若a,b,c是△ABC的三边长,且a2﹣15b2﹣c2+2ab+8bc=0,则下列式子的值为0的是()A.a+5b﹣c B.a﹣5b+c C.a﹣3b+c D.a﹣3b﹣c5.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如表(单位:分),纸笔测试实践能力成长记录甲908395乙989095丙808890学期总评成绩优秀的是()A.甲B.乙、丙C.甲、乙D.甲、丙6.全民反诈,刻不容缓!某中学开展了“防诈骗”知识竞赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A.众数是82B.中位数是84C.方差是84D.平均数是857.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.111.110.910.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁8.在代数式,,(m+n),,中,分式个数是()A.1个B.2个C.3个D.4个9.下列从左边到右边的变形正确的是()A.=B.=(c≠0)C.+=D.+=110.若关于x的方程有增根,则m的值是()A.﹣5B.7C.5D.﹣311.计算+的结果等于()A.B.3C.D.12.某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)13.当x=2时,分式的值为0,则k、m必须满足的条件是k=,m.14.因式分解:9﹣p2=.15.在中考体育考试中,满分40分,某校10名男生的考试成绩如右表所示,则他们的平均成绩是分.成绩3537383940人数1233116.已知关于x的分式方程=1的解是非负数,则m的取值范围是.17.某项工作由甲、乙两人合做需6天完成,若甲单独做需15天完成,乙单独做需x天完成,则可得方程为.18.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第10行从左向右数第8个数是.三.解答题(共7小题,满分78分)19.(16分)分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).20.(12分)计算.(1)﹣1﹣2﹣(﹣4.5)﹣20%(2)﹣2×(﹣)4﹣|﹣1﹣3|+(﹣4)﹣1621.(10分)甲、乙两人两次同时到一家粮油店去买油,两次的油价有变化,但他们两人的购买方式不一样,其中甲每次总是买10斤油.而乙每次只拿出10元钱来买油.商店也按价计算卖给乙.设前后两次的油价分别是x元/斤和y元/斤(x>0、y>0,x≠y),请问这两种购买方式哪一种合算?请结合计算说明.22.(8分)先化简,再求值:﹣1,其中x=5.23.(10分)解下列方程:(1)+=3;(2)﹣=.24.(10分)随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2020年2月底,该市五个地区的100周岁以上的老人分布如表(单位:人):一二三四五地区性别男性2130384220女性3950737037根据表格中的数据得到条形图如图:解答下列问题:(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;(2)填空:该市五个地区100周岁以上老人中,男性人数的平均数是人,女性人数的中位数是人;(3)预计2025年该市100周岁以上的老人将比2020年2月的统计数增加100人,请你估算2025年地区一增加100周岁以上的男性老人多少人.25.(12分)某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选:D.2.解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选:D.3.解:A、原式=x n(x﹣3),不符合题意;B、原式=2(1﹣2a)(1+2a),符合题意;C、原式=(x+1)2,不符合题意;D、原式=a(a﹣4),不符合题意,故选:B.4.解:∵a2﹣15b2﹣c2+2ab+8bc=0,∴(a2+2ab+b2)﹣(16b2﹣8bc+c2)=0,∴(a+b)2﹣(4b﹣c)2=0,∴(a+5b﹣c)(a﹣3b+c)=0,∵a,b,c是△ABC的三边长,∴a+b>c,则a+5b>c,∴a+5b﹣c>0,∴a﹣3b+c=0,故选:C.5.解:根据题意得:甲的总评成绩是:90×50%+83×20%+95×30%=90.1,乙的总评成绩是:98×50%+90×20%+95×30%=95.5,丙的总评成绩是:80×50%+88×20%+90×30%=84.6,则学期总评成绩优秀的有甲、乙二人,故选:C.6.解:数据85,82,86,82,83,92.A.这组数据的众数是82,故选项A正确;B.数据82,82,83,85,86,92的中位数是:=84,故选项B正确;C.它们的方差是:[(85﹣84)2+(82﹣84)2+(86﹣84)2+(82﹣84)2+(83﹣84)2+(92﹣84)2]=×(1+4+4+4+1+64)=×78=13.故选项C错误;D.它们的平均数是:=85,故选项D正确.故选:C.7.解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.8.解:,,分母中均含有字母,因此它们是分式.,(m+n)分母中不含有字母,因此不是分式.故选:C.9.解:A、≠,故选项错误;B、=(c≠0),故选项正确;C、+=,故选项错误;D、+=,故选项错误.故选:B.10.解:∵分式方程有增根,∴x﹣3=0,解得x=3,,﹣1=,2x﹣(x﹣3)=1﹣m,x+3=1﹣m,把x=3代入原方程得m=﹣5,故选:A.11.解:+=;故选:D.12.解:原计划用时为:,实际用时为:.所列方程为:﹣=4,故选:A.二.填空题(共6小题,满分24分,每小题4分)13.解:由分子x﹣k=2﹣k=0,解得:k=2;又x+m=2+m≠0即:m≠﹣2.故答案为2、≠﹣2.14.解:9﹣p2=(3﹣p)(3+p).故答案为:(3﹣p)(3+p).15.解:由题意知,平均成绩=(35+37×2+38×3+39×3+40)÷10=38(分).故答案为38.16.解:解分式方程=1,得x=m﹣1,∵解是非负数,∴m﹣1≥0,∴m≥1,故答案为m≥1.17.解:甲6天的工作量为:,乙6天的工作量为:.所列方程为:+=1.18.解:观察数字的变化可知:第1行第1个数是1,第2行从左向右数第2个数是2,第3行从左向右数第3个数是3,…发现规律,第10行从左向右数第10个数是10=,∴第10行从左向右数第9个数是=3,第10行从左向右数第8个数是=7,故答案为7.三.解答题(共7小题,满分78分)19.解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).20.解:(1)原式=﹣1﹣2+4.5﹣20%=﹣3.7+4.5=0.8;(2)原式=﹣2×﹣4﹣4﹣1=﹣9.21.解:由题意可知,甲两次买油的平均单价为:=乙两次买油的平均单价为:==∴﹣==∵x>0、y>0,x≠y∴(x﹣y)2>0,2xy>0∴>0∴>∴乙的购买方式比较合算.22.解:原式=•﹣1=﹣1=,当x=5时,原式=1.23.解:(1)+=3,去分母,得2x﹣5=3(2x﹣1),解得x=,经检验,x=是原方程的根;(2)﹣=,去分母,得7(x﹣1)﹣6x=﹣3(x+1),解得x=1,经检验,x=1是原方程的增根,∴原方程无解.24.解:(1)根据图表给出的数据补图如下:(2)男性人数的平均数是:(21+30+38+42+20)÷5=30.2(人),把女性人数从小到大排列,中位数是50人;故答案为:30.2,50;(3)[21÷(21+30+38+42+20+39+50+73+70+37)]×100=5(人).答:2025年地区一增加100周岁以上的男性老人5人.25.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.。
2022-2023学年鲁教版(五四制)八年级上册数学期中复习试卷
2022-2023学年鲁教五四新版八年级上册数学期中复习试卷一.选择题(共12小题,满分48分,每小题4分)1.下列等式从左到右的变形中,属于因式分解的是()A.x2﹣4x+3=(x﹣1)(x﹣3)B.x2﹣7x+3=x(x﹣7)+3C.(x+3)(x﹣3)=x2+9D.x2﹣1+3x=(x+1)(x﹣1)+3x2.若分式的值为0,则x的值为()A.0B.2C.﹣2D.0或23.下列各式从左到右的变形,一定正确的是()A.=﹣B.=C.=D.=4.某学校为了鼓励学生积极参加体育锻炼,规定体育科目学期成绩满分100分,其中平时表现(早操、课间操)、期中考试和期末考试成绩按比例3:2:5计入学期总成绩.甲乙两名同学的各项成绩如下,则()学生平时表现/分期中考试/分期末考试/分甲969186乙829790A.甲、乙二人的总成绩都是90分B.甲、乙二人的总成绩都是89分C.甲的总成绩是90分,乙的总成绩是89分D.甲的总成绩是89分,乙的总成绩是90分5.计算+的结果等于()A.B.3C.D.6.小明有一个旧USB随身碟,它的最新储存状态如下:音乐550MB照片338MB可用空间112MB 4月8日,小明的哥哥给小明买了一个新USB随身碟,此随身碟的容量为2GB(2048MB)且没有储存任何资料,于是小明把他旧USB随身碟的所有数据转存到这个新USB随身碟中,则下面能代表新USB随身碟的储存状态的是()A.B.C.D.7.某校举行电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理后分成五组,并绘制了如图所示的频数分布直方图,则参加比赛的学生总人数为()A.42人B.46人C.52人D.56人8.下列各式可以用完全平方公式进行因式分解的是()A.a2+2a+B.a2+a+C.x2﹣2x+4D.x2﹣xy+y29.已知关于x的方程有增根,则a的值为()A.4B.5C.6D.﹣510.已知x﹣=1,则的值是()A.B.C.D.11.已知一列数a1,a2,a3,…,满足a m•a n=a m+n(m,n为正整数).例如:a1•a2=a1+2=a3,a2•a2=a2+2=a4.若a1<0,a2=4,则a2021的值是()A.4042B.﹣22020C.22021D.﹣2202112.若关于x的一元一次不等式组的解集为x≤﹣5,且关于x的分式方程+2=有非负整数解,则符合条件的所有整数a的和为()A.﹣6B.﹣4C.﹣2D.0二.填空题(共8小题,满分32分,每小题4分)13.若式子的值无意义,则a=.14.从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=12,=12,S甲2=7.5,S乙2=21,则小麦长势比较整齐的试验田是(填“甲”或“乙”).15.如果x2﹣mx+16=(x﹣4)2,那么m=.16.分解因式:2a﹣a2b=.17.“植树节”时,八年级(1)班6个小组的植树棵数分别是5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.18.甲、乙两个工程队共同完成一项工程,乙队先单独做5天,再由两队合作3天就完成全部工程,已知甲队与乙队单独完成这项工程所需时间之比是3:2,求甲乙两队单独完成此项工程各需多少天?若设甲、乙单独完成此项工程分别需3x天、2x天,则可列方程为.19.已知关于x的方程+=的解为负数,则a的取值范围是.20.当a=1时,式子÷(a+3)的值为.三.解答题(共7小题,满分70分)21.(16分)分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).22.(10分)计算:﹣23.(7分)先化简,再求值:(1+)÷,再从1,﹣1,2中选一个合适的数作为x的值代入求值.24.(10分)解方程:(1);(2)=1.25.(9分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的中位数是;(2)请你将图2的统计图补充完整,这部分男生的平均成绩约为多少?写出计算过程.(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?26.(8分)分解因式:(1)ab2﹣a;(2)(a2+1)2﹣4a2.(3)4xy2﹣4x2y﹣y3;(4)x2﹣y2﹣ax﹣ay.27.(10分)某玩具商店为了儿童节提前储备货物,用3000元购进一批儿童玩具,接着又用5400元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)儿童节期间,为了促销全店商品打7折销售,该玩具全部售完并且总利润不低于25%,那么每套玩具打折前的标价至少是多少元?参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、x2﹣4x+3=(x﹣1)(x﹣3),属于因式分解,符合题意;B、x2﹣7x+3=x(x﹣7)+3,不符合因式分解的定义,故此选项错误;C、(x+3)(x﹣3)=x2﹣9,不符合因式分解的定义,故此选项错误;D、x2﹣1+3x=(x+1)(x﹣1)+3x,不符合因式分解的定义,故此选项错误;故选:A.2.解:根据题意得:3x2﹣6x=0且x﹣2≠0,解得:x=0.故选:A.3.解:A、,故A错误;B、分子、分母同时扩大10倍,结果不变,则,故B错误;C、a=1,b=2时,此时原式不成立,故C错误;D、分子、分母都除以a+3,值不变,故D正确.故选:D.4.解:甲的总成绩是:=90(分),乙的总成绩是:=89(分),故选:C.5.解:+=;故选:D.6.解:音乐占新碟的百分比为:550÷2048≈26.8%,对应的圆心角为:360°×26.8%≈97.2°,照片所占新碟的百分比为:338÷2048≈16.5%,对应的圆心角为:360°×16.5%≈61.2°,通过观察D比较符合,故选:D.7.解:参加比赛的学生总人数为4+12+20+10+6=52(人),故选:C.8.解:A、a2+2a+,无法运用公式法分解因式,不合题意;B、a2+a+=(a+)2,可以用完全平方公式进行因式分解,符合题意;C、x2﹣2x+4,无法运用公式法分解因式,不合题意;D、x2﹣xy+y2,无法运用公式法分解因式,不合题意;故选:B.9.解:∵方程有增根,∴x﹣5=0,∴x=5,,x=3(x﹣5)﹣a,x=3x﹣15﹣a,把x=5代入整式方程解得a=﹣5,故选:D.10.解:∵x﹣=1,∴(x﹣)2=1,∴x2+=3,原式的倒数为,∴原式=,故选:C.11.解:∵a2=4,∴a1•a2=a1+2=a3=4a1,a2•a2=a2+2=a4=16,∵a1•a3=a1+3=a4,∴4a12=16,∴a1=±2,∵a1<0,∴a1=﹣2,∴a3=﹣8,a4=16,…,∴a n=(﹣2)n,∴a2021=﹣22021,故选:D.12.解:关于x的一元一次不等式组.解得:.∵解集为x≤﹣5.∴2a+3>﹣5.∴a>﹣4.关于x的分式方程+2=.解得:x=.∵有非负整数数解,且x≠3.∴a﹣2=﹣12或﹣6或﹣3或﹣2或﹣1.∴a=﹣10或﹣4或﹣1或0或1综上:符合条件的所有整数a为:﹣1、0、1.∴符合条件的所有整数a的和为:﹣1+0+1=0.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:∵式子的值无意义,∴a2﹣16=0,∴a2=16,∴a=±4.14.解:∵=12,=12,S甲2=7.5,S乙2=21,∴S甲2<S乙2,∴小麦长势比较整齐的试验田是甲,故答案为:甲.15.解:∵x2﹣mx+16=(x﹣4)2,∴x2﹣mx+16=x2﹣8x+16,故m=8.故答案为:8.故答案为:a(2﹣ab).17.解:∵这组数据的众数是5,∴x=5,则平均数为:=5.故答案为:5.18.解:设甲、乙单独完成此项工程分别需3x天、2x天,依题意,得:+=1.故答案为:+=1.19.解:去分母得:x+1+x=x+a,解得:x=a﹣1,∵分式方程的解为负数,∴a﹣1<0且a﹣1≠0且a﹣1≠﹣1,∴a<1且a≠0,∴a的取值范围是a<1且a≠0,故答案为:a<1且a≠0.20.解:÷(a+3)==,当a=1时,原式==﹣,故答案为:﹣.三.解答题(共7小题,满分70分)21.解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)22.解:原式=•﹣=﹣=.23.解:(1+)÷==,∵x+1≠0,x2+2x+1≠0,2x﹣2≠0,解得:x≠﹣1,x≠1,∴当x=2时,原式==3.24.解:(1)方程两边同时乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x+1=0,∴x=﹣1是增根,所以,原分式方程无解;(2)方程两边同时乘以(x+1)(x﹣1),得(x+1)2﹣6=(x+1)(x﹣1),解得:x=2,检验:当x=2 时,(x+1)(x﹣1)≠0,∴x=2是原方程的解.25.解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,故总人数为:10÷20%=50人,引体向上5次的人数有:50﹣4﹣10﹣14﹣6=16(人),∵共有50人,处于中间的位置是第25、26个数的平均数,∴抽测成绩的中位数是5次;故答案为:50,5次;(2)根据(1)求出的5次的人数,补全统计图如下:这部分男生的平均成绩约是:=5.16(次);(3)根据题意得:350×=252(人),答:该校350名九年级男生中估计有252人体能达标.26.解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)x2﹣y2﹣ax﹣ay=(x+y)(x﹣y)﹣a(x+y)=(x+y)(x﹣y﹣a).27.解:(1)设第一批玩具每套的进价是x元,则第二批玩具每套的进价是(x+10)元,由题意得:×1.5=,解得:x=50,经检验,x=50是分式方程的解,符合题意,答:第一批玩具每套的进价是50元;(2)设每套玩具打折前的标价是y元,=60(套),60×1.5=90(套).(60y+90y)×0.7﹣3000﹣5400≥(3000+5400)×25%,解得:y≥100,答:每套玩具打折前的标价至少是100元.。
【鲁教版】初二数学上期中试卷及答案
一、选择题1.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上D . : 1:3DAC ABD S S ∆∆=2.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1-B .1C .0D .2021-3.如图,已知60AOB ∠=︒, 点P 在OA 边上,8OP cm =,点M 、N 在边OB 上,PM PN =,若2MN cm =,则OM 为( )A .2cmB .3cmC .4cmD .1cm4.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B 等于( )A .25︒B .30︒C .35︒D .40︒5.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( ) A .①②B .①③C .②③D .③④6.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A.50°B.65°C.70°D.80°7.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),当△ACP与△BPQ全等时,则点Q的运动速度为()cm/s.A.0.5 B.1 C.0.5或1.5 D.1或1.58.已知,如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB,下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有()A.1个B.2个C.3个D.4个9.在△ABC中,∠A=x°,∠B=(2x+10)°,∠C的外角大小(x+40)°,则x的值等于()A.15 B.20 C.30 D.4010.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.8 B.5 C.6 D.711.如图,△ABC中AC边上的高是哪条垂线段.()A .AEB .CDC .BFD .AF12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.给出如下三个图案,它们具有的公共特点是:________.(写出1个即可)14.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.15.已知等边三角形ABC .如图,(1)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN 交AB 于点D ; (3)分别以点A ,C 为圆心,大于12AB 的长为半径作弧,两弧相交于H ,L 两点; (4)作直线HL 交AC 于点E ;(5)直线MN 与直线HL 相交于点O ; (6)连接OA ,OB ,OC .根据以上作图过程及所作图形,下列结论:①2OC OD =;②2AB OA =;③OA OB OC ==;④120DOE ∠=︒,正确的是____________.16.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.17.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.18.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.19.AD 为ABC 的中线,AE 为ABC 的高,ABD △的面积为14,7,2AE CE ==则DE 的长为_________.20.如图,在ABC 中,E 、D 、F 分别是AD 、BF 、CE 的中点,若DEF 的面积是1,则ABCS=______.三、解答题21.如图1,在ABC 中,AB AC =,点D 是BC 的中点,连接AD ,点E 在AD 上.(1)连接BE ,CE ,求证:BE CE =;(2)如图2,若BE 的延长线交AC 于点F ,且BF AC ⊥,45BAC ∠=︒,原题设其他条件不变.求证:AB BF EF =+.22.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.23.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.24.如图,BD //GE ,150AFG ∠=∠=︒,AQ 平分FAC ∠,交BD 的延长线于点Q ,交DE 于点H ,15Q ∠=︒,求CAQ ∠的度数.25.ABC 中,AD 是BAC ∠的角平分线,AE 是ABC 的高.(1)如图1,若40B ︒∠=,60C ︒∠=,求DAE ∠的度数; (2)如图2()B C ∠<∠,试说明DAE ∠、B 、C ∠的数量关系. 26.如图,ABC 中,AD 是高,,AE BF 是角平分线,它们相交于点,80O CAB ∠=︒,60C ∠=°,求DAE ∠和BOA ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DACABDS SCD DB =,由12CD DB =,可得:1:21:3DACABDS S=≠,即可判断D . 【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确; ∵90,30C B ∠=︒∠=︒, ∴60CAB ∠=︒. ∵AD 是BAC ∠的平分线, ∴30DAC DAB ∠=∠=︒. ∴60ADC ∠=︒.故B 正确; 过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒, ∴AD DB =. ∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确; ∵30CAD ∠=︒,∴12CD AD =, ∵AD DB =,∴12DC DB =. ∴12DAC CD AC S ⋅=,12ABDDB AC S ⋅=, ∴::DACABDSSCD DB =,∴12CD DB =, ∴:1:21:3DACABDSS=≠,故D 错误.故选择:D . 【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.2.A解析:A 【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案. 【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020. 解得a=2018,b=-2019, ∴()()()202120212021=2018201911a b +-=-=-故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.B解析:B 【分析】过P 作PC 垂直于MN ,由等腰三角形三线合一性质得到MC=CN ,求出MC 的长,在直角三角形OPC 中,利用30度角所对的直角边等于斜边的一半求出OC 的长,由OC-MC 求出OM 的长即可. 【详解】解:过P 作PC ⊥MN ,∵PM=PN,∴C为MN中点,即MC=NC= 12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC= 12OP=4,则OM=OC-MC=4-1=3cm,故选:B.【点睛】此题考查了含30度角的直角三角形,以及等腰三角形的性质,熟练掌握性质是解本题的关键.4.A解析:A【分析】利用AD=AC,求出∠ADC=∠C=50︒,利用AD=AB,即可求得∠B=∠BAD1252ADC==∠︒.【详解】∵AD=AC,∴∠ADC=∠C,∵80CAD︒∠=,∴∠ADC=∠C=50︒,∵AD=AB,∴∠B=∠BAD1252ADC==∠︒,故选:A.【点睛】此题考查等边对等角的性质,三角形的内角和定理,三角形的外角性质,熟练掌握等腰三角形的性质是解题的关键.5.A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可; 【详解】题意已知:∠A=∠D ,∠B=∠E ,∴①根据“ASA”可添加AB=DE ,故①正确; ②根据“AAS” 可添加AC=DF ,故②正确; ③根据“AAS” 可添加BC=EF ,故③错误; ④根据“ASA”可添加AB=DE ,故④错误; 所以补充①②可判定两三角形全等; 故选:A . 【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;6.A解析:A 【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠. 【详解】根据题意ABE ACD ≅(SAS ), ∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠ ∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒ ∴180********BMD DME ∠=︒-∠=︒-︒=︒ 故选A . 【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.7.D解析:D 【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可. 【详解】解:设点Q 的运动速度是x cm/s , ∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况: ①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.8.D解析:D【分析】根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP =⎧⎨=⎩, ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;9.A解析:A根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.10.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.11.C解析:C【分析】根据三角形的高的定义,△ABC中AC边上的高是过B点向AC作的垂线段,即为BF.【详解】解:∵BF⊥AC于F,∴△ABC中AC边上的高是垂线段BF.故选:C.【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.12.D解析:D根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征【详解】解:答案不唯一例如:都是轴对称图形故答案为:都是轴对称图形【点睛】本题考查了轴对称图形解题的关键是正确把握轴对称图形的特征 解析:都是轴对称图形【分析】利用已知图形的特征分别得出其公共特征.【详解】解:答案不唯一,例如:都是轴对称图形,故答案为:都是轴对称图形.【点睛】本题考查了轴对称图形,解题的关键是正确把握轴对称图形的特征.14.95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.①③④【分析】根据题意可得点O 是三边中垂线的交点从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点即:MN ⊥ABHL ⊥AC ∴根据等边三角形 解析:①③④【分析】根据题意可得点O 是三边中垂线的交点,从而结合等边三角形的性质以及中垂线的性质进行逐项分析即可.【详解】由题可得点O 为等边三角形ABC 三边中垂线的交点,即:MN ⊥AB ,HL ⊥AC , ∴根据等边三角形的性质可得:∠DAO=∠EAO=30°,AD=AE ,∴△ADO ≌△AEO ,∴OD=OE ,又根据中垂线的性质得∠EAO=∠ECO=30°,∴在Rt △COE 中,OC=2OE ,∴OC=2OD ,故①正确;在Rt △ABE 中,显然AB=2AE ,而OA >AE ,∴AB≠2OA ,故②错误;根据中垂线性质可得OA=OB ,OA=OC ,∴OA=OB=OC ,故③正确;在四边形ADOE 中,∠ADO=∠AEO=90°,∠DAE=60°,∴∠DOE=360°-90°×2-60°=120°,故④正确;故答案为:①③④.【点睛】本题考查等边三角形的性质以及垂直平分线的画法和性质,以及全等三角形判定与性质,理解题意中所作图形的本质是解题关键.16.2【分析】通过证明≌得到即可求解【详解】解:∵∴∵∴∴∴在和中∴≌∴∴故答案为:2【点睛】本题考查全等三角形的判定与性质掌握全等三角形的判定与性质是解题的关键解析:2【分析】通过证明CBE △≌BAD ,得到7BD CE ==,5BE AD ==,即可求解. 【详解】解:∵90ABC ∠=︒,∴90ABD CBE ∠+∠=︒,∵AD BD ⊥,CE BD ⊥,∴90CEB D ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∴CBE BAD ∠=∠,在CBE △和BAD 中,CEB D CBE BAD CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌BAD ,∴7BD CE ==,5BE AD ==,∴2DE BD BE =-=,故答案为:2.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键. 17.2或【分析】分点Q 在BC 上和点Q 在AC 上根据全等三角形的性质分情况列式计算【详解】由题意得AP =3tBQ =2tAC =8cmBC =6cmCP =8﹣3tCQ =6﹣2t①如图当与全等时PC=QC 解得;②如解析:2或145. 【分析】分点Q 在BC 上和点Q 在AC 上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP =3t ,BQ =2t ,AC =8cm ,BC =6cm , ∴ CP =8﹣3t ,CQ =6﹣2t ,①如图,当PMC △与QNC 全等时,PC=QC ,6283t t -=-,解得2t =;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 18.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.19.2或6【分析】利用面积法求出BD 即可求得CD 再分AE 在内部和外部求出DE 即可【详解】解:为的高△ABD 的面积为14AE=7∴∵为的中线∴CD=BD=4当AE 在内部时∵CE=2∴DE=CD-CE=2当解析:2或6【分析】利用面积法求出BD ,即可求得CD ,再分AE 在ABC 内部和外部,求出DE 即可.【详解】解:AE 为ABC 的高,△ABD 的面积为14,AE=7, 1142∴⋅⋅=BD AE , ∴2828=4,B 7D ==AE ∵AD 为ABC 的中线,∴CD=BD=4, 当AE 在ABC 内部时∵CE=2,∴DE=CD-CE=2,当AE 在ABC 外部时∵CE=2,∴DE=CD+CE=6,故答案为:2或6【点睛】本题考查三角形的高、中线和面积,注意高可在三角形的内部和外部是解题的关键. 20.7【分析】连接CDBEAF 由三角形中线等分三角形的面积求得S △AEC=2S △DEFS △ABD=2S △DEFS △BFC=2S △DEF 由S △ABC=S △AEC+S △ABD+S △BFC+S △DEF 即可得出解析:7【分析】连接CD ,BE ,AF ,由三角形中线等分三角形的面积,求得S △AEC =2S △DEF ,S △ABD =2S △DEF ,S △BFC =2S △DEF ,由S △ABC =S △AEC +S △ABD +S △BFC +S △DEF 即可得出结果.【详解】解:连接CD ,BE ,AF ,如图所示:∵AE=ED ,由三角形中线等分三角形的面积,可得S △AEF =S △DEF ,同理S △AEF =S △AFC ,∴S △AEC =2S △DEF ;同理可得:S △ABD =2S △DEF ,S △BFC =2S △DEF ,∴△ABC =S △AEC +S △ABD +S △BFC +S △DEF =2S △DEF +2S △DEF +2S △DEF +S △DEF =7S △DEF =7cm 2,故答案为:7.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,解答关键是通过作辅助线,运用三角形中线等分三角形的面积得出结果.三、解答题21.(1)见解析;(2)见解析【分析】(1)先根据等腰三角形的性质得出∠BAE=∠CAE ,再根据SAS 证明△ABE ≌△ACE 即可; (2)由BF ⊥AC ,∠BAC=45°就可以求出AF=BF ,在由条件证明△AEF ≌△BCF 就可以得出EF=CF ,结合已知AB=AC 即可得出结论.【详解】证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠CAE ,在△ABE 和△ACE 中,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵BF ⊥AF ,∴∠AFB=∠CFB=90°.∵∠BAC=45°,∴∠ABF=45°,∴∠ABF=∠BAC ,∴AF=BF .∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC ,∴∠EAF+∠C=90°,∵BF ⊥AC ,∴∠CBF+∠C=90°,∴∠EAF=∠CBF ,在△AEF 和△BCF 中,EAF CBF AF BFAFE BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF ≌△BCF (ASA )∴EF=CF .∴AB=AC=AF+FC=BF+EF【点睛】本题考查了全等三角形的判定性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.22.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.23.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF通过等式的性质得DF=BE在三角形全等的证明中经常用到,应注意掌握应用.24.∠CAQ=65°【分析】先根据三角形外角和定理求出∠EHQ的度数,再根据平行的性质和判定证明DE∥AF,可以求出∠FAQ的度数,再由角平分线的性质即可得出结果.【详解】解:∵∠EHQ是△DHQ的外角,∴∠EHQ=∠1+∠Q=65°,∵BD∥GE,∴∠E=∠1=50°,∵∠AFG=∠1=50°,∴∠E=∠AFG,∴DE∥AF,∴∠FAQ=∠EHQ=65°,∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.【点睛】本题考查角平分线的性质,平行线的性质和判定,解题的关键是熟练运用这些性质定理进行求解.25.(1)11°;(2)∠DAE=12(∠C-∠B)【分析】(1)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC-∠EAC,即可得出;(2)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC-∠EAC,即可得出;【详解】解:(1)∵∠B=40°,∠C=62°,∴∠BAC=180°-∠B-∠C=180°﹣40°﹣62°=78°,∵AD是∠BAC的平分线,∴∠DAC=12∠BAC=39°,∵AE是BC边上的高,在直角△AEC中,∵∠EAC=90°-∠C=90°﹣62°=28°,∴∠DAE =∠DAC -∠EAC =39°﹣28°=11°;(2)∵∠BAC =180°-∠B -∠C ,∵AD 是∠BAC 的平分线,∴∠DAC =12∠BAC =90°-12(∠B +∠C ), ∵AE 是BC 边上的高,在直角△AEC 中,∵∠EAC =90°-∠C ,∴∠DAE =∠DAC -∠EAC =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B ); 【点睛】本题考查的是三角形的内角和定理,三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.26.10DAE ∠=︒,120BOA ∠=︒【分析】根据垂直的定义、角平分线的定义、三角形内角和定理及三角形的外角性质计算即可.【详解】解:80,CAB ∠=︒且AE 平分,CAB ∠1402CAE CAB ∴∠=∠=︒, 又60,C AD BC ∠=︒⊥,9030,CAD C ∴∠=︒-∠=︒10DAE CAE CAD ∴∠=∠-∠=︒;60,40C CAE ∠=︒∠=︒,100BEO C CAE ∴∠=∠+∠=︒,又180,ABC C CAB ∠+∠+∠=︒40,ABC ∴∠=︒ BF 平分,ABC ∠120,2OBE ABC ∴∠=∠=︒ 120BOA OBE BEO ∴∠=∠+∠=︒.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线的定义以及三角形的外角性质,掌握三角形内角和等于180°是解题的关键.。
【鲁教版】八年级数学上期中试题(附答案)
一、选择题1.在平面直角坐标系中,点()3,4A 关于原点O 的对称点是点A ',则OA '=( ) A .3 B .4 C .5 D .52.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .(3B .(2021,3C .20213,22⎛ ⎝⎭D .20213,22⎛⎫- ⎪ ⎪⎝⎭ 3.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2)C .(-2,4)D .(2,-4) 4.在平面直角坐标系中,点()25,1N a -+一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列二次根式中,最简二次根式是( ) A 7B 9C 12 D 236.下列各式计算正确的是( )A 31-B 38C 4D .9 7.下列说法中正确的是( ) A 25±5B .两个无理数的和仍是无理数C .-3没有立方根.D 22-a b . 8.估计(122+432 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 9.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有( )A .1 条B .2条C .3条D .4条 10.如图,在Rt △ABC 中,∠BCA =90°,点D 是BC 上一点,AD =BD ,若AB =8,BD =5,则CD =( )A .2.1B .1.4C .3.2D .2.411.如图,圆柱形玻璃杯高为11cm ,底面周长为30cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的爬行最短路线长为(杯壁厚度不计( )A .12cmB .17cmC .20cmD .25cm 12.如图,在Rt ABC △中,6AB =,8BC =,AD 为BAC ∠的平分线,将ADC 沿直线AD 翻折得ADE ,则DE 的长为( )A .4B .5C .6D .7二、填空题13.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:43@1232⎛⎫-- ⎪ ⎪⎝⎭(7543)2-=※________. 16.已知23x =-,23y =+.则代数式x 2+y 2﹣2xy 的值为_____.17.有一个正方体的集装箱,原体积为364m ,现准备将其扩容以盛放更多的货物,若要使其体积达到3125m ,则它的棱长需要增加__________m .18.“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x 轴,星海街所在的直线为y 轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为4(6,)A -,小明所在位置的坐标为(2,2)B -,则小明与东方之门的实际距离为___________米.19.如图,将两个大小、形状完全相同的ABC 和A B C '''拼在一起,其中点A '与点A 重合,点C '落在边AB 上,连接B C ',若90ACB AC B ''∠=∠=︒,2AC BC ==,则B C '=________.20.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题21.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,AB C 的坐标.22.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.23.求下列各式中x 的值.(1)2x 2=72;(2)(x+1)3+3=﹣61.24.已知2x+3的算术平方根是5,5x+y+2的立方根是3,求x﹣2y+10的平方根.25.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=32米.求点B到地面的垂直距离BC.26.如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:222+=.AD DB CE2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据对称性知道,OA=OA',计算OA的长度即可.【详解】A,∵()3,4∴22+,34A关于原点O的对称点是点A',∵点()3,4∴OA=OA'=5,故选:C .【点睛】本题考查了关于原点对称,点到原点的距离计算,熟练掌握原点对称的性质,点到原点的距离计算是解题的关键.2.C解析:C【分析】设第n 秒运动到Pn (n 为自然数)点,根据点P 的运动规律找出部分Pn 点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【详解】解:设第n 秒运动到Pn (n 为自然数)点,观察,发现规律:112P ⎛ ⎝⎭,()210P , ,332P ⎛ ⎝⎭ ,()42,0P ,552P ⎛ ⎝⎭ ,…,∴412n n P +⎛ ⎝⎭,42,02n n P +⎛⎫ ⎪⎝⎭ ,432n n P +⎛ ⎝⎭,44,02n n P +⎛⎫ ⎪⎝⎭,∵2021=4×505+1,∴2021P 为20212⎛ ⎝⎭. 故选:C .【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律.3.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.4.B解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).5.A解析:A【分析】根据最简二次根式的概念判断即可.【详解】解:AB 3,故不是最简二次根式;C =D 3,故不是最简二次根式; 故选:A .【点睛】本题考查了最简二次根式的定义,熟记定义,并能灵活进行化简,判断是解题的关键. 6.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D.【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.C解析:C【分析】原式利用二次根式乘法运算法则计算得到结果,估算即可.【详解】解:(2+∵16<24<25,即42<2<52,∴4<5,∴6<2+7,∴(6和7之间.故选:C.【点睛】此题考查了估算无理数的大小,以及二次根式的混合运算,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵=,d=2,5∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.10.B解析:B【分析】设CD=x,在Rt△ACD和Rt△ABC中,利用勾股定理列式表示出AC2,然后解方程即可.【详解】解:设CD=x,则BC=5+x,在Rt△ACD中,AC2=AD2-CD2=25-x2,在Rt△ABC中,AC2=AB2-BC2=64-(5+x)2,所以,25-x2=64-(5+x)2,解得x=1.4,即CD=1.4.故答案为:B.【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC2,然后列出方程是解题的关键.11.B解析:B【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将杯子侧面展开,作A关于EF的对称点A′,由题意可得:A′D的长度等于圆柱底面周长的一半,即A′D=15cm由对称的性质可得A′M=AM=DE=2,BE=11-5=6∴BD=DE+BE=8连接A′B,则A′B即为最短距离,2222++=(cm).A D BD'15817故选:B.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.12.B解析:B【分析】由勾股定理求出AC=10,求出BE=4,设DE=x,则BD=8−x,得出(8−x)2+42=x2,解方程求出x即可得解.【详解】∵AB=6,BC=8,∠ABC=90°,∴10=,∵将△ADC 沿直线AD 翻折得△ADE ,∴AC =AE =10,DC =DE ,∴BE =AE−AB =10−6=4,在Rt △BDE 中,设DE =x ,则BD =8−x ,∵BD 2+BE 2=DE 2,∴(8−x )2+42=x 2,解得:x =5,∴DE =5.故选B .【点睛】本题考主要查了勾股定理,直角三角形的性质,折叠的性质等知识,熟练掌握勾股定理是解题的关键.二、填空题13.﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围【详解】解:∵点P (aa+1)在平面直角坐标系的第二象限内∴解得:﹣1<a <0则a 的取值范围是:﹣1<a <0故答案为:﹣1<a <0【解析:﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围.【详解】解:∵点P (a ,a +1)在平面直角坐标系的第二象限内,∴010a a <⎧⎨+>⎩, 解得:﹣1<a <0.则a 的取值范围是:﹣1<a <0.故答案为:﹣1<a <0.【点睛】本题考查了点的坐标,正确掌握各象限内点的坐标特点是解题的关键.14.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.15.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】y=解:2x=-223x y,则2222x y xy x y,2()(23)12故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.17.1【分析】先根据正方体的体积得出其棱长再求出体积达到125m3时的棱长进而可得出结论【详解】解:设正方体集装箱的棱长为a∵体积为64m3∴a==4m;设体积达到125m3的棱长为b则b==5m∴b-解析:1【分析】先根据正方体的体积得出其棱长,再求出体积达到125m3时的棱长,进而可得出结论.【详解】解:设正方体集装箱的棱长为a,∵体积为64m3,∴=4m;设体积达到125m3的棱长为b,则,∴b-a=5-4=1(m).故答案为:1.【点睛】本题考查的是立方根,熟知正方体的体积公式是解题的关键.18.【分析】运用勾股定理可求出平面直角坐标系中AB的长度再根据个单位长度表示的实际距离为米求出结果即可【详解】解:如图AC=6-(-2)=8BC=2-(-4)=6∴∴小明与东方之门的实际距离为10×10解析:1000【分析】运用勾股定理可求出平面直角坐标系中AB的长度,再根据1个单位长度表示的实际距离为100米求出结果即可.【详解】解:如图,AC=6-(-2)=8,BC=2-(-4)=6 ∴2222=6+8=10AB BC AC +∴小明与东方之门的实际距离为10×100=1000(米)故答案为:1000.【点睛】此题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解答此题的关键. 19.【分析】先运用勾股定理求出的长根据等腰直角三角形的性质证得∠=90°最后再利用勾股定理解答即可【详解】解:∵和大小形状完全相同∴≌∵∴和为等腰直角三角形∴∴∴和为等腰直角三角形∴∠CAB=∠C`AB 解析:23【分析】先运用勾股定理求出AB '的长,根据等腰直角三角形的性质证得∠CAB '=90°,最后再利用勾股定理解答即可.【详解】解:∵ABC 和A B C '''大小、形状完全相同 ∴ABC ≌A B C ''' ∵90ACB AC B ''∠=∠=︒,2AC BC == ∴ABC 和A B C '''为等腰直角三角形∴'''2AC B C ==,∴()()22'''222222AB AC AC '=+=+=∴ABC 和A B C '''为等腰直角三角形∴∠CAB=∠C`AB`=45°,即∠CAB '=90°∴()()()222'222223CB AC AB '=+=+=故答案为23.【点睛】本题考查了全等三角形的判定和性质、勾股定理等知识,掌握大小、形状完全相同的三角形是全等三角形是解答本题的关键.20.或【详解】分析:过点D′作MN⊥AB于点NMN交CD于点M由矩形有两条对称轴可知要分两种情况考虑根据对称轴的性质以及折叠的特性可找出各边的关系在直角△EMD′与△AND′中利用勾股定理可得出关于DM解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴EM=DM-DE=AN-DE=532-a , ∵ED′2=EM 2+MD′2,即a 2=(532−a )2+(52)2, 解得:a=533. 综上知:DE=52或533. 故答案为52或533.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题21.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.22.(1)见解析;(2)A(32,52)或(52,-32). 【分析】 (1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.23.(1)x =6或x =﹣6;(2)x =﹣5【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.【详解】解:(1)2x2=72x 2=36,故x=±6,则x=6或x=﹣6;(2)(x+1)3+3=﹣61(x+1)3=﹣64,x+1=﹣4∴x=﹣5.【点睛】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.24.±9【分析】根据立方根与算术平方根的定义得到5x+y+2=27,2x+3=25,则可计算出x=11,y=﹣30,然后计算x﹣2y+10后利用平方根的定义求解.【详解】解:因为2x+3的算术平方根是5,5x+y+2的立方根是3,∴2325 5227xx y+=⎧⎨++=⎩解得:1130 xy=⎧⎨=-⎩,∴x﹣2y+10=81,∴x﹣2y+10的平方根为:9=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键.25.【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,∴AD2=AE2+DE2=(2+(2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=3, ∴BC 2=AB 2-AC 2=62-32=27,∴BC=27=33m ,∴点B 到地面的垂直距离BC=33m .【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.26.(1)见解析;(2)32;(3)见解析【分析】(1)先判断出∠ACD=∠BCE ,得出△ADC ≌△CBE (SAS ),即可得出结论;(2)先判断出DE=2CD ,进而得出△CDE 的周长为(2+2)CD ,进而判断出当CD ⊥AB 时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE =90°,CD =CE .∴由勾股定理可得CE 2DC .∴△CDE 周长等于CD +CE +DE =22CD CD =(22)CD .∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =2此时AD =CD =11623222BD AB ==⨯=∴当CD=△CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.。
【鲁教版】初二数学上期中模拟试卷(带答案)
一、选择题1.点1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,则()2021a b +的值为( ) A .1- B .1 C .0 D .2021- 2.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .202223.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .4.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180° 5.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 6.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等7.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°8.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°9.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90° 10.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 11.如图,在ABC 中,48BAC ∠=︒,点 I 是ABC ∠、ACB ∠的平分线的交点.点D 是ABC ∠、 ACB ∠的两条外角平分线的交点,点E 是内角ABC ∠、外角ACG ∠的平分线的交点,则下列结论 不正确...的是( )A .180BDC BIC ∠+∠=︒B .85ICE ∠=︒C .24E ∠=︒D .90DBE ∠=︒12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.如图,ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE CF =,BD CE =,如果44A ∠=︒,则EDF ∠的度数为__.14.如图,在Rt △ABC 中,∠C =90°,D 为BC 上一点,连接AD ,过D 点作DE ⊥AB ,且DE =DC .若AB =5,AC =3,则EB =____.15.△ABC 中,∠A =50°,当∠B =____________时,△ABC 是等腰三角形.16.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.17.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____18.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.19.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.20.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.三、解答题21.如图,△ABC 为等边三角形,直线l 经过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°.(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC = 60°,求证:△AEC ≌△CDB ; (2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .22.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)23.如图,Rt △ABC 中,∠ACB=90°,D 是AB 上的一点,过D 作DE ⊥AB 交AC 于点E ,CE=DE .连接CD 交BE 于点F .(1)求证:BC=BD ;(2)若点D 为AB 的中点,求∠AED 的度数.24.如图,一条河流MN 旁边有两个村庄A ,B ,AD ⊥MN 于D .由于有山峰阻挡,村庄B 到河边MN 的距离不能直接测量,河边恰好有一个地点C 能到达A ,B 两个村庄,与A ,B 的连接夹角为90°,且与A ,B 的距离也相等,测量C ,D 的距离为150m ,请求出村庄B 到河边的距离.25.如图,在ABC ∆中,48,A CE ∠=︒是ACB ∠的平分线, B C D 、、在同一直线上,,40.BEC BFD D ∠=∠∠=︒(1)求BCE ∠的度数;(2)求B 的度数.26.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得a ,b 的值,进一步可得答案.【详解】解:∵1(1,2020)P a -和2(2017,1)P b -关于x 轴对称,得a-1=2017,1-b=2020.解得a=2018,b=-2019,∴()()()202120212021=2018201911a b +-=-=- 故选:A . 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 2.A【分析】先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.3.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A .【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.4.D解析:D根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 5.C解析:C【分析】根据∠B=∠C ,BD=CE ,BF=CD ,可证出△BFD ≌△CDE ,继而得出∠BFD=∠EDC ,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF ,进而得到答案.【详解】解:∵∠B=∠C ,BD=CE ,BF=CD ,∴△BFD ≌△CDE ,∴∠BFD=∠EDC ,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC ,∴∠B=∠EDF ,又∵∠B=∠C=18019022A A ︒-∠=︒-∠, ∴∠EDF=1902A ︒-∠, 故选:C .【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC 是解题的关键.6.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A 、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B 、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C 、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D 、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A 、根据AB =3,BC =4,∠C =40°,不能画出唯一三角形,故本选项不合题意; B 、∠A =60°,AB =4,∠B =45°,能画出唯一△ABC ,故此选项符合题意;C 、∠C =90°,AB =6,不能画出唯一三角形,故本选项不合题意;D 、AB =4,BC =3,∠A =30°,不能画出唯一三角形,故本选项不合题意;故选:B .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B.【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键。
鲁教版八年级(上)期中数学试卷(五四学制)
鲁教版八年级(上)期中数学试卷(五四学制)一、选择题(本大题共14个小题,每小题3分,共42分.每小题给出的四个答案中,只有一项是正确的.)1.下列等式从左到右的变形中,属于因式分解的是()A.a(b﹣5)=ab﹣5a B.a2﹣4a+4=a(a﹣4)+4C.x2﹣81y2=(x+9y)(x﹣9y)D.(3x﹣2)(2x+1)=6x2﹣x﹣22.下列分式中,属于最简分式的是()A.B.C.D.3.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元4.多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A.(m+2n)(m﹣2n)B.m+2n C.m﹣2n D.(m+2n)(m﹣2n)25.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.若分式的值为0,则()A.x=2 B.x=±2 C.x=﹣2 D.x=07.下列因式分解正确的是()A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣4y2=(x+4y)(x﹣4y)C. x2﹣x+=(x﹣)2D.2xy﹣x2﹣y2=﹣(x+y)28.下列多项式:①x2+y2;②x2﹣1;③x3+4x﹣4;④x2﹣10x+25,其中能直接用公式法因式分解的有()A.1个B.2个C.3个D.4个9.八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一49 84 80 186二49 85 80 161某同学分析后得到如下结论:①一班与二班学生平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是()A.①② B.①③ C.①②③D.②③10.化简÷(1+)的结果是()A.B. C.D.11.若把分式中的x和y都变为原来的3倍,那么分式的值变为原来的()A.倍 B.3倍C.不变 D.倍12.满足方程的x的值是()A.x=2 B.x=﹣2 C.x=0 D.无解13.若a+b+1=0,则3a2+3b2+6ab的值是()A.3 B.﹣3 C.1 D.﹣114.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.只要求填写最后结果)15.因式分解:m2+4m+4= .16.分式与的最简公分母是.17.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是元.18.一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是.19.若4x2+mx+9是一个完全平方式,则实数m的值是.20.若分式方程﹣=有增根,则m的值是.21.已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于.22.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,问:江水的流速为多少?设江水的流速为x千米/时,则可列方程为.三、解答题(本大题共6小题,共54分.写出必要的文字说明、证明过程或推演步骤)23.因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.24.计算(1)÷;(2)++;(3)+﹣.25.先化简,再求值:,其中a=﹣1.26.解方程(1);(2).27.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B 155≤x<160C 160≤x<165D 165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?28.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?鲁教版八年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分.每小题给出的四个答案中,只有一项是正确的.)1.下列等式从左到右的变形中,属于因式分解的是()A.a(b﹣5)=ab﹣5a B.a2﹣4a+4=a(a﹣4)+4C.x2﹣81y2=(x+9y)(x﹣9y)D.(3x﹣2)(2x+1)=6x2﹣x﹣2【考点】因式分解的意义.【分析】因式分解是将多项式分解为几个整式的乘积.【解答】解:根据因式分解的概念可知:x2﹣81y2=(x+9y)(x﹣9y),故选(C)【点评】本题考查因式分解的概念,属于基础题型.2.下列分式中,属于最简分式的是()A.B.C.D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、=,故A选项错误.B、是最简分式,不能化简,故B选项,C、=,能进行化简,故C选项错误.D、=﹣1,故D选项错误.故选B.【点评】本题主要考查了最简分式的概念,解题时要注意对分式进行化简.3.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元【考点】加权平均数.【专题】压轴题.【分析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选C.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.4.多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A.(m+2n)(m﹣2n)B.m+2n C.m﹣2n D.(m+2n)(m﹣2n)2【考点】公因式.【分析】此题先运用平方差公式将m2﹣4n2因式分解,然后用完全平方公式化简m2﹣4mn+4n2,然后提取公因式即可.【解答】解:m2﹣4n2=(m﹣2n)(m+2n),m2﹣4mn+4n2=(m﹣2n)2,∴m2﹣4n2与m2﹣4mn+4n2的公因式是m﹣2n.故选:C.【点评】此题考查的是对公因式的提取,运用平方差公式将原式因式分解或运用完全平方公式进行计算.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵ =0.65, =0.55, =0.50, =0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.【点评】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.6.若分式的值为0,则()A.x=2 B.x=±2 C.x=﹣2 D.x=0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣4=0,且x+2≠0,再解即可.【解答】解:由题意得:x2﹣4=0,且x+2≠0,解得:x=2,故选:A.【点评】此题主要考查了分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.下列因式分解正确的是()A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣4y2=(x+4y)(x﹣4y)C. x2﹣x+=(x﹣)2D.2xy﹣x2﹣y2=﹣(x+y)2【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式进而判断得出答案.【解答】解:A、4a2﹣4a+1=4a(a﹣1)+1,不是因式分解,故此选项错误;B、x2﹣4y2=(x+2y)(x﹣2y),故此选项错误;C、x2﹣x+=(x﹣)2,正确;D、2xy﹣x2﹣y2=﹣(x﹣y)2,故此选项错误;故选:C.【点评】此题主要考查了公式法因式分解,正确应用完全平方公式是解题关键.8.下列多项式:①x2+y2;②x2﹣1;③x3+4x﹣4;④x2﹣10x+25,其中能直接用公式法因式分解的有()A.1个B.2个C.3个D.4个【考点】因式分解-运用公式法.【分析】直接利用完全平方公式以及平方差公式分解因式进而得出答案.【解答】解:①x2+y2,无法因式分解,②x2﹣1=(x+1)(x﹣1),故此选项正确;③x3+4x﹣4,无法因式分解;④x2﹣10x+25=(x﹣5)2,故此选项正确;故选:B.【点评】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.9.八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一49 84 80 186二49 85 80 161某同学分析后得到如下结论:①一班与二班学生平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是()A.①② B.①③ C.①②③D.②③【考点】方差;算术平均数;中位数.【分析】平均数相等说明平均成绩相同;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是80,故①正确;一班的中位数是84,二班的中位数是85,比一班的多,而平均数都要为80,说明二班的优秀人数多于一班的,故②正确;一班的方差大于二班的,又说明一班的波动情况大,所以③错误.故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.化简÷(1+)的结果是()A.B. C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.11.若把分式中的x和y都变为原来的3倍,那么分式的值变为原来的()A.倍 B.3倍C.不变 D.倍【考点】分式的基本性质.【分析】把变成,再化简,即可得出答案.【解答】解: ==•,故选A.【点评】本题考查了分式的基本性质的应用,能理解题意是解此题的关键.12.满足方程的x的值是()A.x=2 B.x=﹣2 C.x=0 D.无解【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1+3x﹣6=x﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.若a+b+1=0,则3a2+3b2+6ab的值是()A.3 B.﹣3 C.1 D.﹣1【考点】因式分解的应用.【分析】由已知得a+b=﹣1,又由3a2+3b2+6ab=3(a+b)2,即可求得答案.【解答】解:由a+b+1=0得:a+b=﹣13a2+3b2+6ab=3(a2+b2+2ab)=3(a+b)2=3×(﹣1)2=3,故选A.【点评】此题考查了完全平方公式.此题比较简单,注意掌握完全平方公式:(a±b)2=a2±2ab+b2,注意整体思想的应用.14.为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语为:提前20分钟完成任务;等量关系为:原计划用的时间﹣提前的时间=实际用的时间.【解答】解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.故选A.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意时间的单位的统一.二、填空题(本大题共8小题,每小题3分,共24分.只要求填写最后结果)15.因式分解:m2+4m+4= (m+2)2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.16.分式与的最简公分母是x(x+3)(x﹣3).【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵ =, =,∴分式与的最简公分母是x(x+3)(x﹣3).故答案为:x(x+3)(x﹣3).【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.17.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是15 元.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:∵捐款的总人数为8+10+12+6+4=40人,第20个与第21个数据都是15元,∴中位数是15元.故答案为:15.【点评】此题考查了中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.18.一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的平均数为3,则x 的值是 3 .【考点】算术平均数.【分析】根据算术平均数的定义列出算式求出x 即可.【解答】解:根据题意可得=3,解得:x=3,故答案为:3.【点评】本题主要考查算术平均数的定义,掌握对于n 个数x 1,x 2,…,x n ,则x ¯=(x 1+x 2+…+x n )就叫做这n 个数的算术平均数是关键.19.若4x 2+mx+9是一个完全平方式,则实数m 的值是 ±12 .【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵4x 2+mx+9=(2x )2+mx+32,∴mx=±2×2x ×3,解得m=±12.故答案为:±12.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.20.若分式方程﹣=有增根,则m 的值是 4或﹣8 . 【考点】分式方程的增根.【分析】解:先把分式方程化为整式方程,根据方程有增根,可得出x 的值,再代入整式方程求得k 的值即可.【解答】解:去分母得,m ﹣2(x ﹣2)=x+2,∵方程﹣=有增根,∴x=±2,当x=2时,m=4;当x=﹣2时,m=﹣8;故答案为4或﹣8.【点评】本题考查了分式的增根,掌握有增根的条件是解题的关键.21.已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于 3 .【考点】分式的化简求值;完全平方公式.【分析】先求出a2+b2=3ab,再化简代入求值即可.【解答】解:∵a2﹣3ab+b2=0(a≠0,b≠0),∴a2+b2=3ab,∴+===3.故答案为:3.【点评】本题主要考查了分式的化简求值与完全平方公式,解题的关键是求出a2+b2=3ab.22.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,问:江水的流速为多少?设江水的流速为x千米/时,则可列方程为.【考点】由实际问题抽象出分式方程.【分析】设江水流速为x千米/时,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行100千米所用时间,与逆流航行60千米所用时间相等,列方程即可.【解答】解:设江水的流速为x千米/时,可得:,故答案为:【点评】本题考查了方式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中涉及的公式:顺水速=静水速+水流速,逆水速=静水速﹣水流速,时间=路程÷速度.三、解答题(本大题共6小题,共54分.写出必要的文字说明、证明过程或推演步骤)23.因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式变形后,利用平方差公式分解即可.【解答】解:(1)原式=4m(a﹣b)+6n(a﹣b)=2(a﹣b)(2m+3n);(2)原式=[4(m﹣n)+3(m+n)][4(m﹣n)﹣3(m+n)]=(7m﹣n)(m﹣7n).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.计算(1)÷;(2)++;(3)+﹣.【考点】分式的混合运算.【分析】分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的,运算的结果要化成最简分式或整式.【解答】解:(1)原式==;(2)原式=+﹣====;(3)原式=+﹣=+﹣==.【点评】本题主要考查了分式的混合运算,解决问题的关键是掌握分式的混合运算的顺序.分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.25.先化简,再求值:,其中a=﹣1.【考点】分式的化简求值.【专题】探究型.【分析】先根据分式混合运算的法则把原式进行化简,再把a=﹣1代入进行计算即可.【解答】解:原式=•=2(a+4)=2a+8,当a=﹣1时,原式=2×(﹣1)+8=6.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.26.解方程(1);(2).【考点】解分式方程.【专题】计算题.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2(2x﹣1)=3(x﹣3),去括号得:4x﹣2=3x﹣9,移项合并得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.27.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B 155≤x<160C 160≤x<165D 165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在 B 组,中位数在 C 组;(2)样本中,女生身高在E组的人数有 2 人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.【专题】图表型.【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.28.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【专题】销售问题;压轴题.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x 元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.第21页(共21页)。
鲁教版八年级上学期数学期中测试卷及参考答案
鲁教版八年级上学期数学期中测试卷一、单选题1. 若分式 中的a 、b 的值同时扩大到原来的3倍,则分式的值( )A . 不变B . 是原来的3倍C . 是原来的6倍D . 是原来的9倍2. 关于x 的分式方程 +5= 有增根,则m 的值为( )A . 1 B . 3 C . 4 D . 53. 已知 = - ,其中A,B 为常数,则4A-B 的值为( )A . 13B . 9C . 7D . 54. 若x ﹣y+3=0,则x (x ﹣4y )+y (2x+y )的值为( )A . 9B . ﹣9C . 3D . ﹣35. 如果分式中的x 、y 都缩小到原来的倍,那么分式的值( )A . 扩大到原来的3倍B . 扩大到原来的6倍C . 不变D . 缩小到原来的倍6. 将下列多项式分解因式,结果中不含因式x-1的是( )A . x -1 B . x(x-2)+(2-x) C . x -2x+1 D . x +2x+17. 边长为a 、b 的长方形周长为12,面积为10,则的值为( )A . 120B . 60C . 80D . 408. 若关于x 的分式方程的解为非负数,则a 的取值范围是( )A . a≥1 B . a >1 C . a≥1且a≠4 D . a >1且a≠49. 已知 = ,则x + 的值为( )A .B .C . 7D . 410. 若n 为任意正整数,(n+11)-n 的值总可以被k 整除,则k 等于( )A . 11B . 22C . 11或22D . 11的倍数11. 若5x ﹣3y=0,且xy≠0,则的值等于( )A .B . ﹣C . 1D . ﹣112. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( )A .B .C .D .二、填空题13. 已知,则分式 = ________.14. 已知x ﹣4x ﹣5=0,则分式的值是________.15. 已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a +b +c ﹣ab ﹣ac ﹣bc=________.16. 化简求值:(a ﹣2)•=________ ,当a=﹣2时,该代数式的值为________17. 若x ﹣y ﹣x+y=(x﹣y )•A ,则A=________.18. 2﹣1能被60~70之间的两个整数整除,这两个整数是________19. 若关于x 的分式方程无解,则m 的值为________.三、计算题2222222222224820. 解方程: + = + .21.先化简,再求值.,其中x =- .22. 若1+x+x +x =0,求x+x +x +…+x 的值.23. 设y=ax ,若代数式(x+y )(x ﹣2y )+3y (x+y)化简的结果为x , 请你求出满足条件的a 值.24. 先化简,再求值:,其中 , .25. 若 ,求 的值.四、综合题26. 已知关于x 的分式方程 + = .(1) 若方程的增根为x=2,求m 的值;(2) 若方程有增根,求m 的值;(3) 若方程无解,求m 的值.五、解答题27. 从称许到南京可乘列车A 与列车B ,已知徐州至南京里程约为350km ,A 与B 车的平均速度之比为10∶7,A 车的行驶时间比B 车的少1h ,那么两车的平均速度分别为多少?28. 某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。
鲁教版八年级上学期数学期中考试
鲁教版八年级上学期数学期中考试注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.3.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分 150分.考试时间120分钟.第Ⅰ卷 (选择题共 48分)一. 选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得 4分,选错、不选或选出的答案超过一个,均记零分)1. 若a>b,则下列变形中正确的是A. a+1<b+1B. ac²>bc²C. ac>bcD. -a+3<-b+32.下列各式2xx+y ,3aπ,2x−3x−1,2xm,中,是分式的有A. 2个B. 3个C. 4个D. 5个3.下列各选项中,因式分解正确的是A. a²+b²=(a+b)²B. x²-2x+4=(x-2)²C. -m²+4m-4=-(m-2)²D. -2y²+6y=-2y(y+3)4.不等式组{x−1<12x−4≤4x+4的解集在数轴上表示正确的是5.下列多项式可以用平方差公式进行因式分解的有①-a²+b²; x2+x+14;③x²-4y²; ④(-m)²-(-n)²;⑤-25a²+36b²; ⑥−12t2+2t.A. 2个B. 3个C. 4个D. 5个6. 关于 x的二次三项式. x²+ax+36 能直接用完全平方公式分解因式,则a的值是A. -6B. ±6C. 12D. ±127.下列化简正确的是A.1−x 2x2−2x+1=x+1x−1B.a2+b2b2+ab=abC.−6mn 2k4m2n =−32k D.m−n−m−n=n−mm+n8.如图,L₁:y=x+2与L₂:y=ax+b 相交于点 P(m,4),则关于x的不等式x+2≥ax+b的解集为A. x≥2B. x≤2C. x≤4D. x≥49. 已知关于x的方程2x−mx−2=3的解是非负数,那么m的取值范围是A. m≤6且m≠4B. m≤6C. m≥6且m≠4D. m>610.疫情期间,某学校用4200元钱到商场去购买“84”消毒液,经过协商议价,每瓶便宜 1元,结果比用原价多买了140瓶,求原价每瓶多少元? 若设原价每瓶x 元,则可列出方程为A.4200x −4200x−1=140B.4200x−1−4200x=140C.4200x −4200x−1=1D.4200x−1−4200x=111.为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,①中位数是5; ②众数是 4; ③平均数是 6; ④方差是6.A.1个B. 2个C. 3个D. 4个12.关于x的方程2x+1+51−x=mx2−1去分母转化为整式方程后产生增根,则m的值是A. -10B. 4C. -10或-4D. -10或4第Ⅱ卷(非选择题 102分)二、填空题(本大题共6小题,每小题4分,满分24分13.一艘轮船顺水航行 40km所用的时间与逆水航行 30km所用的时间相同,若水流时间为4km/h,则静水速度为 km/h.14. 已知xy =−3,则分式xx−y−yx+y−y2x2−y2的值= .15.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,面试成绩和笔试成绩按照6: 4的比例确定个人的成绩,平均成绩高者将被录取,公司将取 .16.正方形A 的周长比正方形B 的周长长48,它们的面积相差 240,则这两个正方形的边长分别为17. 在一场比赛中,甲、乙两名射击手的5次射击成绩统计如图所示,分别记甲、乙两人这场比赛成绩的方差为2S 甲、2S 乙,则22______S S 甲乙(填“>”或“<”).18.某工程队由甲、乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲队单独完成这项工程所需时间比规定时间多 32天,乙队单独完成这项工程所需时间比规定时间多 12天,如果甲乙两队先合作 20天,剩下的甲队单独做,则延误两天完成,那么规定时间是 天.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(11分)(1) 解不等式组: {2(x +2)≥3x +32+x 2−x−13>1;(2)化简求值: (x 2−x x 2−2x+1+21−x)÷x−2x 2−1 , 其中x 为整数.且满足 {2x +7>3x −1<220.(10分)把下列各式分解因式:(1) 9a²(x-y)+4b²(y-x); (2) 2x²y-8xy+8y.21.(11分)阅读材料,完成下列任务:任务:部分分式分解;(1) 将8x2−2x(2)已知−2x(x+3)(x−1)部分分式分解的结果是Mx+3+Nx−1,则M+N 的值为 .22.(12分)若整数a既使得关于x的分式方程ax−14−x +27x−4=−8的解为正数,又得关于x的不等式组{6x−a≥−10−1+12x<−18x+32有且只有4个整数解,求符合条件的所有整数a的和的值.23.(12分)《中学生体质健康标准》规定的等级标准为: 90分及以上为优秀, 80~分为良好,60~79分为及格,59分及以下为不及格. 某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取 10名同学进行体质健康检测,并对成绩进行分析. 成绩如下:(1) 根据上述数据,补充完成下列表格中未知数据:整理数据:分析数据:表格中:a= ;c= ;d= ;b= .(2)该校目前七年级有 300人,八年级有200人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好.24.(10分)疫情期间,某学校需购买A,B两种消毒剂,后勤王老师调查发现:A消毒剂每瓶原价 40元,B消毒剂每瓶原价 50元. 该学校预计购买A,B 两种消。
八年级数学期中试卷鲁教版
一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 如果 |a| = 5,那么 a 的值可能是()A. 5B. -5C. 0D. ±53. 下列各数中,有理数是()A. √9B. √16C. √25D. √364. 在直角坐标系中,点 P(-2, 3) 关于 x 轴的对称点坐标是()A. (-2, -3)B. (2, -3)C. (-2, 3)D. (2, 3)5. 如果 a + b = 5,a - b = 1,那么 a 的值是()A. 3B. 4C. 5D. 66. 下列方程中,解为整数的是()A. 2x + 3 = 7B. 3x - 4 = 10C. 4x + 5 = 11D. 5x - 6 = 127. 下列各式中,能被 8 整除的是()A. 24B. 32C. 40D. 488. 在一次函数 y = kx + b 中,当 x = 2 时,y = 3,那么 k 的值是()A. 1B. 2C. 3D. 49. 下列各数中,负数是()A. 0.01B. 0.001C. -0.01D. -0.00110. 在直角坐标系中,点 A(3, 4) 和点 B(-2, 1) 之间的距离是()A. 5B. 6C. 7D. 8二、填空题(每题3分,共30分)11. 绝对值小于 4 的整数有 ______、______、______、______、______。
12. 如果 |x - 3| = 5,那么 x 的值可能是 ______ 或 ______。
13. 2/3 的倒数是 ______。
14. 下列各数中,有理数是 ______。
15. 在直角坐标系中,点 P(-2, 3) 关于 y 轴的对称点坐标是 ______。
16. 如果 a + b = 5,a - b = 1,那么 b 的值是 ______。
17. 下列各式中,能被 8 整除的是 ______。
【鲁教版】初二数学上期中试卷(及答案)
一、选择题1.已知锐角AOB ∠,如图(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧MN ,交射线OB 于点D ,连接CD ;(2)分别以点,C D 为圆心,CD 长为半径作弧,两弧交于点P ,连接,CP DP ; (3)作射线OP 交CD 于点Q .根据以上作图过程及所作图形,有如下结论:①//CP OB ;②2CP QC =;③AOP BOP ∠=∠;④CD OP ⊥.其中正确的有( )A .①②③④B .②③④C .③④D .③2.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 3.如图,在Rt ABC ∆中, 90,30,ACB A CD ︒︒∠=∠=是斜边AB 上的高,2BD =,那么AD 的长为( )A .2B .4C .6D .8 4.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( )A .B .C .D .5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对 6.到ABC 的三条边距离相等的点是ABC 的( ) A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点7.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 8.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 9.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .8 10.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .4011.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°12.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 二、填空题13.如图,在ABC 中,BD 平分ABC ∠交AC 于点D ,//EF BC 交BD 于点G ,若130BEG ∠=︒,则DGF ∠=______.14.如图,在ABC 中,AB AC =,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E ,在点D 从B 向C 运动过程中,如果ADE 是等腰三角形,则BDA ∠的度数是____________15.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.16.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.17.如图,在ABC 中,AB AC =,BD CD =,点E ,F 是AD 上的任意两点、若8BC =,6AD =,则图中阴影部分的面积为__________.18.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.19.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.20.如图,已知AE 是ABC 的边BC 上的中线,若8AB cm =,ACE △的周长比AEB △的周长多2cm ,则AC =______cm .三、解答题21.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.22.(1)如图①,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE BD CE =+.(2)如图②,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a ∠=∠=∠=,其中a 为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF 和ACF 均为等边三角形,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状.(不需要说明理由)23.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数. 24.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为在ABC 和DEF 中,AC DF =,BC EF =,B E ∠=∠.小聪的探究方法是对B 分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当B 是直角时,如图1,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠=︒,根据“HL ”定理,可以知道Rt Rt ABC DEF ≌△△. 第二种情况:当B 是锐角时,如图2,90B E ∠=∠<︒,BC EF =.(1)在射线EM 上是否存在点D ,使DF AC =?若存在,请在图中作出这个点,并连接DF ;若不存在,请说明理由;(2)这种情形下,ABC 和DEF 的关系是 (选填“全等”“不全等”或“不一定全等”);第三种情况:当B 是钝角时,如图3,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠>︒.(3)请判断这种情形下,ABC 和DEF 是否全等,并说明理由.25.如图,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD ,且BE 、CE 交于点E ,∠ABC =∠ACE .(1)求证:AB//CE ;(2)猜想:若∠A =50°,求∠E 的度数.26.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由作图易判断射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线,CDP 为等边三角形,由它们的性质逐项判断即可.【详解】由作图(1)(2)可知OC=OD ,CP=DP ,∴射线OP 为AOB ∠的角平分线,又为CD 的垂直平分线.∴即=AOP BOP ∠∠,CD OP ⊥,故③④正确;由作图(2)可知CP=CD=DP ,即CDP 为等边三角形,又∵CD OP ⊥,∴CP=2CQ ,故②正确;若//CP OB ,则=CPO BOP ∠∠,又∵=AOP BOP ∠∠,∴=CPO AOP ∠∠,∴OC=PC ,故只有当OC=PC 时,//CP OB ,故①错误.综上,正确的有②③④.故选:B .本题考查角平分线的判定和性质,线段垂直平分线的判定和性质,等边三角形的判定和性质.理解作图步骤隐藏的已知信息是解答本题的关键.2.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.3.C解析:C根据∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,利用互余关系求∠BCD=30°,DB=2,可求BC ,在Rt △ABC 中,再利用含30°的直角三角形的性质求AB ,再用线段的差求AD .【详解】解:Rt △ABC 中,∵∠ACB=90°,∠A=30°,∴∠B=90°-∠A=90°-30°=60°,CD 是斜边AB 上的高,∴∠CDB=90°,∴∠BCD=90°-∠B=30°,∴BC=2BD =4,同理,AB=2BC=8,AD=AB-BD=8-2=6,故选:C .【点睛】本题考查了含30°的直角三角形的性质,准确运用在直角三角形中,30°角所对直角边等于斜边的一半是解题关键.4.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N 位于海岛M 的北偏东30°方向上,∴海岛N 在海岛M 上方,故排除A 、B 选项, 根据直角三角形中30°角所对的边等于斜边的一半,排除选项C ,故选D .【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.5.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.D解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC 的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC 的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.7.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.8.D解析:D【分析】根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键. 9.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E是AD的中点,∴S△ABE=12S△ABD,S△ACE=12S△ADC,∴S△ABE+S△ACE=12S△ABC=12×20=10cm2,∴S△BCE=12S△ABC=12×20=10cm2,∵点F是CE的中点,∴S△BEF=12S△BCE=12×10=5cm2.故选:A.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.10.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.11.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.12.A解析:A【分析】根据正十边形的外角和等于360︒,每一个外角等于多边形的外角和除以边数,即可得解.【详解】3601036︒÷=︒,∴正五边形的每个外角等于36︒,故选:A .【点睛】本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形以上三者之间的关系是解题的关键.二、填空题13.25°【分析】由角平分线和平行线的性质证明则是等腰三角形由顶角的度数算出底角的度数即可得出结果【详解】解:∵BD 平分∴∵∴∴∴是等腰三角形∵∴∴故答案是:【点睛】本题考查等腰三角形的性质和判定解题的 解析:25°【分析】由角平分线和平行线的性质证明EBG EGB ∠=∠,则BEG 是等腰三角形,由顶角的度数算出底角EGB ∠的度数,即可得出结果.【详解】解:∵BD 平分ABC ∠,∴EBG CBG ∠=∠,∵//EF BC ,∴CBG EGB ∠=∠,∴EBG EGB ∠=∠,∴BEG 是等腰三角形,∵130BEG ∠=︒, ∴180130252EGB ︒-︒∠==︒, ∴25DGF EGB ∠=∠=︒. 故答案是:25︒.【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定定理. 14.110°或80°【分析】根据等腰三角形的性质先求出∠BAC 的度数然后分3种情况:①AD =AE 时②AD =ED 时③当AE =DE 时分别求解即可【详解】∵在△ABC 中AB =AC ∠B =40°∴∠B =∠C=40解析:110°或80°【分析】根据等腰三角形的性质,先求出∠BAC 的度数,然后分3种情况:①AD =AE 时,②AD =ED 时,③当AE =DE 时,分别求解,即可.【详解】∵在△ABC 中,AB =AC ,∠B =40°,∴∠B =∠C=40°∴∠BAC =100°,①AD =AE 时,∠AED =∠ADE =40°,∴∠DAE =100°,此时,点D 与点B 重合,不符合题意舍去,②AD =ED 时,∠DAE =∠DEA ,∴∠DAE =12(180°−40°)=70°, ∴∠BAD =∠BAC−∠DAE =100°−70°=30°,∴∠BDA =180°−∠B−∠BAD =110°,③当AE =DE 时,∠DAE =∠ADE =40°,∴∠BAD =100°−40°=60°,∴∠BDA =180°−40°−60°=80°,综上所述:∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,故答案是:110°或80°【点睛】此题主要考查学生对等腰三角形的性质,三角形内角和定理的理解和掌握,解本题的关键是分类讨论,是一道基础题目.15.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全 解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中,A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.16.20【分析】根据△得到由此推出得到答案【详解】解:△∴;∵∴故答案为:20【点睛】此题考查全等三角形的性质:全等三角形的对应角相等熟记性质定理是解题的关键解析:20【分析】根据ABC ≅△AB C ''得到CAB C AB ∠=∠'',由此推出CAC C AB BAB C AB ''∠'+∠=∠'+∠得到答案.【详解】解:ABC ∆≅△AB C '',∴CAB C AB ∠=∠'';∵CAC C AB CAB '∠'+∠=∠,BAB C AB C AB '∠'+∠=∠'',∴CAC C AB BAB C AB ''∠'+∠=∠'+∠,20CAC BAB ∴∠'=∠'=︒.故答案为:20.【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,熟记性质定理是解题的关键. 17.12【分析】利用SSS 证明△ADC ≌△ADB 可得△ABD 的面积=△ACD 的面积通过拼接可得阴影部分的面积=△ABD 的面积再利用三角形的面积公式可求解【详解】解:∵AB=ACBD=CDAD=AD ∴△A解析:12【分析】利用SSS 证明△ADC ≌△ADB ,可得△ABD 的面积=△ACD 的面积,通过拼接可得阴影部分的面积=△ABD 的面积,再利用三角形的面积公式可求解.【详解】解:∵AB=AC ,BD=CD ,AD=AD ,∴△ADC ≌△ADB (SSS ),∴S △ADC =S △ADB ,∵BC=8,∴BD=4,∵AB=AC ,BD=DC ,∴AD ⊥BC ,∴EB=EC ,FB=FC ,∵EF=EF ,∴△BEF ≌△CEF (SSS )∴S △BEF =S △CEF ,∵AD=6,∴S 阴影=S △ADB =12BD•AD =12×4×6=12. 故答案为:12.【点睛】本题考查了全等三角形的性质与判定,三角形的面积,理解S 阴影=S △ADB 是解题的关键. 18.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】 解:根据三角形面积公式可得,1122ABC SAB CE BC AD =⨯=⨯, ∵AB=3,BC=6,CE=5, ∴1135622AD ⨯⨯=⨯⨯, 解得 2.5AD =.故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键. 19.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.20.10【分析】依据AE 是△ABC 的边BC 上的中线可得CE=BE 再根据AE=AE △ACE 的周长比△AEB 的周长多2cm 即可得到AC 的长【详解】解:∵AE 是△ABC 的边BC 上的中线∴CE=BE 又∵AE=A解析:10【分析】依据AE 是△ABC 的边BC 上的中线,可得CE=BE ,再根据AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,即可得到AC 的长.【详解】解:∵AE 是△ABC 的边BC 上的中线,∴CE=BE ,又∵AE=AE ,△ACE 的周长比△AEB 的周长多2cm ,∴AC-AB=2cm ,即AC-8=2cm ,∴AC=10cm ,故答案为:10;【点睛】本题考查了三角形的角平分线、中线和高,求出两个三角形的周长的差等于两边的差是解题的关键.三、解答题21.见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.22.(1)见解析;(2)成立,证明见解析;(3)DEF 为等边三角形【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD ,然后根据“AAS”可判断△ADB ≌△CEA ,则AE=BD ,AD=CE ,于是DE=AE+AD=BD+CE ;(2)由∠BDA=∠AEC=∠BAC ,就可以求出∠BAD=∠ACE ,进而由AAS 就可以得出△BAD ≌△ACE ,就可以得出BD=AE ,DA=CE ,即可得出结论;(3)由等边三角形的性质,可以求出∠BAC=120°,就可以得出△BAD ≌△ACE ,就有BD=AE ,进而得出△BDF ≌△AEF ,得出DF=EF ,∠BFD=∠AFE ,而得出∠DFE=60°,即可推出△DEF 为等边三角形.【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.在ADB △和CEA 中:CAE ABD BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADB CEA AAS ≌()△△. ∴AE BD =,AD CE =.∴DE AE AD BD CE =+=+.(2)成立.证明如下:∵∠BDA=∠BAC=α,又∵DBA ADB BAC CAE ∠+∠=∠+∠∴∠DBA=∠CAE ,在ADB △和CEA 中:DBA CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ADB CEA AAS ≌△△. ∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.(3)DEF 为等边三角形.证明:∵△ABF 和△ACF 均为等边三角形,∴AB=AF=AC ,∠ABF=∠CAF=60°,BF=AF,∴由(2)可知,△ADB ≌△CEA ,∴BD=AE ,∠DBA=∠CAE ,∴∠DBA+∠ABF=∠CAE+∠CAF ,∴∠DBF=∠FAE ,∵在△DBF 和△EAF 中,BD AE DBF FAE BF AF ⎧⎪∠∠⎨⎪⎩=== ∴△DBF ≌△EAF (SAS ),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题属于三角形综合题,主要考查了全等三角形与等边三角形的综合应用,解题的关键是熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质并灵活运用,属于中考常考题型.23.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌, ∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.24.(1)存在,见解析;(2)不一定全等;(3)全等,见解析【分析】(1)根据尺规作图的方法画出图形即可.(2)根据题(1)所得两种情况及全等三角形的判定即可求解;(3)第三种情况:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N,先证明△CMA ≌△FND ,推出AM =DN ,推出AB =DE ,再证明△ABC ≌△DEF 即可.【详解】解:(1)存在,如图所示.射线EM 上有两个点满足要求.(2)不一定全等.如题(1)所示:由于满足条件的D 有两个,故△ABC 和△DEF 不一定全等, 故答案为:不一定全等;(3)△ABC 和△DEF 全等.理由如下:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N .∵ABC DEF ∠=∠,∴CBM FEN ∠=∠.∵CM AB ⊥,FN DE ⊥,∴90CMB FNE ∠=∠=︒.在△CBM 和△FEN 中,∵,,,CMB FNE CBM FEN BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBM ≌△FEN (AAS ).∴BM EN =,∴CM FN =.在Rt △ACM 和Rt △DFN 中,∵,,AC DF CM FN =⎧⎨=⎩∴Rt △ACM ≌Rt △DFN (HL ).∴AM DN =,∴AM BM DN EN -=-,即AB DE =.又∵BC EF =,∴△ABC 和△DEF (SSS ).【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,学会作辅助线,难度适中.25.(1)见解析;(2)25°【分析】(1)根据角平分线的定义得到∠ECD=∠ACE ,得到∠ABC=∠ECD ,根据平行线的判定定理证明结论;(2)根据三角形的外角性质、角平分线的定义计算,得到答案.【详解】(1)证明:∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE ;(2)∵∠ACD 是△ABC 的一个外角,∴∠ACD =∠ABC+∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD ﹣∠EBC =12∠ACD ﹣12∠ABC =12∠A =25°. 【点睛】本题考查的是三角形的外角性质及平行线的判定、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.(1)见解析 (2)1360=CD 【分析】(1)过C 点作CD ⊥AB 即可;(2)根据三角形的面积求解即可.【详解】解:(1)如图:(2)∵在ABC 中,5AC =,12BC =,13AB =,∠ACB =90°,∴S △ABC =12AC ×BC =12AB ×CD , ∴125601313AC BC CD AB ⋅⨯=== 【点睛】本题考查了做三角形高线和利用三角形的面积求高,属于常考题型,熟练掌握基本知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版八年级上学期数学期中测试卷A卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共36分)
1. (3分)把分式中的x、y的值都扩大到原来的2倍,则分式的值()
A . 不变
B . 扩大到原来的2倍
C . 扩大到原来的4倍
D . 缩小到原来的
2. (3分)若解分式方程 = 产生增根,则m=()
A . 1
B . 0
C . ﹣4
D . ﹣5
3. (3分)分式方程的解为()
A .
B .
C .
D . 无解
4. (3分)下列各组代数式没有公因式的是()
A . 5a﹣5b和5a+5b
B . ax+y和x+ay
C . a2+2ab+b2和2a+2b
D . a2﹣ab和a2﹣b2
5. (3分)若分式中的x、y的值都变为原来的3倍,则此分式的值()
A . 不变
B . 是原来的3倍
C . 是原来的
D . 是原来的一半
6. (3分)把a3-ab2分解因式的正确结果是()
A . (a+ab)(a-ab)
B . a(a2-b2)
C . a(a+b)(a-b)
D . a(a-b)2
7. (3分)若2x+3=5,则6x+10=()
A . 15
B . 16
C . 17
D . 34
8. (3分)关于x的分式方程 =3的解是负数,则m可能是()
A . ﹣4
B . ﹣5
C . ﹣6
D . ﹣7
9. (3分)如果x﹣=3,则的值为()
A . 5
B . 7
C . 9
D . 11
10. (3分)下列四个多项式中,能因式分解的是()
A .
B .
C .
D .
11. (3分)如果x:y:z=2:3:4,求的值为()。
A .
B .
C .
D .
12. (3分)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20
人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是()
A .
B .
C .
D .
二、填空题 (共7题;共22分)
13. (1分)如果2x+y=0,xy≠0,那么分式的值为________.
14. (3分)把下列有理式中,是分式的代号填在横线上________.
①﹣3x;② ;③ ;④﹣;⑤ ;⑥ ;⑦﹣;
⑧ .
15. (3分)若xy=2,x﹣y=1,则代数式﹣x2y+xy2的值等于________.
16. (6分)化简: =________
17. (3分)分解因式:1﹣x2+2xy﹣y2=________ .
18. (3分)15x2(y+4)﹣30x(y+4)=________,其中x=2,y=﹣2.
19. (3分)解关于x的方程(其中m为常数)产生增根,则常数m的值等于________.
三、计算题 (共6题;共24分)
20. (4分)解方程: - =1.
21. (4分)计算:
(1)
(2)
22. (4分)计算题(2)利用乘法分配律及去括号法则先去括号,然后再合并同类项即可;
(1)计算
(2)化简
(3)解方程
(4)先化简,再求值,其中a=2,b=-1
23. (4分)已知:,求的值.
24. (4分)因式分解:
(1)﹣4a3b2+10a2b﹣2ab;
(2)6(x+y)2﹣2(x+y);
(3)﹣7ax2+14axy﹣7ay2;
(4)25(a﹣b)2﹣16(a+b)2;
(5)(x2+y2)2﹣4x2y2;
(6)a2+2ab+b2﹣1.
25. (4分)先化简,再求值:,其中
.
四、综合题 (共1题;共15分)
26. (15分)解方程或化简
(1)
(2)
(3)
五、解答题 (共4题;共23分)
27. (5分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每夭生产多少台机器?
28. (6分)某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.求原计划每天铺设多少米?
29. (6分)(2016•菏泽)列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
30. (6分)用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:
原料甲种原料乙种原料
维生素C含量(单位/千克)50080
原料价格(元/千克)164
(1)现配制这种饮料9千克,要求至少含有4000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;
(2)如果还要求甲、乙两种原料的费用不超过70元,试写出x(kg)应满足的另一个不等式.
参考答案一、单选题 (共12题;共36分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共7题;共22分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
三、计算题 (共6题;共24分) 20-1、
21-1、
21-2、
22-1、
22-2、
22-3、
22-4、
23-1、
24-1、
25-1、
四、综合题 (共1题;共15分)
26-1、
26-2、
26-3、
五、解答题 (共4题;共23分)
27-1、
28-1、
29-1、
30-1、。