电磁矢论 第二章、电磁场的基本规律
电磁场与电磁波期末复习知识点归纳
哈密顿算子:矢量微分算子( Hamilton、nabla、del )
ex
x
ey
y
ez
z
★ 标量场的梯度
gradu u u xˆ u yˆ u zˆ ( xˆ yˆ zˆ)u x y z x y z
★ 矢量场的散度计算公式:
divA= • A Ax Ay Az x y z
1
2=∞ nˆ • D1 s
nˆ E1 0 nˆ B1 0
nˆ H1 Js
2、理想介质表面上 的边界条件
1=0
2=0
nˆ • (D1 D2) 0 nˆ (E1 E2 ) 0
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
圆柱坐标和球坐标的公式了解:
Bx By Bz
圆柱坐标系中的体积微元: dV=(d)(d)(dz)= d d dz
分析的问题具有圆柱对称性时可表示为:dV=2ddz
球坐标系中的体积微元: dV=(rsind)(rd)(dr)
分析的问题具有球对称性 时可表示为:
=r2sindrdd dV=4r2dr
★ 标量场的等值面方程 u x, y, z 常数C
程的解都是唯一的。这就是边值问题的唯一性定理
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q
d
’d
电磁场与电磁波第二章电磁场的基本规律讲解
• §2.1 电荷和电场 • §2.2 电流和磁场 • §2.3 真空中的麦克斯韦方程组 • §2.4 媒质的电磁性质 • §2.5 媒质中的麦克斯韦方程组 • §2.6 电磁场边值条件 • §2.7 电磁场能量和能流
§2.1 电荷与电场
1. 电荷是什么东西?
摩擦起电 与绸缎摩擦过的玻璃棒能吸引小纸屑; 与皮毛摩擦过的橡胶棒也能吸引纸屑。
例题 无穷大平行板电容器内有两层介质,极板上 的面电荷密度为±σf ,求电场和极化电荷分布。 解:根据边界条件
在导体与电介质的界面处: 介质1与导体界面
介质2与导体界面 两种介质界面
作业:P88 2.31
§2.7 电磁场的能量密度和能流密度 1. 电磁场的能量密度
电场的能量密度 磁场的能量密度 电磁场的能量密度 在非线性介质中,
当回路不随时间变化时,
2. 位移电流假设 稳恒电流产生的磁场满足规律: 非稳恒情况下, 假设:
——称为位移电流。
3. 麦克斯韦方程组
4. 洛仑兹力公式
(点电荷) (体分布电荷)
作业:P86-87 2.24, 2.27
§2.4 媒质的电磁性质
1.媒质的概念——
在电磁学中一般把材料分为导体和绝缘体。 所以电磁学中涉及的空间区域只有真空、导体 和绝缘体三种不同性质的区域。而在电场中, 绝缘体又被称为“电介质”。
库仑定律:
F12
k
q1q2 r122
e12
F21
令 k 1
4π 0
( 0 为真空电容率)
0
1 4π k
8.85421012 C2
N1 m2
8.8542 10 12 F m1
宏观电磁现象的基本规律
◘ 在导电媒质中形成电流称为传导电流。 ◘ 在真空中或自由空间中的自由电荷的运动形成的电流称为
运流电流。
2-27
《电磁场与电磁波理论》
电流和电流密度
第2章宏观电磁现象的基本规律
♥ 电流强度给出了单位时间内穿过某一截面总的电量,但它 并没有给出单位时间内穿过截面任一点的电量及电荷运动 方向,故引入电流密度的概念来弥补这一不足。
第2章宏观电磁现象的基本规律
2.1.3 电极化强度
(Polarization Vector)
1. 电偶极子和电偶极矩矢量 2. 电介质的极化和电极化强度 3. 电介质中的电场
2-16
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
1. 电偶极子和电偶极矩矢量
♥ 电偶极子(dipole) —— 电介质(即绝缘体)中的 分子在电场的作用下所形成的 一对一对的等值异号的点电荷。
2-24
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
表2.1.1 几种常见的电介质的相对介电常数
◘ 在各向异性的介质(等离子体)中电位移与电场也将具有 不同方向。其介电常数和相对介电常数不再为常数,而是 所谓的“张量”。
2-25
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2.1.5 电流密度 (Current Density)
♥ 电偶极矩矢量(dipole moment)
—— 大小等于点电荷的电量和间距的乘积, 方向由负电荷指向正电荷
(2.1.17)
2-17
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2. 电介质的极化和电极化强度
♥ 电介质的极化(polarize)——电介质在电场的作用下,无 极性介质的分子的正负电荷中心相对位移,形成与外电场同 方向的电偶极子;而极性介质的电偶极矩矢量的取向将趋于 与外电场方向一致。电介质的表面将出现面极化电荷,而其 内部也可能出现体极化电荷。
练习题(第二章 电磁场的基本规律)
c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2
l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场电磁波 第二章+2.4+电介质
P= n p
p P lim
V 0
i
V
3
第二章 电磁场基本规律
分子或者原子团的电偶极矩的大小和方向与 外加电场强度的大小和方向有关,所以极化 强度P是外加电场强度的函数,其关系一般 比较复杂。但对于线性均匀介质,P与外加 电场成正比。另一方面,空间不同点处分子 或者原子团构成不同,极化强度也不同,P 还可能是空间的函数。如果外加电磁场是时 变的,极化强度P还可能是时间的函数。
2.4
媒质的电磁场
一、电介质的极化 电位移矢量
1、介质的极化
介质中分子和原子的正负电荷在外 加电场力的作用下发生小的位移,形 成定向排列的电偶极矩;或原子、分 子固有电偶极矩不规则的分布,在外 场作用下形成规则排列
1
第二章 电磁场基本规律
2
第二章 电磁场基本规律
pi = p
2、极化强度概念
极化强度矢量P,定 义为单位体积中分 子或原子团的电偶 极微分形式
jm磁化电流密度:表示单位时间通过单位垂直面积的磁化 电流 均匀磁化:M 为常数 ,M=0, jm=0,介质内部没有 磁化电流,磁化电流只分布在介质表面
25
第二章 电磁场基本规律
5、 磁介质中磁场的基本方程
1、磁介质中磁场的散度 在磁介质中,磁力线仍然是连续的。即: B dS 0 B 0
p
dV
p P
第二章 电磁场基本规律
5
(1)线性均匀介质中,极化迁出的 电荷与迁入的电荷相等,不出 现极化体电荷分布。
(2)不均匀介质或由多种不同结构 物质混合而成的介质,可出现 极化体电荷。 (3)在两种不同均匀介质交界面上 的一个很薄的层内,由于两种 物质的极化强度不同,存在极 化面电荷分布。
电磁场与电磁波电磁场的基本规律基础知识讲解
2.3.1 安培力定律 磁感应强度
安培力定律 安培力定律揭示了两个恒定电流回路之间相互作用力的规律,其数学表达式为
为真空中介电常数。
安培力定律
*
磁感应强度矢量
磁力是通过磁场来传递的 电流或磁铁在其周围空间会激发磁场,当另外的电流或磁铁处于这个磁场中时,会受到力(磁力)的作用 处于磁场中的电流元Idl所受的磁场力dF与该点磁场B、电流元强度和方向有关,即
面电流产生的磁感应强度
*
例 求有限长直线电流的磁感应强度。
解:在导线上任取电流元 Idz,其方向沿着电流流动的方向,即 z 方向。由比奥—萨伐尔定律,电流元在导线外一点P处产生的磁感应强度为
其中
当导线为无限长时,1→0,2→
结 果 分 析
*
2.3.2 真空中恒定磁场的散度与旋度
在恒定磁场中,磁感应强度矢量穿过任意闭合面的磁通量为0,即:
*
电荷守恒定律 电荷是守恒的,既不能被创造,也不能被消灭,它只能从一个物体转移到另一个物体,或者从一个地方移动到另一个地方。
2.1.3 电荷守恒定律与电流连续方程
电流连续性方程积分形式
由电荷守恒定律:在电流空间中,体积V内单位时间内减少的电荷量等于流出该体积总电流,即
电流连续性方程
磁通连续性定律(积分形式)
由矢量场的散度定理,可推得:
磁场散度定理微分形式
恒定磁场的散度 磁通连续性原理
静磁场的散度处处为零,说明恒定磁场是无源场,不存在磁力线的扩散源和汇集源(自然界中无孤立磁荷存在) 由磁通连续性定律可知:磁力线是连续的
关于恒定磁场散度的讨论:
*
在恒定磁场中,磁感应强度在任意闭合回路C上的环量等于穿过回路C所围面积的电流的代数和与 的乘积,即:
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场的源与边界条件
q 所趋近的极限值就定义为点 P 的电 V
(r ) lim
式中 r 是源点的位失。
V 0
q dq V dV
2、 电荷面密度 在实际问题中,常会遇到电荷分布在薄层内的情况,如果薄层的厚度趋近于零,可近似 认为电荷分布在曲面上, 可以用电荷面密度 S (r ) 来描述其分布。 设曲面 S 上任一面元 S 内所包围的电荷量为 q ,则 S (r ) 定义为
3、磁感应强度 B 的散度、旋度和边界条件 (1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故
B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度 根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
二、
电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流 电荷在某一体积内定向流动形成的电流成为体电流。体电 流在导体内某一截面的分布用电流密度矢量 J 来描述,其定义 为:空间任一点 J 的方向是该点正电荷运动的方向, J 的大小 等于通过该点与 J 垂直的单位面积的电流,即
Nqd dS P dS P endS
因此,穿出闭合面 S 的正电荷为 P dS 。与之对应,留在闭合面 S 内的极化电荷量为
S
q p P dS PdV
S V
又由于
qP P dV
V
故有
P P
(2)极化强度 P 的旋度 对于各向同性和线性介质,有 P e 0 E ,其中合成电场强度 E 为自由电荷产生的外 电场 E 0 和极化电荷产生的附加电场 E 的叠加,由于两种电场强度的旋度都为零,故
《电磁场理论与电磁波》课后思考题
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果A B =A C ,是否意味着B =C 为什么答:否。
1.2 如果⨯⨯A B =A C ,是否意味着B =C 为什么答:否。
1.3 两个矢量的点积能是负的吗如果是,必须是什么情况答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量什么是常矢量单位矢量是否是常矢量答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量); 单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e 都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e 不是常矢量,z e 是常矢量;球坐标系中,坐标单位矢量,,r θφe e e 都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++A e e e ,其中a 、b 、c 为常数,则A 能是常矢量吗为什么答:否。
因为坐标单位矢量,ρφe e 的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-A e e ,其中a 为常数,则A 能是常矢量吗为什么答:是。
对cos sin r θa θa θ=-A e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=A 。
1.7 什么是矢量场的通量通量的值为正、负或0分别表示什么意义答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S 内有负通量源进入与穿出闭合曲面的矢量线相等,S 内没有通量源1.8 什么是散度定理它的意义是什么答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流环流的值为正、负或0分别表示什么意义答:环流的概念:Γ(,,)d CF x y z l =⋅⎰环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。
电磁场的源与边界条件
根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
当有磁介质存在时,上式变为
B 0J B 0 (J JM )
式中 J 为传导电流密度, J M 为磁化电流密度。
(3)磁感应强度 B 的边界条件 将积分形式的麦克斯韦第三方程应用于如图 4 所示的圆
柱,易得
en (B1 B2 ) 0 上式表明磁感强度的法向分量是连续的。
球的极限当带电体的尺寸相对于观察点至带电体的距离可以忽略时,就可以认为电荷分布于
带电体中心上,即将带电体抽象为一个几何点。点电荷的电荷密度分布可以用数学上的 (r )
来描述。
二、 电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流
移矢量的切向分量是不连续的(两种介质的 通常不等)。
3、磁感应强度 B 的散度、旋度和边界条件
(1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故 B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度
即
故有
(P1 P2 ) enS SPS
en (P1 P2 ) SP 上式表明极化强度的法向分量是不连续的。一般情况下,其切向分量也不连续。
7、磁化强度 M 的散度、旋度和边界条件
7/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度
对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
自然界中存在两种电荷:正电荷和负电荷。带电体上所带的电荷是以离散的方式分布的, 任何带电体的电荷量都是基元电荷的整数倍,但在研究宏观电磁现象时,人们关注的是大量 微观带电粒子的整体效应,因此可以认为电荷是以一定形式连续分布的,并用电荷密度来描 述电荷的分布。 1、 电荷体密度
电磁场的边界条件
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
电磁场与电磁波(第二章)
S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S
谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】
2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37
电磁场与电磁波期末复习考试要点
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
电磁场与电磁波(第四版)课后答案 谢处方 第二章习题
uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电动力学-复习-第二章-电磁场的基本规律
*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件
大学物理易考知识点电磁场的基本规律
大学物理易考知识点电磁场的基本规律大学物理易考知识点:电磁场的基本规律电磁场是电荷和电流所产生的物理现象,在电磁学中起着至关重要的作用。
了解电磁场的基本规律不仅可以帮助我们解决实际问题,还可以为日常生活中的电器使用提供指导。
本文将介绍电磁场的基本规律,包括库仑定律、电场的叠加原理、高斯定律、法拉第电磁感应定律以及安培环路定理等。
一、库仑定律库仑定律是描述电荷之间相互作用的规律。
根据库仑定律,两个电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
具体表达式为:\[F = k\frac{{|q_1q_2|}}{{r^2}}\]其中,\[F\]代表电荷之间的相互作用力,\[q_1\]和\[q_2\]分别代表两个电荷的电荷量,\[r\]代表两个电荷之间的距离,\[k\]为比例常数。
二、电场的叠加原理电场是由电荷产生的一种物理场。
电场可以用来描述在电荷存在的情况下,其他电荷所受到的力的情况。
如果有多个电荷同时存在,它们所产生的电场的叠加效应可以通过电场的叠加原理来描述。
根据电场的叠加原理,电场叠加后的总电场强度等于各个电场强度的矢量和。
这一原理可以用公式表示为:\[E = E_1 + E_2 + E_3 + ... + E_n\]其中,\[E_1\],\[E_2\],\[E_3\]等分别代表各个电荷所产生的电场强度,\[E\]代表叠加后的总电场强度。
三、高斯定律高斯定律是描述电场的分布与电荷之间的关系的定律。
根据高斯定律,电场通过一个闭合曲面的通量与该闭合曲面内的电荷量成正比,与电荷分布无关。
具体表达式为:\[Φ = \frac{Q}{{ε_0}}\]其中,\[Φ\]代表电场通过闭合曲面的通量,\[Q\]代表闭合曲面内的电荷量,\[ε_0\]为真空中的介电常数。
四、法拉第电磁感应定律法拉第电磁感应定律描述了磁场的变化所产生的感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q2之间的作用力大小与两电荷的电荷量呈正比,两电荷距 1. 标量和矢量
离的平方呈反比,方向沿q1和q2连线方向,其数学表达式 为:
F12
q1q2 R12 , R12 r2 r1 3 4 0 R12
z
q1 r1
2 1 4 R R
q 1 S R dS 40
q EdS
S
1 V R dV
2
0
V
R dV
2.2 真空中静电场的基本规律
因带电体包含在闭合曲面之内,积分区域包含 R 0 的点,则
V R dV 1 q 得到高斯定理的积分形式: EdS
S
0
1. 标量和矢量 物理意义:电场强度矢量穿过闭合曲面S的通量等于该闭合面
所包围的总电荷与ε0之比,与曲面外电荷无关。
应用:当电荷分布有一定对称性时,可利用高斯定理的积分形
式很方便的计算电场强度,如:球对称分布,轴对称分布。
若已知S中的电荷体密度,则S内的总电荷为:
q
S
S r dS
o
y
2.1 电荷守恒定律
(3)电荷线密度 电荷连续分布于横截面积可忽略的曲线l上,用电荷线密度描述 其分布:
q dq C m l r lim l 0 l dl
q 1. 标量和矢量 l r dl
2.2 真空中静电场的基本规律
2、静电场的散度和旋度 (1)散度和高斯定理
真空中一带电体产生的电场的电场强度为: E
q 4 0 R 3
R
两边同时对任一包含该带电体的闭合曲面积分有: 1. 标量和矢量
q R q SEdS 40 S R3 dS 40
l
z
r
q
若已知l中的电荷线密度,则l内的总电荷为:
o x
P l
y
设点电荷分布于任一点,其位置矢量为 r ,则空间任一点处
的电荷密度为:
(4)点荷面密度
z
r
r q r r 0, r r r r , r r
2.1 电荷守恒定律
据电荷守恒定律知,单位时间内从闭合面S内流出的电荷 量等于闭合面所限定的体积V内电荷的减少量,即:
反映一个区域内电荷 dq i J dS 变化与电流流动的宏 S dt 观关系。 dq 电流连续性方程积分形式: 1. 标量和矢量 SJ dS dt V t dV
S
2.1 电荷守恒定律
(2)面电流 ——电荷在一厚度可忽略的薄层上定向运动形成
i di J S 的定义: J S en lim 标量和矢量 en 1. l 0 l dl J S 的单位是A/m(安/米)。
i J S e t dl
l
的电流。 引入面电流密度矢量 J S 来描述面电流的分布情况。
z
P
o
q
V V
若已知V中的电荷体密度,则V内的总电荷为:
q 1. 标量和矢量 r dV
V
r
y
x 电荷连续分布于厚度可忽略的曲面S上,用电荷面密度描述其
(2)电荷面密度
分布:
q dq S r lim C m2 S 0 S dS
x
z
S q P S r
q
o x
y
2.1 电荷守恒定律
2、电流及电流密度
电流:由电荷的定向运动形成,其大小通常用电流强度
(简称电流,单位安培(A))i来表示。
q d q 电流强度i的定义: i lim t 0 t dt
电流强度(电流)的物理意义:单位时间内流过曲面的电 荷量。 形成电流的条件:存在可以自由移动的电荷;存在电场。 电流通常是时间的函数,恒定电流是不随时间发生改变的 电流,用I表示。
应用散度定理 JdV J dS ,有 V S V JdV V t dV 转换得: 电流连续性方程微分形式: J 0 t
描述空间某点处电荷 变化与电流流动的局 部关系。
2.1 电荷守恒定律
对于恒定电流,电流不随时间变化,那么在空间中电荷分 布也不改变,即有:
在宏观上,带电体的电荷量是大量微观带电粒子的总体效应,
可以不考虑其在微观上的离散性,认为电荷是以一定形式连续 分布在带电体上的,可以用电荷密度来描述电荷量在带电体上
的分布。
2.1 电荷守恒定律
(1)电荷体密度 电荷连续分布于体积V内,用电荷体密度描述其分布:
q dq r lim C m3 V 0 V dV
R12 q2
说明:同性电荷相排斥,异性电荷相吸引;
r2
F12
F12 F21 满足牛顿第三定律。
o
y
x
2.2 真空中静电场的基本规律
静电力服从叠加原理
真空中有N个点电荷: q1、q2…… qn(分别位于 r1、r2 rn ,则位于 r 处的点电荷q受到的作用力等于其余每个点电荷对
0 t
则恒定电流的电流连续性方程为 1. 标量和矢量
S
JdS 0, J 0
其物理意义:流入闭合面S的电流等于流出的电流,即恒
定电流场一定是无散场。
2.2 真空中静电场的基本规律
静电场:空间位置固定、电量不随时间(静止)的电荷产 生的电场。
1、库伦定律 电场强度
第二章 电磁场的基本规律
主要内容
2.1 电荷守恒定律 2.2 真空中静电场的基本规律
2.3 真空中恒定磁场的基本规律
2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件
2.1 电荷守恒定律
电磁场物理模型中的物理量可分为两大类:源量和场量。 源量:电荷(q)和电流(I)。 场量:电场(由电荷产生)和磁场(由电流产生)。
2.2 真空中静电场的基本规律
几种典型分布电荷的电场强度 均匀无限长带电直线段的电场强度
z
M
E
l e 2 0
1. 标量和矢量
l
均匀带电圆环轴线上的电场强度
M
z
a x
y
E
2 0
z
al z
2
a
2
e 32 z
o
l
2.2 真空中静电场的基本规律
电偶极子的电场强度
电场强度矢量定义:单位实验正电荷在电场中所受的作用力, 其单位V/M(伏/米)
1. 标量和矢量 Fq0 q E lim R 3 q0 0 q 4 0 R 0
z
r
q
N个点电荷产生的电场同样服从叠加原理:
1 n qi E R3 Ri 4 0 i 1 i
q的作用力的叠加:
1. 标量和矢量
n n qqi Fq Fqqi Ri , Ri r ri q2 i 1 i 1 4 0 Ri
q3
q4 q q5 q7 q6
q1
2.2 真空中静电场的基本规律
电场强度矢量 E :描述电场分布的基本物理量。 q0 q 电荷q0在电场中所受的作用力: Fq R 3 0 4 0 R
V
将所有细分区域产生的电场叠加有:
1 E dE V 4 0
V
r R dV 3 R
(r ) r r o
M
y
x
2.2 真空中静电场的基本规律
同理可导出电荷按面电荷密度和线电荷密度连续分布时,电 场强度的计算公式
S r R 1 面电荷密度连续分布: E dE S 40 S R3 dS 1. 标量和矢量 l r R 1 线电荷密度连续分布: E dE l l R3 dl 4 0
1. 标量和矢量
2.1 电荷守恒定律
在电磁场理论中,常用的电流分布模型有:体电流、面电 流及线电流。 (1)体电流 ——电荷在某一体积内定向运动形成的电流。
引入体电流密度矢量 J 来描述体电流的分布情况。 1. 标量和矢量 J 的定义:空间任一点 J 的方向是该点正电荷运动的方向, 其大小等于在该点与 J 垂直的单位面积的电流,即: S i di en J en lim en S 0 S J dS 体电流密度矢量 J 的单位是A/m2(安/米2)。 通过任意截面S的电流:i J dS
et
en
JS
l
h0
通过薄层导体上任意有向曲线l的电流:
面电流密度矢量
et 是薄层导体的法向单位矢量。
2.1 电荷守恒定律
3、电荷守恒定律与电流连续性方程 电荷守恒定律:电荷是守恒的,既不能被创造,也不能被 消灭,只能从物体的一个部分转移到另一部分,或是从一 个物体转移到另一个物体,即有在一个与外界没有电荷交 换的系统内,正、负电荷的代数和在任何物理过程中始终 1. 标量和矢量 保持不变。 电荷守恒定律是电磁现象中的基本定律之一。
电荷 电场
1. 标量和矢量
(运动)
电流 磁场
2.1 电荷守恒定律
1、电荷及电荷密度 自然界中存在两种电荷:正电荷和负电荷。 电荷量:带电体所带电量的多少,用q表示。 最小电荷量:是质子和电子的电荷量,称为基本电荷量, 1. 标量和矢量 大小为 e 1.60210
19
C。
任何带电体的电荷量是 e 的整数倍,即在微观上带电体上