第 24章 圆 大题练习题
九年级数学上册第二十四章圆典型例题(带答案)
九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
人教版九年级数学上册第24章《圆》单元测试卷(含答案解析)
第24章《圆》单元测试卷一.选择题(共10小题)1.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个2.如图,AB是⊙O的直径,AB⊥CD于E,AB=10,CD=8,则BE为()A.2B.3C.4D.3.53.正六边形内接于圆,它的边所对的圆周角是()A.60°B.120°C.60°或120°D.30°或150°4.⊙O的半径r=5cm,直线l到圆心O的距离d=4,则直线l与圆的位置关系()A.相离B.相切C.相交D.重合5.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则的长度为()A.πB.πC.πD.π6.如图,⊙O是△ABC 的外接圆,BC 是直径,D在圆上,连接AD、CD,若∠ADC=35°,则∠ACB=()A.70°B.55°C.40°D.45°7.如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+18.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O 上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.C.5D.59.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,过点C作⊙O的切线与AB的延长线交于点P.若∠BCD=32°,则∠CPD的度数是()A.64°B.62°C.58°D.52°二.填空题(共8小题)11.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.12.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE并延长交⊙O于点D,则DE= .13.如图所示,点A在半径为20的圆O上,以OA为一条对角线作矩形OBAC,设直线BC交圆O于D、E两点,若OC=12,则线段CE、BD的长度差是.14.如图,半径为2的⊙O与含有30°角的直角三角板ABC的AC边切于点A,将直角三角板沿CA边所在的直线向左平移,当平移到AB与⊙O相切时,该直角三角板平移的距离为.15.如图,PA、PB切⊙O于A、B,点C在上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半径为5cm,则△PDE的周长是.16.△ABC中,AB=CB,AC=10,S=60,E为AB上一动点,连结CE,过A作AF△ABC⊥CE于F,连结BF,则BF的最小值是.17.如图,等边三角形△ABC内接于半径为1的⊙O,则图中阴影部分的面积是.18.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.三.解答题(共7小题)19.十一期间,小明一家一起去旅游,如图是小明设计的某旅游景点的图纸(网格是由相同的小正方形组成的,且小正方形的边长代表实际长度100m,在该图纸上可看到两个标志性景点A,B.若建立适当的平面直角坐标系,则点A (﹣3,1),B(﹣3,﹣3),第三个景点C(1,3)的位置已破损.(1)请在图中画出平面直角坐标系,并标出景点C的位置;(2)平面直角坐标系的坐标原点为点O,△ACO是直角三角形吗?请判断并说明理由.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F.(1)AB与AC的大小有什么关系?请说明理由;(2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.21.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.22.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.23.如图,点I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,与BC相交于点E.(1)求证:DI=DB;(2)若AE=6cm,ED=4cm,求线段DI的长.24.如图,已知扇形AOB的圆心角为直角,正方形OCDE内接于扇形AOB.点C、E、D分别在OA、OB、弧AB上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.25.如图:△A BC是圆的内接三角形,∠BAC与∠ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.(1)求证:△BED为等边三角形;(2)若∠ADC=30°,⊙O的半径为,求BD长.参考答案一.选择题(共10小题)1.【解答】解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.2.【解答】解:连接OC.∵AB是⊙O的直径,AB=10,∴OC=OB=AB=5;又∵AB⊥CD于E,CD=8,∴CE=CD=4(垂径定理);在Rt△COE中,OE=3(勾股定理),∴BE=OB﹣OE=5﹣3=2,即BE=2;故选:A.3.【解答】解:圆内接正六边形的边所对的圆心角=360°÷6=60°,根据圆周角等于同弧所对圆心角的一半,边所对的圆周角的度数是60×=30°或180°﹣30°=150°.故选:D.4.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴5>4,即d<r,∴直线l与⊙O的位置关系是相交,故选:C.5.【解答】解:连接OE、OC,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴的长度==π,故选:A.6.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠D=35°,∴∠ACB=55°,故选:B.7.【解答】解:连接OD、AD,∵在△ABC中,AB=AC,∠ABC=45°,∴∠C=45°,∴∠BAC=90°,∴△ABC是Rt△BAC,∵BC=4,∴AC=AB=4,∵AB为直径,∴∠ADB=90°,BO=DO=2,∵OD=OB,∠B=45°,∴∠B=∠BDO=45°,∴∠DOA=∠BOD=90°,∴阴影部分的面积S=S△BOD +S扇形DOA=+=π+2.故选:B.8.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.9.【解答】解:连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3米,∵∠AOB=90°,CD∥OB,∴CD⊥OA,在Rt△OCD中,∵OD=6,OC=3,∴CD===3米,∵sin∠DOC===,∴∠DOC=60°,∴S阴影=S扇形AOD﹣S△DOC=﹣×3×3 =(6π﹣)平方米.故选:A.10.【解答】解:连接OC,∵CD⊥AB,∠BCD=32°,∴∠OBC=58°,∵OC=OB,∴∠OCB=∠OBC=58°,∴∠COP=64°,∵PC是⊙O的切线,∴∠OCP=90°,∴∠CPO=26°,∵AB⊥CD,∴AB垂直平分CD,∴PC=PD,∴∠CPD=2∠CPO=52°故选:D.二.填空题(共8小题)11.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.12.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECD,∵∠DCB=∠DAB,∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.13.【解答】解:如图,设DE的中点为M,连接OM,则OM⊥DE.∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴OM===,在Rt△OCM中,CM===,∵BM=BC﹣CM=20﹣=,∴CE﹣BD=(EM﹣CM)﹣(DM﹣BM)=BM﹣CM=﹣=.故答案为:.14.【解答】解:根据题意画出平移后的图形,如图所示:设平移后的△A′B′C′与圆O相切于点D,连接OD,OA,AD,过O作OE⊥AD,可得E为AD的中点,∵平移前圆O与AC相切于A点,∴OA⊥A′C,即∠OAA′=90°,∵平移前圆O与AC相切于A点,平移后圆O与A′B′相切于D点,即A′D与A′A为圆O的两条切线,∴A′D=A′A,又∠B′A′C′=60°,∴△A′AD为等边三角形,∴∠DAA′=60°,AD=AA′=A′D,∴∠OAE=∠OAA′﹣∠DAA′=30°,在Rt△AOE中,∠OAE=30°,AO=2,∴AE=AO•cos30°=,∴AD=2AE=2,∴AA′=2,则该直角三角板平移的距离为2.故答案为:2.15.【解答】解:连接OA、OB,如下图所示:∵PA、PB为圆的两条切线,∴由切线长定理可得:PA=PB,同理可知:DA=DC,EC=EB;∵OA⊥PA,OA=5,PO=13,∴由勾股定理得:PA=12,∴PA=PB=12;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24,故此题应该填24cm.16.【解答】解:过B作BD⊥AC于D,∵AB=BC,∴AD=CD=AC=5,∵S=60,△ABC∴,即,BD=12,∵AF⊥CE,∴∠AFC=90°,∴F在以AC为直径的圆上,∵BF+DF>BD,且DF=DF',∴当F在BD上时,BF的值最小,此时BF'=12﹣5=7,则BF的最小值是7,故答案为:7.17.【解答】解:连接OB、OC,连接A O并延长交BC于H,则AH⊥BC,BH=CH.∵△ABC是等边三角形,OB=OA=1,∴BH=OB,∴BH=CH=,∴BC=,=•()2=,∴S△ABC∴S=π•12﹣=π﹣,阴故答案为π﹣.18.【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.三.解答题(共7小题)19.【解答】解:(1)如图;(2)△ACO是直角三角.理由如下:∵A(﹣3,1),C(1,3),∴OA==,OC==,AC==2,∵OA2+OC2=AC2,∴△AOC是直角三角形,∠AOC=90°.20.【解答】解:(1)AB=AC.理由是:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,又∵DC=BD,∴AB=AC;(2)连接OD、过D作DH⊥AB.∵AB=8,∠BAC=45°,∴∠BOD=45°,OB=OD=4,∴DH=2∴△OBD 的面积=扇形OBD的面积=,阴影部分面积=.21.【解答】(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.22.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.23.【解答】(1)证明:连接BI.∵点I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI.又∵∠DBI=∠CBI+∠DBC,∠DIB=∠ABI+∠BAI,∠DBC=∠DAC=∠BAI,∴∠DBI=∠DIB,∴DI=DB.(2)∵∠DBC=∠DAC=∠BAI,∠ADB=∠BDA,∴△BDE∽△ABD,∴,即BD2=D E•AD=DE•(AE+DE)=4×(6+4)=40,DI=BD=(cm).24.【解答】解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.∴S阴25.【解答】(1)证明:∵∠BAC与∠ABC的角平分线AE、BE相交于点E,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠AEB=180°﹣(∠EAB+∠EBA)=180°﹣(∠CAB+∠CBA)=180°﹣(180°﹣∠BCA)=120°,∴∠DEB=60°,由圆周角定理得,∠BDA=∠BCA=60°,∴△BED为等边三角形;(2)∵∠ADC=30°,∠BDA=60°,∴∠BDC=90°,∴BC是⊙O的直径,即BC=4,∵AE平分∠BAC,∴=,∴BD=DC=4.。
人教版九年级数学上册第24章《圆》单元练习题(含答案)
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。
人教版九年级上册数学 第二十四章 圆 单元测试题(含多套试题)
第二十四章圆含多套试题一、选择题1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定2.下列说法正确的是( )A. 同圆或等圆中弧相等,则它们所对的圆心角也相等B. 0°的圆心角所对的弦是直径C. 平分弦的直径垂直于这条弦D. 三点确定一个圆3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O 外D. 无法确定4.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A. 70°B. 60°C. 50°D. 30°5.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A. 16B. 10C. 8D. 66.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为( )A. 3 cmB. 6cmC. 8cmD. 9 cm7.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A. 15°B. 20°C. 25°D. 30°8.如图,线段AB是圆O的直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A. 20°B. 30°C. 35°D. 70°9.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A. 30°B. 40°C. 50°D. 6010.如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A. 5﹕3B. 4﹕1C. 3﹕1D. 2﹕111.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF 等于()A. 80°B. 50°C. 40°D. 20°12.如图,已知扇形OBC,OAD的半径之间的关系是OB=OA,则弧BC的长是弧AD长的多少倍()A. 倍B. 倍C. 2倍D. 4倍二、填空题13.在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.14.半径为4cm,圆心角为60°的扇形的面积为________ cm2.15.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为________.16.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是________.17.⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为________.18.已知正四边形的外接圆的半径为2,则正四边形的周长是 ________19.如图,AB是圆O的弦,若∠A=35°,则∠AOB的大小为________度.20.如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为3,则BC的长为________.21.要在三角形广场ABC的三个角处各修一个半径为2m的扇形草坪,则三个扇形弧长的和为________22.如图,两圆圆心相同,大圆的弦AB与小圆相切,若图中阴影部分的面积是16π,则AB的长为________.三、解答题23.如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.24.已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12cm,求△PEF的周长.25.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.26.如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求圆中阴影部分的面积.27.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为3,求弧BC的长.28.如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD;(1)求证:∠CDE=∠DOC=2∠B;(2)若BD:AB=:2,求⊙O的半径及DF的长.参考答案一、选择题1. A2.A3. C4. B5.A6. A7. C8. C9. A 10. D 11. D 12. B二、填空题13.4π14. π 15.10 16.相切17. 50°18.819.110 20.3 21.2π 22.8三、解答题23.证明:= ,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OB.在△COD与△COE中,∵,∴△COD≌△COE(SAS),∴CD=CE24.解:∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+FA=PB+PA=12+12=24,答:△PEF的周长是24.25.解:(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B=∠OPB,∴∠OPB=∠C,∴OP∥AC,∵PD⊥AC,∴OP⊥PD,∴PD是⊙O的切线;(2)解:连结AP,如图,∵AB为直径,∴∠APB=90°,∴BP=CP,∵∠CAB=120°,∴∠BAP=60°,在RtBAP中,AB=6,∠B=30°,∴AP=AB=3,∴BP=AP=3,∴BC=2BP=6.26.(1)证明:连接OC,∵CA=CD,∠ACD=120°,∴∠A=∠D=30°,∴∠COD=2∠A=2×30°=60°,∴∠OCD=180°-60°-30°=90°,∴OC⊥CD,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S扇形OBC=.在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为.27.(1)解:∵AB=AC,∴弧AB=弧AC,∵D是弧的中点,∴,∴,∴∠ACB=2∠ACD,∵四边形ABCD内接于⊙O,∴∠BCD=∠EAD=105°∴∠ACB+∠ACD=105°,即3∠ACD=105°,∴∠CAD=∠ACD=35°(2)解:∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=40°,连结OB,OC,则∠BOC=2∠BAC =80°,∴的长.28.(1)证明:∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∴∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠COD+∠ODE=90°,∴∠CDE=∠COD.又∵∠EOD=2∠B,∴∠CDE=∠DOC=2∠B.(2)解:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵BD:AB=:2,∴在Rt△ADB中cosB==,∴∠B=30°.∴∠AOD=2∠B=60°.又∵∠CDO=90°,∴∠C=30°.在Rt△CDO中,CD=10,∴OD=10tan30°=,即⊙O的半径为.在Rt△CDE中,CD=10,∠C=30°,∴DE=CDsin30°=5.∵DF⊥AB于点E,∴DE=EF=DF.∴DF=2DE=10.圆(A)卷一、 填空题(每题3分,共33分)1、已知△ABC 中,∠C=90°,AC=4㎝,AB=5㎝,CD ⊥AB 于D ,以C 为圆心,3㎝为半径作⊙C ,则点A 在⊙C_______,点B 在⊙C_______,点D 在⊙C_________(填“上”或“内”或“外”)。
2023-2024学年九年级上学期数学第24章《圆》测试卷及答案解析
.
12.如图, AB 是 O 的直径, AB 的长为 8cm ,点 D 在圆上,且 ADC 30 ,则
弦 AC 的长为
cm .
13.若圆锥的底面圆半径为 2cm ,母线长是 5cm ,则它的侧面展开图的面积为 cm2 . 14.如图,在平面直角坐标系中,放置半径为 1 的圆,圆心到两坐标轴的距离都 等于半径,若该圆向 x 轴正方向滚动 2022 圈(滚动时在 x 轴上不滑动),此时该 圆圆心的坐标为 .
故选: D .
3.【解答】解:四边形 ABCD 是圆内接四边形, BAD 108 , E 是 BC 延长线 上一点, DCE BAD 108 . CF 平分 DCE , DCF 1 DCE 54 .
第 3页(共 19页)
15.如图, ABC 中,BAC 90 , M 是 BC 的中点,ABM 的内切圆与 AB , BM
分别相切于点 D , E ,连接 DE .若 DE / / AM ,则 C 的大小为
.
三、解答题(共 8 小题,共 75 分) 16.(8 分)如图, AB 为 O 的直径, BE CE , CD AB 于点 D ,交 BE 于 F , 连接 CB . 求证: BC CF .
)
A.130
B.120
5.下列语句中不正确的有 ( )
①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;
C. 60
第 1页(共 19页)
D.150
③圆是轴对称图形,任何一条直径都是它的对称轴;
④长度相等的两条弧是等弧.
A.3 个
B.2 个
C.1 个
D.4 个
6.如图,在平面直角坐标系中,半径为 2 的圆 P 的圆心 P 的坐标为 (3,0) ,将圆
《圆》同步练习题含答案
九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D .2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).18.已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A 求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E . (1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径. 22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B . (1)求证:直线AE 是⊙O 的切线;(2)若∠D=60°,AB=6时,求劣弧AC 的长(结果保留π).O E D CB A参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1.14.6.15.3π.16.17.18.证明:(1)∵AB为⊙O的直径∴∠D=90°, ∠A+∠ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,∠D=90°,BD=6∴OC⊥BD∴BE=12BD=3∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =• ∵CE=4, ∴94OE = ∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析. 21.(1)证明见解析;(2)⊙O 的半径为7.5. 22.(1)证明见试题解析;(2)2π.。
(典型题)沪科版九年级下册数学第24章 圆含答案
沪科版九年级下册数学第24章圆含答案一、单选题(共15题,共计45分)1、如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2B.3C.4D.1.52、下列命题是假命题的是()A.三角形的内心到这个三角形三边的距离相等B.有一个内角为60°的等腰三角形是等边三角形C.直角坐标系中,点(a,b)关于原点成中心对称的点的坐标为(-b,-a)D.有三个角是直角且一组邻边相等的四边形是正方形3、如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°4、在中,,,,M是的中点,以点C 为圆心,1为半径作,则()A.点M在上B.点M在内C.点M在外D.点M 与的位置关系不能确定5、已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置()A.一定在⊙O的内部B.一定在⊙O的外部C.一定在⊙O上D.不能确定6、一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π7、下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个8、已知⊙O的直径为5,若PO=5,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断9、如图,AB是⊙O的直径,TA切⊙O于点A,连结TB交⊙O于点C,∠BTA=40°,点M是圆上异于B,C的一个动点,则∠BMC的度数等于()A.50°B.50°或130°C.40°D.40°或140°10、在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)11、如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π12、如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A. B.6 C. D.13、△ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A.∠BAE=60°B.AC=AFC.EF=BCD.∠BAF=60°14、如图,螺丝母的截面是正六边形,则的度数为()A.30°B.45°C.60°D.75°15、若圆柱的底面半径为3cm,母线长为4cm,则这个圆柱的侧面积为()A.12cm 2B.24cm 2C.12πcm 2D.24πcm 2二、填空题(共10题,共计30分)16、如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=________.17、如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.18、如图,在⊙O的内接五边形ABCDE中,∠B+∠E=222°,则∠CAD=________°.19、如图,将矩形纸片ABCD裁剪出扇形ABE和⊙O,其中⊙O与,BC,CD 都相切.若扇形ABE与⊙O恰好制作成一个圆锥,已知AB=8cm,则AD的长为________.20、一个正多边形的内角度数为,则这个正多边形的边数为________.21、在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P 在以DE为直径的半圆上运动,则的最小值为________.22、如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=________°.23、如图,在平面直角坐标系中,已知点A(-1.5,0),B(0,2),将△ABO顺着x轴的正半轴无滑动的滚动,第一次滚动到①的位置,点B的对应点记作B1;第二次滚动到②的位置,点B1的对应点记作B2;第三次滚动到③的位置,点B2的对应点记作B3;;依次进行下去,则点B2020的坐标为________.24、在⊙O中,已知=2,那么线段AB与2AC的大小关系是________ .(从“<”或“=”或“>”中选择)25、如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为________.三、解答题(共5题,共计25分)26、已知:如图,在⊙O中,弦AB,CD交于点E,AD=CB.求证:AE=CE.27、阅读资料:我们把顶点在圆上,并且一边和圆相交、另一边和圆相切的角叫做弦切角,如图1∠ABC所示.同学们研究发现:P为圆上任意一点,当弦AC 经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图2)证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°∴∠CAB=∠P问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.28、如图所示,在Rt△ABC中,∠C=90°,AC=4 ,BC=3 .求以直角边所在直线为轴,把△ABC旋转一周得到的圆锥的侧面积.29、已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?30、如图,将△ABC绕点B顺时针旋转60°后得到△DBE(点A对应点为D),线段AC交线段DE于点F,求∠EFC的度数.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、C5、B6、C7、B8、C9、D10、D11、A12、B13、D14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
第24章-圆(章节练习)2022-2023学年人教版数学九年级上册 (1)
第24章圆(章节练习)-人教版九年级上册一.选择题1.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相交C.相切D.无法判断2.如图,已知AB是△ABC外接圆的直径,∠A=25°,则∠B的度数是()A.25°B.55°C.65°D.75°3.如图,在△ABC中,AB=3,BC=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.9﹣3πB.C.D.4.如图,AB是O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P 是直径AB上的一动点.若MN=2,则△PMN周长的最小值为()A.5B.6C.7D.85.如图,AB是⊙O的直径,点E,C在⊙O上,点A是的中点,过点A作⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=59°,则∠ACE的度数为()A.59°B.41°C.31°D.29°6.如图,在⊙O中,直径CD垂直弦AB于点E,连接OB、BC,已知⊙O的半径为2,AB =2,则∠BCD的大小为()A.20°B.30°C.15°D.25°7.如图,已知量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,18秒后,点E在量角器上对应的读数是().A.108°B.54°C.102°D.51°8.如图,⊙O中,P为优弧上一个动点(不与A,B两点重合),PQ⊥AB,垂足为Q,D是BP的中点,连接DQ.若⊙O的半径为4,则线段DQ的最大值是()A.4B.4C.6D.89.如图,O为线段BC的中点,点A,C,D到点O的距离相等.则∠A与∠C的数量关系为()A.∠A=∠C B.∠A=2∠C C.∠A﹣∠C=90°D.∠A+∠C=180°10.如图,AB是⊙O的直径,点D在BA的延长线上,,DC与⊙O相切于点E,BC与⊙O相切于点B交DE的延长线于点C,若⊙O的半径为1,EC的长是()A.B.C.D.二.填空题11.如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为.12.如图,P A,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为.13.如图,BD为⊙O的直径,∠A=25°,则∠CBD的度数为.14.如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是.15.如图,△ABC中,AC=3,BC=4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为.三.解答题16.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,试求∠EOB的度数.17.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)若∠E=32°,求∠D的度数;(2)若AB=13,BC﹣AC=7,求CE的长.18.如图,已知等边△ABC中,AB=12.以AB为直径的半⊙O与边AC相交于点D.过点D作DE⊥BC,垂足为E;过点E作EF⊥AB,垂足为F,连接DF.(1)求证:DE是⊙O的切线;(2)求EF的长.19.如图,⊙O中的弦AD⊥BC于F,弦BE⊥AC于G,交AD于H.(1)求证:DF=HF;(2)求证:CH=CE.20.如图,AB是⊙O的直径,C,D都是⊙O上的点,AD平分∠CAB,过点D的切线交AC的延长线于点E,交AB的延长线于点F.(1)求证:AE⊥EF;(2)若∠AOD=120°,AB=8,①求AC的长;②求图中阴影部分(区域DBF)的面积.。
第24章:《圆》八大专题训练
第24章:《圆》八大专题训练专训1:巧用圆的基本性质解圆的五种关系◐名师点金◑圆的基本性质里面主要涉及弦、弧之间的关系,圆周角、圆心角之间的关系,弧、圆周角之间的关系,弦、圆心角之间的关系,弦、弧、圆心角之间的关系等,在解此类题目时,需要根据已知条件和所求问题去探求它们之间的内在联系,从而达到解决问题的目的.关系1:弦、弧之间的关系1.如图,在⊙O 中,AB ︵=2CD ︵,则下列结论正确的是( )A .AB>2CDB .AB =2CDC .AB<2CD D .以上都不正确 2.如图,在⊙O 中,弦AD =BC ,求证:AB ︵=CD ︵.关系2: 圆周角、圆心角之间的关系3.如图,AB ,AC ,BC 都是⊙O 的弦,且∠CAB =∠CBA ,求证:∠COB =∠COA.关系3: 弧、圆周角之间的关系4.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,∠BAC =50°,求∠ADC 的度数.5.⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD 。
求证:PA =PC关系4: 弦、圆心角之间的关系6.如图,以等边三角形ABC 的边BC 为直径作⊙O 交AB 于D ,交AC 于E ,连接DE.试判断BD ,DE ,EC 之间的大小关系,并说明理由.关系5: 弦、弧、圆心角之间的关系7.如图,在⊙O 中,∠AOB =90°,且C ,D 是AB ︵的三等分点,AB 分别交OC ,OD 于点E ,F. 求证:AE =BF =CD.专训2:垂径定理的四种应用技巧◐名师点金◑圆的半径和圆心到弦的垂线段三条线段组成的直角三角形,然后借助勾股定理,,在这三个量中知道任意两个,可求出第三个。
技巧1:巧用垂径定理求点的坐标1.如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标。
人教版九年级数学上册第24章《圆》测试卷1(附答案)
人教版九年级数学上册第24章《圆》测试卷1(附答案)时间:100分钟总分:120分一、选择题(每小题3分,共30分)1.已知⊙O与点P在同一平面内,如果⊙O的半径为5,线段OP的长为4,则点P( )A.在⊙O上B.在⊙O内C.在⊙O外D.以上答案都不正确2.若半径为5c m的一段弧长等于半径为2c m的圆的周长,则这段弧所对的圆心角为( )A.144°B.132°C.126°D.108°3.如图,一个直角三角尺的30°角的顶点P落在⊙O上,两边分别交⊙O于A,B两点,若⊙O的直径为4,则弦AB长为( )A.2B.3C.√2D.√3第3题图第4题图第5题图第6题图4.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AD//BCC.AB//EFD. ∠ABC= ∠ADC5.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8m,底面半径OB=6m,则圆锥的侧面积是( )A.60πm²B.50π m²C.47.5π m²D.45.5π m²6. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°7. 已知⊙A与⊙B外切,⊙C与⊙A,⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是( )A.11B.10C.9D.88.如图,⊙P与x轴交于点A(-5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点P的坐标为( )A.(-3, √3)B.(-2, √3,)C.(-3, 3√3)D.(-2, 3√3)第8题图第9题图第10题图9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M,P,H三点的圆弧与AH交于点R,则图中阴影部分的面积为( )A.3π-2B.2π-5C.5π2--5 D. 5π4-5210. 如图,⊙O的半径为5,点A是⊙O上一定点,点B在⊙O上运动,且∠ABM =30°,AC⊥BM于点C,连接OC,则OC的最小值是( )A. 3−√32B.√32C. √33D.5√32−52二、填空题(每小题3分,共15分)11.已知某个正六边形的周长为6,则这个正六边形的边心距是__________.12.如图所示,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到点A时,同伴乙已经成功冲到点B,现在有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度大小考虑,应选择第______种射门方式.第12题图第13题图第14题图第15题图13.用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA = 2,则四叶幸运草的周长是________.14. 如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,C是弧AB的中点,且CD=10m,则这段弯路所在圆的半径为_________ m.15. 如图,在扇形OAB中,∠AOB=60°,OA = 4,射线AM⊥OA,E为弧AB上的一个动点,过点E作EF⊥AM于点F,连接AE,当AE-EF的值最大时,图中阴影部分的面积为______.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,求∠PCA的度数.17.(9分)如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)求证CD是OO的切线.(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)18.(9分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程..已知:⊙O及⊙O外一点P.求作:直线P A和直线PB,使P A切⊙O于点A,PB切⊙O于点B.作法:如图.OP的长为半径作弧,两弧分别交于点M,N;①连接OP.分别以点O和点P为圆心,大于12②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线P A和直线PB.所以直线P A和PB就是所求作的直线.根据小东设计的尺规作图过程解答下列问题:(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OA,OB . ∵OP是⊙Q的直径,∴∠OAP=∠OBP =______°( ) (填推理的依据).∴P A⊥OA , PB⊥OB .∵OA,OB为⊙O的半径,∴P A,PB是⊙O的切线.̂上,连19.(9分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠BCD=120°,点E在AD接AE,DE.(1)求∠AED的度数;(2)连接OA,OD,OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.̂=BĈ= AĈ,点E是BC上的一点,20.(9分)如图,已知△ABC是⊙O的内接三角形,AB连接AE,过点B作BD//AE交⊙O于点D,连接CD交AB于点F.(1)求证:AF=BE.(2)若∠CAE=15°,请仅用无刻度的直尺在图中作出一个⊙O的内接等腰直角三角形(保留作图痕迹,不写作法).̂的中点,N是AĈ的中点,弦MN分别交21.(10分)如图,AB,AC是⊙O的两条弦,M是ABAB,AC于点P,D.(1)求证AP=AD.(2)连接PO,若AP=3,OP=√10,⊙O的半径为5,求MP的长.22.(10分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB,∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE =3,若P为AE中点,求PO的长.23.(11分)如图,AB是⊙O的直径,PC切⊙O于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点。
第24章 圆能力提升卷(含解析)
人教版九年级数学《第24章圆》能力提升卷答案解析一、选择题(本题共10个小题,每小题3分,共30分)1、如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.2、如图,⊙O的直径CD垂直弦AB于点E,且CE=2,OB=4,则AB的长为()A.2B.4 C.6 D.4【解答】解:∵⊙O的直径CD垂直弦AB于点E,∴AB=2BE.∵CE=2,OB=4,∴OE=4﹣2=2,∴BE===2,∴AB=4.故选:D.3、如图,⊙O是△ABC的外接圆,BC=3,∠BAC=30°,则劣弧的长等于()A.B.πC. D.π【解答】解:解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为: =.故选:A.4、用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A. cm B.3cm C.4cm D.4cm【解答】解:L==4π(cm);圆锥的底面半径为4π÷2π=2(cm),∴这个圆锥形筒的高为=4(cm).故选:C.5、如图,扇形AOB中,∠AOB=150°,AC=AO=6,D为AC的中点,当弦AC沿扇形运动时,点D所经过的路程为()A.3π B.C. D.4π【解答】解:∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=AO,∴∠AOD=30°,OD=3,同理可得:∠BOE=30°,∴∠DOE=150°﹣60°=90°∴点D所经过路径长为: ==.故选:C.6、如图,⊙O的半径为1,A,B,C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【解答】解:连接OB、OC∵∠C=36°∴∠BOC=2∠A=72°∴劣弧BC的长为:故答案为:B7、如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76°B.56°C.54°D.52°【解答】解:∵MN是⊙O的切线,∴ON⊥NM,∴∠ONM=90°,∴∠ONB=90°﹣∠MNB=90°﹣52°=38°,∵ON=OB,∴∠B=∠ONB=38°,∴∠NOA=2∠B=76°.故选:A.8、如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA 垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm【解答】解:设扇形的圆心角为n度,则=30π∴n=300.∵扇形的弧长为=10π(cm),∴点O移动的距离10πcm.故选:A.9、如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B.C点都在第一象限内,且AO=AC,又以P(0,4)为圆心,PC为半径的圆恰好与OC所在的直线相切,则t=()A.2﹣1 B.2+1 C.5 D.7【解答】解:∵已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,∴经过t秒后,∴OA=1+t,∵四边形OABC是菱形,∴OC=1+t,∵⊙P恰好与OC所在的直线相切,∴PC⊥OC,∵AO=AC=OC,∴∠AOC=60°,∠COP=30°,在Rt△OPC中,OC=OP•cos30°=×=6,∴1+t=6,∴t=5.故答案选C.10、我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6 B.8 C.10 D.12【解答】解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=6﹣x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11、如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于 2 cm.【解答】解:∵圆锥的弧长=2×12π÷6=4π,∴圆锥的底面半径=4π÷2π=2cm,故答案为2.12、如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是 2 .【分析】连接OB、OC,利用弧长公式转化为方程求解即可;【解答】解:连接OB、OC.∵∠BOC=2∠BAC=120°,的长是,∴=,∴r=2,故答案为2.13、在平面直角坐标系内,以点P(﹣1,0)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,2),(0,﹣2).【解答】解:如图,∵由题意得,OM=1,MP=,∴OP==2,∴P(0,2).同理可得,N(0,﹣2).故答案为:(0,2),(0,﹣2).14、⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC 交于点D,则AD的长为1或3 .【解答】解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.15、如图,在直角坐标系中,点A(0,5),点P(2,3),将△AOP绕点O顺时针方向旋转,使OA边落在x轴上,则点P'的坐标为(3,﹣2).【解答】解:如图,过点P作PE⊥x轴于点E,过点P′作P′F⊥y轴于点F,∴∠PEO=∠P′FO=90°,由旋转可知∠POP′=90°,即∠POE+∠P′OA′=90°,OP=OP′,又∵∠P′OA′+∠P′OF=90°,∴∠POE=∠P′OF,在△POE和△P′OF中,∵,∴△POE≌△P′OF(AAS),∴P′F=PE=3,OF=OE=2,∴点P′坐标为(3,﹣2),故答案为:(3,﹣2).16、如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长= 10 .【解答】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F∴可以假设设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48﹣8∴a+b=10,∴AB=10.故答案为1017、如图,在矩形ABCD中,AB=4,BC=2,以A为圆心,AB的长为半径画弧,交DC于点E,交AD延长线于点F,则图中阴影部分的面积为8﹣4+π.【解答】解:∵在矩形ABCD中,AB=4,BC=2,∴AB=2DA,AB=AE(扇形的半径),∴AE=2DA,∴∠AED=30°,∴∠1=90°﹣30°=60°,∵DA=2∴AB=2DA=4,∴A E=4,∴DE==2,∴阴影FDE的面积S1=S扇形AEF﹣S△ADE=﹣×2×2=π﹣2.阴影ECB的面积S2=S矩形﹣S△ADE﹣S扇形ABE=2×4﹣×2×2﹣=8﹣2﹣π;.则图中阴影部分的面积为=8﹣2﹣π+π﹣2=8﹣4+π.故答案为:8﹣4+π.18、如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O 2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为22015π..【解答】解:连接P1O1,P2O2,P3O3…∵P1是⊙O2上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,Pn On垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OOn=2n﹣1,∴=•2π•OOn=π•2n﹣1=2n﹣2π,当n=2017时, =22015π.故答案为 22015π.三、解答题(共66分)19、(6分)如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且=,求证:AB=AD.【解答】证明:连BD、CE.∵=,∴,∴=,∴∠ACE=∠AEC,∴AC=AE.∵=,∴BC=DE.∴AC﹣BC=AE﹣DE,即AB=AD.20、(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF 与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.21、(8分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=1,求⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)设该圆的半径为x.在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴1+x=2x,解得:x=1∴OA=PD=1,所以⊙O的直径为2.22、(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC 交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=223、(10分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π)【解答】(1)证明:连接OD,∵D为的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF•tan30°=6,在Rt△AED中,DA=6,∠C AD=30°,∴DE=DA•sin30°=3,EA=DA•cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等边三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD =S△COD,∴S阴影=S△AED﹣S扇形COD=×9×3﹣π×62=﹣6π.24、(12分)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.【解析】解:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.25、(12分)在平面直角坐标系xOy 中,⊙C 的半径为(1)r r >,P 是圆内与圆心C 不重合的点,⊙C 的“完美点”的定义如下:若直线CP 与⊙C 交于点A ,B ,满足||2PA PB -=,则称点P 为⊙C 的“完美点”,如图为⊙C 及其“完美点”P 的示意图.(1)当⊙O 的半径为2时.①点3,02M ⎛⎫⎪⎝⎭,(0,1)N ,31,22T ⎛⎫-- ⎪ ⎪⎝⎭中,⊙O 的“完美点”是__________. ②若⊙O 的“完美点”P 在直线3y x =上,求PO 的长及点P 的坐标. (2)⊙C 的“完美点”P 在直线31y x =+上,半径为2,若y 轴上存在⊙C 的“完美点”,求圆心C 的纵坐标t 的取值范围.C B APxy O 11xy O备用图11【解析】由已知可得PA PC r =+,PB r PC =-, ∴||||22PA PB PC r r PC PC -=+-+==, ∴1PC =,∴点P 在以C 为圆心,1为半径的圆上. (1)①由“完美点”的定义可知:⊙O 的“完美点”应在以O 为圆心,1为半径的圆上, ∴N ,T 两点在⊙O 上, ∴N ,T 是⊙O 的完美点. ②∵点P 是⊙O 的“完美点”, ∴1OP =,∵点P 直线3y x =上, ∴设(3)P m m ,∴223|2|1OP m m m =+==, ∴12m =±, ∴1132P ⎛ ⎝⎭,213,2P ⎛- ⎝⎭. (2)∵y 轴上存在⊙C 是“完美点”, ∴11C x -≤≤,∴点C 在直线31y x =+上. ∴3+131t -+≤≤.。
人教版九年级上册数学 单元练习题:第二十四章 圆(含解析答案)
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB 的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O 交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。
第24章 圆(压轴必刷30题5种题型专项训练)(原卷版)-2024-2025学年九年级数学上学期期中
第24章圆(压轴必刷30题5种题型专项训练)一.垂径定理(共5小题)1.(2022秋•定海区期中)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为cm2.2.(2022秋•拱墅区校级期中)在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为厘米.3.(2022秋•绍兴期中)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙G 的运动过程中,线段FG的长度的最小值为.4.(2022秋•珠海校级期中)已知:如图,矩形ABCD中,点E、F分别在DC,AB边上,且点A、F、C在以点E为圆心,EC为半径的圆上,连接CF,作EG⊥CF于G,交AC于H.已知AB=6,设BC=x,AF=y.(1)求证:∠CAB=∠CEG;(2)①求y与x之间的函数关系式.②x=时,点F是AB的中点;(3)当x为何值时,点F是的中点,以A、E、C、F为顶点的四边形是何种特殊四边形?试说明理由.5.(2022秋•南湖区校级期中)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.二.圆周角定理(共9小题)6.(2022秋•姑苏区校级期中)如图,在四边形ACBD中,AB=BD=BC,AD∥BC,若CD=4,AC=2,则AB的长为.7.(2022秋•庆阳期中)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=.8.(2022秋•思明区校级期中)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图.求证:△PCB是等腰三角形;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,连接OH,且点O和点A都在DE的左侧,如图.若∠ACB=60°,DH=1,∠OHD=80°,①求⊙O的半径;②求∠BDE的大小.9.(2022秋•鹿城区校级期中)如图,AB是⊙O的直径,弦CD⊥AB于点H,点F为圆上一点,=,连结AD,过点C作CE∥AF交AB于点G,交AD于点E.(1)求证:CE=CD.(2)若CG=2EG,AF=6,求⊙O的直径.10.(2022秋•浠水县校级期中)如图1,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M =∠D.(1)判断BC,MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)如图2,若MD恰好经过圆心O,求∠D的度数.11.(2022秋•南浔区期中)如图,已知⊙O中,直径AF⊥BC于点H,点D在上,且∠ACD=30°,过点A作AE⊥CD于点E,已知△BCD的周长为,且BH=2,则⊙O的半径长为()A.B.C.D.12.(2022秋•广水市期中)如图,AB是半圆O的直径,点C在半圆上,AB=5,AC=4,D是上的一个动点,连接AD.过点C作CE⊥AD于E,连接BE,则BE的最小值是.13.(2022秋•思明区校级期中)已知AB是半圆O的直径,M,N是半圆不与A,B重合的两点,且点N在弧BM上.(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;(2)如图2,过点M作MC⊥AB于点C,点P是MN的中点,连接MB、NA、PC,试探究∠MCP、∠NAB、∠MBA之间的数量关系,并证明.14.(2022秋•新罗区期中)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.三.三角形的外接圆与外心(共4小题)15.(2022秋•江干区校级期中)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形16.(2022秋•临邑县期中)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个17.(2022秋•上城区校级期中)如图,在△ABC中,D在边AC上,圆O为锐角△BCD的外接圆,连结CO 并延长交AB于点E.(1)若∠DBC=α,请用含α的代数式表示∠DCE;(2)如图2,作BF⊥AC,垂足为F,BF与CE交于点G,已知∠ABD=∠CBF.①求证:EB=EG;②若CE=5,AC=8,求FG+FB的值.18.(2022秋•海珠区校级期中)在等腰三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程的两个实数根.(1)求△ABC的周长.(2)求△ABC的三边均为整数时的外接圆半径.四.切线的判定与性质(共8小题)19.(2022秋•龙岩期中)如图,AB是⊙O的直径,AC与⊙O交于点C,∠BAC的平分线交⊙O于点D,DE⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若直径AB=10,弦AC=6,求DE的长.20.(2022秋•高密市期中)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为,BD=3,求CE的长.21.(2022秋•会泽县期中)如图,点C在以AB为直径的⊙O上,AC平分∠BAD,且AD⊥CD于点D.(1)求证:DC是⊙O的切线;(2)若AD=4,CD=2,求⊙O的半径.22.(2022秋•老城区校级期中)如图1,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如图2,如果∠BED=60°,PD=,求P A的长.23.(2022秋•乌鲁木齐期中)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作半圆O交AB于点D,E为AC的中点,连接DE,DC.(1)求证:DE是半圆O的切线;(2)若∠BAC=60°,DE=6,求CD的长.24.(2022秋•兰山区校级期中)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.25.(2022秋•嘉祥县期中)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.26.(2022秋•东台市期中)如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.五.三角形的内切圆与内心(共4小题)27.(2022秋•建湖县期中)如图,I是△ABC的内心,AI的延长线交△ABC的外接圆于点D.(1)求证:∠BAD=∠CBD;(2)求证:BD=ID;(3)连接BI、CI,求证:点D是△BIC的外心.28.(2022秋•东港区校级期中)如图,AB是⊙O的直径,点F是△ABC的内心,连接CF并延长交⊙O于D,连接BD并延长至E,使得BD=DE,连接AE.(1)求证:FD=BD;(2)求证:AE是⊙O的切线.29.(2022秋•黄石期中)点I为△ABC的内心,连AI交△ABC的外接圆于点D,若AI=2CD,点E为弦AC的中点,连接EI,IC,若IC=6,ID=5,则IE的长为.30.(2022秋•东台市期中)在Rt△ABC中,∠ACB=90°,BC=3,AC=4,直线l经过△ABC的内心O,过点C作CD⊥l,垂足为D,连接AD,则AD的最小值是.。
人教版九年级数学上《第二十四章圆》单元测试题含答案
第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。
第24章《圆》单元复习测试题(含答案)
九年级数学第二十四章《圆》单元复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.已知AB是半径为6的圆的一条弦,则AB的长不可能是()A.8 B.10 C.12 D.142.已知⊙O的半径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.在圆内接四边形ABCD中,∠A=80°,则∠A的对角∠C=()A.20°B.40°C.80°D.100°4.如题4图,在⊙O中,AB=AC.若∠B=75°,则∠A的度数为()题4图A.15°B.30°C.75°D.60°5.如题5图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=36°,则∠D的度数为()题5图A.72°B.54°C.45°D.36°6.已知半径为9的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π7.如题7图,点I为△ABC的外心,且∠BIC=150°,则∠A的度数为()题7图A.70°B.75°C.140°D.150°8.如题8图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长,交⊙O于点C,连接AC.若AB =8,∠P=30°,则AC=()A .43B .42C .4D .39.小英家的圆形镜子被打碎了,她拿了如题9图(网格中的每个小正方形边长为1)所示的一块碎片到玻璃店,配制成形状、大小与原来 一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .310.如题10图,将矩形ABCD 绕点A 逆时针旋转90°得到矩形AEFG ,点D 的旋转路径为DG .若AB =2,BC =4,则阴影部分的面积为( )A .π2B .8π3C .4π3+43D .4π3+23二、填空题(本大题7小题,每小题4分,共28分)11.已知⊙O 的半径为5cm ,点P 在⊙O 内,则OP ________5cm.(填“>”“<”或“=”) 12.如题12图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长是__________.13.如题13图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,若P A =6cm ,C 是AB 上一动点(点C 与A ,B 两点不重合),过点C 作⊙O 的切线,分别交P A ,PB 于点D ,E ,则△PED 的周长是________cm.14.如题14图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =________.题14图15.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝处忽略不计),则这个圆锥的底面圆的半径为________.16.如题16图,AB 是⊙O 的弦,AB =8,C 是⊙O 上一动点,且∠ACB =45°.若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.题16图17.如题17图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,直线MN 与l 1相交于点M ,与l 2相交于点N ,⊙O 的半径为1,∠1=60°,直线MN 从图中位置向右平移.下列结论:①l 1和l 2的距离为2;②MN =433 ;③当直线MN 与⊙O 相切时,∠MON =90°;④当AM +BN =433 时,直线MN 与⊙O 相切.其中正确的结论是____________.(填序号)题17图三、解答题(一)(本大题3小题,每小题6分,共18分)18.如题18图,点A ,B ,C ,D 在⊙O 上,BD =AC .求证:AB =CD .题18图19.用铁皮制作如题19图所示的圆锥形容器盖,求这个容器盖所需铁皮的面积(结果保留π),并求制作容器盖的扇形的圆心角.题19图20.如题20图,在△ABC 中,AB =AC .(1)求作一点P ,使得点P 为△ABC 外接圆的圆心;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AP ,BP ,延长AP 交BC 于点D ,若∠BAC =50°,求∠PBC 的度数.题20图四、解答题(二)(本大题3小题,每小题8分,共24分)21.如题21图,隧道的截面由半圆和矩形构成,矩形的长BC为12m,宽AB为3m,若该隧道内设双行道,现有一辆货运卡车高8m,宽2.3m,则这辆货运卡车能否通过该隧道?请说明理由.题21图22.如题22图,已知△ABC内接于⊙O,AD为⊙O的直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°试判断α与β之间的关系,并给出证明.题22图23.在如题23图所示的网格中,每个小正方形的顶点叫格点,且边长均为1,△ABC的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB,AC于点E,F.(1)求△ABC三边的长;(2)求图中由线段EB,BC,CF及EF所围成的阴影部分的面积.题23图五、解答题(三)(本大题2小题,每小题10分,共20分)24.如题24图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E,D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①AB是⊙O的切线;②∠EDC=∠FDC.(2)求CD的长.题24图25.阅读以下材料,并回答问题:若一个三角形两边平方的和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.(1)命题“等边三角形一定是奇异三角形”是________命题;(填“真”或“假”)(2)在△ABC中,∠C=90°,△ABC的内角∠A,∠B,∠C所对边的长分别为a,b,c,且b>a,若Rt △ABC 是奇异三角形,求a ∶b ∶c 的值;(3)如题25图,已知AB 是⊙O 的直径,C 是⊙O 上一点(点C 与点A ,B 不重合),D 是ADB 的中点,点C ,D 在直径AB 的两侧,若存在点E ,使得AE =AD ,CB =CE .求证:△ACE 是奇异三角形.题25图参考答案1.D 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.D 11.< 12.63 13.12 14.36° 15.1 16.42 17.①②③④ 18.证明:∵BD =AC ,∴BD =AC .∴BD -AD =AC -AD ,即AB =CD .∴AB =CD .19.解:由图可知圆锥的底面圆的直径为80 cm ,母线长为50 cm , ∴圆锥的底面圆的周长为80π cm.∴圆锥形容器盖的侧面展开图的弧长为80π cm. ∴面积为 12 ×80π×50=2 000π(cm 2).设制作容器盖的扇形的圆心角为n °. ∴n π×50180=80π.解得n =288.答:这个容器盖所需铁皮的面积为2 000π cm 2,制作容器盖的扇形的圆心角为288°. 20.解:(1)如答题20图,点P 即为△ABC 外接圆的圆心.答题20图(2)∵点P 为△ABC 外接圆的圆心,AB =AC ,∠BAC =50°, ∴AD ⊥BC ,∠BAP =∠CAP =25°,P A =PB . ∴∠BPD =2∠BAP =50°,∠BDP =90°. ∴∠PBD =90°-50°=40°,即∠PBC =40°.21.解:这辆货运卡车能通过该隧道.理由如下:如答题21图,设点O 为AD 的中点,在AD 上取点G ,使得OG =2.3,过点G 作GF ⊥BC 于点F ,延长FG 交半圆于点E ,则GF =AB =3,半圆的半径OE =12 AD =12BC =6.答题21图∴EG =OE 2-OG 2 =62-2.32 ≈5.54.∴EF =EG +GF ≈5.54+3=8.54>8. ∴这辆货运卡车能通过该隧道. 22.解:β-α=90°.证明:如答题22图,连接BD .答题22图∵AD 为⊙O 的直径,∴∠DBA =90°. ∵∠DAB =α,∴∠D =90°-α. ∵B ,D ,A ,C 四点共圆, ∴∠ACB +∠D =180°. ∵∠ACB =β,∴β+90°-α=180°.∴β-α=90°.23.解:(1)由图可得AB =22+62 =210 ,AC =62+22 =210 , BC =42+82 =45 .(2)由(1)得AB 2+AC 2=(210 )2+(210 )2=(45 )2=BC 2. ∴∠BAC =90°. 如答题23图,连接AD ,则AD ⊥BC ,BD =DC =12BC =25 .答题23图∴AD =AB 2-BD 2 =(210)2-(25)2 =25 . ∴S 阴=S △ABC -S 扇形AEF =12 AB ·AC -90π360 ·AD 2=20-5π.24.(1)证明:①如答题24图,连接OC .∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 为⊙O 的半径, ∴AB 是⊙O 的切线.②∵OA =OB ,CA =CB ,∴∠AOC =∠BOC . ∴EC =FC .∴∠EDC =∠FDC .答题24图(2)解:如答题24图,过点O 作ON ⊥DF 于点N ,延长DF 交AB 于点M . ∵ON ⊥DF ,OD =OF ,DF =6, ∴DN =NF =12 DF =3,∠DON =∠FON .在Rt △ODN 中,OD =12 DE =5,DN =3,∴ON =OD 2-DN 2 =4.∵∠AOC =∠BOC ,∠DON =∠FON , ∴∠BOC +∠FON =12 ×180°=90°.∴∠OCM =∠CON =∠MNO =90°. ∴四边形OCMN 是矩形.∴CM =ON =4,MN =OC =12DE =5.在Rt △CDM 中,CM =4,DM =DN +MN =8, ∴CD =DM 2+CM 2 =82+42 =45 . 25.(1)解:真. (2)解:∵∠C =90°,∴a 2+b 2=c 2.①∵Rt △ABC 是奇异三角形,且b >a ,∴a 2+c 2=2b 2.② 由①②,得b =2 a ,c =3 a .∴a ∶b ∶c =1∶2 ∶3 . (3)证明:如答题25图,连接BD .答题25图∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,AC2+CB2=AB2,在Rt△ADB中,AD2+BD2=AB2.∵点D是ADB的中点,∴AD=BD.∴AD=BD.∴AB2=AD2+BD2=2AD2.∴AC2+CB2=2AD2.又CB=CE,AE=AD,∴AC2+CE2=2AE2.∴△ACE是奇异三角形。
(必考题)初中九年级数学上册第二十四章《圆》经典习题(含答案解析)
一、选择题1.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等 2.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .2453.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 4.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 5.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .1 6.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A.12B.16C.13D.147.如图,正六边形ABCDEF内接于O,过点O作OM 弦BC于点M,若O的半径为4,则弦心距OM的长为()A.23B.3C.2 D.228.如图,在⊙O中,AB是直径,弦AC=5,∠BAC=∠D.则AB的长为()A.5B.10C.52D.1029.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.三角形的外心在三角形的外面D.与某圆一条半径垂直的直线是该圆的切线10.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A .22+1B .22+2C .42+1D .42-2 11.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .3312.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值为( )A .2B .1C .2D .2213.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )A .2πB .4πC .6πD .8π14.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.18.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)19.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.20.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一⊥于N,点Q是MN的中点,当点P沿着圆周点,过点P作PM AB⊥于M,PN CD从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.OA=,AB是O的切线,点B是切点,弦21.如图,A是半径为1的O外一点,2BC OA,连接AC,则图中阴影部分的面积为________.//22.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC是该圆内接正n边形的一边,则该正n边形的面积为____.23.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.24.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,若以C为圆心,r为半径所作的圆与斜边AB相切,则r的值是________25.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.26.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________三、解答题27.如图,在⊙O 中,C 是AB 的中点,∠ACB=∠AOB .求证:四边形OACB 是菱形.28.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)29.如图,AB为⊙O的直径,C,D是⊙O上的点,P是⊙O外一点,AC⊥PD于点E,AD 平分∠BAC.(1)求证:PD是⊙O的切线;(2)若DE=3,,∠BAC=60°,求⊙O的半径.30.如图,ABC内接于O,60BAC∠=︒,点D是BC的中点.BC,AB边上的高AE,CF相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.。
人教版九年级数学上册 《第24章圆》单元测试含答案解析
《第24章圆》一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.47.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.758.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= cm.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.《第24章圆》(北京市西城区重点中学)参考答案与试题解析一、填空题1.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40° B.80° C.160°D.120°【考点】三角形的外接圆与外心.【分析】根据圆周角定理得∠BOC=2∠A=160°.【解答】解:∵点O为△ABC的外心,∠A=80°,∴∠BOC=2∠A=160°.故选C.【点评】熟练运用圆周角定理计算,即在同圆或等圆中同弧所对的圆周角等于它所对的圆心角的一半.2.点P在⊙O内,OP=2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cm B.2cm C. cm D. cm【考点】垂径定理;勾股定理.【专题】计算题.【分析】过P作AB⊥OP交圆与A、B两点,连接OA,故AB为最短弦长,再解Rt△OPA,即可求得AB的长度,即过点P的最短弦的长度.【解答】解:过P作AB⊥OP交圆与A、B两点,连接OA,如下图所示:故AB为最短弦长,由垂径定理可得:AP=PB已知OA=3,OP=2在Rt△OPA中,由勾股定理可得:AP2=OA2﹣OP2∴AP==cm∴AB=2AP=2cm故此题选D.【点评】本题考查了最短弦长的判定以及垂径定理的运用.3.已知A为⊙O上的点,⊙O的半径为1,该平面上另有一点P,,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定【考点】点与圆的位置关系.【分析】根据题意可知点P可能在圆外也可能在圆上,也可能在圆内,所以无法确定.【解答】解:∵PA=,⊙O的直径为2∴点P的位置有三种情况:①在圆外,②在圆上,③在圆内.故选D.【点评】本题考查了圆的认识,做题时注意多种情况的考虑.4.如图:点A、B、C、D为⊙O上的四等分点,动点P从圆心O出发,沿O﹣C﹣D﹣O的路线做匀速运动.设运动的时间为t秒,∠APB的度数为y.则下列图象中表示y与t之间函数关系最恰当的是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意,分P在OC、CD、DO之间3个阶段,分别分析变化的趋势,又由点P作匀速运动,故①③都是线段,分析选项可得答案.【解答】解:根据题意,分3个阶段;①P在OC之间,∠APB逐渐减小,到C点时,为45°,②P在CD之间,∠APB保持45°,大小不变,③P在DO之间,∠APB逐渐增大,到O点时,为90°;又由点P作匀速运动,故①③都是线段;分析可得:B符合3个阶段的描述;故选:B.【点评】本题主要考查了函数图象与几何变换,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.5.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.【点评】直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.6.如图,⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,若⊙O的半径为2,则CD的长为()A.2 B.4 C.2 D.4【考点】切线的性质.【专题】压轴题.【分析】连接OC,BC,AB是直径,CD是切线,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函数即可求得CD的值.【解答】解:连接OC,BC,AB是直径,则∠ACB=90°,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COB=2∠A=60°,CD=OC•tan∠COD=2.故选A.【点评】本题利用了切线的性质,直径对的圆周角是直角求解.7.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.如图,⊙A,⊙B,⊙C,⊙D,⊙E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积是()A.πB.1.5πC.2πD.2.5π【考点】扇形面积的计算;多边形内角与外角.【专题】压轴题.【分析】圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积2公式计算即可.【解答】解:图中五个扇形(阴影部分)的面积是=1.5π故选B.【点评】解决本题的关键是把阴影部分当成一个扇形的面积来求,圆心角为五边形的内角和.二、选择题9.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.10.如图,在△ABC中,∠A=90°,AB=AC=2cm,⊙A与BC相切于点D,则⊙A的半径长为cm.【考点】切线的性质.【专题】压轴题.【分析】连接AD,则有AD是△ABC的斜边上的高,可判定△ABC是等腰直角三角形,所以BC=AB=2,利用点D是斜边的中点,可求AD=BC=cm.【解答】解:连接AD;∵∠A=90°,AB=AC=2cm,∴△ABC是等腰直角三角形,∴BC=AB=2;∵点D是斜边的中点,∴AD=BC=cm.【点评】本题利用了切线的性质,等腰直角三角形的判定和性质求解.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形性质描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于点E,设AE=x,BE=y,用含x,y 的式子表示图中的弦CD的长度),通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式.【考点】垂径定理的应用.【专题】数形结合.【分析】此题中隐含的不等关系:直径是圆中最长的弦,所以AB≥CD.首先可以表示出AB=x+y,再根据相交弦定理的推论和垂径定理,得CD=2CE=2.【解答】解:∵直径AB⊥弦CD于点E,∴CE=DE,根据相交弦定理的推论,得CE2=AE•BE,则CE=,∴CD=2CE=2.又∵AB=x+y,且AB≥CD,∴x+y≥2.【点评】本题考查:直径是圆中最长的弦;相交弦定理的推论以及垂径定理的综合应用.12.如图,∠AOB=30°,OM=6,那么以M为圆心,4为半径的圆与直OA的位置关系是相交.【考点】直线与圆的位置关系.【分析】利用直线l和⊙O相切⇔d=r,进而判断得出即可.【解答】解:过点M作MD⊥AO于点D,∵∠AOB=30°,OM=6,∴MD=3,∴MD<r∴以点m为圆心,半径为34的圆与OA的位置关系是:相交.故答案为:相交.【点评】此题主要考查了直线与圆的位置,正确掌握直线与圆相切时d与r的关系是解题关键.13.如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC= 8cm.【考点】圆周角定理.【专题】压轴题.【分析】结合等腰三角形的性质、圆周角定理、三角形的内角和定理求得三角形AOC是等腰直角三角形,再根据勾股定理即可求解.【解答】解:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵∠B=∠OAC=∠AOC,∴∠AOC=90°.∴AC=OA=8cm.【点评】此题综合运用了等腰三角形的性质、圆周角定理、三角形的内角和定理以及勾股定理.14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是垂径定理.【考点】垂径定理的应用;作图—复杂作图.【分析】利用垂径定理得出任意两弦的垂直平分线交点即可.【解答】解:根据小亮作图的过程得到:小亮的作图依据是垂径定理.故答案是:垂径定理.【点评】此题主要考查了复杂作图以及垂径定理,熟练利用垂径定理的性质是解题关键.三、解答题(7+7+8+8)15.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【考点】等边三角形的判定;圆周角定理.【专题】证明题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.【解答】证明:(1)连接OD,得OD∥AC;∴∠BDO=∠A;又OB=OD,∴∠OBD=∠ODB;∴∠OBD=∠A;∴BC=AC;又∵AB=AC,∴△ABC是等边三角形;(2)如上图,连接CD,则CD⊥AB;∴D是AB中点;∵AE=AD=AB,∴EC=3AE;∴AE=CE.【点评】本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.16.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 1 寸,CD= 10 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【考点】垂径定理的应用;勾股定理.【分析】根据题意容易得出AB和CD的长;连接OB,设半径CO=OB=x寸,先根据垂径定理求出CA 的长,再根据勾股定理求出x的值,即可得出直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.【点评】本题考查了勾股定理在实际生活中的应用;根据题意作出辅助线,构造出直角三角形,运用勾股定理得出方程是解答此题的关键.17.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【专题】几何综合题.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.【点评】本题利用了垂径定理和圆周角定理及圆内接四边形的性质求解.18.如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE ⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.【考点】切线的判定;等边三角形的性质.【分析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥BD.∵△ABC是等边三角形,∴,.∵∠EDC=30°,∴.∴FE=FC﹣EC=1.人教版九年级数学【点评】本题考查的是切线的判定、等边三角形的性质以及直角三角形的性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第26章圆》大题训练1.如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.2.如图,点C在以AB为直径的半圆O上,延长BC到点D,使得CD=BC,过点D作DE⊥AB 于点E,交AC于点F,点G为DF的中点,连接CG、OF、FB.(1)求证:CG是⊙O的切线;(2)若△AFB的面积是△DCG的面积的2倍,求证:OF∥BC.3. 如图,直线l与⊙O交于C、D两点,且与半径OA垂直,垂足为H,已知OD=2,∠O=60°,(1)求CD的长;(2)在OD的延长线上取一点B,连接AB、AD,若AD=BD,求证:AB是⊙O的切线.4.如图,AC是⊙O的直径,PA是⊙O的切线,A为切点,连接PC交⊙O于点B,连接AB,且PC=10,PA=6.求:(1)⊙O的半径;(2)cos∠BAC的值.5.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°,①求AD的长;②求出图中阴影部分的面积。
6.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°。
(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为6cm,AE=10cm,求∠ADE的正弦值。
7. 如图AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C . (1)若AB=2,∠P=30°,求AP 的长;(2)若D 为AP 的中点,求证:直线CD 是⊙O 的切线.8.如图,AB 是⊙O 的弦,AB=4,过圆心O 的直线垂直AB 于点D ,交⊙O 于点C 和点E ,连接AC 、BC 、OB ,cos ∠ACB=13,延长OE 到点F ,使EF=2OE .(1)求⊙O 的半径;(2)求证:BF 是⊙O 的切线.9.如图,在△ABC 中,点D 是AC 边上一点,AD=10,DC=8。
以AD 为直径的⊙O 与边BC 切于点E ,且AB=BE 。
(1)求证:AB 是⊙O 的切线;(2)过D 点作DF ∥BC 交⊙O 与点F ,求线段DF 的长。
10.如图已知P 为⊙O 外一点。
PA 为⊙O 的切线,B 为⊙O 上一点,且PA=PB ,C 为优弧AB 上任意一点(不与A 、B 重合),连接OP 、AB ,AB 与OP 相交于点D ,连接AC 、BC 。
(1)求证:PB 为⊙O 的切线;(2)若2tan BCA 3∠=,⊙O ,求弦AB 的长。
11.如图,在△ABC 中,∠BAC =30°,以AB 为直径的⊙O 经过点C.过点C 作⊙O 的切线交AB 的延长线于点P.点D 为圆上一点,且BC CD =,弦AD 的延长线交切线PC 于点 E ,连接BC .(1)判断OB 和BP 的数量关系,并说明理由;(2)若⊙O 的半径为2,求AE 的长.12.如图:在△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 做直线DE 垂直BC 于F ,且交BA 的延长线于点E.(1)求证:直线DE 是⊙O 的切线;(2)若cos∠BAC=13,⊙O 的半径为6,求线段CD 的长.13.如图,⊙O 的直径AB 的长为10,直线EF 经过点B 且∠CBF=∠CDB.连接AD.(1)求证:直线EF 是⊙O 的切线;(2)若点C 是弧AB 的中点,sin ∠DAB=35,求△CBD 的面积.14.如图,AB 是⊙O 的直径,AC 为弦,D 是BC 的中点,过点D 作EF ⊥AC 的延长线于E ,交AB 的延长线于E ,交AB 的延长线于F 。
(1)求证:EF 是⊙O 的切线;(2)若错误!未找到引用源。
∠F=13,AE=4,求⊙O 的半径和AC 的长。
15. 已知,如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的的延长线上,∠BCD=∠A 。
(1)求证:CD 是⊙O 的切线;(2)过点C 作CE ⊥AB 于E 。
若CE=2,4cosD=5,求AD 的长。
16.如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.17.如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.(1)猜想:线段OD与BC有何数量和位置关系,并证明你的结论.(2)求证:PC是⊙O的切线.18.如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.19.如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.(1)求证:CF是⊙O的切线;(2)若sin∠BAC=25,求CBDABCSS∆∆的值.20. 如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如图AD=5,AE=4,求⊙O的直径.21.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)若tanC,DE=2,求AD的长.22.如图,PA 、PB 分别与⊙O 相切于点A 、B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N .(1)求证:OM=AN ;(2)若⊙O 的半径R=3,PA=9,求OM 的长.23.如图,已知⊙O 的直径AB 与弦CD 相交于点E ,AB ⊥CD ,⊙O 的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD ∥BF ;(2)若⊙O 的半径为5,cos ∠BCD=54,求线段AD 的长.24.如图,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,P 是上的一个动点,过点P 作BC 的平行线交AB 的延长线于点D .(1)当点P 在什么位置时,DP 是⊙O 的切线?请说明理由;(2)当DP 为⊙O 的切线时,求线段DP 的长.2012年中考数学《第26章 圆》圆大题训练参考答案1. (1)证明:连接OD ,∵EF 是⊙O 的切线,∴OD ⊥EF ,又∵BH ⊥EF ,∴OD ∥BH ,∴∠ODB =∠DBH ,∵OD =OB ,∴∠ODB =∠OBD ∴∠OBD =∠DBH ,∴BD 平分∠ABH . (2)解:过点O 作OG ⊥BC 于点G ,则BG =CG =4, 在Rt △OBG 中,OG ===.2.证明:(1)如图,连接OC ,∵AB 为⊙O 的直径,∴∠ACB=900。
∵在Rt △DCF 中,DG =FG ,∴CG =DG =FG 。
∴∠CFG =∠FCG 。
又∵∠CFG =∠AFE ,∴∠FCG =∠AFE 。
∵OA =OC ,∴∠EAF =∠OCA 。
又∵DE ⊥AB ,∴∠EAF +∠AFE =90°。
∴∠OCA +∠FCG =90°,即∠GCO=90°。
又∵OC 是⊙O 的半径,∴CG 为⊙O 的切线。
(2)∵DG =FG ,∴DCF DCG S 2S ∆∆=。
∵DC =CB ,∴DCF BCF S S ∆∆=,∴BCF DCG S 2S ∆∆=。
又∵ABF DCG S 2S ∆∆=,∴ ABF BCF S S ∆∆=。
∴AF =FC 。
又∵OA =OB ,∴OF 是△ABC 的中位线。
∴OF ∥BC 。
3.(1)解:∵OA ⊥CD ,∴H 为CD 的中点,即CH=DH 。
在Rt △OHD 中,∠O=60°,∴∠ODH=30°。
又OD=2,∴OH=12OD=1。
根据勾股定理得:HD 。
∴CD=2HD=(2)证明:∵OA=OD ,∠O=60°,∴△AOD 为等边三角形。
∴OD=AD 。
∴∠OAD=∠ODA 。
又∵AD=DB ,∴∠DAB=∠DBA 。
∴∠OAD+∠ODA+∠DAB+∠DBA=2(∠ODA+∠DAB )=180°,∴∠ODA+∠DAB=90°,即∠OAB=90°。
又∵OA 是⊙O 的半径,∴AB 为圆O 的切线。
4.解:(1)∵AC 是⊙O 的直径,PA 是⊙O 的切线,∴CA ⊥PA ,即∠PAC=90°。
∵PC=10,PA=6,∴由勾股定理得AC 8=。
∴OA=12AC=4。
∴⊙O 的半径为4。
(2)∵AC 是⊙O 的直径,PA 是⊙O 的切线,∴∠ABC=∠PAC=90°。
∴∠P+∠C=90°,∠BAC+∠C=90°。
∴∠BAC=∠P 。
在Rt △PAC 中,PA 63cos P PC 105∠===,∴cos ∠BAC=35。
5.解:(1)证明:连接OE 。
∵CD 是⊙O 的切线,∴OE ⊥CD 。
∵AD ⊥CD ,∴AD ∥OE 。
∴∠DAE=∠AEO 。
(2)①∵AB 是⊙O 的直径,∴∠AEB=90°。
∵∠ABE=60°,∴∠EAO=30°。
∴∠DAE=∠EAO=30°。
∵AB=3,∴在Rt △ABE中,13AE AB cos303BE AB 22=⋅︒==== 在Rt △ADE 中,∵∠DAE=30°,AE=,∴9AD AE cos304=⋅︒==。
②∵∠EAO=∠AEO=30°,∴0000AOE 180EAO AEO 1803030120∠=︒-∠-∠=--=。
∵OA=OB ,∴AOE BOE ABE 1S S S 2∆∆∆==。
∴AOE ABE AOE AOE 1S S S S S 2∆∆=-=-扇形扇形影阴2312011332 3602224ππ⎛⎫⋅⋅ ⎪⎝⎭=-⋅=。
6.解:(1)连接BD ,OD ,∵AB 是直径,∴∠ADB=90°。
∵∠ABD=∠E=45°,∴∠DAB=45°,则AD=BD 。
∴△ABD 是等腰直角三角形。
∴OD ⊥AB 。
又∵DC ∥AB ,∴OD ⊥DC , ∴CD 与⊙O 相切。
(2)过点O 作OF ⊥AE ,连接OE ,则AF=12AE=12×10=5。
∵OA=OE ,∴∠AOF=12∠AOE 。