高一轨迹方程

合集下载

高中数学轨迹方程求解常用方法总结

高中数学轨迹方程求解常用方法总结

高中数学轨迹方程求解常用方法总结导语:轨迹方程就是与几何轨迹对应的代数描绘。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假设能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学解题方法-----求轨迹方程的常用方法

高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法
由已知条件求动点轨迹方程是解析几何的基本问题之一,也是解析几何的重点。

轨迹方程的常用方法可归纳为以下四种。

一、普通法
例1. 求与两定点距离的比为1:2的点的轨迹方程。

分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。

解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2. 点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。

分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线
的距离相等。

由抛物线标准方程可写出点M的轨迹方程。

解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。

则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。

故所求轨迹方程为。

三、坐标代换法
例3. 抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。

分析:抛物线的焦点为。

设△ABC重心P的坐标为,点C的坐标为。

解:因点是重心,则由分点坐标公式得:

由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4. 当参数m随意变化时,求抛物线的顶点的轨迹方程。

分析:把所求轨迹上的动点坐标x,y分别用已有的参数m
来表示,然后消去参数m,便可得到动点的轨迹方程。

解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。


▍ ▍
▍。

轨迹方程和运动方程

轨迹方程和运动方程

轨迹方程和运动方程在物理学中,轨迹方程和运动方程是描述物体运动的重要工具。

通过这两个方程,我们可以了解物体在空间中的运动轨迹以及运动的性质。

本文将从轨迹方程和运动方程的角度,介绍物体运动的基本概念和相关知识。

一、轨迹方程轨迹方程是描述物体在空间中运动轨迹的数学表达式。

它可以用数学语言准确地描述物体在不同时间下的位置坐标。

常见的轨迹方程有直线方程、圆的方程等。

1. 直线运动的轨迹方程对于直线运动,轨迹方程可以用一元一次方程y = kx + b来表示,其中k为斜率,b为截距。

通过斜率和截距,我们可以确定直线的斜率和与坐标轴的交点,从而得到物体运动的轨迹。

2. 圆的运动的轨迹方程对于圆的运动,轨迹方程可以用二元二次方程x^2 + y^2 = r^2来表示,其中r为圆的半径。

通过这个方程,我们可以确定圆的半径以及圆心的坐标,从而描述物体在圆上的运动轨迹。

二、运动方程运动方程是描述物体运动的数学表达式。

它可以用数学语言描述物体随时间变化的位置、速度和加速度等物理量。

常见的运动方程有匀速直线运动方程、匀加速直线运动方程等。

1. 匀速直线运动的运动方程对于匀速直线运动,运动方程可以用x = vt来表示,其中x为物体的位移,v为物体的速度,t为时间。

这个方程表示物体在匀速直线运动中,位移与时间成正比,速度恒定不变。

2. 匀加速直线运动的运动方程对于匀加速直线运动,运动方程可以用x = v0t + 1/2at^2来表示,其中x为物体的位移,v0为物体的初速度,a为物体的加速度,t 为时间。

这个方程表示物体在匀加速直线运动中,位移与时间的平方成正比,速度随时间变化。

三、物体运动的特点通过轨迹方程和运动方程,我们可以了解物体运动的一些特点和规律。

以下是一些常见的物体运动特点:1. 速度的变化:根据运动方程,物体的速度随时间变化,可以是匀速变化或者是加速变化。

我们可以通过速度的变化来判断物体的运动情况。

2. 加速度的影响:加速度是物体运动的重要参数,它决定了物体的运动状态。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等,圆锥曲线标准方程的推导。

1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。

26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。

高考数学知识点总结:轨迹方程的求解知识点总结

高考数学知识点总结:轨迹方程的求解知识点总结

高考数学知识点总结:轨迹方程的求解知识点总结高考数学知识点总结:轨迹方程的求解。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标_,y表示相关点P的坐标_0、y0,然后代入点P 的坐标(_0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标_、y之间的直接关系难以找到时,往往先寻找_、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

_直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(_,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于_,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

高三数学知识点必修一:轨迹方程的求解

高三数学知识点必修一:轨迹方程的求解

高三数学知识点必修一:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y 的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。

在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。

在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。

一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。

2. 将轨迹上的点的坐标表示为一般形式。

3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。

二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。

3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。

轨迹方程知识点总结

轨迹方程知识点总结

轨迹方程知识点总结一、轨迹方程的概念轨迹方程是指在平面直角坐标系中,描述某一特定几何对象的运动过程中所有可能位置点的集合的方程。

它是描述物体或点在运动中所遵循的规律和路径的数学工具。

轨迹方程是一种抽象的数学概念,通过它可以描述所有可能的位置点的集合,从而揭示几何对象的运动轨迹规律。

二、轨迹方程的表示1. 参数方程表示法轨迹方程可以使用参数方程来表示。

参数方程的形式通常为x=f(t),y=g(t),其中t为参数,x和y是时间t的函数。

通过变化参数t的取值范围,就可以得到轨迹上的所有点的坐标。

2. 极坐标方程表示法轨迹方程也可以使用极坐标来表示。

极坐标方程的形式通常为r=f(θ),其中r是极坐标系下到原点的距离,θ是到x轴正向的角度。

通过变化θ的取值范围,就可以得到轨迹上的所有点的极坐标表示。

3. 一般方程表示法轨迹方程还可以用一般方程来表示。

一般方程的形式通常为F(x,y)=0,其中F是一个关于x和y的函数。

通过解一般方程,就可以得到轨迹上的所有点的坐标。

三、轨迹方程的应用1. 描述物体的运动轨迹轨迹方程可以被用来描述物体在运动中所遵循的路径规律。

通过物体的运动速度和加速度等信息,可以推导出物体的轨迹方程,从而预测物体的位置和运动状态。

2. 分析几何对象的性质轨迹方程可以被用来分析几何对象的性质。

通过对轨迹方程的分析,可以得到几何对象的面积、周长、对称性等性质,从而深入理解几何对象的结构和特点。

3. 解决实际问题轨迹方程也可以被用来解决实际问题。

例如,通过轨迹方程可以计算物体的轨迹长度、运动时间、最大速度、最大加速度等参数,从而为实际问题的分析和解决提供数学工具和方法。

四、轨迹方程的求解方法1. 参数方程的求解对于参数方程表示的轨迹方程,可以通过分离变量、积分等方法求解。

例如,对于一条直线的参数方程x=at,y=bt,可以求解出轨迹方程为y=ax/b。

2. 极坐标方程的求解对于极坐标方程表示的轨迹方程,可以通过代入坐标变换、积分等方法求解。

高三数学轨迹方程课件

高三数学轨迹方程课件
详细描述
双曲线有两个分支,且关于其主轴对称。此外,双曲线还有 渐近线的概念,即随着点无限远离主轴,其轨迹将无限接近 于两条直线。
抛物线
总结词
抛物线是一个平面截取一个圆锥面得到的几何图形,其轨迹方程通常表示为 y = ax^2 + bx + c,其中 a、b 和 c 是常数,且 a 不等于 0。
详细描述
物理学
描述物体在重力、电磁 场等作用下的运动轨迹

工程学
在机械、航空、航海等 领域用于计算和预测物
体运动轨迹。
经济学
在统计分析中用于研究 数据点分布和变化趋势

02
轨迹方程的求解方法
直接法
定义
直接法是指通过直接代入或消元法, 将几何条件转化为代数方程,从而得 到轨迹方程的方法。
适用范围
步骤
1. 根据题意,设动点坐标为$P(x, y)$ ;2. 代入已知的几何条件,得到代数 方程;3. 化简代数方程,得到轨迹方 程。
实例分析
通过具体实例,如行星运动轨迹、电磁波传播等,展示极坐标系下 轨迹方程的应用。
参数方程与轨迹方程的关系
参数方程的概念
01
参数方程是一种描述轨迹的方法,通过引入参数,将轨迹上的
点的坐标表示为参数的函数。
参数方程与轨迹方程的转化
02
将参数方程转化为轨迹方程是解决许多数学问题的关键步骤。
通过消去参数,可以将参数方程转化为轨迹方程。
高三数学轨迹方程课件
contents
目录
• 轨迹方程的基本概念 • 轨迹方程的求解方法 • 常见轨迹方程的解析 • 轨迹方程的实际应用 • 轨迹方程的拓展与提高
01
轨迹方程的基本概念

高中高考轨迹方程的求法总结

高中高考轨迹方程的求法总结

轨迹方程的求法【方法介绍】方法一:直接法课本中主要介绍的方法。

若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称为直接法。

例题1等腰三角形的顶点为)2,4(A ,底边一个端点是)5,3(B ,求另一个端点C 的轨迹方程。

练习一1.已知点)0,2(-A 、)0,3(B ,动点),(y x P 满足2x PB PA =⋅→→。

求点P 的轨迹方程。

2. 线段AB 的长等于2a,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?3.动点P (x,y )到两定点)0,3(-A 和)0,3(B 的距离的比等于2(即:2=PB PA )。

求动点P 的轨迹方程?4.动点P 到一高为h 的等边△ABC 两顶点A 、B 的距离的平方和等于它到顶点C 的距离平方,求点P 的轨迹?5.点P 与一定点)0,2(F 的距离和它到一定直线8=x 的距离的比是2:1。

求点P 的轨迹方程,并说明轨迹是什么图形。

6.已知)0,4(P 是圆3622=+y x 内的一点,A 、B 是圆上两动点,且满足△APB=90°,求矩形APBQ 的顶点Q 的轨迹方程。

7.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

方法二:相关点法 利用动点是定曲线上的动点,另一动点依赖于它,那么可寻它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例题2已知一条长为6的线段两端点A 、B 分别在X 、Y 轴上滑动,点M 在线段AB 上,且AM : MB=1 : 2,求动点M 的轨迹方程。

练习二1.已知点)(00,y x P 在圆122=+y x 上运动,求点M ),2(0y x 的轨迹方程。

轨迹方程和运动方程

轨迹方程和运动方程

轨迹方程和运动方程
轨迹方程和运动方程是物理学中的重要概念。

轨迹方程用来描述物体在运动过程中的轨迹,是一条曲线或路径的方程式。

而运动方程则用来描述物体在运动过程中的运动状态,包括速度、加速度等。

两者之间存在着密切的关联。

对于匀速直线运动,其轨迹方程为x=vt,其中x表示位移,v 表示速度,t表示时间。

而运动方程为v=常数,a=0,其中a表示加速度。

对于匀加速直线运动,其轨迹方程为x=1/2at^2+v0t+x0,其中a表示加速度,v0表示初速度,x0表示初位移。

运动方程为
v=v0+at,a=常数,其中v表示速度。

对于圆周运动,其轨迹方程为x=rcosθ,y=rsinθ,其中r表示圆的半径,θ表示角度。

而运动方程为v=ωr,a=ω^2r,其中v 表示速度,ω表示角速度,a表示向心加速度。

轨迹方程和运动方程不仅在物理学中有重要的应用,也被广泛应用于工程学和数学中。

在机械工程中,轨迹方程和运动方程被用来设计机器人、汽车和飞行器等自动化系统。

在数学中,轨迹方程和运动方程被用来研究曲线的性质和运动学问题。

- 1 -。

高中数学考前归纳总结求轨迹方程的常用方法

高中数学考前归纳总结求轨迹方程的常用方法

求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。

高考数学一轮复习知识点:轨迹方程的求解知识点总结

高考数学一轮复习知识点:轨迹方程的求解知识点总结

高考数学一轮复习知识点:轨迹方程的求解知识点总结符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标_,y表示相关点P的坐标_0、y0,然后代入点P 的坐标(_0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标_、y之间的直接关系难以找到时,往往先寻找_、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

_直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(_,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于_,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

总结:以上就是高考数学一轮复习知识点:轨迹方程的求解的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一轨迹方程求法总结
一直接法
按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时。

步骤:设所求点坐标,列出等式,化简,检验。

例:已知点M与两个定点O(0,0),A(3,0)是距离的比为1/2,求M点的轨迹方程
练1:点M与定点F(1,0)的距离和它到直线x=8的距离的比为1/2,求M点的轨迹方程
练2:求到两条平行线3x+2y-6=0与6x+4y-3=0的距离相等的点的轨迹
二几何法
几何法:
若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

(发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.)
例:已知点
)2,3
(-
A、)4
,1(-
B,过A、B作两条互相垂直的直线
1
l和
2
l,求
1
l和
2
l的交
点M的轨迹方程.
练3:求与圆x2+y2=1外切,又与圆x2+y2-6x+8=0内切的圆的圆心的轨迹方程
三、定义法
定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.
例:等腰三角形的顶点A的坐标是(4,2)底边的一个端点B的坐标是(3,5),求另一个顶点C的轨迹方程
练:长为2a的线段AB的两个端点A、B分别在x轴和y轴上运动,求线段AB中点的轨迹方程
四转移法(相关点法)
x,来表示,再代入当题目中有多个动点时,将其他动点的坐标用所求动点P的坐标y
到其他动点要满足的条件或轨迹方程中,整理即得到动点P的轨迹方程,称之代入法,也称相关点法、转移法.
例:△ABC的顶点B,C的坐标分别是(2,1)(-3,-1)顶点A在圆(x+2)2+(y-4)2=4上运动,求△ABC的重心的轨迹方程
练4:从圆x2+y2=2上任意一点P向x 轴作垂线段PP1,求线段PP1中点的轨迹方程
总结求曲线方程的一般步骤
综合练习
1已知实数m,n满足m2+n2=1,则点P(m+n,m- n)的轨迹方程是
2已知点P是直线2x-y+3=0上的一个动点,定点M (-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是
3如图,⊙O1与⊙O2的半径都是1,O1O2=4,过动点P分别作⊙
O1、⊙O2的切线PM、PN(M、N分别为切点),使得|PM|= ,
试建立适当的坐标系,并求动点P的轨迹方程
4已知圆C:x2 + y2 = 4.过圆C上一动点M作平行于x轴的直线m,
设m与y轴的交点为N,若向量OQ = OM + ON,求动点Q的轨迹
方程,并说明此轨迹是什么曲线。

5已知P(4,0)在圆x2+y2=36内,点A,B是圆上的两个动点,且AP 与BP垂直,求AB中点的轨迹方程
6自点A(1,0)引圆x2+y2=4的7 弦BC,求弦BC中点的轨迹方程
7求经过点A(6,5)与圆x2+y2-6x+8=0相切的圆的圆心的轨迹方程。

相关文档
最新文档