1-1.1第2课时分类加法计数原理与分步乘法计数原理的综合应用

合集下载

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 分类加法计(1)

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 分类加法计(1)
答案:4 6 12
类型 1 组数问题(自主研析) [典例 1] 用 0,1,2,3,4 五个数字, (1)可以排出多少个三位数字的密码? (2)可以排成多少个三位数? (3)可以排成多少个能被 2 整除的无重复数字的三位数? 解:(1)三位数字的密码,首位可以是 0,数字也可以重 复,每个位置都有 5 种排法,共有 5×5×5=53=125(种). (2)三位数的首位不能为 0,但可以有重复数字,首先考
19
共有 60+96=156(个). 其中比 2 000 小的有:千位是 1 的共有 3×4×3= 36(个), 所以符合条件的四位偶数共有 156-36=120(个).
20
类型 2 分配问题
[典例 2] (1)高三年级的三个班到甲、乙、丙、丁四
个工厂进行社会实践,其中工厂甲必须有班级去,每班去
6
2.应用分类加法计数原理的注意事项 分类要做到不重不漏,分类后再分别对每一类进行 计数,最后用分类加法计数原理求和,得到总数. 3.应用分步乘法计数原理的注意事项 分步要做到步骤完整,步与步之间要相互独立,根 据分步乘法计数原理,把完成每一步的方法数相乘得到 总数.
7
1.从 3 名女同学和 2 名男同学中选出一人主持本班
答案:C
11
5.如图所示,从点 A 沿圆或三角形的边运动到点 C, 若经过点 B,有________种不同的走法.若可经过点 B, 也可不经过点 B,有________种不同的走法.
解析:经过点 B,不同的走法有 2×2=4(种).若可 经过点 B,也可不经过点 B,不同的走法有 2×2+2= 6(种).
一次班会,则不同的选法种数为( )
A.6
B.5
C.3Leabharlann D.2解析:由分类加法计数原理,共有 3+2=5 种不同选

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。

(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。

(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。

2. 利用实例讲解,让学生更好地理解计数原理。

3. 设计练习题,让学生动手实践,巩固所学知识。

四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。

2. 练习题解答:评价学生运用计数原理解决问题的能力。

3. 课后作业:布置相关题目,让学生进一步巩固所学知识。

五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。

2. 练习题:提供丰富的练习题,让学生动手实践。

3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。

4. 黑板、粉笔:用于板书关键词和讲解实例。

六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。

2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。

公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。

公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。

分步乘法计数原理的概念和公式。

2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。

四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。

2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。

五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。

2. 讲解分类加法计数原理的公式和应用示例。

3. 讲解分步乘法计数原理的公式和应用示例。

4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。

六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。

2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。

3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。

七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理

高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理

高中数学第一章计数原理1.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用练习(含解析)新人教A版选修23A级基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有( )A.1×2×3 B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D.答案:D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( ) A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种解析:若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.答案:C4.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为( )A.18 B.16 C.14 D.10解析:分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有3×2=6个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有4×2=8个不同的点,故由分类加法计数原理得共有6+8=14个不同的点.答案:C5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4 320种不同的涂色方法.答案:A二、填空题6.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)解析:甲、乙、丙均有7中不同的站法,故不考虑限制的不同站法有7×7×7=343种,其中三个人站在同一级台阶上有7种站法,故符合本题要求的不同站法有343-7=336.答案:3367.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)解析:若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2 222,3 333”这两个数,故共有16-2=14个满足要求的四位数.答案:14三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5 292(种).10.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解:按A或B能否为0分两类:第1类,当A或B为0时,表示的直线为y=0或x=0,共2条.第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.B级能力提升1.我国足球超级联赛(中超)的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有( ) A.3种B.4种C.5种D.6种解析:设该队胜、负、平的场数分别为x,y,z,则依题意有x+y+z=15,3x+y=33,则y是3的倍数,列举为x=9,y=6,z=0;x=10,y=3,z=2,x=11,y=0,z=4,故根据分类加法计数原理得,该队胜、负、平的情况有3种.答案:A2.用4种不同的颜色涂图中的矩形A,B,C,D,要求相邻的矩形涂色不同,则不同的涂色方法共有________种.解析:C处有4种涂色方案,D处有3种涂法,B处有3种涂法,A处有2种涂法.由分步乘法计数原理得共有4×3×3×2=72种不同涂法.答案:723.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,4×3×2=24,即共有24种方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,安装方法共有4×3×2×3×3=216(种).。

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。

2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。

2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。

3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。

四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。

2. 学具准备:学生用书、练习本、文具。

3. 教学素材:相关案例分析题、小组讨论题。

五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。

2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。

3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。

4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。

5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。

7. 课堂练习:给出一些练习题,让学生巩固所学内容。

8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。

9. 课堂小结:对本节课的内容进行小结,强调重点和难点。

六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。

2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。

b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。

1.1(2)第2课时 两个计数原理及其综合应用

1.1(2)第2课时 两个计数原理及其综合应用

当A与E种植相同植物或不同植物时F的种法有区别,不全是2种. [正解] 分3类考虑,第一类:A,C,E种同一种植物,有4种种法,当A,C,E 种好后,B,D,F从余下3种植物中选1种,各有3种种法,一共有4×3×3×3= 108(种)种法; 第二类:A,C,E种两种植物,有12种种法,当A,C种同一种植物时,B有3 种种法,D,F有2种种法,若C,E和E,A种同一种植物,种法相同,因此,共 有12×3×(3×2×2)=432(种)种法;
【变式1】 从1~20共20个整数中任取两个相加,使其和为偶数 的不同取法共有多少种? 解 第一类:两个偶数相加,由分步乘法计数原理,共有
10×9 =45(种)不同的取法; 2 第二类:两个奇数相加,由分步乘法计数原理,共有 =45(种)不同的取法. 由分类加法计数原理得,共有45+45=90(种)不同取法. 10×9 2

分别用 a,b,c 代表 3 种作物,先安排第一块试验田,有 3
种方法, 不妨设种 a, 再安排第二块试验田种 b 或 c, 有 2 种方法, 不妨设种 b,安排第三块试验田也有 2 种方法,种 c 或 a. (1) 若第三块试验田种 c:
a b c
则第四、五块田分别有 2 种种法,共有 2×2 种种法.
名师点睛 应用两个计数原理时的注意事项 (1)要弄清问题中的“一件事”的含义,即知道做“一件事”,或完成一个“事 件”在每个题中的具体所指. (2)必须明确完成题中所指“事件”是“分类”完成还是“分步”完成.分类用 加法,分步用乘法.
(3)对于较为复杂的既需分步又需分类的问题,应该先弄清分类与分步的先后顺 序,如果先分类再分步,则整体用分类加法计数原理,每一类中再用分步乘法 计数原理;如果先分步再分类,则整体用分步乘法计数原理,每一步中再用分 类加法计数原理. (4)对题目中的特殊元素(位置)可优先考虑,即优先考虑有限制条件的元素(位置 ),然后再考虑其他元素(位置).

分类加法计数原理与分步乘法计数原理示范

分类加法计数原理与分步乘法计数原理示范

THANKS
感谢观看
混合应用的实例
组合问题
在组合问题中,可以将问题按照不同的 组合方式进行分类,然后分别对每一类 进行计数,最后将各类计数结果相加。 同时,也可以将问题分解为若干个连续 的选择步骤,每一步都有一定的选择方 式,最后将各步的选择方式相乘。
VS
排列问题
在排列问题中,可以将问题按照不同的排 列方式进行分类,然后分别对每一类进行 计数,最后将各类计数结果相加。同时, 也可以将问题分解为若干个连续的排列步 骤,每一步都有一定的选择方式,最后将 各步的选择方式相乘。
理的混合应用
原理的结合方式
分类加法计数原理
混合应用
将问题按照不同的分类标准进行划分, 然后分别对每一类进行计数,最后将 各类计数结果相加。
在解决复杂问题时,将分类加法计数 原理与分步乘法计数原理结合使用, 以更全面地考虑问题的各种情况。
分步乘法计数原理
将问题分解为若干个连续的步骤,每 一步都有一定的选择方式,最后将各 步的选择方式相乘。
02
分步乘法计数原理应用建议
确定连续步骤的顺序和数量。
ห้องสมุดไป่ตู้03
对两种计数原理的应用建议
计算每个步骤发生的方法数。
将各个步骤的方法数相乘得 到总的方法数。
注意事项:在应用两种计数原 理时,需要注意事件的互斥性 和步骤的连续性,以及方法数
的准确计算。
对两种计数原理未来发展的展望
分类加法计数原理与分步乘法计数原理作为组合数学中的基本原理,在数学、计算机科学、统计学等 领域有着广泛的应用。
理解
分步乘法计数原理强调的是分步骤完成一件事情,每一步都有多种不同的方法,最终的方法数就是每 一步方法数的乘积。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理分类加法计数原理是指将一个计数问题分成若干个子问题,然后将子问题的计数结果相加得到最终的计数结果。

其基本思想是将问题中的元素分成若干个不重叠的类别,然后分别计数各个类别的元素个数,最后将各类别的计数结果相加。

这个原理常用于解决包含多个步骤的计数问题。

举个例子来说明分类加法计数原理的应用:假设有一个盒子,里面有红球、蓝球和绿球,分别有3个、4个和5个。

现在要从盒子中任选3个球,问有多少种选择方法。

我们可以将这个问题分为三个子问题:选取3个红球的方法数、选取3个蓝球的方法数和选取3个绿球的方法数。

然后分别计数这三个子问题的方法数,最后将它们相加得到总的方法数。

与分类加法计数原理相对应的是分步乘法计数原理。

分步乘法计数原理是指将一个计数问题分成若干个步骤,然后将各个步骤的计数结果相乘得到最终的计数结果。

这个原理常用于解决包含多个独立步骤的计数问题。

举个例子来说明分步乘法计数原理的应用:假设有一个密码锁,需要输入5位密码,每位密码都是从0到9的数字。

问一共有多少种可能的密码组合。

我们可以将这个问题分为5个步骤:第一位密码的选择、第二位密码的选择、第三位密码的选择、第四位密码的选择和第五位密码的选择。

然后计数每个步骤的可能性,最后将它们相乘得到总的可能性。

分步乘法计数原理也可以用于解决其他的计数问题,例如从一个字母表中选择若干个字母组成单词的方法数、从一个数列中选择若干个数的方法数等等。

总的说来,分类加法计数原理和分步乘法计数原理是解决组合数学中计数问题的重要方法。

它们可以帮助我们系统地分析和解决各种计数问题,提高我们的计算能力和思维能力。

无论是在学术研究还是在实际应用中,这两个原理都有着广泛的应用价值。

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。

3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。

从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。

要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。

要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。

3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。

要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。

1.1分类加法计数原理与分步乘法计数原理(2)

1.1分类加法计数原理与分步乘法计数原理(2)

4.如图,该电路,从A到B共有多少条不同的线路可
通电?
A
B
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
解: 按地图A、B、C、D四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 种。
例4 如图, 要给地图A、B、C、D四个区域分别涂 上3种不同颜色中的某一种, 允许同一种颜色使用 多次, 但相邻区域必须涂不同的颜色, 不同的涂色 方案有多少种?
思考 你能归纳一下用分类加法计数原理、分步乘 法计数原理解决计数问题的方法吗?
用两个计数 原理解决计 数问题时, 最 重要的是 在 开始 计算 之 前要进 行仔 细分析 需 要分类还 是 需要分步.
分类要做到"不重不漏". 分类后再分别
对每一类进行计数 最后用分类加法计 , 数原理求和, 得到总数.
课本P9例9
分析 按照新规定, 牌照可以分为 2 类,即字 母组合在左和字母组合在右.确定一个牌照 的字母和数字可以分6个步骤.
解 将汽车牌照分为2类, 一类字母组合在左, 另一 类的字母组合在右. 字母组合在左时分6个步骤确定一个汽车牌 , 照的 字母和数字: 第1步, 从26个字母中选 个, 放在首位 有26种选法 1 , ; 第 2 步, 从剩下的 个字母中选 个, 放在第2位,有 25 1 25种选法; 第3步, 从剩下的 个字母中选1 个, 放在第3位,有 24 24种选法;

分类与分步解题技巧资料讲解

分类与分步解题技巧资料讲解

四位密码的首位可为0,四位数的首位不能为0,四位奇数 的首位不为0且个位必须为奇数.
工具
第一章 计算原理
栏目导引
[解题过程] (1)完成“组成无重复数字的四位密码”这件事, 可以分为四步:第一步,选取左边第一个位置上的数字,有5种 选取方法;第二步,选取左边第二个位置上的数字,有4种选取 方法;第三步,选取左边第三个位置上的数字,有3种选取方法; 第四步,选取左边第四个位置上的数字,有2种选取方法.由分 步乘法计数原理,可以组成不同的四位密码共有N=5×4×3×2 =120个.
那么小王共有多少购买方案?
工具
第一章 计算原理
栏目导引
1.两个计数原理在解决计数问题中的方法
工具
第一章 计算原理
栏目导引
2.应用两个计数原理应注意的问题 (1)分类要做到“ 不重不漏 ”,分类后再对每一类进行计 数,最后用分类加法计数原理求和,得到总数. (2)分步要做到“ 步骤完整 ”——完成了所有步骤 ,恰 好完成任务,当然步与步之间要相互独立.分步后再计算每一 步的方法数,最后根据分步乘法计数原理,把完成每一步的方 法数相乘,得到总数.
共有N=24+48+12=84种. 答案: B
工具
第一章 计算原理
栏目导引
3.三个人踢毽,互相传递,每人每次只能踢一下,由甲开 始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共 有________种.
解析: 如下图:
同理,甲传给丙也可以推出5种情况,综上有10种传法.
答案: 10
工具
第一章 计算原理
第2课时 分类加法计数原理 与分步乘法计数原理的综合应用
工具
第一章 计算原理
栏目导引
工具
第一章 计算原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

5本,从中选出不属于同一学科的书2本,则不同的选法
有 ( )
AB.315种
D.153种
3.从5位同学中选派4位同学在星期五、星期六、星期日
参加公益活动,每人一天,要求星期五有2人参加,星 期六、星期日各有1人参加,则不同的选派方法共有 ( A.40种 B.60种 )
C.100种
完成一件事需要两个步骤,做第1步有m种不同的方
法,做第2步有n种不同的方法,那么完成这件事共有 N= m×n 种不同的方法.
[思考探究] 在解决具体问题时,如何选择分类加法计数原理和分步乘法 计数原理? 提示:如果已知的每类办法中的每一种方法都能完成这件 事,应该用分类加法计数原理;如果每类办法中的每一种 方法只能完成事件的一部分,就用分步乘法计数原理.
解析:由题意可列式为
D.120种
=60(种).
答案:B
4.若x、y∈N*,且x+y≤6,则有序自然数对(x,y)共有 ________个. 解析:当x=1,2,3,4,5时,y值依次有5,4,3,2,1个,由 分类计数原理,不同的数对(x,y)共有5+4+3+2+ 1=15(个). 答案:15
5.如图用6种不同的颜色把图中A、 B、C、D四块区域分开,若相
[特别警示]
在解题时,应首先分清楚怎样才算完成这件事,
有些题目在解决时需要进行分类讨论,分类时要适当地确
定分类的标准,按照分类的标准进行,做到不重不漏.
在所有的两位数中,个位数字大于十位数字的两 位数共有多少个?
[思路点拨]
[课堂笔记] 法一:根据题意,将十位数上的数字分别是
1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的 两位数分别是8个,7个,6个,5个,4个,3个,2个,1 个. 由分类计数原理知:符合题意的两位数的个数共有:

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案第一章:引言1.1 教学目标让学生理解分类加法计数原理和分步乘法计数原理的概念。

让学生掌握分类加法计数原理和分步乘法计数原理的运用方法。

1.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。

分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。

1.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

1.4 教学步骤引入分类加法计数原理和分步乘法计数原理的概念。

通过示例讲解分类加法计数原理的运用方法。

通过示例讲解分步乘法计数原理的运用方法。

学生练习题:让学生运用分类加法计数原理和分步乘法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第二章:分类加法计数原理2.1 教学目标让学生掌握分类加法计数原理的概念和运用方法。

2.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。

2.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

2.4 教学步骤复习分类加法计数原理的概念。

通过示例讲解分类加法计数原理的运用方法。

学生练习题:让学生运用分类加法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第三章:分步乘法计数原理3.1 教学目标让学生掌握分步乘法计数原理的概念和运用方法。

3.2 教学内容分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。

3.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。

3.4 教学步骤复习分步乘法计数原理的概念。

通过示例讲解分步乘法计数原理的运用方法。

学生练习题:让学生运用分步乘法计数原理解决问题。

小组讨论:让学生分享解题心得,互相学习和交流。

第四章:应用举例4.1 教学目标让学生能够运用分类加法计数原理和分步乘法计数原理解决实际问题。

分类加法计数原理与分步乘法计数原理教学设计

分类加法计数原理与分步乘法计数原理教学设计

1.1分类加法计数原理与分步乘法计数原理(第一课时)教学设计一、教学内容解析(一)教材的地位和作用本节课是人教版《数学》选修2-3第一章第一节(第一课时)。

分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,是解决计数问题的最基本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。

返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广,它们是解决计数问题的理论基础。

从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。

这样做的目的是为了分解问题、简化问题。

由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。

(二)教学目标1.通过实例,能归纳总结出分类加法计数原理和分步乘法计数原理,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣;2.掌握分类加法计数原理与分步乘法计数原理,能说明两个计数原理的不同之处,能根据具体问题的特征、选择恰当的原理解决一些简单的实际问题,体现数学实际应用和理论相结合的统一美,经历从特殊到一般的思维过程;3.经历由实际问题推导出两个原理,再回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。

(三)教学重点与难点重点:归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题。

难点:正确地理解“完成一件事情”的含义;根据实际问题的特征、正确地区分“分类”或“分步”。

二、学生学情分析:1.认知基础:在学习必修2 “古典概型”时突出了树形图、列举法在计数中的作用;在学习和生活中,我们会不自觉地使用“分类”和“分步”的方法来思考解决问题。

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

n m ++种不2种不同的方n m ⨯⨯种不同例题4.(2022·江苏连云港·高二期中)用0,1,2,3,…,9十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?同类题型归类练1.(2022·吉林油田第十一中学高二期末)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .288个B .240个C .144个D .126个2.(2022·全国·高三专题练习)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个3.(2022·全国·高二课时练习)设集合A ={0,1,2,3,4,5,6,7},如果方程x 2-mx -n =0 (m ,n ∈A )至少有一个根x 0∈A ,就称方程为合格方程,则合格方程的个数为( )A .13B .15C .17D .194.(2022·全国·高二课时练习)已知集合{}2,4,6,8A =,{}1,3,5,7,9B =,从A 中取一个数作为十位数字,从B 中取一个数作为个位数字,能组成______个不同的两位数,能组成______个十位数字小于个位数字的两位数.角度2:与几何有关的问题典型例题例题1.(2022·全国·高三专题练习)已知60C 分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,60C 是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为( )个.A.10 B.12C.16 D.20例题2.(2022·全国·高二期末)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有().A.105种B.225种C.315种D.420种同类题型归类练1.(2022·全国·高三专题练习)若一个正方体绕着某直线l旋转不到一周后能与自身重合,那么这样的直线l的条数为()A.3B.4C.6D.13 2.(2022·全国·高三专题练习)一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则()A.至多能剪成19块“L”形骨牌B.至多能剪成20块“L”形骨牌C.最多能剪成21块“L”形骨牌D.前三个答案都不对3.(2022·上海交大附中高二期中)正方体的8个顶点中,选取4个共面的顶点,有______种不同选法角度3:涂色问题典型例题例题1.(2022·吉林·长春吉大附中实验学校高二阶段练习)用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,不同的涂色方法共有()A.24种B.36种C.48种D.72种例题2.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)用5种不同颜色给右图所示的五个圆环涂色,要求相交的两个圆环不能涂相同的颜色,共有()种不同的涂色方案.A.1140 B.1520 C.1400 D.1280例题3.(2022·内蒙古·赤峰二中高二阶段练习(理))如图,一花坛分成1,2,3,4,5五个区域,现有4种不同的花供选种,要求在每个1区域里面种1种花,且相邻的两个区域种不同的花,则不同的种法总数为_______.例题4.(2022·全国·高二课时练习)现有4种不同颜色要对如图的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有______种.同类题型归类练1.(2022·全国·高二课时练习)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是A.12 B.24 C.30 D.36 2.(2022·全国·高二课时练习)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就的能使具有共同边界的国家着上不同的颜色”.某校数学兴趣小组在研究给四棱锥P ABCD各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的面)不得使用同一颜色,现有4种颜色可供选择,则不同的涂法有()A.36种B.72种C.48种D.24种3.(2022·全国·高三专题练习)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)4.(2022·广东·罗定邦中学高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为______.。

【高中数学】分类加法计数原理与分步乘法计数原理的应用(第2课时)课件人教A版2019选择性必修第三册

【高中数学】分类加法计数原理与分步乘法计数原理的应用(第2课时)课件人教A版2019选择性必修第三册

两个计数原理的区别与联系
用两个计数原理解决问题时,要明确是需要分类还是需要分步,有时,可能既 要分类又要分步
相同点 不同点 注意点
分类加法计数原理
分步乘法计数原理
用来计算完成一件事的方法种类
分类完成,类类相加
分步完成,步步相乘
每类方案中的每一种方法都能独 每步依次完成才算完成这件事(每步
立完成这件事
分类加法计数原理针对的是“分类”问题,其中各 种方法相互独立,用其中任何一种方法都可以做完这 件事,关键词是“分类”;
分步乘法计数原理针对的是“分步”问题,各个步 骤中的方法互相依存,只有每一个步骤都完成才算做 完这件事,关键词是“分步”.
例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个要求用数字1 ~9,最多可以给多少个程序命名?
引导探例究题讲解
例8 通常,我国民用汽车号牌的编码由两部分组成:第一部分为由汉字表示的 省、自治区、直辖市简称和用英文字母表示的发牌机关代码,第二部分为由阿 拉伯数字和英文字母组成的序号. 其中,序号的编码规则为: (1)由10个阿拉伯数字和除O、I之外的24个英文字母组成; (2)最多只能有2个英文字母. 如果某地级市发牌机关采用5位序号编码,那么这个发牌机关最多能发放多少张 汽车号牌?
当堂诊学
(3)完成“组成无重复数字的四位奇数”这件事,可以分四步: 第一步,定个位,只能从 1,3 中任取一个,有 2 种方法,第二步,定首位, 1,2,3,4 中除去用过的一个,还有 3 个,可任取一个,有 3 种方法,第三、 四步把剩下的包括 0 在内的 3 个数字先排百位,有 3 种方法,再排十位,有 2 种 方法.由分步乘法计数原理,可以组成不同的四位奇数共有 2×3×3×2=36(个).

分类加法计数原理和分步乘法计数原理教学设计

分类加法计数原理和分步乘法计数原理教学设计

分类加法计数原理和分步乘法计数原理教学设计教学设计:分类加法计数原理和分步乘法计数原理一、教学目标1.了解分类加法计数原理和分步乘法计数原理的概念和应用;2.能够运用分类加法计数原理和分步乘法计数原理解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1.分类加法计数原理的基本概念和应用;2.分步乘法计数原理的基本概念和应用;三、教学过程第一节:分类加法计数原理1.导入(5分钟)-引入生活中的例子,例如:一把铲子可以分为“红色”和“蓝色”两类,一双筷子可以分为“金属”和“木质”两类等。

-引出问题:如果有一个包里有3只红色的铲子和2只蓝色的铲子,这个包里一共有几只铲子?如何快速求解?2.概念解释(10分钟)-解释分类加法计数原理的概念:当一个集合可以分为若干互不相交的类别时,集合的元素个数等于各个类别元素的个数的和。

-通过教师提供的实例,进一步让学生理解概念。

3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分类加法计数原理的基本公式写出来,即:总数=类别1数目+类别2数目+类别3数目+...+类别n数目-以问题解决的方式,将公式的应用过程演示给学生。

4.练习应用(15分钟)-给学生发放习题册,让学生结合自己的实际情况完成其中的练习题。

-教师巡回指导,解答学生提出的问题。

第二节:分步乘法计数原理1.复习(5分钟)-复习分类加法计数原理的概念和应用,让学生回答一些与分类加法计数原理相关的问题。

-引出问题:如果有3件相同的红色上衣和2件相同的蓝色上衣,这些上衣一共有几种穿法?如何快速求解?2.概念解释(10分钟)-解释分步乘法计数原理的概念:当一个事件需要分为若干个步骤进行时,每一步的选择数目乘积等于总方案数。

-通过教师提供的实例,进一步让学生理解概念。

3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分步乘法计数原理的基本公式写出来,即:总方案数=第一步选择数目×第二步选择数目×第三步选择数目×...×第n步选择数目-以问题解决的方式,将公式的应用过程演示给学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工具
第一章 计算原理
栏目导引
2.如图,一环形花坛分成A、B、C、D四块,现有4种不同的
花供选种,要求在每块里种 1 种花,且相邻的 2 块种不同的花,
则不同的种法总数为( A.96 C.60 ) B.84 D.48
解析:
方法一:先种A地有4种,再种B地有3种,若C地与
A地种相同的花,则C地有1种,D地有3种;若C地与A地种不同 花,则C地有2种,D地有2种,即不同种法总数为N= 4×3×(1×3+2×2)=84种.
(2)若每年级选1人为校学生会常委成员,有多少种不同的选
法?
(3) 若要选出不同年级的两人分别参加市里组织的两项活动,
有多少种不同的选法?
工具
第一章 计算原理
栏目导引
第(1)问属于分类的问题,用分类加法计数原理求解;第(2) 问属于分步的问题,用分步乘法计数原理求解;第(3)问是综合 类问题,要先分类再分步.
工具
第一章 计算原理
栏目导引
[解题过程] 先分为两类:
第一类,当D与A不同色,则可分为四步完成.第一步涂A有
5种方法,第二步涂B有4种方法,第三步涂C有3种方法,第四步
涂D有2种涂法,由分步乘法计数原理,共有5×4×3×2=120种
方法. 第二类,当D与A同色,分三步完成,第一步涂 A和 D有 5 种 方法,第二步涂B有4种方法,第三步涂C有3种方法,由分步乘 法计数原理共有 5×4×3 = 60( 种 ) ,所以共有 120 + 60 = 180 种不
有3种填法;最后,将剩下的两个数,填到空着的方格里,只有
1种填法合乎要求(因为这两个数中,至少有一个数与空的方格序 号相同).
工具
第一章 计算原理
栏目导引
根据分步乘法计数原理,不同的分配方式共有 3×3×1 = 9
种.
方 法 二 : 21—4—33—4—14—1—3
331—22—1 共9种.
31—4—241—22—1
工具
第一章 计算原理
栏目导引
3. 用红、黄、绿、黑四种不同的颜色涂入图中的五个区域 内,要求相邻的两个区域的颜色都不相同,则有多少种不同的
涂色方法?
工具
第一章 计算原理
栏目导引
解析:给各区域标记号A、B、C、D、E,则A区域有4种不
同的涂色方法,B区域有 3种,C区域有 2 种,D区域有 2种,但 E
工具
第一章 计算原理
栏目导引
[规范解答]
(1)分三类:第一类,从高一年级选一人,有5
种选择;第二类,从高二年级选一人,有6种选择;第三类,从
高三年级选一人,有4种选择.由分类加法计数原理,共有5+6
+4=15(种)选法.4分
(2)分三步完成:第一步,从高一年级选一人,有5种选择; 第二步,从高二年级选一人,有6种选择;第三步,从高三年级 选一人,有 4 种选择.由分步乘法计数原理,共有 5×6×4 = 120(种)选法.8分
)
A.400种 C.480种
工具
B.460种 D.496种
第一章 计算原理
栏目导引
解析:
从A开始,有6种方法,B有5种,C有4种,D、A种
相同作物1种,D、A不同作物3种,
∴不同种法有6×5×4×(1+3)=480种.故选C.
答案: C
工具
第一章 计算原理
栏目导引
某校学生会由高一年级5人,高二年级6人,高三年级4 人组成. (1)选其中一人为学生会主席,有多少种不同的选法?
法;第四步,从剩余的两个数字中选取一个数字作个位数字,
有2种不同的选取方法.由分步乘法计数原理,可以组成不同的 四位数共有N=4×4×3×2=96个.
工具
第一章 计算原理
栏目导引

(3) 完成 “ 组成无重复数字的四位奇数 ” 这件事,可以分四 步: 第一步定个位,只能从 1 、 3 中任取一个有两种方法,第二 步定首位,把1、2、3、4中除去用过的一个还有3个可任取一个 有3种方法,第三步,第四步把剩下的包括0在内的还有3个数字 先排百位 3 种方法,再排十位有 2 种方法.由分步乘法计数原理
工具
第一章 计算原理
栏目导引
1.两个计数原理在解决计数问题中的方法
工具
第一章 计算原理
栏目导引
2.应用两个计数原理应注意的问题 (1)分类要做到“ 不重不漏 ”,分类后再对每一类进行计 数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“ 步骤完整
” —— 完成了所有步骤,恰好
完成任务,当然步与步之间要相互独立.分步后再计算每一步
4×3×2=24种,其中不种黄瓜有 3×2×1=6种,故共有不同种
植方法24-6=18种.
工具
第一章 计算原理
栏目导引
[题后感悟]
对于同一个事件的处理,往往可以采用不同的
处理方法,从而得到不同的解法,但结果肯定是相同的,用这
种方法可以起到很好的检验效果.
按元素性质分类,按事件发生过程分步是计数问题的基本
少种不同的种植方法.
工具
第一章 计算原理
栏目导引
由题目可获取以下主要信息:
①从四种蔬菜品种选出3种分别种在不同土质的三块土地上; ②黄瓜必须种植. 解答此题可考虑以黄瓜所种植的土地分类求解或用间接法 求解.
工具
第一章 计算原理
栏目导引
[解题过程]
方法一(直接法):若黄瓜种在第一块土地上,
则有3×2×1=6种不同种植方法. 同理,黄瓜种在第二块、第三块土地上,均有 3×2×1 = 6 种.故不同的种植方法共有6×3=18种. 方法二(间接法):从4种蔬菜中选出3种,种在三块地上,有
解析: 方法一: 对 4 人分别编 1,2,3,4四个号,对四张贺年
卡也编上 1,2,3,4 四个号,那么 1,2,3,4 四个数字填入 1,2,3,4 四个方 格的一个填法对应贺卡的一个送法,原题转化为上面所述方格 的编号与所填数字的不同的填法种数问题.首先,在1号方格里 填数,可填上2,3,4中的任意一个数,有3种填法;其次,当在第 1号方格填数i之后(2≤i≤4),在第i号方格中填上合乎要求的数,
同的方案.
工具
第一章 计算原理
栏目导引
[题后感悟] 染色问题是考查计数方法的一种常见问题,由
于这类问题常常涉及分类与分步,所以在高考题中经常出现,
处理这类问题的关键是要找准分类标准,像本题中A、D颜色是
否相同对其他区域的涂色有影响.
工具
第一章 计算原理
栏目导引
2.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜 色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂 不同的颜色,不同的涂色方案有多少种?
工具
第一章 计算原理
栏目导引
解析: 成:
按地图A、B、C、D四个区域依次涂色,分四步完
第一步,涂A区域,有3种选择;
第二步,涂B区域,有2种选择; 第三步,涂C区域,由于它与A、B区域不同,有1种选择; 第四步,涂D区域,由于它与B、C区域不同,有1种选择. 所以根据分步乘法计数原理,得到不同的涂色方案种数共 有3×2×1×1=6(种).
的原则.
工具
第一章 计算原理
栏目导引
1.8张卡片上写着 0,1,2,„, 7共8 个数字,取其中的三张卡
片排放在一起,可组成多少个不同的三位数?
解析: 先排放百位从1,2,„,7共7个数中选一个有7种选
法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一 个,有7种选法;最后排个位,从除前两步选出的数外,剩余的 6 个数中选一个,有 6 种选法.由分步乘法计数原理,共可以组
共有2×3×3×2=36个.
工具
第一章 计算原理
栏目导引
[题后感悟 ]
(1) 对于组数问题,一般按特殊位置 (一般是末
位和首位 ) 由谁占领分类,分类中再按特殊位置 ( 或者特殊元素 ) 优先的方法分步完成;如果正面分类较多,可采用间接法从反 面求解. (2) 解决组数问题,应特别注意其限制条件,有些条件是隐 藏的,要善于挖掘.排数时,要注意特殊元素、特殊位置优先
成7×7×6=294(个)不同的三位数.
工具
第一章 计算原理
栏目导引
用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色,相邻的区域颜色不同,问有多少 种不同的涂色方案?
工具
第一章 计算原理
栏目导引
由题目可获取以下主要信息:
①用五种不同的颜色给四个区域涂色;
②相邻区域不能涂同种颜色; ③不相邻区域可以涂同种颜色. 解答本题可先给各个区域标上记号,从不相邻区域是否着 相同颜色进行分类、分步解决.
的方法数,最后根据分步乘法计数原理,把完成每一步的方法
数相乘,得到总数.
工具
第一章 计算原理
栏目导引
1.由数字1,2,3,4,5,6可以组成没有重复数字的两位数的个数 是( ) A.11 C.30 B.12 D.36
解析:
个位数字有 6 种选法,十位数字有 5 种选法,由分
步乘法计数原理知,可组成6×5=30个无重复数字的两位数. 答案: C
3.涂色问题中的讨论.(易混点)
工具
第一章 计算原理
栏目导引
工具
第一章 计算原理
栏目导引
家电下乡政策是国家深入贯彻落实科学发展观、积极扩大
内需的重要举措,是财政和贸易政策的创新突破.家电下乡政
策实施以来,给广大农民带来了很大实惠,在外打工的小王要 给家在农村的父母买一台冰箱和洗衣机,现有5种型号的冰箱和 3种型号的洗衣机, 那么小王共有多少购买方案?
工具
第一章 计算原理
栏目导引
方法二:若种4种花有4×3×2×1=24种;若种3种花,则A
相关文档
最新文档