人教版高中数学必修5-3.4《基本不等式》第一课时参考学案

合集下载

高中数学必修5《基本不等式》教案

高中数学必修5《基本不等式》教案

课题:基本不等式教材:《普通高中课程标准实验教科书数学必修5》3.4一、教学目标:1、探索并了解基本不等式的证明过程,了解这个基本不等式的几何意义,并掌握定理中的不等号“≥”或“≤”取等号的条件是:当且仅当这两个数相等;会用基本不等式解决简单的最大(小)值问题。

2、通过实例探究抽象基本不等式,体会特殊到一般的数学思想方法;3、通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;4、培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。

二、教学重点和难点:重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式2a b +≤ 的证明过程;2a b+≤等号成立条件以及应用于解决简单的最大(小)值问题。

三、教学方法:启发、探究式相结合 四、教学工具:多媒体课件五、教学过程:一、问题引入:如图是2002年在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

你能在这个图案中找出一些相等关系或不等关系吗?这样,三角形的面积的和是2ab ,正方形的面积为a b +。

由于4个直角三角形二、探究过程:1.问题探究——探究图形中的不等关系。

将图中的“风车”抽象成如图,在正方形ABCD 中有四个全等的直角三角形。

设直角三角形的两条直角边长为a,b 探究1:(1)正方形ABCD 的面积S=____ (2)四个直角三角形的面积和S ’=__ (3)S 与S ’有什么样的关系?的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥《几何画板》课件动画显示,当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。

问题:你能证明这个结论吗? 证明:(作差法) 因为 222)(2b a ab b a -=-+ 当b a ≠时,0)(2>-b a 当b a =时,0)(2=-b a所以,0)(2≥-b a ,即.2)(22ab b a ≥+总结结论1:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a文字叙述为:两数的平方和不小于积的2倍。

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案

新人教A版必修5高中数学第三章3.4基本不等式(一)导学案
答案B
解析x2+ax+1≥0在x∈上恒成立
⇔ax≥-x2-1⇔a≥max.
∵x+≥2,∴-≤-2,∴a≥-2.
二、填空题
7.若a<1,则a+有最______值,为________.
答案大 -1
解析∵a<1,∴a-1<0,
∴-=(1-a)+≥2(a=0时取等号),
∴a-1+≤-2,∴a+≤-1.
8.若lgx+lgy=1,则+的最小值为________.
3.设a,b∈R,且a≠b,a+b=2,则必有()
A.1≤ab≤B.ab<1<
C.ab<<1 D.<ab<1
答案B
解析∵ab≤2,a≠b,∴ab<1,
又∵>>0,
∴>1,∴ab<1<.
4.已知正数0<a<1,0<b<1,且a≠b,则a+b,2,2ab,a2+b2,其中最大的一个是()
A.a2+b2B.2C.2abD.a+b
答案2
解析∵lgx+lgy=1,∴xy=10,x>0,y>0,
A.B.bC.2abD.a2+b2
答案B
解析∵ab<2,∴ab<,∴2ab<.
∵>>0,∴>,
∴a2+b2>.
∵b-(a2+b2)=(b-b2)-a2=b(1-b)-a2
=ab-a2=a(b-a)>0,∴b>a2+b2,∴b最大.
6.若不等式x2+ax+1≥0对一切x∈恒成立,则a的最小值为()
A.0 B.-2C.-D.-3
3.基本不等式的常用推论
(1)ab≤2≤(a,b∈R);
(2)当x>0时,x+≥2;当x<0时,x+≤-2.

高中数学必修5基本不等式精品教案

高中数学必修5基本不等式精品教案

课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。

这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。

本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。

2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。

针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。

3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。

(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。

(3)、巩固练习。

设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。

4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。

(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。

高中数学 3.4基本不等式(一)全册精品教案 新人教A版必修5

高中数学 3.4基本不等式(一)全册精品教案 新人教A版必修5

3.4 基本不等式第一课时 基本不等式(一)一、教学目标(1)知识与技能:理解两个实数的平方和不小于它们之积的2倍的不等式的证明;理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释(2)过程与方法 :本节学习是学生对不等式认知的一次飞跃。

要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。

变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。

两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质(3)情感与价值:培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力二、教学重点、难点教学重点:两个不等式的证明和区别教学难点:理解“当且仅当a=b 时取等号”的数学内涵三、教学过程提问1:我们把“风车”造型抽象成图3.4-2.在正方形ABCD 中有4个全等的直角三角形.设直角三角形的长为a 、b ,那么正方形的边长为多少?面积为多少呢?22a b +) 提问2:那4个直角三角形的面积和是多少呢? (2ab )提问3:根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,222a b ab +≥。

什么时候这两部分面积相等呢?(当直角三角形变成等腰直角三角形,即a b =时,正方形EFGH 变成一个点,这时有222a b ab +=)1、一般地,对于任意实数 a 、b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。

提问4:你能给出它的证明吗?证明:222)(2b a ab b a +=-+ 0)(2>-≠b a ,b a 时当 0)(2=-=b a ,b a 时当所以 222a b ab +≥注意强调 (1) 当且仅当a b =时, 222a b ab += (2)特别地,如果,0,0>>b a 用a 和b 代替a 、b ,可得ab b a 2≥+,(0,0)2a b a b +≤>>,引导学生利用不等式的性质推导提问5:观察图形3.4-3,你能得到不等式0,0)2a b a b +≥>>的几何解释吗? 的算术平均数,为称b a b a ,2 .2+ . , 的几何平均数为b a ab 为两两不相等的实数,已知例c b a ,,1. . 222ca bc ab c b a ++>++求证:练习、已知:,0,0,0>>>c b a 求证:c b a cab b ac a bc ++≥++ , ,,, 2. 都是正数已知例d c b a .4 ))(( abcd bd ac cd ab ≥++求证: 例3、若1>>b a ,b a P lg lg ⋅=,)lg (lg 21b a Q +=,2lg b a R += 比较R P 、、Q 、的大小 例4、当1->x 时,求函数113)(2++-=x x x x f 的值域。

高中数学 3.4基本不等式ab≤a+b2(一)导学案(无答案)新人教版必修5 学案

高中数学 3.4基本不等式ab≤a+b2(一)导学案(无答案)新人教版必修5 学案

3.4 基本不等式ab ≤a +b 2(一) 学习目标理解基本不等式及证明;熟练运用基本不等式来比较大小;能运用基本不等式证明简单的不等式. 预习篇1.如果a ,b ∈R ,那么a2+b22ab(当且仅当时取“=”).2.若a ,b 都为数,那么a +b 2ab(当且仅当ab 时,等号成立),称上述不等式为不等式,其中称为a ,b 的算术平均数,称为a ,b 的几何平均数.3.基本不等式的常用推论(1)ab≤⎝⎛⎭⎫a +b 22≤a2+b22 (a ,b ∈R);(2)当x>0时,x +1x ≥;当x<0时,x +1x ≤. (3)当ab>0时,b a +a b ≥;当ab<0时,b a +a b≤.(4)a2+b2+c2ab +bc +ca ,(a ,b ,c ∈R). 4.当a>0,b>0且a≠b 时,a +b 2,ab ,21a +1b ,a2+b22按从小到大的顺序排列为. 课堂篇探究点一 基本不等式的证明问题1 利用作差法证明:a ∈R ,b ∈R ,a2+b2≥2ab.问题2 当a>0,b>0时,a =(a)2,b =(b)2.据此证明:a>0,b>0时,a +b≥2ab.探究 下面是基本不等式ab ≤a +b 2的一种几何解释,请你补充完整. 如图所示,AB 为⊙O 的直径,AC =a ,CB =b ,过点C 作CD ⊥AB 交⊙O 上半圆于点D ,连接AD ,BD.由射影定理可知,CD =,而OD =,因为ODCD ,所以 a +b 2ab,当且仅当C 与O ,即时,等号成立.探究点二 当a>0,b>0时,21a +1b ≤ab ≤a +b 2≤ a2+b22这是一条重要的基本不等式链,请证明.典型例题例1 已知正数0<a<1,0<b<1,且a≠b ,则a +b ,2ab ,2ab ,a2+b2,其中最大的一个是( ) A .a2+b2 B .2abC .2ab D .a +b例2 设a ,b ,c 都是正数,求证:b +c a +c +a b +a +bc ≥6.例3 a>b>c ,n ∈M 且1a -b +1b -c ≥na -c ,求n 的最大值巩固篇1.若0<a<b ,则下列不等式一定成立的是( )A .a>a +b 2>ab>bB .b>ab>a +b2>aC .b>a +b 2>ab>a D .b>a>a +b 2>ab2.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是( )A .6B .42C .26D .83.若不等式x2-ax +1≥0对一切x ∈(0,1]恒成立,则a 的取值X 围是________.4.a ,b ,c ∈R ,求证:a2+b2+c2≥ab +bc +ca.。

基本不等式教学设计

基本不等式教学设计

《基本不等式》教学设计张中华教材:人教版《普通高中课程标准实验教科书•数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。

就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。

本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。

基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。

本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式a 2+ b 2 > 2 ab (a, b G R)。

在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。

其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。

这就使得不等式的证明成为本节课的核心内容。

二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。

三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。

根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

§3.4 基本不等式:ab ≤a +b2第1课时 基本不等式学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.两个正数的算术平均数不小于它们的几何平均数,即ab ≤a +b2. 几何解释 如图,AB 是圆O 的直径,点Q 是AB 上任一点,AQ =a ,BQ =b ,过点Q 作PQ 垂直于AB 且交圆O 于点P ,连接AP ,PB .则PO =AB 2=a +b2.易证Rt △APQ ∽Rt △PBQ ,那么PQ 2=AQ ·QB ,即PQ =ab .知识点二 基本不等式常见推论由公式a 2+b 2≥2ab (a ,b ∈R )和a +b2≥ab (a >0,b >0)可得以下结论:①a b +ba ≥2(a ,b 同号); ②21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n ≥2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.a >0,b >0时,1a +1b ≥4a +b.( √ )题型一 常见推论的证明例1 证明不等式a 2+b 2≥2ab (a ,b ∈R ). 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab . 引申探究1求证a +b 2≥ab (a >0,b >0).证明 方法一a +b 2-ab =12[(a )2+(b )2-2a ·b ]=12·(a -b )2≥0,当且仅当a =b ,即a =b 时,等号成立. 方法二 由例1知,a 2+b 2≥2ab .∴当a >0,b >0时有(a )2+(b )2≥2a b , 即a +b ≥2ab , a +b2≥ab . 引申探究2证明不等式⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R ). 证明 由例1,得a 2+b 2≥2ab , ∴2(a 2+b 2)≥a 2+b 2+2ab ,两边同除以4,即得⎝⎛⎭⎫a +b 22≤a 2+b 22,当且仅当a =b 时,取等号. 反思感悟 (1)作差法与不等式性质在证明中常用,注意培养应用意识.(2)不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b 2成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.跟踪训练1 当a >0,b >0时,求证:21a +1b ≤ab .证明 ∵a >0,b >0, ∴a +b ≥2ab >0, ∴1a +b ≤12ab,∴2ab a +b ≤2ab2ab=ab . 又∵2ab a +b =21a +1b ,∴21a +1b ≤ab (当且仅当a =b 时取等号). 题型二 用基本不等式证明不等式 例2 已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明 (1)∵x ,y 都是正数, ∴x y >0,yx >0, ∴y x +x y≥2 y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数, ∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0, ∴(x +y )(x 2+y 2)(x 3+y 3) ≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a ,b ,c 都是正实数,求证:(a +b )(b +c )·(c +a )≥8abc . 证明 ∵a ,b ,c 都是正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0, ∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ca =8abc ,即(a +b )(b +c )(c +a )≥8abc , 当且仅当a =b =c 时,等号成立. 题型三 用基本不等式比较大小例3 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎡⎦⎤(1+a )+(1+b )22,∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2(当且仅当a =b 时,等号成立).反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a >b >1,P =lg a ·lg b ,Q =lg a +lg b 2,R =lg a +b2,则P ,Q ,R 的大小关系是( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q答案 B解析 ∵a >b >1,∴lg a >lg b >0, ∴lg a +lg b2>lg a ·lg b ,即Q >P .① 又a +b2>ab >0, ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q .② 综合①②,有P <Q <R .演绎:条件不等式的证明典例 (1)当x >0,a >0时,证明x +ax ≥2a ;(2)当x >-1时,证明x 2+7x +10x +1≥9.证明 (1)∵x >0,a >0,∴ax >0.由基本不等式可知,x +ax≥2x ·ax=2a . 当且仅当x =a 时,等号成立. (2)x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5.∵x >-1,∴x +1>0. ∴(x +1)+4x +1≥24=4,∴(x +1)+4x +1+5≥9,即x 2+7x +10x +1≥9.当且仅当x =1时,等号成立.[素养评析] 逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式a +b 2≥ab .当我们对a ,b 赋予特殊值.如令a =x ,b =ax ,就有x +ax≥2a ;①再令①中的x =x +1,a =4,就有x +1+4x +1≥2 4.基本不等式的应用关键就是给a ,b 赋予什么样的值.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b 2>ab >bB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.2xx 2+1≤1 D .x +1x≥2答案 C解析 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立;对于C ,x 2+1≥2x ,∴2xx 2+1≤1恒成立.故选C. 3.若四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d2<bcC.a +d 2=bcD.a +d 2≤bc答案 A解析 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d 2=b +c2>bc .4.lg 9×lg 11与1的大小关系是( ) A .lg 9×lg 11>1 B .lg 9×lg 11=1 C .lg 9×lg 11<1 D .不能确定 答案 C解析 ∵lg 9>0,lg 11>0, ∴lg 9×lg 11<⎝⎛⎭⎫lg 9+lg 1122=⎣⎡⎦⎤lg (9×11)22=⎝⎛⎭⎫lg 9922<⎝⎛⎭⎫lg 10022=1, 即lg 9×lg 11<1.5.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4; ③(a +b )⎝⎛⎭⎫1a +1b ≥4;④a 2+9>6a . 其中恒成立的是 .(填序号)答案 ①②③解析 由于a 2+1-a =⎝⎛⎭⎫a -122+34>0,故①恒成立; 由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,当且仅当a =b =1时,等号成立,故②恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故(a +b )⎝⎛⎭⎫1a +1b ≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +ab ≥2b a ·ab=2, 当且仅当a =b 时,等号成立.3.已知m =a +1a -2(a >2),n =⎝⎛⎭⎫1222x - (x <0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n 答案 A解析 ∵m =(a -2)+1a -2+2≥2(a -2)·1a -2+2=4,n =222x -<22=4,∴m >n ,故选A.4.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .p =r <q C .q =r >p D .p =r >q答案 B解析 因为0<a <b ,所以a +b2>ab .又因为f (x )=ln x 在(0,+∞)上单调递增, 所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q .而r =12(f (a )+f (b ))=12(ln a +ln b )=12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab ≥2ab ,当且仅当a =b 时,等号成立,C 成立;∵a +b ≥2ab ,且a ,b ∈(0,+∞), ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立. 6.下列说法正确的是( )A .若x ≠k π,k ∈Z ,则⎝⎛⎭⎫sin 2x +4sin 2x min =4 B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则b a +a b ≥2答案 D解析 对于A ,x ≠k π,k ∈Z ,则sin 2x ∈(0,1].令t =sin 2x ,则y =t +4t ,函数y 在(0,1]上单调递减,所以y ≥5,即sin 2x +4sin 2x ≥5,当sin 2x =1时,等号成立.对于B ,若a <0,则-a >0,-4a >0.∴a +4a =-⎣⎡⎦⎤(-a )+⎝⎛⎭⎫-4a ≤-4, 当且仅当a =4a ,即a =-2时,等号成立.对于C ,若a ∈(0,1),b ∈(0,1), 则lg a <0,lg b <0,不等式不成立. 对于D ,a <0,b <0,则b a >0,ab >0,∴b a +ab≥2b a ·ab=2, 当且仅当b a =ab ,即a =b 时,等号成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t log a t +12.(填“>”“≥”“≤”或“<”) 答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b ;④a b +b a ≥2.其中恒成立的不等式是 . 答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确; 当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确.9.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是 .答案(a -b )(b -c )≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接) 答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n . 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 ∵a ,b ,c 都是正数, ∴bc a ,ca b ,abc也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立.13.设0<a <1<b ,则一定有( )A .log a b +log b a ≥2B .log a b +log b a ≥-2C .log a b +log b a ≤-2D .log a b +log b a >2答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。

高中数学新人教A版必修5教案 3.4 基本不等式1

高中数学新人教A版必修5教案 3.4 基本不等式1

基本不等式高考要求掌握基本不等式,并能运用基本不等式解决一些简单最大(小)值问题;培养学生探究能力以及分析问题解决问题的能力。

三维目标1、知识与能力目标:掌握基本不等式,并能运用基本不等式解决一些简单问题;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、证明)的过程呈现,体验成功的乐趣。

3、情感与态度目标:使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重点教学难点及 解决措施重点:从不同角度探索基本不等式2ba ab +≤的证明过程及应用。

难点:基本不等式成立时的三个限制条件(简称一正、二定、三相等);教学流程一、 创设情景,提出问题;如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

你能在这个图中找出一些相等关系或不等关系吗? 本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式ab b a 222≥+。

在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示, 让学生更直观的抽象、归纳出以下结论: 二、抽象归纳:一般地,对于任意实数a,b ,有ab b a 222≥+,当且仅当a =b 时,等号成立。

你能给出它的证明吗?特别地,当a>0,b>0时,在不等式ab b a 222≥+中,以a 、b 分别代替a 、b ,得到什么? 【归纳总结】如果a,b 都是正数,那么2ba ab +≤,当且仅当a=b 时,等号成立。

我们称此不等式为基本不等式。

其中2ba +称为a,b 的算术平均数,ab 称为a,b 的几何平均数。

三、理解升华:1、联想数列的知识理解基本不等式已知a,b 是正数,A 是a,b 的等差中项,G 是a,b 的正的等比中项,A 与G 有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

人教A版高中数学必修5第三章 不等式3.4 基本不等式导学案(1)

基本不等式中不等式在各种题型中均有出现,渗透在各类考试试卷中;基本不等式是不等式中高频考点之一,其应用、变形等是考试热点.本节将针对于基本不等式及其常见母题进行解答技巧的讲解与归纳.1.基本不等式ab ≤a +b2基本不等式的使用条件:① 一正:a >0,b >0,即:所求最值的各项必须都是正值;② 二定:ab 或a +b 为定值,即:含变量的各项的和或积必须是常数; ③ 三相等:当且仅当a =b 时取等号;即:等号能否取得.在应用基本不等式求最值时,要把握不等式成立的三个条件,若忽略了某个条件,就会出现错误. 2.由公式a 2+b 2≥2ab 和ab ≤a +b2可以引申出的常用结论(1)b a +a b ≥2(a ,b 同号); (2)b a +a b≤-2(a ,b 异号); (3)21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0) ⎝ ⎛⎭⎪⎫或ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a >0,b >0).3.利用基本不等式求最大、最小值问题(1)如果x >0,y >0,且xy =P (定值).那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x >0,y >0,且x +y =S (定值).那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)类型一、直接应用类此类问题较为基础,利用基本不等式求最值时应注意:①非零的各数(或式)均为正;②和或积为定值;③等号能否成立,即“一正、二定、三相等”,这三个条件缺一不可.解答技巧一:直接应用【母题一】若x >0,y >0,且x +y =18,则xy 的最大值是________. 【解析】由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81.【答案】81 【变式】1.已知f (x )=x +1x-2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4【解析】∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.【答案】C2.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( ) A .13 B .12 C .34D .23【解析】∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.【答案】B3.(2014·成都诊断)已知定义在(0,+∞)上的函数f (x )=3x,若f (a +b )=9,则f (ab )的最大值为__________.【解析】∵3a +b=9,∴a +b =2≥2ab ,得ab ≤1,∴f (ab )=3ab≤3.【答案】34.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.【解析】依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.【答案】20类型二、配凑定值类(恒等变形类)此类问题一般不能直接使用基本不等式,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,凑项,凑系数等.不论条件怎么变形,都需要根据条件:凑和为定值时求积最大、凑积为定值求和最小.解答技巧二:拆项【母题二】已知t >0,则函数y =t 2-4t +1t的最小值为________.【解析】∵t >0,∴y =t 2-4t +1t =t +1t-4≥2-4=-2,且在t =1时取等号.【答案】-2解答技巧三:凑项【母题三】若x >2,则函数y =x +1x -2的最小值为________. 【解析】∵x >2,∴y =(x -2)+1x -2+2≥2+2=4,当且仅当x =3时取等号. 【答案】4 解答技巧四:凑系数【母题四】若0<x <83,则函数y =x (8-3x )的最大值为________.【解析】∵x >2,∴y =13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当x =43时取等号. 【答案】163【变式】1.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2【解析】∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -1⎝ ⎛⎭⎪⎫3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.【答案】A2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 【解析】∵x >1,∴x -1>0.又x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立.则a ≤3,所以a 的最大值为3.【答案】33.(2014·潍坊一模)已知a >b >0,ab =1,则a 2+b 2a -b的最小值为________.【解析】a 2+b 2a -b =a -b 2+2ab a -b =a -b 2+2a -b =(a -b )+2a -b≥22.当且仅当a -b =2时,取等号.【答案】2 2 4.已知函数f (x )=2xx 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 【解】(1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2x x 2+6=2x +6x≤226=66,当且仅当x =6时取等号. 由已知f (x )≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞.类型三、条件最值类利用基本不等式求最值的方法及注意点(1)知和求积的最值:求解此类问题的关键:明确“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:明确“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.技巧五:换衣(“1”)(或整体代换)【母题五】已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.【解析】∵a >0,b >0,a +b =1,∴1a +1b =a +b a+a +b b =2+b a +ab≥2+2b a ·ab=4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 【答案】4 【变式】1.本例的条件不变,则⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值为________.【解析】⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫1+a +b a ⎝⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号. 【答案】92.本例的条件和结论互换即:已知a >0,b >0,1a +1b=4,则a +b 的最小值为________.【解析】由1a +1b =4,得14a +14b =1.∴a +b =⎝ ⎛⎭⎪⎫14a +14b (a +b )=12+b 4a +a 4b ≥12+2b 4a +a4b=1.当且仅当a =b =12时取等号.【答案】13.若本例条件变为:已知a >0,b >0,a +2b =3,则2a +1b的最小值为________.【解析】由a +2b =3得13a +23b =1,∴2a +1b =⎝ ⎛⎭⎪⎫13a +23b ⎝ ⎛⎭⎪⎫2a +1b =43+a 3b +4b 3a ≥43+2a 3b ·4b 3a =83.当且仅当a =2b =32时,取等号.【答案】834.本例的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1c的最小值为________.【解析】∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +ca+a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时,取等号. 【答案】95.若本例变为:已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4n的最小值为________.【解析】设公比为q (q >0),由a 7=a 6+2a 5⇒a 5q 2=a 5q +2a 5⇒q 2-q -2=0(q >0)⇒q =2.a m ·a n =22a 1⇒a 12m -1·a 12n -1=8a 21⇒2m -1·2n -1=8⇒m +n -2=3⇒m +n =5,则1m +4n =15⎝ ⎛⎭⎪⎫1m +4n (m +n )=15⎣⎢⎡⎦⎥⎤5+⎝ ⎛⎭⎪⎫n m +4m n ≥15(5+24)=95,当且仅当n =2m =103时等号成立.【答案】956.(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .6【解析】∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号).【答案】C7.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值是( )A .2B .4C .6D .8【解析】(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a ,∴当1+a +2a ≥9时不等式恒成立,故a +1≥3,a ≥4.【答案】B技巧六:构造一元二次不等式在运用该方式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.思考方式还能以保留“和(a +b )”还是“积(ab )”来确定公式的运用方向.【变式】1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得2xy =-(x +2y )+8≤⎝ ⎛⎭⎪⎫x +2y 22,当且仅当⎩⎪⎨⎪⎧x =2y ,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴(x +2y )2+4(x +2y )-32≥0,解得x +2y ≥4或x +2y ≤-8(舍去),∴x +2y 的最小值是4.【答案】B2.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A .23B .223C .33D .233【解析】对于x 2+3xy -1=0可得y =13(1x -x ),∴x +y =2x 3+13x ≥229=223(当且仅当2x 3=13x,即x =22时等号成立). 【答案】B3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 【解析】x 2+y 2+xy =1⇔(x +y )2-xy =1⇔(x +y )2-1=xy ≤(x +y2)2,解得-233≤x +y ≤233. 【答案】233类型四、基本不等式的应用1.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.【解析】设x 为仓库与车站距离,由已知y 1=20x,y 2=0.8x .费用之和y =y 1+y 2=0.8x +20x≥20.8x ·20x =8,当且仅当0.8x =20x,即x =5时等号成立.【答案】52.创新题规定记号“⊙”表示一种运算,即a ⊙b =ab +a +b (a ,b 为正实数).若1⊙k =3,则k 的值为________,此时函数f (x )=k ⊙xx的最小值为________.【解析】1⊙k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍),∴k =1.f (x )=k ⊙x x =x +x +1x =1+x +1x ≥1+2=3,当且仅当x =1x,即x =1时等号成立.【答案】1;33.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b的最小值是( )A .4B .92C .8D .9【解析】∵AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).若A ,B ,C 三点共线,则有AB →∥AC →, ∴(a -1)×2-1×(-b -1)=0,∴2a +b =1,又a >0,b >0,∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab≥5+22b a ×2a b=9,当且仅当⎩⎪⎨⎪⎧2b a =2a b ,2a +b =1,即a =b =13时等号成立.【答案】D4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为( )A .0B .1C .94D .3【解析】由已知得z =x 2-3xy +4y 2(*),则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.【答案】B5.已知x >0,y >0,x +y +3=xy ,且不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.【解析】要使(x +y )2-a (x +y )+1≥0恒成立,则有(x +y )2+1≥a (x +y ),即a ≤(x +y )+1x +y恒成立.由x +y +3=xy ,得x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即(x +y )2-4(x +y )-12≥0,解得x +y ≥6或x +y ≤-2(舍去).设t =x +y ,则t ≥6,(x +y )+1x +y =t +1t .设f (t )=t +1t,则在t ≥6时,f (t )单调递增,所以f (t )=t +1t 的最小值为6+16=376,所以a ≤376,即实数a 的取值范围是⎝⎛⎦⎥⎤-∞,376. 【答案】⎝⎛⎦⎥⎤-∞,376【总结】对使用基本不等式时等号取不到的情况,可考虑使用对勾函数y =x +mx(m >0)的单调性.1.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2【解析】设甲、乙两地之间的距离为s .∵a <b ,∴v =2s s a +s b=2sab a +b s =2ab a +b <2ab2ab=ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a . 【答案】A2.函数y =x 4+3x 2+3x 2+1的最小值是( )A .2 3B .2C .3D .5【解析】y =x 4+3x 2+3x 2+1=(x 2+1)2+(x 2+1)+1x 2+1=(x 2+1)+1 x 2+1+1≥2+1=3,当且仅当(x 2+1)=1x 2+1,即x =0时,取等号. 【答案】C3.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.【解析】⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时,等号成立. 【答案】94.(2014·贵阳适应性监测)已知向量m =(2,1),n =(1-b ,a )(a >0,b >0).若m ∥n ,则ab 的最大值为__________.【解析】依题意得2a =1-b ,即2a +b =1(a >0,b >0),因此1=2a +b ≥22ab ,即ab ≤18,当且仅当2a =b =12时取等号,因此ab 的最大值是18.【答案】185.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.【解】(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0,则1=8x +2y≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. ∴xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y ·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.1.(2012·福建)下列不等式一定成立的是 ( )A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D .1x 2+1>1(x ∈R ) 【解析】当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎪⎫x 2+14≥lg x (x >0),故选项A 不正确;而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确;当x =0时,有1x 2+1=1,故选项D 不正确. 【答案】C2.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A .72 B .4 C .92D .5【解析】依题意,得1a +4b =12⎝ ⎛⎭⎪⎫1a +4b ·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b,即a =23,b =43时取等号,即1a +4b 的最小值是92.【答案】C3.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 ( )A .43 B .53 C .2D .54【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.【答案】C4.已知a >b >0,则a 2+16ba -b的最小值是________. 【解析】∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24,当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a 2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16b a -b取得最小值16.【答案】165.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【解】(1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x-200≥212x ·80 000x-200=200, 当且仅当12x =80 000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为 200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.1.函数y =x 2+7x +10x +1(x >-1)的最小值是( )A .9B .2 3C .10D .2【解析】∵x >-1,∴x +1>0.∴y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2x +1⎝ ⎛⎭⎪⎫4x +1+5=9.当且仅当x +1=4x +1,即x =1时,取等号.【答案】A2.(2015·金华十校模拟)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .6【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.【答案】B3.(2015·西安模拟)设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为( )A .2B .32 C .1D .12【解析】由a x =b y=3,得x =log a 3,y =log b 3,则1x +1y =1log a 3+1log b 3=lg a +lg b lg 3=lg ab lg 3.又a >1,b >1,所以ab ≤(a +b 2)2=3,所以lg ab ≤lg 3,从而1x +1y ≤lg 3lg 3=1,当且仅当a =b =3时等号成立.【答案】C4.已知x >0,y >0,且2x +y =1,则1x +2y的最小值是_____________.【解析】∵1x +2y=(2x +y )⎝ ⎛⎭⎪⎫1x +2y =4+y x +4x y≥4+2y x ·4x y =8,当且仅当y =12,x =14时,等号成立. 【答案】C5.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.【解】(1)∵x >0,y >0,由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25yx ·2x y =7+21020, 当且仅当5y x =2xy时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x=2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.1.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B .4 C .92D .112【解析】依题意,得(x +1)(2y +1)=9,∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立. ∴x +2y 的最小值是4.【答案】B2.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( ) A .0 B .1 C .2D .52【解析】∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤lg a +lg b24=lg ab 24=1.当且仅当a =b =10时取等号.【答案】B3.已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m+1n的最小值为( ) A .4 2 B .8 C .9D .12【解析】易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n =(2m +n )(2m+1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n的最小值为9. 【答案】C4.(2014·成都诊断)函数f (x )=lgx2-x,若f (a )+f (b )=0,则3a +1b的最小值为_________.【解析】依题意得0<a <2,0<b <2,且lg ⎝ ⎛⎭⎪⎫a 2-a ·b 2-b =0,即ab =(2-a )(2-b ),a +b 2=1,3a +1b =a +b 2⎝ ⎛⎭⎪⎫3a +1b =12⎝ ⎛⎭⎪⎫4+3b a +a b ≥12(4+23)=2+3,当且仅当3b a =ab ,即a =3-3,b =3-1时取等号,因此3a +1b的最小值是2+3.【答案】2+ 35.(2014·泰安期末考试)小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+52.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.1.若a ,b ∈R 且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2abB .1a +1b>2abC .b a +ab≥2D .a 2+b 2>2ab【解析】∵ab >0,∴b a >0,a b >0.由基本不等式得b a +a b ≥2,当且仅当b a =a b,即a =b 时等号成立. 【答案】C2. 函数y =log a (x +3)-1 (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为( )A .2B .4C .8D .16【解析】点A (-2,-1),所以2m +n =1.所以1m +2n=(2m +n )⎝ ⎛⎭⎪⎫1m +2n =4+n m +4m n≥8,当且仅当n =2m ,即m =14,n =12时等号成立.【答案】C3.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值为________.【解析】由x 2+y 2+xy =1,得(x +y )2-xy =1,即xy =(x +y )2-1≤(x +y )24,所以34(x +y )2≤1,故-233≤x +y ≤233,当x =y 时等号成立,所以x +y 的最大值为233. 【答案】2334.已知x >0,y >0,且满足x 3+y4=1,则xy 的最大值为________.【解析】∵x >0,y >0且1=x 3+y 4≥2xy12,∴xy ≤3,当且仅当x 3=y4时取等号.【答案】35.(2014·重庆卷)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是__________.【解析】由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴4a +3b =1,∴a +b =(a +b )·(4a+3b)=7+(3ab+4ba)≥7+23ab·4ba=7+43,当且仅当3ab=4ba时取等号.【答案】7+4 3。

高中数学(人教版必修5)第三章不等式3.4 基本不等式 第1课时

高中数学(人教版必修5)第三章不等式3.4 基本不等式 第1课时

第三章 3.4 第1课时一、选择题1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1[答案] B[解析] 令t =x (t ≥0),则x =t 2, ∴f (x )=x x +1=tt 2+1.当t =0时,f (x )=0; 当t >0时,f (x )=1t 2+1t =1t +1t .∵t +1t ≥2,∴0<1t +1t ≤12.∴f (x )的最大值为12.2.若a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] ∵a ≥0,b ≥0,且a +b =2, ∴b =2-a (0≤a ≤2),∴ab =a (2-a )=-a 2+2a =-(a -1)2+1. ∵0≤a ≤2,∴0≤ab ≤1,故A 、B 错误; a 2+b 2=a 2+(2-a )2=2a 2-4a +4 =2(a -1)2+2.∵0≤a ≤2,∴2≤a 2+b 2≤4.故选C.3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( )A.12B .a 2+b 2C .2abD .a[答案] B[解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又∵a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , ∵1=a +b >2ab , ∴ab <14,∴a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.故选B.解法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b ) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立.6.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( )A .0B .1C .2D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题7.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14,等号在x =1-x ,即x =12时成立,∴所求最大值为14.8.已知t >0,则函数y =t 2-4t +1t 的最小值是________.[答案] -2[解析] ∵t >0,∴y =t 2-4t +14=t +1t -4≥2t ·1t -4=-2,当且仅当t =1t,即t =1时,等号成立.三、解答题 9.已知x >0,y >0.(1)若2x +5y =20,求u =lg x +lg y 的最大值; (2)若lg x +lg y =2,求5x +2y 的最小值. [解析] (1)∵x >0,y >0,由基本不等式,得2x +5y ≥22x ·5y =210·xy . 又∵2x +5y =20, ∴20≥210·xy , ∴xy ≤10,∴xy ≤10, 当且仅当2x =5y 时,等号成立.由⎩⎪⎨⎪⎧2x =5y 2x +5y =20, 解得⎩⎪⎨⎪⎧x =5y =2.∴当x =5,y =2时,xy 有最大值10. 这样u =lg x +lg y =lg(xy )≤lg10=1. ∴当x =5,y =2时,u max =1. (2)由已知,得x ·y =100, 5x +2y ≥210xy =2103=2010.∴当且仅当5x =2y =103,即当x =210, y =510时,等号成立. 所以5x +2y 的最小值为2010.10.求函数y =x 2+a +1x 2+a 的最小值,其中a >0.[解析] 当0<a ≤1时, y =x 2+a +1x 2+a≥2, 当且仅当x =±1-a 时,y min =2. 当a >1时,令x 2+a =t (t ≥a ), 则有y =f (t )=t +1t.设t 2>t 1≥a >1,则f (t 2)-f (t 1)=(t 2-t 1)(t 1t 2-1)t 1t 2>0,∴f (t )在[a ,+∞)上是增函数. ∴y min =f (a )=a +1a,此时x =0.综上,当0<a ≤1,x =±1-a 时,y min =2;当a >1,x =0时,y min =a +1a.一、选择题1.设a 、b ∈R ,且ab >0.则下列不等式中,恒成立的是 ( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD .b a +a b≥2[答案] D[解析] a =b 时,A 不成立;a 、b <0时,B 、C 都不成立,故选D.2.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是 ( ) A .a 2+b 2 B .2ab C .2ab D .a +b[答案] D[解析] 解法一:∵0<a <1,0<b <1, ∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.3.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2[答案] B[解析] ∵这两年的平均增长率为x ∴A (1+x )2=A (1+a )(1+b ),∴(1+x )2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =(1+a )(1+b )≤(1+a )+(1+b )2=1+a +b 2,∴x ≤a +b 2,等号在1+a =1+b 即a =b 时成立.∴选B.4.(2013·山西忻州一中高二期中)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12C .1D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2.∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12,等号成立时2x =2-2x ,即x =12,y =1,∴xy 的最大值为12.二、填空题5.已知2x +3y =2(x >0,y >0),则xy 的最小值是________.[答案] 6 [解析] 2x +3y≥26xy,∴26xy≤2,∴xy ≥6. 6.已知x <54,则函数y =4x -2+14x -5的最大值是________.[答案] 1[解析] ∵x <54,∴4x -5<0,y =4x -2+14x -5=4x -5+14x -5+3=3-⎣⎡⎦⎤(5-4x )+15-4x≤3-2=1, 等号在5-4x =15-4x,即x =1时成立. 三、解答题7.已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长. [解析] 设一条直角边长为x cm ,(0<x <10),则另一条直角边长为(10-x )cm , 面积s =12x (10-x )≤12[x +(10-x )2]2=252(cm 2)等号在x =10-x 即x =5时成立,∴面积最大时斜边长L =x 2+(10-x )2=52+52=52(cm).8.某商场预计全年分批购入每台2 000元的电视机共3 600台.每批都购入x 台(x 是自然数)且每批均需付运费400元.贮存购入的电视机全年所需付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以支付这笔费用,请问,能否恰当安排每批进货数量,使资金够用?写出你的结论,并说明理由.[解析] 设总费用为y 元(y >0),且将题中正比例函数的比例系数设为k ,则y =3 600x ×400+k (2 000x ),依条件,当x =400时,y =43 600,可得k =5%,故有y =1 440 000x +100x≥21 440 000x·100x =24 000(元).当且仅当1 440 000x =100x ,即x =120时取等号.所以只需每批购入120台,可使资金够用.。

人教课标版高中数学必修5《基本不等式》第一课时参考学案

人教课标版高中数学必修5《基本不等式》第一课时参考学案

§3.4基本不等式2a b ab +≤ (1)学习目标 学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学习过程一、课前准备看书本97、98页填空复习1:重要不等式:对于任意实数,a b ,有22____2a b ab +,当且仅当________时,等号成立.复习2:基本不等式:设,(0,)a b ∈+∞,则_____2a b ab +,当且仅当____时,不等式取等号.二、新课导学※ 学习探究探究1:基本不等式2a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客. 你能在这个图案中找出一些相等关系或不等关系吗?将图中的“风车”抽象成如图,在正方形ABCD 中有4个全等的直角三角形. 设直角三角形的两条直角边长为a ,b 那么正方形的边长为____________.这样,4个直角三角形的面积的和是___________,正方形的面积为_________.由于4个直角三角形的面积______正方形的面积,我们就得到了一个不等式:222a b ab +≥.当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有_______________结论:一般的,如果,R a b ∈,我们有222a b ab +≥当且仅当a b =时,等号成立. 探究2:你能给出它的证明吗?特别的,如果0a >,0b >,我们用a 、b 分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤ 问:由不等式的性质证明基本不等2a b ab +≤? 用分析法证明:证明:要证 2a b ab +≥ (1) 只要证 a b +≥ (2)要证(2),只要证____0a b +-≥ (3)要证(3),只 要证2(__________)0-≥ (4)显然,(4)是成立的. 当且仅当a=b 时,(4)中的等号成立.3)理解基本不等式2a b ab +≤的几何意义探究:课本第98页的“探究”在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a ,BC=b. 过点C 作垂直于AB 的弦DE ,连接AD 、BD. 你能利用这个图形得出基本不等式2a b ab +≤的几何解释吗?结论:基本不等式2a b ab +≤几何意义是“半径不小于半弦” 评述:1.如果把2a b +看作是正数a 、b a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称2a b +为a 、b a 、b 的几何平均数.本节定理还 可叙述为:两个正数的算术平均数不小于它们的几何平均数. ※ 典型例题例1 (1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短. 最短的篱笆是多少?(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?※ 动手试试练1. 0x >时,当x 取什么值时,1x x +的值最小?最小值是多少?练2. 已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的各最小,最小值是多少?三、总结提升※ 学习小结在利用基本不等式求函数的最值时,应具备三个条件:一正二定三取等号. ※ 知识拓展两个正数,x y1.如果和x y +为定值S 时,则当x y =时,积xy 有最大值214S .2. 如果积xy 为定值P 时,则当x y =时,和x y +有最小值※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知x >0,若x +81x的值最小,则x 为( ). A . 81 B . 9 C . 3 D .162. 若01a <<,01b <<且a b ≠,则a b +、2ab 、22a b +中最大的一个是( ).A .a b +B .C .2abD .22a b +3. 若实数a ,b ,满足2a b +=,则33a b +的最小值是( ).A .18B .6C .D .4. 已知x ≠0,当x =_____时,x 2+281x 的值最小,最小值是________. 5. 做一个体积为323m ,高为2m 的长方体纸盒,底面的长为_______,宽为________时,用纸最少.1. (1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?2. 一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m ,问这个矩形的长、宽各为多少时,菜园的面积最大?最大面积是多少?。

高中数学必修五学案 3.4基本不等式(第一课时)

高中数学必修五学案 3.4基本不等式(第一课时)

学习目标:1.理解掌握基本不等式及推导过程,理解基本不等式的几何意义;2.会用基本不等式进行简单的应用;学习重点:1.理解基本不等式,用不同角度探索基本不等式的证明过程;2.会用基本不等式进行简单的应用;学习难点:会用基本不等式进行简单的应用;教学过程(一)自主学习(20分钟完成,自我认知,发现问题,教师对重点概念点评)阅读课本P97—P98页,回答下列问题1.根据北京召开的第24界国际数学家大会的会标,从中可以得出,① 当a >0,b >0且a ≠b 时 22a b + 2ab , ② 当a=b 时 22a b + 2ab, ③ 思考:当a ,b 是一切实数时,上述结论成立吗?若成立,怎样证明?2. 猜想:一般地,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 证明:特别的,如果a>0,b>0,可得a b ab +≥(a>0,b>0)2a b ab +≤当且仅当a b =时,等号成立.证明:方法小结:不等式的证明方法步骤?3. 根据P98页探究图,作圆的半径DO,计算DO= ,DC= ,① 根据图形DO,DC 大小关系是 ;当O 、C 重合时,关系是 ; ② 根据上面关系,联系前面所得基本不等式,你能得到什么结论?③ 在数学中,我们称2b a +为a 、b 的 ,称ab 为a 、b 的 . 上面所得基本不等式还可叙述为: 。

4.思考探究:① 上面的两个不等关系左右两边各有什么的特点?怎样应用?② 两个不等式关系中a,b 适用的范围? ③两个不等式关系中取“=”的条件?(二)合作探究(10分钟完成,小组合作,教师重点指导)为两两不相等的实数,已知例c b a ,,1. . 222ca bc ab c b a ++>++求证:例2已知x 、y 都是正数,求证:y x x y +≥2;思考小结:上式的左右两边有什么特点?怎样变形?(三)达标检测(10分钟完成)1.证明:22222a b a b ++≥+2.已知x 、y 都是正数,求证:(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y3.(四)拓展提升:1、若实数a 、b 满足,2=+b a 求b a 33+的最小值 2.已知:,0,0,0>>>c b a 求证:c b a cab b ac a bc ++≥++3、当1->x 时,求函数113)(2++-=x x x x f 的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.4
2a b +≤ (1)
学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
一、课前准备
看书本97、98页填空
复习1:重要不等式:对于任意实数,a b ,有22____2a b ab +,当且仅当________时,等号成立.
复习2:基本不等式:设
,(0,)a b ∈+∞,则
2
a b +____时,不等式取等号.
二、新课导学
※ 学习探究
探究12a b +的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是
根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去
象一个风车,代表中国人民热情好客. 你能在这个图案中找出一
些相等关系或不等关系吗?
将图中的“风车”抽象成如图,
在正方形ABCD 中有4个全等的直角三角形. 设直角三角形的两条直角边长为a ,b 那么正方形的边长为____________.这样,4个直角三角形的面积的和是___________,正方形的面积为_________.由于4个直角三角形的面积______正方形的面积,我们就得到了一个不等式:222a b ab +≥.
当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有_______________
结论:一般的,如果,R a b ∈,我们有222a b ab +≥当且仅当a b =时,等号成立. 探究2:你能给出它的证明吗?
特别的,如果0a >,0b >分别代替a 、b ,可得a b +≥
(a>0,b>0)2
a b +≤
2a b +? 用分析法证明:
证明:要证 2
a b +≥ (1) 只要证 a b +≥ (2)
要证(2),只要证____0a b +-≥ (3)
要证(3),只 要证2(__________)0-≥ (4)
显然,(4)是成立的. 当且仅当a=b 时,(4)中的等号成立.
3)
2a b +的几何意义
探究:课本第98页的“探究”
在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a ,
BC=b. 过点C 作垂直于AB 的弦DE ,连接AD 、BD. 你能利
2a b +的几何解释吗?
结论2a b +≤
几何意义是“半径不小于半弦” 评述:。

相关文档
最新文档