二次函数图象性质精选专题突破30道

合集下载

二次函数图像和性质习题精选(含答案)

二次函数图像和性质习题精选(含答案)

二次函数图像和性质习题精选一.选择题(共30小题)1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.>D.C.2.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.|D.C.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.#D.C.4.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()C.D.A.B.%5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣101"3y﹣1353下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0./其中正确的个数为()A.4个B.3个C.2个D.1个6.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=` C.当x <,y随x的增大而减小D.当﹣1<x<2时,y>07.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.:0或1C.1或2D.0,1或28.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.#5C.4D.39.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2$﹣101…y…﹣3﹣2﹣3﹣6&﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)/D.(0,﹣6)10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.、函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()?A.y的最大值小于0B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1D.@当x=﹣3时,y的值小于012.设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3B.c≥3C.1≤c≤3D.【c≤313.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()h>0,k>0A.h=m B.k=n C.k>n—D.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()1D.0A.3B.2%C.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c<0当x=1时,y>0】B.C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大*16.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()1D.2A.0B.﹣1!C.17.下列图中阴影部分的面积相等的是()②③C.③④D.①④A.①②)B.18.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.…B.﹣4<x<2C.x<﹣2或x>2D.x<﹣4或x>2﹣2<x<219.已知:二次函数y=x2﹣4x﹣a,下列说法错误的是()A.@当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=3$20.下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是()xy﹣﹣~A.B.C.D.{21.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴D.方程ax2+bx+c=0有两个相等实数根C.@当x=3时,y<022.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1<y2成立的x的取值范围是()A.x>2B.$C.x>0D.﹣2<x<8x<﹣223.在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y1有最大值1、没有最小值;②y1有最大值1、最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;,⑤若y2=2x+4,则y1≤y2.其中正确的个数是()5A.2B.3C.4/D.24.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:…x …﹣2﹣113.4y …04640…%根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()A.1B.2C.3D.4}25.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()(4,3)A.(2,3)B.(3,2)C.(3,3)<D.26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c >0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()①③⑤D.②④⑤A.①②④B.①②⑤~C.27.已知二次函数y=x2+2(a﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()C.a≥﹣3D.a≤﹣3A.a≥﹣5B.*a≤﹣528.如图,平行于y轴的直线l被抛物线y=+1,y=﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平方单位.B.4C.6D.无法可求A.;329.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.4B.3C.2D.1;A.30.如图,已知抛物线,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x 值是或.~其中正确的是()A.①③B.②④C.①④D.…②③二次函数图像和性质习题精选(含答案)参考答案与试题解析一.选择题(共30小题)1.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.@B.C.D.考点:二次函数的图象;正比例函数的图象.'专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.'点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.2.(2014•北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.…D.考点:二次函数的图象;反比例函数的图象.分析:分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.解答:解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),…y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,B选项图象符合.故选:B.点评:本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.3.(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.)B.C.D.考点:二次函数的图象;一次函数的图象.…分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.@4.(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.}D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,、∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.5.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣1-13y﹣1353下列结论:(1)ac<0;·(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.:2个D.1个考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).专题:图表型.分析:根据表格数据求出二次函数的对称轴为直线x=,然后根据二次函数的性质对各小题分析判断即可得解.~解答:解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==,∴当x>时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.6.(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()'A.函数有最小值B.对称轴是直线x=C.当x <,y随x的增大而减小D.;当﹣1<x<2时,y>0考点:二次函数的性质.专题:数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;!根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.?7.(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c 的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.》0,1或2考点:二次函数的性质.专题:数形结合;分类讨论;方程思想.分析:分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.解答:解:分三种情况:[点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或1或2.故选:D.点评:考查了二次函数的性质,本题涉及分类思想和方程思想的应用.8.(2014•淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()6B.5C.4D.3<A.考点:@二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选:D.'点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x <﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x <﹣时,y随x的增大而增大;x >﹣时,y随x的增大而减小;x=﹣时,y 取得最大值,即顶点是抛物线的最高点.9.(2013•徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:…x…﹣3﹣2﹣10。

专题01 二次函数的图像与性质(30题)(解析版)

专题01 二次函数的图像与性质(30题)(解析版)

专题第01讲二次函数的图像与性质(30题)1.(2023•怀集县一模)已知抛物线y=ax2﹣4ax+c,点A(﹣2,y1),B(4,y2)是抛物线上两点,若a<0,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法比较【分析】先求出抛物线的对称轴为直线x=2,得出a<0,得出抛物线开口向下,则抛物线上的点距离对称轴越近,对应的函数值越大,最后求出结果即可.【解答】解:∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴为直线x=2,∵a<0,∴抛物线开口向下,抛物线上的点距离对称轴越近,对应的函数值越大,∵点A(﹣2,y1)到对称轴的距离为2﹣(﹣2)=4,点B(4,y2)到对称轴的距离为4﹣2=2,又∵2<4,∴点B(4,y2)到对称轴的距离近.∴y1<y2,故选:B.2.(2023•南湖区校级开学)若点A(﹣3,y1),B(,y2),C(2,y3)在二次函数y=x2+2x+1的图象上,则y1,y2,y3的大小关系是( )A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1【分析】根据抛物线的对称轴和开口方向,再由A,B,C三个点离对称轴的远近,即可解决问题.【解答】解:由题知,抛物线y=x2+2x+1的开口向上,且对称轴是直线x=﹣1,所以函数图象上的点,离对称轴越近,函数值越小.又,所以y2<y1<y3.故选:A.3.(2022秋•华容区期末)若点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y1【分析】利用二次函数图象上点的坐标特征可求出y1,y2,y3的值,比较后即可得出结论(利用二次函数的性质解决问题亦可(离对称轴越远,y值越大)).【解答】解:∵点A(2,y1)、B(3,y2)、C(﹣1,y3)三点在二次函数y=x2﹣4x﹣m的图象上,∴y1=﹣4﹣m,y2=﹣3﹣m,y3=5﹣m.∵5﹣m>﹣3﹣m>﹣4﹣m,∴y3>y2>y1.故选:D.4.(2023•宝鸡一模)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】首先求出抛物线开口方向和对称轴,然后根据二次函数的增减性即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:B.5.(2022秋•法库县期末)已知抛物线y=ax2(a>0)过A(2,y1)、B(﹣1,y2)两点,则下列关系式一定正确的是( )A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>0【分析】依据抛物线的对称性可知:(﹣2,y1)在抛物线上,然后依据二次函数的性质解答即可.【解答】解:∵抛物线y=ax2(a>0),∴A(2,y1)关于y轴对称点的坐标为(﹣2,y1),∵a>0,∴x<0时,y随x的增大而减小,∵﹣2<﹣1<0,∴y1>y2>0;故选:C.6.(2023•温州模拟)若点A(﹣3,y1),B(1,y2),C(2,y1)是抛物线y=﹣x2+2x上的三点,则y1,y2,y3的大小关系为( )A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y2>y1>y3【分析】根据二次函数的性质得到抛物线y=﹣x2+2x的开口向下,对称轴为直线x=1,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:∵抛物线y=﹣x2+2x,∴抛物线开口向下,对称轴为直线x=﹣=1,而A(﹣3,y1)离直线x=1的距离最远,B(1,y2)在直线x=1上,∴y1<y3<y2.故选:B.7.(2023•西安二模)已知二次函数y=ax2﹣4ax+3(a为常数,且a>0)的图象上有三点A(﹣2,y1),B (2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1【分析】先求得抛物线的开口方向和对称轴,然后利用二次函数的对称性和增减性解答即可.【解答】解:∵二次函数y=ax2﹣4ax+3(a为常数,且a>0),∴开口向上,对称轴为直线x=﹣=2,当x>2时,y随x的增大而增大,∴当x=﹣2与x=6的函数值相同,即抛物线经过(6,y1),∵2<3<6,∴y2<y3<y1.故选:D.8.(2023•上城区模拟)已知抛物线y=(x﹣2)2﹣1上的两点P(x1,y1),Q(x2,y2)满足x2﹣x1=3,则下列结论正确的是( )A.若x1<,则y1>y2>0B.若<x1<2,则y2>y1>0C.若x1<,则y1>0>y2D.若<x1<2,则y2>0>y1【分析】由二次函数解析式可得抛物线的开口方向及对称轴,将x=代入解析式可得y的值,通过抛物线的对称性及x2﹣x1=3求解.【解答】解:∵y=(x﹣2)2﹣1,∴抛物线开口向上,对称轴为直线x=2,当x1=时,x2=3+=,∴=2,即点P,Q关于对称轴对称,此时y1=y2,将x=代入y=(x﹣2)2﹣1得y=0,当x1<时,当x2>时,y1>0>y2,当x2<时,y1>y2>0,故选项A,C不符合题意,∵x2﹣x1=3,∴x2=x1+3,∵y=(x﹣2)2﹣1,∴y1=(x1﹣2)2﹣1,y2=(x1+1)2﹣1,当<x1<2时,﹣<x1﹣2<0,<x1+1<3,∴﹣1<(x1﹣2)2﹣1<0,0<(x1+1)2﹣1<3,∴y2>0>y1.故选:D.9.(2023春•灌云县期中)已知y=x2+(m﹣1)x+1,当0≤x≤5且x为整数时,y随x的增大而减小,则m 的取值范围是( )A.m<﹣8B.m≤﹣8C.m<﹣9D.m≤﹣9【分析】可先求得抛物线的对称轴,再由条件可求得关于m的不等式,可求得答案.【解答】解:∵y=x2+(m﹣1)x+1,∴对称轴为x=﹣,∵a=1>0,∴抛物线开口向上,∴在对称轴左侧y随x的增大而减小,∵当0≤x≤5且x为整数时,y随x的增大而减小,∴﹣≥5,解得m≤﹣9,故选:D.10.(2023•西湖区校级二模)已知二次函数y=ax2+bx+c,当y>n时,x的取值范围是m﹣3<x<1﹣m,且该二次函数的图象经过点P(3,t2+5),Q(d,4t)两点,则d的值可能是( )A.0B.﹣1C.﹣4D.﹣6【分析】由题意可知该抛物线的对称轴和开口方向,并通过比较两点的纵坐标可知两点离对称轴的远近关系,由此可列不等式,求出d范围,进而选出符合条件的选项.【解答】解:如图,根据题意可知,该二次函数开口向下.对称轴为x==﹣1,∵t2+5﹣4t=(t﹣2)2+1>0,∴与点Q相比,点P更靠近对称轴,即3﹣(﹣1)<|d﹣(﹣1)|,整理得|d+1|>4.∴当d+1≥0时,有d+1>4,解得d>3;当d+1<0时,有﹣(d+1)>4,解得d<﹣5.综上,d>3或d<﹣5.故选:D.11.(2023春•鼓楼区校级期末)已知抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),C(4,2),D(6,4),那么a﹣b+c的值是( )A.2B.3C.4D.t【分析】根据抛物线的对称性求得抛物线的对称轴,即可得到D(6,4)关于对称轴对称的点为(﹣1,4),故当x=﹣1时可求得y值为4,即可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)经过点A(2,t),B(3,t),∴抛物线的对称轴为直线x==,∴抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,∴D(6,4)对称点坐标为(﹣1,4),∴当x=﹣1时,y=4,即a﹣b+c=4,故选:C.12.(2023•全椒县一模)如图,在同一平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)与一次函数y=acx+b的图象可能是( )A.B.C.D.【分析】先由二次函数y=ax2+bx+c的图象得到字母系数的正负,再与一次函数y=acx+b的图象相比较看是否一致.【解答】解:A、由抛物线可知,a>0,b<0,c<0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意;B、由抛物线可知,a>0,b>0,c>0,则ac>0,由直线可知,ac>0,b>0,故本选项符合题意;C、由抛物线可知,a<0,b>0,c>0,则ac<0,由直线可知,ac<0,b<0,故本选项不合题意;D、由抛物线可知,a<0,b<0,c>0,则ac<0,由直线可知,ac>0,b>0,故本选项不合题意.故选:B.13.(2023春•青秀区校级期末)在同一坐标系中,一次函数y=﹣mx+1与二次函数y=x2+m的图象可能是( )A.B.C.D.【分析】根据一次函数的b=1和二次函数的a=1即可判断出二次函数的开口方向和一次函数经过y轴正半轴,从而排除A和C,分情况探讨m的情况,即可求出答案.【解答】解:∵二次函数为y=x2+m,∴a=1>0,∴二次函数的开口方向向上,∴排除C选项.∵一次函数y=﹣mx+1,∴b=1>0,∵一次函数经过y轴正半轴,∴排除A选项.当m>0时,则﹣m<0,一次函数经过一、二、四象限,二次函数y=x2+m经过y轴正半轴,∴排除B选项.当m<0时,则﹣m>0一次函数经过一、二、三象限,二次函数y=x2+m经过y轴负半轴,∴D选项符合题意.故选:D.14.(2022秋•滨城区校级期末)在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.【分析】可先由一次函数y=ax﹣b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,a>0,矛盾,不合题意;B、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b>0,一致,符合题意;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,矛盾,不合题意;D、由y=ax2+bx可知,抛物线经过原点,不合题意;故选:B.15.(2023•濉溪县模拟)已知二次函数y=ax2+(b+1)x+c的图象如图所示,则二次函数y=ax2+bx+c与正比例函数y=﹣x的图象大致为( )A.B.C.D.【分析】根据二次函数y=ax2+(b+1)x+c图象得出a>0,c<0,二次函数y=ax2+(b+1)x+c与x轴的交点坐标为(﹣1,0)和(3,0),从而判断出二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,即可得出答案.【解答】解:由二次函数y=ax2+(b+1)x+c的图象可知,a>0,c<0,二次函数y=ax2+(b+1)x+c 与x轴的交点坐标为(﹣1,0)和(3,0),∴二次函数y=ax2+bx+c的开口向上,与y轴交于负半轴,且二次函数y=ax2+bx+c与正比例函数y=﹣x的交点的横坐标为﹣1,3,故B正确.故选:B.16.(2023春•鼓楼区校级期末)一次函数y=ax﹣1(a≠0)与二次函数y=ax2﹣x(a≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .【分析】可先由一次函数y =ax +c 图象得到字母系数的正负,再与二次函数y =ax 2+bx +c 的图象相比较看是否一致.【解答】解:由,解得或,∴一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)的交点为(1,a ﹣1),(,0),A 、由抛物线可知,a >0,由直线可知,a <0,故本选项错误,不符合题意;B 、由抛物线可知,a >0,由直线可知,a >0,由一次函数y =ax ﹣1(a ≠0)与二次函数y =ax 2﹣x (a ≠0)可知,两图象交于点(1,a ﹣1),则交点在y 轴的右侧,故本选项错误,不符合题意;C 、由抛物线可知,a <0,由直线可知,a <0,两图象的一个交点在x 轴上,另一个交点在第四选项,故本选项正确,符合题意;D 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误,不合题意;故选:C .17.(2023春•惠民县期末)如图所示,二次函数y =ax 2+bx +c 和一次函数y =ax +b 在同一坐标系中图象大致为( )A .B .C .D .【分析】分别根据两个函数的图象得出系数的取值范围,一致的就是符合题意,否则就是不符合题意的.【解答】解:A:根据一次函数的图象得:a>0,b<0,根据二次函数的图象得:a>0,b<0,故A符合题意;B:根据一次函数的图象得:a<0,b>0,根据二次函数的图象得:a>0,b>0,故B不符合题意;C:根据一次函数的图象得:a<0,b<0,根据二次函数的图象得:a<0,b>0,故C不符合题意;D:根据一次函数的图象得:a>0,b>0,根据二次函数的图象得:a<0,b<0,故D不符合题意;故选:A.18.(2023•盘龙区校级开学)已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc<0;②4a﹣2b+c>0;③a﹣b>m(am+b)(m为任意实数);④4ac﹣b2<0;其中正确的结论有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象,可得出a,b,c的正负,再结合抛物线的对称轴为直线x=﹣1和开口向下,即可解决问题.【解答】解:由图象可知,a<0,b<0,c>0,所以abc>0.故①错误.因为抛物线的对称轴是直线x=﹣1,所以x=﹣2时与x=0时的函数值相等.又由图象可知,x=0时,函数值大于0.所以x=﹣2时,函数值也大于0.即4a﹣2b+c>0.故②正确.因为抛物线开口向下,且对称轴为直线x=﹣1,所以当x=﹣1时,函数有最大值a﹣b+c.则当x=m(m为任意实数)时,总有a﹣b+c≥am2+bm+c,即a﹣b≥m(am+b).故③错误.因为抛物线与x轴有两个交点,所以b2﹣4ac>0,即4ac﹣b2<0.故④正确.故选:B.19.(2022秋•玉泉区校级期末)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)abc<0;(2)4a+c>2b;(3)3b﹣2c>0;(4)若点A(﹣2,y1)、点、点在该函数图象上,则y1<y2<y3;(5)4a+2b≥m(am+b)(m为常数).其中正确的结论有( )A.5个B.4个C.3个D.2个【分析】根据抛物线的对称轴方程和开口方向以及与y轴的交点,可得a<0,b>0,c>0,由对称轴为直线x=2,可得b=﹣4a,当x=2时,函数有最大值4a+2b+c;由经过点(﹣1,0),可得a﹣b+c=0,c=﹣5a;再由a<0,可知图象上的点离对称轴越近对应的函数值越大;再结合所给选项进行判断即可.【解答】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,所以(1)正确;∵对称轴为直线x=2,∴﹣=2,∴b=﹣4a,∴b+4a=0,∴b=﹣4a,∵经过点(﹣1,0),∴a﹣b+c=0,∴c=b﹣a=﹣4a﹣a=﹣5a,∴4a+c﹣2b=4a﹣5a+8a=7a,∵a<0,∴4a+c﹣2b<0,∴4a+c<2b,故(2)不正确;∵3b﹣2c=﹣12a+10a=﹣2a>0,故(3)正确;∵|﹣2﹣2|=4,|﹣﹣2|=,|﹣2|=,∴y1<y2<y3,故(4)正确;当x=2时,函数有最大值4a+2b+c,∴4a+2b+c≥am2+bm+c,4a+2b≥m(am+b)(m为常数),故(5)正确;综上所述:正确的结论有(1)(3)(4)(5),共4个,故选:B.20.(2023春•青秀区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc<0;②a﹣b+c<0;③m为任意实数,则a+b>am2+bm;④3a+c<0;⑤若且x1≠x2,则x1+x2=4.其中正确结论的个数有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,∴a<0,c>0,,∴b>0,∴abc<0,故①正确;②∵对称轴是直线x=1,与x轴交点在(3,0)左边,∴二次函数与x轴的另一个交点在(﹣1,0)与(0,0)之间,∴a﹣b+c<0,故②正确;③∵对称轴是直线x=1,图象开口向下,∴x=1时,函数最大值是a+b+c;∴m为任意实数,则a+b+c≥am2+bm+c,∴a+b≥am2+bm,故③错误;④∵,∴b=﹣2a由②得a﹣b+c<0,∴3a+c<0,故④正确;⑤∵,∴,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,∵x1≠x2,∴a(x1+x2)+b=0,∵,b=﹣2a,∴x1+x2=2,故⑤错误;故正确的有3个,故选:C.21.(2022秋•丰都县期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②2a+b=0;③m为任意实数时,a+b≤m(am+b);④a﹣b+c>0;⑤若ax+bx1=+bx2,且x1≠x2,则x1+x2=2.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口方向向上,则a>0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于y轴负半轴,则c<0,所以abc<0.故①错误;②∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最小值为:a+b+c,∴m为任意实数时,a+b≤m(am+b);即a+b+c<am2+bm+c,故③正确;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧,∴当x=﹣1时,y>0,∴a﹣b+c>0,故④正确;⑤∵+bx1=+bx2,∴+bx1﹣﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②③④⑤.故选:D.22.(2022秋•建昌县期末)已知二次函数y=ax2+bx+c(a≠0)的图象大致如图所示.下列说法正确的是( )A.2a﹣b=0B.当﹣1<x<3时,y<0C.a+b+c>0D.若(x1,y1),(x2,y2)在函数图象上,当x1<x2时,y1<y2【分析】根据二次函数的系数与图象的关系解答即可.【解答】解:根据对称轴为直线x=1可得:,故2a+b=0,故A错误;根据函数图象可得当﹣1<x<3时,y<0,故B正确;当x=1时,y=a+b+c<0,故C错误;若(x1,y1),(x2,y2)在函数图象上,只有当1<x1<x2时,y1<y2,故D错误;故选:B.23.(2022秋•新抚区期末)如图,抛物线y=ax2+bx+c的对称轴是直线x=﹣1.下列结论:①abc<0;③4a﹣2b+c>0;④3a+c>0;⑤b2﹣4a2>2ac.其中正确结论的个数是( )A.2B.3C.4D.5【分析】观察图象得:抛物线开口向上,与y轴交于负半轴,可得a>0,c<0,再由对称轴是直线x=﹣1,可得abc<0,故①正确;再根据抛物线与x轴有2个交点,可得b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,可得4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,再由b=2a,可得a+b+c>0,故④正确;再由b2﹣4a2=(b+2a)(b﹣2a)=0,可得⑤正确,即可求解.【解答】解:观察图象得:抛物线开口向上,与y轴交于负半轴,∴a>0,c<0,∵对称轴是直线x=﹣1,∴,即b=2a>0,∴abc<0,故①正确;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,故②正确;观察图象得:当x=﹣2时,y<0,即4a﹣2b+c<0,故③错误;观察图象得:当x=1时,y>0,∵b=2a,∴a+b+c=3a+c>0,故④正确;∵b=2a,∴b﹣2a=0,∴b2﹣4a2=(b+2a)(b﹣2a)=0,∴2ac<0,∴b2﹣4a2>2ac,故⑤正确;故选:C.24.(2022秋•莲池区校级期末)已知二次函数y=ax2+bx+c,其函数y与自变量x之间的部分对应值如表所示.下列结论:①abc>0;②当﹣3<x<1时,y>0;③4a+2b+c>0;④关于x的一元二次方程的解是x1=﹣4,x2=2.其中正确的有( )x…﹣41…y…0…A.1个B.2个C.3个D.4个【分析】观察图表可知,开口向下,a<0,二次函数y=ax2+bx+c在与时,y值相等,得出对称轴为直线x=﹣1,即可得出b<0,在根据图象经过点(1,0),得出c>0由此判断①;根据二次函数的对称性求得抛物线与x轴的交点,即可判断②;根据x=2,y<0即可判断③;根据抛物线的对称性求得点关于直线x=﹣1的对称点是,即可判断④.【解答】解:①由于二次函数y=ax2+bx+c有最大值,∴a<0,开口向下,∵对称轴为直线,∴b<0,∵图象经过点(1,0),∴c>0,∴abc>0,故①说法正确;②∵对称轴为直线x=﹣1,∴点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∵a<0,开口向下,∴当﹣3<x<1时,y>0,故②说法正确;③当x=2时,y<0,∴4a+2b+c<0,故③说法错误;④∵点关于直线x=﹣1的对称点是,∴关于x的一元二次方程的解是x1=﹣4,x2=2,故④说法正确.故选:C.25.(2023•扎兰屯市一模)如图,函数y=ax2+bx+2(a≠0)的图象的顶点为,下列判断正确个数为( )①ab<0;②b﹣3a=0;③ax2+bx≥m﹣2;④点(﹣4.5,y1)和点(1.5,y2)都在此函数图象上,则y1=y2;⑤9a=8﹣4m.A.5个B.4个C.3个D.2个【分析】根据抛物线的开口方向得a<0,由顶点坐标可得b=3a<0,b﹣3a=0,以此可判断①②;再根据二次函数的性质可得当x=时,y取得最大值为m,以此可判断③;根据离抛物线对称轴距离相等点的函数值相等可判断④;将顶点坐标代入函数解析式中,化简即可判断⑤.【解答】解:∵抛物线开口向下,∴a<0,∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴抛物线的对称轴为直线x=,∴b=3a<0,∴ab>0,故①错误;由上述可知,b=3a,∴b﹣3a=0,故②正确;∵抛物线开口向下,∴当x=时,y取得最大值为m,∴无论x取何值都有ax2+bx+2≤m,∴ax2+bx≤m﹣2,故③错误;∵抛物线的对称轴为直线x==﹣1.5,﹣1.5﹣(﹣4.5)=1.5﹣(﹣1.5),∴y1=y2,故④正确;∵函数y=ax2+bx+2(a≠0)的图象的顶点为,∴,整理得:9a﹣6b+8=4m,∵b=3a,∴9a﹣18a+8=4m,∴9a=8﹣4m,故⑤正确.综上,正确的结论有②④⑤,共3个.故选:C.26.(2023•深圳模拟)二次函数y=ax2+bx+c的图象如图所示,以下结论正确的个数为( )①abc<0;②c+2a<0;③9a﹣3b+c=0;④am2﹣a+bm+b>0(m为任意实数)A.1个B.2个C.3个D.4个【分析】根据二次函数图象的开口方向,对称轴,顶点坐标以及最大(小)值,对称性进行判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=﹣=﹣1<0,∴a、b同号,而a>0,∴b>0,∵抛物线与y轴的交点在y轴的负半轴,∴c<0,∴abc<0,因此①正确;由于抛物线过点(1,0)点,∴a+b+c=0,又∵对称轴为x=﹣1,即﹣=﹣1,∴b=2a,∴a+2a+c=0,即3a+c=0,而a>0,∴2a+c<0,因此②正确;由图象可知,抛物线与x轴的一个交点坐标为(1,0),而对称轴为x=﹣1,由对称性可知,抛物线与x轴的另一个交点坐标为(﹣3,0),∴9a﹣3b+c=0,因此③正确;由二次函数的最小值可知,当x=﹣1时,y=a﹣b+c,最小值当x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即am2+bm﹣a+b≥0,因此④不正确;综上所述,正确的结论有①②③,共3个,故选:C.27.(2023•镜湖区校级二模)如图所示,点A,B,C是抛物线y=ax2+bx+c(a≠0)(x为任意实数)上三点,则下列结论:①﹣=2 ②函数y=ax2+bx+c最大值大于4 ③a+b+c>2,其中正确的有( )A.①B.②③C.①③D.①②【分析】抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,0<t<1,.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>2,即a+b+c>2.因此③正确.【解答】解:抛物线y=ax2+bx+c(a≠0)的大致图象如图.抛物线与x轴交于C'和C,C'介于0~1之间,设C'(t,0)其中0<t<1.①﹣=,∵0<t<1,∴.因此①错误;②由图象可知,图象顶点纵坐标在4的上方,所以函数最大值大于4.因此②正确③由图象可知,x=1时,y>3,即a+b+c>3>2.因此③正确.故选:B.28.(2023•丰顺县一模)如图是二次函数y=ax2+bx+c(a≠0)的图象,有如下结论:①abc>0:②a+b+c<0:③4a+b<0;④4a>c.其中正确的结论有( )个.A.1B.2C.3D.4【分析】根据二次函数图象与系数的关系分别判断即可.【解答】解:∵抛物线开口向上,与y轴交于正半轴,∴a>0,c>0,∵抛物线对称轴为x=﹣>0,∴b<0,∴abc<0,∴①错误;∵当x=1时,y<0,∴a+b+c<0,∴②正确;∵抛物线对称轴为x=﹣<2,a>0,∵b>﹣4a,∴4a+b>0,∴③错误;∵抛物线对称轴为x=﹣<2,a>0,∴b>﹣4a,∵a+b+c<0,∴a﹣4a+c<0,∴﹣3a+c<0,∴3a>c,∵a>0,∴4a>c,∴④正确.故选:B.29.(2022秋•合川区期末)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,下列结论:①abc>0;②a+2b=0;③a﹣b+c>0;④;⑤若P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.正确结论的个数是( )A.2B.3C.4D.5【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及对称性逐个进行判断即可.【解答】解:抛物线开口向上得a>0,对称轴在y轴的右侧,a、b异号,因此b<0,抛物线与y轴的交点在y轴的负半轴,因此c<0,所以abc>0,因此①符合题意;由﹣=2,可知b=﹣4a,所以a+2b=﹣7a<0,因此②不符合题意;由对称轴和抛物线的对称性,可得当x=﹣1时,y>0,即a﹣b+c>0,故③符合题意;由图象可知x=3时,y<0,故9a+3b+c<0,即3a+b<﹣,因此④不符合题意;由对称轴和抛物线的对称性,可得P(﹣4,y1),Q(8,y2)是该函数图象上两点,则y1=y2.因此⑤符合题意;综上所述,正确的结论有3个,故选:B.30.(2023春•惠民县期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有如下6个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);⑥b2>4ac;其中正确的结论有( )A.2个B.3个C.4个D.5个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵该抛物线开口方向向下,∴a<0.∵抛物线对称轴方程x=﹣>0,∴a、b异号,∴b>0;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0;故①错误;②∵当x=﹣1时,y<0,∴a﹣b+c<0,∴b>a+c,故②错误;③根据抛物线的对称性知,当x=2时,y>0,即4a+2b+c>0;故③正确;∵对称轴方程x=﹣=1,∴b=﹣2a,∴=﹣a,根据抛物线的对称性知,当x=3时,y<0,即9a+3b+c<0,∴9a+3b+c=﹣b+c<0,∴2c<3b.故④正确;⑤∵x=1时函数取得最大值,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm=m(am+b),故⑤正确;⑥∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,即b2>4ac.故⑥正确.综上所述,正确的有4个.故选:C.。

最全二次函数概念的图像与性质专题练习完整版.doc

最全二次函数概念的图像与性质专题练习完整版.doc

二次函数的图像与性质一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

【说明】这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:5. 二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 六、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. / 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 4.利用二次函数与x 轴的交点的个数来确定判别式∆的符号,利用特殊点的坐标确定特殊代数式的值的范围。

二次函数图像性质练习题(附答案)

二次函数图像性质练习题(附答案)

二次函数图像性质练习题1、函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 。

2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位。

3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个)。

4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式。

5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积。

6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6。

求:(1)求出此函数关系式。

(2)说明函数值y 随x 值的变化情况。

7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值。

1、请写出一个以(2, 3)为顶点,且开口向上的二次函数: 。

2、二次函数 y =(x -1)2+2,当 x = 时,y 有最小值。

3、函数 y =12 (x -1)2+3,当 x 时,函数值 y 随 x 的增大而增大。

4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到。

5、已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y 。

(1)确定下列抛物线的开口方向、对称轴和顶点坐标;(2)当x= 时,抛物线有最 值,是 。

(3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小。

专题15二次函数的图象与性质(选填压轴精选60道)三年(20212023)中考数学真题分项汇编【全国

专题15二次函数的图象与性质(选填压轴精选60道)三年(20212023)中考数学真题分项汇编【全国

三年(2021-2023)中考数学真题分项汇编【全国通用】专题15二次函数的图象与性质(选填压轴精选60道)一.选择题(共40小题)1.(2023•大连)已知抛物线y=x2﹣2x﹣1,则当0≤x≤3时,函数的最大值为()A.﹣2B.﹣1C.0D.22.(2023•菏泽)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:A(1,3),B(﹣2,﹣6),C(0,0)等都是“三倍点”.在﹣3<x<1的范围内,若二次函数y=﹣x2﹣x+c的图象上至少存在一个“三倍点”,则c的取值范围是()A.−14≤c<1B.﹣4≤c<﹣3C.−14≤x<6D.﹣4≤c<53.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣44.(2023•岳阳)若一个点的坐标满足(k,2k),我们将这样的点定义为“倍值点”.若关于x的二次函数y =(t+1)x2+(t+2)x+s(s,t为常数,t≠﹣1)总有两个不同的倍值点,则s的取值范围是()A.s<﹣1B.s<0C.0<s<1D.﹣1<s<05.(2023•邵阳)已知P1(x1,y1)P2(x2,y2)是抛物线y=ax2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=﹣2;②点(0,3)在抛物线上;③若x1>x2>﹣2,则y1>y2;④若y1=y2,则x1+x2=﹣2,其中,正确结论的个数为()A.1个B.2个C.3个D.4个6.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<17.(2023•日照)在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0),满足{3a+b>0a+b<0,已知点(﹣3,m),(2,n ),(4,t )在该抛物线上,则m ,n ,t 的大小关系为( )A .t <n <mB .m <t <nC .n <t <mD .n <m <t8.(2023•陕西)在平面直角坐标系中,二次函数y =x 2+mx +m 2﹣m (m 为常数)的图象经过点(0,6),其对称轴在y 轴左侧,则该二次函数有( )A .最大值5B .最大值154C .最小值5D .最小值1549.(2023•杭州)设二次函数y =a (x ﹣m )(x ﹣m ﹣k )(a >0,m ,k 是实数),则( )A .当k =2时,函数y 的最小值为﹣aB .当k =2时,函数y 的最小值为﹣2aC .当k =4时,函数y 的最小值为﹣aD .当k =4时,函数y 的最小值为﹣2a10.(2023•乐山)如图,抛物线y =ax 2+bx +c 经过点A (﹣1,0)、B (m ,0),且1<m <2,有下列结论: ①b <0;②a +b >0;③0<a <﹣c ;④若点C (−23,y 1),D (53,y 2)在抛物线上,则y 1>y 2. 其中,正确的结论有( )A .4个B .3个C .2个D .1个11.(2023•枣庄)二次函数y =ax ²+bx +c (a ≠0)的图象如图所示,对称轴是直线x =1,下列结论:①abc <0;②方程ax ²+bx +c =0(a ≠0)必有一个根大于2且小于3;③若(0,y 1),(32,y 2)是抛物线上的两点,那么y 1<y 2;④11a +2c >0;⑤对于任意实数m ,都有m (am +b )≥a +b ,其中正确结论的个数是( )A.5B.4C.3D.212.(2023•扬州)已知二次函数y=ax2﹣2x+12(a为常数,且a>0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x<0时,y随x的增大而减小;④当x>0时,y随x的增大而增大.其中所有正确结论的序号是()A.①②B.②③C.②D.③④13.(2023•巴中)在平面直角坐标系中,直线y=kx+1与抛物线y=14x2交于A、B两点,设A(x1,y1),B(x2,y2),则下列结论正确的个数为()①x1•x2=﹣4.②y1+y2=4k2+2.③当线段AB长取最小值时,则△AOB的面积为2.④若点N(0,﹣1),则AN⊥BN.A.1B.2C.3D.414.(2023•遂宁)抛物线y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣2.下列说法:①abc <0;②c﹣3a>0;③4a2﹣2ab≥at(at+b)(t为全体实数);④若图象上存在点A(x1,y1)和点B(x2,y2),当m<x1<x2<m+3时,满足y1=y2,则m的取值范围为﹣5<m<﹣2,其中正确的个数有()A.1个B.2个C.3个D.4个15.(2023•凉山州)已知抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论中正确的是()A.abc<0B.4a﹣2b+c<0C.3a+c=0D.am2+bm+a≤0(m为实数)16.(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b ≥4a,正确的个数是()A.1B.2C.3D.417.(2022•宁波)点A(m﹣1,y1),B(m,y2)都在二次函数y=(x﹣1)2+n的图象上.若y1<y2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2 18.(2022•达州)二次函数y =ax 2+bx +c 的部分图象如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >13;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(12,y 2),(2,y 3)在该函数图象上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .519.(2022•广元)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,下列结论:(1)abc <0;(2)4a +c >2b ;(3)3b ﹣2c >0;(4)若点A (﹣2,y 1)、点B (−12,y 2)、点C (72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)4a +2b ≥m (am +b )(m 为常数).其中正确的结论有( )A .5个B .4个C .3个D .2个20.(2022•荆门)抛物线y =ax 2+bx +c (a ,b ,c 为常数)的对称轴为x =﹣2,过点(1,﹣2)和点(x 0,y 0),且c >0.有下列结论:①a <0;②对任意实数m 都有:am 2+bm ≥4a ﹣2b ;③16a +c >4b ;④若x 0>﹣4,则y 0>c .其中正确结论的个数为( )A.1个B.2个C.3个D.4个21.(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.122.(2022•毕节市)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.其中正确的有()A.1个B.2个C.3个D.4个23.(2022•南充)已知点M(x1,y1),N(x2,y2)在抛物线y=mx2﹣2m2x+n(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为()A.0<m≤2B.﹣2≤m<0C.m>2D.m<﹣224.(2022•湖北)二次函数y=(x+m)2+n的图象如图所示,则一次函数y=mx+n的图象经过()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 25.(2022•朝阳)如图,二次函数y =ax 2+bx +c (a 为常数,且a ≠0)的图象过点(﹣1,0),对称轴为直线x =1,且2<c <3,则下列结论正确的是( )A .abc >0B .3a +c >0C .a 2m 2+abm ≤a 2+ab (m 为任意实数)D .﹣1<a <−2326.(2021•资阳)已知A 、B 两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB 上有一动点M (m ,n ),过点M 作x 轴的平行线交抛物线y =a (x ﹣1)2+2于P (x 1,y 1)、Q (x 2,y 2)两点.若x 1<m ≤x 2,则a 的取值范围为( )A .﹣4≤a <−32B .﹣4≤a ≤−32C .−32≤a <0D .−32<a <027.(2021•枣庄)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为直线x =12,且经过点(2,0).下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若(−12,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b +c >m (am +b )+c (其中m ≠12).正确的结论有( )A .2个B .3个C .4个D .5个28.(2021•岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,﹣1B .5−√172,﹣1C .4,0D .5+√172,﹣1 29.(2021•苏州)已知抛物线y =x 2+kx ﹣k 2的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .﹣5或2B .﹣5C .2D .﹣230.(2021•无锡)设P (x ,y 1),Q (x ,y 2)分别是函数C 1,C 2图象上的点,当a ≤x ≤b 时,总有﹣1≤y 1﹣y 2≤1恒成立,则称函数C 1,C 2在a ≤x ≤b 上是“逼近函数”,a ≤x ≤b 为“逼近区间”.则下列结论: ①函数y =x ﹣5,y =3x +2在1≤x ≤2上是“逼近函数”;②函数y =x ﹣5,y =x 2﹣4x 在3≤x ≤4上是“逼近函数”;③0≤x ≤1是函数y =x 2﹣1,y =2x 2﹣x 的“逼近区间”;④2≤x ≤3是函数y =x ﹣5,y =x 2﹣4x 的“逼近区间”.其中,正确的有( )A .②③B .①④C .①③D .②④31.(2022•丹东)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (5,0),与y 轴交于点C ,其对称轴为直线x =2,结合图象分析如下结论:①abc >0;②b +3a <0;③当x >0时,y 随x 的增大而增大;④若一次函数y=kx+b(k≠0)的图象经过点A,则点E(k,b)在第四象限;⑤点M是抛物线的顶点,若CM⊥AM,则a=√66.其中正确的有()A.1个B.2个C.3个D.4个32.(2022•玉林)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有()A.1个B.2个C.3个D.4个33.(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个34.(2022•陕西)若二次函数y=x2+2√5x+3m﹣1的图象只经过第一、二、三象限,则m满足的条件一定是()A.m>13B.m<2C.m<﹣2或m≥−13D.13≤m<235.(2022•岳阳)已知二次函数y=mx2﹣4m2x﹣3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤﹣3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤﹣1或m>0D.m≤﹣136.(2022•钢城区)抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(m﹣1,y1),N(m+1,y2)为图形G上两点,若y1<y2,则m的取值范围是()A.m<﹣1或m>0B.−12<m<12C.0≤m<√2D.﹣1<m<137.(2022•自贡)已知A(﹣3,﹣2),B(1,﹣2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥﹣2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为﹣5,则点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=1 2.其中正确的是()A.①③B.②③C.①④D.①③④38.(2022•资阳)如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个39.(2022•日照)已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=32,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(12,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A .1个B .2个C .3个D .4个40.(2022•青岛)已知二次函数y =ax 2+bx +c 的图象开口向下,对称轴为直线x =﹣1,且经过点(﹣3,0),则下列结论正确的是( )A .b >0B .c <0C .a +b +c >0D .3a +c =0二.填空题(共20小题)41.(2023•内蒙古)已知二次函数y =﹣ax 2+2ax +3(a >0),若点P (m ,3)在该函数的图象上,且m ≠0,则m 的值为 .42.(2023•福建)已知抛物线y =ax 2﹣2ax +b (a >0)经过A (2n +3,y 1),B (n ﹣1,y 2)两点,若A ,B 分别位于抛物线对称轴的两侧,且y 1<y 2,则n 的取值范围是 .43.(2023•绍兴)在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y =(x ﹣2)2(0≤x ≤3)的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数y =14x 2+bx +c(0≤x ≤3)图象的关联矩形恰好也是矩形OABC ,则b = .44.(2022•长春)已知二次函数y =﹣x 2﹣2x +3,当a ≤x ≤12时,函数值y 的最小值为1,则a 的值为 .45.(2022•贵港)已知二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,该函数图象经过点(﹣2,0),对称轴为直线x=−12.对于下列结论:①abc<0;②b2﹣4ac>0;③a+b+c=0;④am2+bm<14(a﹣2b)(其中m≠−12);⑤若A(x1,y1)和B(x2,y2)均在该函数图象上,且x1>x2>1,则y1>y2.其中正确结论的个数共有个.46.(2022•呼和浩特)在平面直角坐标系中,点C和点D的坐标分别为(﹣1,﹣1)和(4,﹣1),抛物线y=mx2﹣2mx+2(m≠0)与线段CD只有一个公共点,则m的取值范围是.47.(2022•南京)已知二次函数y=ax2﹣2ax+c(α,c为常数,a≠0)的最大值为2,写出一组符合条件的a和c的值:.48.(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.49.(2022•荆州)规定:两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为.50.(2022•凉山州)已知实数a、b满足a﹣b2=4,则代数式a2﹣3b2+a﹣14的最小值是.51.(2022•湘西州)已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.52.(2022•荆门)如图,函数y={x2−2x+3(x<2)−34x+92(x≥2)的图象由抛物线的一部分和一条射线组成,且与直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3).设t=x1y1+x2y2x3y3,则t的取值范围是.53.(2021•安徽)设抛物线y=x2+(a+1)x+a,其中a为实数.(1)若抛物线经过点(﹣1,m),则m=;(2)将抛物线y=x2+(a+1)x+a向上平移2个单位,所得抛物线顶点的纵坐标的最大值是.54.(2021•菏泽)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.55.(2021•长春)如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为.56.(2021•巴中)y与x之间的函数关系可记为y=f(x).例如:函数y=x2可记为f(x)=x2.若对于自变量取值范围内的任意一个x,都有f(﹣x)=f(x),则f(x)是偶函数;若对于自变量取值范围内的任意一个x,都有f(﹣x)=﹣f(x),则f(x)是奇函数.例如:f(x)=x2是偶函数,f(x)=1x是奇函数.若f (x )=ax 2+(a ﹣5)x +1是偶函数,则实数a = .57.(2021•无锡)如图,在平面直角坐标系中,O 为坐标原点,已知二次函数y =x 2,OACB 为矩形,A ,B 在抛物线上,当A ,B 运动时,点C 也在另一个二次函数图象上运动,设C (x ,y ),则y 关于x 的函数表达式为 .58.(2021•无锡)如图,在平面直角坐标系中,O 为坐标原点,点C 为y 轴正半轴上的一个动点,过点C 的直线与二次函数y =x 2的图象交于A 、B 两点,且CB =3AC ,P 为CB 的中点,设点P 的坐标为P (x ,y )(x >0),写出y 关于x 的函数表达式为: .59.(2021•广西)如图,已知点A (3,0),B (1,0),两点C (﹣3,9),D (2,4)在抛物线y =x 2上,向左或向右平移抛物线后,C ,D 的对应点分别为C ′,D ′.当四边形ABC ′D ′的周长最小时,抛物线的解析式为 .60.(2021•湖州)已知在平面直角坐标系xOy 中,点A 的坐标为(3,4),M 是抛物线y =ax 2+bx +2(a ≠0)对称轴上的一个动点.小明经探究发现:当b a 的值确定时,抛物线的对称轴上能使△AOM 为直角三角形的点M 的个数也随之确定,若抛物线y =ax 2+bx +2(a ≠0)的对称轴上存在3个不同的点M ,使△AOM 为直角三角形,则b a 的值是 .。

二次函数超全超全图像及综合大题

二次函数超全超全图像及综合大题

专题训练1 二次函数图像分析1、已知二次函数2y ax bx c =++,如图所示,若0a <,0c >,那么它的图象大致是 ( ) y y y yx x A B C D2、已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在 ()A .第一象限B .第二象限C .第三象限D .第四象限 3、已知二次函数2yax bxc 的图象如下,则下列结论正确的是 ( )A 0abB 0bcC 0a b c D0a b c4、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论: ①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个yx5、二次函数y=ax 2+bx+c 的图像如图1,则点M (b ,ca )在( )A .第一象限B .第二象限C .第三象限D .第四象限6、二次函数2y ax bx c =++的图象如图所示,则( ) A 、0a >,240b ac -< B 、0a >,240b ac -> C 、0a <,240b ac -< D 、0a <,240b ac ->7、已知函数y=ax+b 的图象经过第一、二、三象限,那么y=ax 2+bx+1的图象大致为( )8、已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ) A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <09、二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D .02b a -<10、二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是( )(1)abc <0; (2)a +b +c <0; (3)a +c >b ;(4)a <-2b.A .1B 2C .3 D. 411、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( )A .1个B .2个C .3个D .4个12、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )A. 0B. -1C. 1D. 213、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时,x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个14、已知二次函数y=ax 2+bx+c 的图象,如图所示,下列结论:①a+b+c>0;②a-b+c>0;③abc<0;④2a-b=0,其中正确结论的个数是( )A. 1B. 2C. 3D. 4y–1 3 3 O xP115、已知一次函数y ax c =+与2y ax bx c =++,它们在同一坐标系的大致图象是()16、在同一坐标系中一次函数和二次函数的图象可能为( )17、函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )18、函数y=ax+b 与y=ax 2+bx+c 的图象如图所示, 则下列选项中正确的是( ) A.ab>0,c>0 B.ab<0,c>0C.ab>0,c<0 D.ab<0,c<019、)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2的图象大致为 ( )xOyy y y yO x O x O x O xA B C D20、已知函数y=ax2+ax与函数,则它们在同一坐标系中的大致图象是( )21、在同一坐标系中,函数)0(2>++=+=bcbxaxycaxy和的图象大致是()22、函数2y ax b y ax bx c=+=++和在同一直角坐标系的图象大致是()23、在同一直角坐标系中,函数y mx m=+和222y mx x=-++(m是常数,且0m≠)的图象可能..是()24、次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()O xyDAOxyCOxyOxyBxyOA.xyOB.xyOC.xyOD.A .B .C .D .25、如图,在平面直角坐标系中,抛物线y =经过平移得到抛物线y =,其对称轴与两段抛物线所围成的阴影部分的面积为( )A .2B .4C .8D .1626.如图,抛物线的顶点为(2,2),P -与y 轴交于点(0,3)A ,若平移该抛物线使其顶点P 沿直线移动到点'(2,2)P -,点A 的对应点为'A ,则抛物线上PA 段扫过的区域(阴影部分)的面积为27.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值围是.专题训练2 二次函数的应用1.有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘,可以延长存活时间,但每天也有一定数量的蟹死去。

九年级数学上册《二次函数图象和性质》专项提高练习带答案

九年级数学上册《二次函数图象和性质》专项提高练习带答案

22.1 二次函数的图象和性质1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= . 2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)x-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x +9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 5.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=x 2B .y=-x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=x 2和y=-x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2C .D .12.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2);(2)y=ax 2与y=x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=x +3交于点(2,m ).13已知是二次函数,且当时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.mm +2mm +221214131312141212142)2(-++=k k xk y 0x <14、有一桥孔形状是一条开口向下的抛物线 (1) 作出这条抛物线;(2) 利用图象,当水面与抛物线顶点的距离为4m 时,求水面的宽; (3)当水面宽为6m 时,水面与抛物线顶点的距离是多少?15.如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数 y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.16、某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的近价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万. (1)若该公司当月售出3辆汽车,则每辆汽车的进价为多少万元?(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)17、已知关于x 的一元二次方程 x 2+(m+3)x+m+1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且,求m 的值,并求出此时方程的两根.1.抛物线y=-3x 2上两点A (x ,-27),B (2,y ),则x= ,y= . 2.抛物线y=-4x 2-4的开口向 ,当x= 时,y 有最 值,y = . 3.当m= 时,y=(m -1)x-3m 是关于x 的二次函数.4.当m= 时,抛物线y=(m +1)x +9开口向下,对称轴是 .在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 .214y x =-1222x x -=mm +2mm +25.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .6.已知抛物线的顶点在原点,对称轴为y 轴,且经过点(-1,-2),则抛物线的表达式为.7.在同一坐标系中,图象与y=2x 2的图象关于x 轴对称的是( )A .y=x 2B .y=-x 2C .y=-2x 2D .y=-x 28.抛物线,y=4 x 2,y=-2x 2的图象,开口最大的是( )A .y=x 2B .y=4x 2C .y=-2x 2D .无法确定9.对于抛物线y=x 2和y=-x 2在同一坐标系里的位置,下列说法错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线关于y 轴对称D .两条抛物线的交点为原点10.二次函数y=ax 2与一次函数y=ax +a 在同一坐标系中的图象大致为( )11.已知函数y=ax 2的图象与直线y=-x +4在第一象限内的交点和它与直线y=x 在第一 象限内的交点相同,则a 的值为( )A .4 B .2C .D .12.求符合下列条件的抛物线y=ax 2的表达式:(1)y=ax 2经过(1,2);(2)y=ax 2与y=x 2的开口大小相等,开口方向相反;(3)y=ax 2与直线y=x +3交于点(2,m ).13已知是二次函数,且当时,y 随x 的增大而增大.(1)求k 的值;(2)求顶点坐标和对称轴.14、有一桥孔形状是一条开口向下的抛物线 (1) 作出这条抛物线;(2) 利用图象,当水面与抛物线顶点的距离为4m 时,求水面的宽; (3)当水面宽为6m 时,水面与抛物线顶点的距离是多少?21214131312141212142)2(-++=k k xk y 0x <214y x =-15.如图,直线ι经过A (3,0),B (0,3)两点,且与二次函数 y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图象顶点与点A 、B 组成的三角形的面积.16、某汽车销售公司6月份销售某厂家汽车,在一定范围内,每辆汽车的进价与销售量有如下关系,若当月仅售出1辆汽车,则该汽车的近价为27万元;每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元,销售量在10辆以上,每辆返利1万. (1)若该公司当月售出3辆汽车,则每辆汽车的进价为多少万元?(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)17、已知关于x 的一元二次方程 x 2+(m+3)x+m+1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且,求m 的值,并求出此时方程的两根.22.1 二次函数的图象与性质一、填空题:1.已知函数y=(k+2)是关于x 的二次函数,则k=________.2.已知正方形的周长是acm,面积为Scm 2,则S 与a 之间的函数关系式为_____.3.填表:c261 4 4.在边长为4m 的正方形中间挖去一个长为xm 的小正方形, 剩下的四方框形的面积为y,则y 与x 间的函数关系式为_________5.用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.二、选择题:1222x x -=24k k x +-2116s c =6.下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax 2+bx+c 的函数叫二次函数;D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 7.下列函数中,不是二次函数的是( )A.y=1-x 2B.y=2(x-1)2+4;C.y=(x-1)(x+4)D.y=(x-2)2-x 28.在半径为4cm 的圆中, 挖去一个半径为xcm 的圆面, 剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A.y=x 2-4B.y=(2-x)2;C.y=-(x 2+4)D.y=-x 2+169.若y=(2-m)是二次函数,则m 等于( )A.±2B.2C.-2D.不能确定三、解答题10.分别说出下列函数的名称:(1)y=2x-1 (2)y=-3x 2, (3)y= (4)y=3x-x 2 (5)y=x11、分别说出下列二次函数的二次项系数、一次项系数和常数项: (1)d=n 2-n , (2)y=1-x 2, (3)y=-x(x-3)12、 二次函数y=ax 2+c 中,当x=3时,y=26 ;当x=2时,y=11 ;则当x=5时, y= __ .13、已知一个直角三角形的两条直角边的和为10cm 。

初中数学专训:二次函数的图象和性质60题(含答案)

初中数学专训:二次函数的图象和性质60题(含答案)

2022年10月03日二次函数的图象一.选择题(共42小题)1.已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.42.二次函数y=﹣x2+bx+c的图象如图所示,下列说法正确的是()A.b<0,c>0B.b>0,c>0C.b>0,c<0D.b<0,c<0 3.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣1,交y轴于点(0,﹣1),有如下结论:①abc<0;②b﹣2a=0;③若A(﹣3,y1),B(,y2)在该函数的图象上,则y1>y2;④关于x的不等式ax2+bx+c+1>0的解集为x>0或x<﹣2.其中结论正确的是()A.①②④B.①②③C.①③④D.①②4.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,点A在点B左侧,顶点在△MNR的边上移动,MN∥y轴,NR∥x轴,M点坐标为(﹣6,﹣2),MN=2,NR=7.若在抛物线移动过程中,点B横坐标的最大值为3,则a﹣b+c的最大值是()A.15B.18C.23D.325.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是抛物线上的两点,则y1<y2.其中正确的是()A.①②③B.①③C.①④D.①③④6.如图,坐标系的原点为O,点P是第一象限内抛物线y=x2﹣1上的任意一点,P A⊥x 轴于点A.则OP﹣P A值为()A.1B.2C.3D.47.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有()A.2个B.3个C.4个D.5个10.如图,二次函数y=ax2+bx+c图象对称轴是直线x=1,下列说法正确的是()A.a>0B.2a+b=0C.b2﹣4ac<0D.a+b+c<0 11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②a﹣b+c<0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论:①ac<0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2﹣4ac<0;⑤4a﹣2b+c>0;其中正确的个数是()A.1B.2C.3D.413.如图,将抛物线y=﹣x2+x+8图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,则新图象与直线y=﹣8的交点个数是()A.1B.2C.3D.414.如图是二次函数y=ax2+bx+c的部分图象,使y≥﹣1成立的x的取值范围是()A.x≥﹣1B.x≤﹣1C.﹣1≤x≤3D.x≤﹣1或x≥3 15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a﹣2b+c<0;④a+b+2c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③m(am+b)+b≤a;④(a+c)2<b2;其中正确结论的个数有()个.A.1个B.2个C.3个D.418.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<019.二次函数y=x2﹣2x﹣3的图象如图所示.当y>0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣1或x>3 20.地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时速度为0;②小球在空中经过的路程是40m;③小球的高度h=30m时,t=1.5s;④小球抛出3秒后,速度越来越快.其中正确的是()A.①④B.①②C.①②④D.②③21.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个22.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.423.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②a ﹣b+c>0;③4a+2b+c>0;④b2﹣4ac>0.其中正确的结论有()A.1个B.2个C.3个D.4个24.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点,点是函数图象上的两点,则y1>y2;④;⑤c﹣3a>0.其中正确结论有()A.2个B.3个C.4个D.5个25.如图,已知函数y1=kx+b与y2=ax2+bx+c的图象交于A(0,﹣1)、B(4,3)两点,当y1>y2时,x的取值范围是()A.x<0B.x>0C.x>4D.0<x<426.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()A.B.C.D.27.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论:①ac<0;②当x≥1时,y随x的增大而增大;③2a+b=0;④b2﹣4ac<0;⑤4a﹣2b+c>0,其中正确的个数是()A.1B.2C.3D.428.二次函数y=x2+2x的图象可能是()A.B.C.D.29.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.30.如图选项中,能描述函数y=ax2+b与y=ax+b,(ab<0)的图象可能是()A.B.C.D.31.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.32.二次函数y=ax2+bx+c(其中a,b,c是常数,a≠0)的图象如图所示,则下列判断正确的是()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>0 33.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A.(﹣1,0)和(5,0)B.(1,0)和(5,0)C.(0,﹣1)和(0,5)D.(0,1)和(0,5)34.已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.35.如图,抛物线y1=ax2+bx+c与直线y2=mx+n相交于点(3,0)和(0,3),若ax2+bx+c >mx+n,则x的取值范围是()A.0<x<3B.1<x<3C.x<0或x>3D.x<1减x>3 36.已知,在同一平面直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.37.一次函数y=ax+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.38.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=,且经过点(﹣1,0).下列结论:①3a+b=0;②若点(,y1),(3,y2)是抛物线上的两点,则y1<y2;③10b﹣3c=0;④若y≤c,则0≤x≤3.其中正确的有()A.1个B.2个C.3个D.4个39.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣2,下列结论正确的是()A.a<0B.c>0C.当x<﹣2时,y随x的增大而减小D.当x>﹣2时,y随x的增大而减小40.已知二次函数y=ax2+bx﹣c(a≠0),其中b>0、c>0,则该函数的图象可能为()A.B.C.D.41.如图,二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B两点,对称轴是直线x=1,下列说法正确的是()A.a>0B.当x>﹣1时,y的值随x值的增大而增大C.点B的坐标为(4,0)D.4a+2b+c>042.如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c <0.其中正确的个数为()A.4B.3C.2D.1二.填空题(共18小题)43.如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.44.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=2若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个根,且x1<x2,﹣1<x1<0,则x2的取值范围是.45.如图,已知二次函数y=﹣x2+m(m>0)的图象与x轴交于A、B两点,与y轴交于C 点.若AB=OC,则m的值是.46.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,DA⊥OB,垂足为A.已知OC =OB=8m,OA=2m,则该水流距水平面的最大高度AD为m.47.如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+c<mx+n的解集是.48.若二次函数y=ax2+bx+c(a、b、c为常数)的图象如图所示,则关于x的不等式a(x+2)2+b(x+2)+c<0的解集为.49.二次函数y=ax2+bx+c的部分图象如图所示,当y>0时,x的取值范围是.50.如图,已知二次函数y=ax2+bx+c(a≠0)的图象,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m<﹣3;④3a+b>0.其中正确结论的序号有.51.如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c<n的解集是.52.如图,二次函数y1=ax2+bx+c(a≠0)与一次函数y2=mx+n(m≠0)的图象相交于点A(﹣1,5)和B(5,2),则使不等式ax2+bx+c<mx+n成立的x的取值范围是.53.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,顶点为C,对称轴为直线x=1,给出下列结论:①abc<0;②若点C的坐标为(1,4),则△ABC的面积可以等于4;③M(x1,y1),N(x2,y2)是抛物线上两点(x1<x2),若x1+x2>2,则y1<y2;④若抛物线经过点(3,﹣1),则方程ax2+bx+c+1=0的两根为﹣1,3.其中正确结论的序号为.54.抛物线经过坐标系(﹣1,0)和(0,3)两点,对称轴x=1,如图所示,则当y<0时,x的取值范围是.55.如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(3,0),对称轴为直线x=1,则方程cx2+bx+a=0的两个根为.56.如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣2,﹣3),B(3,q)两点,则不等式ax2﹣mx+c<n的解集是.57.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,与x轴的一个交点为A(﹣1,0),点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过A,B两点,根据图象,则满足不等式(x+2)2+m≤kx+b的x的取值范围是.58.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则关于x的一元二次方程ax2+bx+c =0(a≠0)的根为.59.如图,抛物线y=ax2﹣2ax+3与y轴交于点C,则不等式ax2﹣2ax>0的解集是.60.如图是二次函数y=x2+bx+c的图象,该函数的最小值是.2022年10月03日二次函数的图象参考答案与试题解析一.选择题(共42小题)1.已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴无交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线开口向上,则a>0,故正确;②由图象可知:抛物线与x轴无交点,即Δ<0∴Δ=b2﹣4ac<0,故错误;③由图象可知:抛物线过点(1,1),(3,3),即当x=1时,y=a+b+c=1,当x=3时,ax2+bx+c=9a+3b+c=3,∴8a+2b=2,即b=1﹣4a,∴4a+b=1,故正确;④∵点(1,1),(3,3)在直线y=x上,由图象可知,当1<x<3时,抛物线在直线y=x的下方,∴ax2+(b﹣1)x+c<0的解集为1<x<3,故正确;故选:C.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.二次函数y=﹣x2+bx+c的图象如图所示,下列说法正确的是()A.b<0,c>0B.b>0,c>0C.b>0,c<0D.b<0,c<0【分析】由抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断a,b,c的符号.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴在y轴左侧,∴b<0,∵抛物线与y轴交点在x轴上方,∴c>0,故选:A.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.3.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣1,交y轴于点(0,﹣1),有如下结论:①abc<0;②b﹣2a=0;③若A(﹣3,y1),B(,y2)在该函数的图象上,则y1>y2;④关于x的不等式ax2+bx+c+1>0的解集为x>0或x<﹣2.其中结论正确的是()A.①②④B.①②③C.①③④D.①②【分析】根据抛物线开口方向,对称轴位置,抛物线与y轴交点位置可判断①②,根据点A,B到对称轴的距离及抛物线开口方向可判断③,由抛物线与y轴的交点及开口方向可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,∵抛物线与y轴交点为(0,﹣1),∴c=﹣1∴abc<0,①正确,∵b=2a,∴b﹣2a=0,②正确.∵A(﹣3,y1)到对称轴的距离小于B(,y2)到对称轴的距离,抛物线开口向上,∴y1<y2,③错误.∵抛物线与y轴的交点为(0,﹣1),抛物线对称轴为直线x=﹣1,∴抛物线与x轴另一交点坐标为(﹣2,﹣1),∴不等式ax2+bx+c+1>0的解集为x>0或x<﹣2,④正确.故选:A.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.4.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,点A在点B左侧,顶点在△MNR的边上移动,MN∥y轴,NR∥x轴,M点坐标为(﹣6,﹣2),MN=2,NR=7.若在抛物线移动过程中,点B横坐标的最大值为3,则a﹣b+c的最大值是()A.15B.18C.23D.32【分析】当a=﹣1时,y=a﹣b+c,所以当抛物线顶点在M上时满足题意,抛物线顶点在R上时,由点B坐标可得y=a(x﹣1)2﹣4中a的值,然后可得抛物线顶点在M上时的解析式,将x=﹣1代入求解.【解答】解:∵M点坐标为(﹣6,﹣2),MN=2,∴点N坐标为(﹣6,﹣4),∵NR=7,∴点R坐标为(1,﹣4),当抛物线顶点在R上时,y=a(x﹣1)2﹣4,由题意得此时点B坐标为(3,0),将(3,0)代入y=a(x﹣1)2﹣4得0=4a﹣4,解得a=1,当抛物线顶点在M上时,抛物线解析式为y=(x+6)2﹣2,将x=﹣1代入y=(x+6)2﹣2得y=52﹣2=23,故选:C.【点评】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数的顶点式,掌握待定系数法求函数解析式.5.如图所示是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是抛物线上的两点,则y1<y2.其中正确的是()A.①②③B.①③C.①④D.①③④【分析】根据二次函数的开口方向,与x轴交点的个数,与y轴交点的位置、对称轴的位置即可判断.【解答】解:①∵对称轴为x=﹣1,∴﹣=﹣1,∴b﹣2a=0,故①正确;由于对称轴为x=﹣1,∴(2,0)的对称点为(﹣4,0)∴当﹣4<x<2时,y>0,令x=﹣2代入y=ax2+bx+c∴y=4a﹣2b+c>0,故②错误令x=2代入y=ax2+bx+c,∴4a+2b+c=0,∵b=2a,∴c=﹣4a﹣2b=﹣4a﹣4a=﹣8a,令x=﹣1代入y=ax2+bx+c,∴y=a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确,∵对称轴为x=﹣1,∴(﹣3,y1)关于x=﹣1的对称点为(1,y1)∵x>﹣1时,y随着x的增大而减少,∴当1<时,∴y1>y2,故④错误,故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用抛物线的图象来判断待定系数a、b、c之间的关系,本题属于中等题型.6.如图,坐标系的原点为O,点P是第一象限内抛物线y=x2﹣1上的任意一点,P A⊥x 轴于点A.则OP﹣P A值为()A.1B.2C.3D.4【分析】先设P点坐标为(a,a2﹣1),再根据勾股定理计算出OP,然后计算OP﹣P A.【解答】解:设P点坐标为(a,a2﹣1),则OA=a,P A=a2﹣1,∴OP===a2+1,∴OP﹣P A=a2+1﹣(a2﹣1)=2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了勾股定理.7.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴以及抛物线与y轴的交点,即可判断①;由对称轴改善得到b=﹣2a代入a﹣b+c<0中得3a+c<0,即可判断②;由x=﹣1时对应的函数值y<0,可得出a﹣b+c<0,得到a+c<b,x=1时,y>0,可得出a+b+c>0,得到|a+c|<|b|,即可得到(a+c)2﹣b2<0,即可判断③;由对称轴为直线x=1,即x=1时,y有最大值,即可判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,所以①正确;②当x=﹣1时,y<0,∴a﹣b+c<0,∵﹣=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c<0中得3a+c<0,所以②错误;③当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,当x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最大值为a+b+c,∴a+b+c≥am2+mb+c,即a+b≥m(am+b),所以④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【分析】①由顶点坐标设出抛物线解析式,将点(8,0)代入解析式求解.②由图象开口向下,对称轴为直线x=2,求出点A,B距离对称轴的距离求解.③由图象的对称性可得,抛物线与x轴两交点关于直线x=2对称,由中点坐标公式求解.④由图象中(0,8),(2,9),(8,0)可得y的取值范围.【解答】解:①由图象顶点(2,9)可得y=a(x﹣2)2+9,将(8,0)代入y=a(x﹣2)2+9得0=36a+9,解得a=﹣,∴y=﹣(x﹣2)2+9=y=﹣x2+x+8,故①错误.②∵5.5﹣2>2﹣(﹣1),点A距离对称轴距离大于点B距离对称轴距离,∴m<n,故②正确.③∵图象对称轴为直线x=2,且抛物线与x轴一个交点为(8,0),∴图象与x轴的另一交点横坐标为2×2﹣8=﹣4,故③正确.④由图象可得当x=0时y=8,x=5.5时y=m,x=2时y=9,∴0<x<5.5时,m<y≤9.故④错误.故选:C.【点评】本题考查二次函数的性质,解题关键是熟练掌握二次函数的性质,掌握二次函数与不等式的关系.9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b+c>m(am+b)+c(其中m≠).正确的结论有()A.2个B.3个C.4个D.5个【分析】抛物线开口向下,且交y轴于正半轴及对称轴为x=,推导出a<0,b>0、c >0以及a与b之间的关系:b=﹣a;根据二次函数图象经过点(2,0),可得出0=4a+2b+c;再由二次函数的对称性,当a<0时,距离对称轴越远x所对应的y越小;由抛物线开口向下,对称轴是直线x=,可知当x=时,y有最大值.【解答】解:∵抛物线开口向下,且交y轴于正半轴,∴a<0,c>0,∵对称轴x=﹣=,即b=﹣a,∴b>0,∴abc<0,故①正确;∵二次函数y=ax2+bx+c(a≠0)的图象过点(2,0),∴0=4a+2b+c,故③不正确;又可知b=﹣a,∴0=﹣4b+2b+c,即﹣2b+c=0,故②正确;∵抛物线开口向下,对称轴是直线x=,且=1,=2,∴y1>y2,故选④不正确;∵抛物线开口向下,对称轴是直线x=,∴当x=时,抛物线y取得最大值y max==,当x=m时,y m=am2+bm+c=m(am+b)+c,且m≠,∴y max>y m,故⑤正确,综上,结论①②⑤正确,故选:B.【点评】本题考查二次函数图象与系数的关系及二次函数图象上点的坐标特征,需要充分掌握二次函数各系数的意义,以及它们跟二次函数图象之间的联系.10.如图,二次函数y=ax2+bx+c图象对称轴是直线x=1,下列说法正确的是()A.a>0B.2a+b=0C.b2﹣4ac<0D.a+b+c<0【分析】由抛物线的开口方向判断a与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵抛物线的开口向下,∴a<0.故A错误;∵x=﹣=1,∴2a+b=0,故B正确.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故C错误;当x=1时,y>0,即a+b+c>0,故D错误;故选:B.【点评】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握.熟练掌握二次函数的性质是解题的关键.11.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②a﹣b+c<0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】由二次函数图象的性质逐一判断.【解答】解:开口向上则a>0,与y轴交点在原点下方,c<0,故①正确;对称轴为x=1,与x轴一个交点是(4,0),则另一个交点为(﹣2,0),则点(﹣1,a ﹣b+c)在x轴下方,故②正确;x>2时,图象在对称轴右侧,开口向上,y随x的增大而增大,故③正确;图象与x轴有两个交点,则关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,故④正确;故选:D.【点评】本题考查二次函数图象的性质,观察图象的对称轴、与x轴y轴交点位置是解题重点.12.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论:①ac<0;②当x≥1时,y随x的增大而减小;③2a+b=0;④b2﹣4ac<0;⑤4a﹣2b+c>0;其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的开口方向及与y轴交点的位置,即可判断①;由二次函数的性质即可判断②;由抛物线对称轴为直线x=1,即可得出b=﹣2a,进而可得出2a+b=0,即可判断③;④由抛物线与x轴的交点情况即可判断④;⑤由当x=﹣2时,y>0可得出4a﹣2b+c>0,即可判断⑤.【解答】解:∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x≥1时,y随x的增大而增大,结论②错误;∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,结论③正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,结论④错误;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,结论⑤正确.故选:C.【点评】本题考查了二次函数图象与系数的关系以及二次函数的性质,逐一分析五条结论的正误是解题的关键.13.如图,将抛物线y=﹣x2+x+8图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,则新图象与直线y=﹣8的交点个数是()A.1B.2C.3D.4【分析】根据已知条件得到抛物线y=﹣x2+x+8与y轴的交点为(0,8),根据轴对称的性质得到新图象与y轴的交点坐标为(0,﹣8),于是得到结论.【解答】解:如图,∵y=﹣x2+x+8中,当x=0时,y=8,∴抛物线y=﹣x2+x+8与y轴的交点为(0,8),∵将抛物线y=﹣x2+x+8图象中x轴上方的部分沿x轴翻折到x轴下方,图象的其余部分不变,∴新图象与y轴的交点坐标为(0,﹣8),∴新图象与直线y=﹣8的交点个数是4个,故选:D.【点评】本题考查了二次函数图象与几何变换,二次函数图形上点的坐标特征,正确的理解题意是解题的关键.14.如图是二次函数y=ax2+bx+c的部分图象,使y≥﹣1成立的x的取值范围是()A.x≥﹣1B.x≤﹣1C.﹣1≤x≤3D.x≤﹣1或x≥3【分析】观察函数图象在y=﹣1上和上方部分的x的取值范围便可.【解答】解:由函数图象可知,当y≥﹣1时,二次函数y=ax2+bx+c不在y=﹣1下方部分的自变量x满足:﹣1≤x≤3,故选:C.【点评】本题考查二次函数的图象、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个【分析】由图象可求,a<0;由对称轴可求b=﹣2a;由函数经过点(﹣1,0),可求c =﹣3a;由图象可知抛物线与x轴有两个不同的交点,Δ=b2﹣4ac>0;由图象可知,当x=1时,函数有最大值1;结合这些所求即可判定每一个结论.【解答】解:∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵经过点(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∴y=ax2+bx+c=a(x2﹣2x﹣3),由图象可知,a<0;①将点(﹣,y1)和(2,y2)分别代入抛物线解析式可得y1=﹣a,y2=﹣3a,∴y1<y2;②由图象可知,顶点在第一象限,开口向下的二次函数图象与x轴有两个不同的交点,∴Δ=b2﹣4ac>0;③由图象可知,当x=1时,函数有最大值1,∴对任意m,则有am2+bm+c<a+b+c,∴m(am+b)<a+b;④==﹣3;∴①②③④正确,故选:A.【点评】本题考查二次函数的性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a﹣2b+c<0;④a+b+2c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=﹣2时的函数值可判断③,当x=1时的函数值可判断④,可得出答案.【解答】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<﹣<1,∴b>0,且b<﹣2a,∴abc<0,2a+b<0,故①不正确,②正确,∵当x=﹣2时,y<0,当x=1时,y>0,∴4a﹣2b+c<0,a+b+c>0,∴a+b+2c>0,故③④都正确,综上可知正确的有②③④,故选:B.【点评】主要考查图象与二次函数系数之间的关系,解题关键是注意掌握数形结合思想的应用.17.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③m(am+b)+b≤a;④(a+c)2<b2;其中正确结论的个数有()个.A.1个B.2个C.3个D.4【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵﹣=﹣1,∴b=2a,∴3b+2c<0,∴②正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m代入得:y=am2+bm+c≤a﹣b+c,∴am2+bm+b≤a,即m(am+b)+b≤a,∴③正确;∵a+b+c<0,a﹣b+c>0,∴(a+c+b)(a+c﹣b)<0,则(a+c)2﹣b2<0,即(a+c)2<b2,故④正确;故选:D.【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c =0的解的方法,同时注意特殊点的运用.18.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0【分析】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c=0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c <0.【解答】解:A.∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B.∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C.∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D.∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.【点评】本题考查了二次函数的图象、性质,二次函数图象与系数的关系,主要考查学生的观察图形的能力和辨析能力,题目比较好,并且是一道比较容易出错的题目.19.二次函数y=x2﹣2x﹣3的图象如图所示.当y>0时,自变量x的取值范围是()A.﹣1<x<3B.x<﹣1C.x>3D.x<﹣1或x>3【分析】求出函数图象与x轴的交点坐标,再根据函数图象的特征判断出y>0时,自变量x的取值范围.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.结合图象可见,x<﹣1或x>3时,y>0.故选:D.【点评】本题考查了二次函数的图象,求出函数与x轴的交点坐标并结合函数的图象是解答此类题目的关键.20.地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时速度为0;②小球在空中经过的路程是40m;③小球的高度h=30m时,t=1.5s;④小球抛出3秒后,速度越来越快.其中正确的是()A.①④B.①②C.①②④D.②③【分析】根据函数的图象中的信息判断即可.【解答】解:①小球抛出3秒时达到最高点即速度为0;故①正确;②由图象知小球在空中达到的最大高度是40m;故②错误;③设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故③错误;④小球抛出3秒后速度越来越快;故④正确;故选:A.【点评】本题考查了二次函数的应用,解此题的关键是正确的理解题意,属于中考基础题,常考题型.21.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个【分析】由图象可知a<0,c>0,由对称轴得b=2a<0,则abc>0,故①错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0,得②正确;由x=﹣1时,y有最大值,得a﹣b+c ≥am2+bm+c,得③错误;由题意得二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2),另一个交点为(1,﹣2),即x1=1,x2=﹣3,进而得出④正确,即可得出结论.【解答】解:由图象可知:a<0,c>0,,∴b=2a<0,∴abc>0,故①abc<0错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0,∴3a<﹣c,故②3a<﹣c正确;∵x=﹣1时,y有最大值,∴a﹣b+c≥am2+bm+c(m为任意实数),即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2),∵抛物线的对称轴为直线x=﹣1,∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2),即x1=1,x2=﹣3,∴2x1﹣x2=2﹣(﹣3)=5,故④正确.所以正确的是②④;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).22.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.4。

二次函数图像和性质习题精选(含答案及解析)

二次函数图像和性质习题精选(含答案及解析)

二次函数图像和性质习题精选一.选择题(共30小题)1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.2.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.4.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个6.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=D.当﹣1<x<2时,y>0C.当x<,y随x的增大而减小7.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或28.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.39.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1 D.当x=﹣3时,y的值小于012.设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤313.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A.h=m B.k=n C.k>n D.h>0,k>014.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()A.3B.2C.1D.015.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c<0B.当x=1时,y>0C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大16.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C.1D.217.下列图中阴影部分的面积相等的是()A.①②B.②③C.③④D.①④18.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>219.已知:二次函数y=x2﹣4x﹣a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=320.下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是()x 3.3 3.4 3.5 3.6y ﹣0.06 ﹣0.02 0.03 0.09A.3.25 B.3.35 C.3.45 D.3.5521.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根A.x>2 B.x<﹣2 C.x>0 D.﹣2<x<823.在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y1有最大值1、没有最小值;②y1有最大值1、最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;⑤若y2=2x+4,则y1≤y2.其中正确的个数是()A.2B.3C.4D.524.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 1 3 4 …y …0 4 6 4 0 …根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()A.1B.2C.3D.425.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;A.①②④B.①②⑤C.①③⑤D.②④⑤27.已知二次函数y=x2+2(a﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()A.a≥﹣5 B.a≤﹣5 C.a≥﹣3 D.a≤﹣328.如图,平行于y轴的直线l被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平方单位.A.3B.4C.6D.无法可求29.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4B.3C.2D.130.如图,已知抛物线,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x 值是或.其中正确的是()A.①③B.②④C.①④D.②③二次函数图像和性质习题精选(含答案)参考答案与试题解析一.选择题(共30小题)1.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a 的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.2.(2014•北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.解答:解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,B选项图象符合.故选:B.点评:本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.3.(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.4.(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置5.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).专题:图表型.分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解答:解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.6.(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.D.当﹣1<x<2时,y>0当x<,y随x的增大而减小考点:二次函数的性质.专题:数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.7.(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c 的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或2考点:二次函数的性质.专题:数形结合;分类讨论;方程思想.分析:分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.解答:解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或1或2.故选:D.点评:考查了二次函数的性质,本题涉及分类思想和方程思想的应用.8.(2014•淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.9.(2013•徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)考点:二次函数的性质.专题:压轴题.分析:根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.解答:解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选B.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c=0(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当x<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(2012•济南)如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1 D.当x=﹣3时,y的值小于0考点:二次函数的图象;二次函数的性质.专题:压轴题.分析:根据图象的对称轴的位置、增减性及开口方向直接回答.解答:解:A、由图象知,点(1,1)在图象的对称轴的左边,所以y的最大值大于1,不小于0;故本选项错误;B、由图象知,当x=0时,y的值就是函数图象与y轴的交点,而图象与y轴的交点在(1,1)点的左边,故y<1;故本选项错误;C、对称轴在(1,1)的右边,在对称轴的左边y随x的增大而增大,∵﹣1<1,∴x=﹣1时,y的值小于x=1时,y的值1,即当x=﹣1时,y的值小于1;故本选项错误;D、当x=﹣3时,函数图象上的点在点(﹣2,﹣1)的左边,所以y的值小于0;故本选项正确.故选D.点评:本题主要考查了二次函数图象上点的坐标特征.解答此题时,需熟悉二次函数图象的开口方向、对称轴、与x轴的交点等知识.12.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤3考点:二次函数的性质.专题:压轴题.分析:因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c的取值范围.解答:解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.点评:本题考查了二次函数的增减性,解题的关键是由给出的条件得到抛物线过(1,0),再代入函数的解析式得到一次项系数和常数项的关系.13.(2009•新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A.h=m B.k=n C.k>n D.h>0,k>0考点:二次函数的图象.专题:压轴题.分析:借助图象找出顶点的位置,判断顶点横坐标、纵坐标大小关系.解答:解:根据二次函数解析式确定抛物线的顶点坐标分别为(h,k),(m,n),因为点(h,k)在点(m,n)的上方,所以k=n不正确.故选:B.点评:本题是抛物线的顶点式定义在图形中的应用.14.(2009•丽水)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的性质.分析:根据抛物线的性质解题.解答:解:①抛物线开口向下,a<0,所以①错误;②抛物线是关于对称轴对称的轴对称图形,所以②该函数的图象关于直线x=1对称,正确;③当x=﹣1或x=3时,函数y的值都等于0,也正确.故选B.点评:本题考查了抛物线的开口方向,轴对称性和与x轴的交点等知识.15.(2009•南昌)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c<0B.当x=1时,y>0C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大考点:二次函数的性质.专题:压轴题.分析:根据抛物线的形状与抛物线表达式系数的关系,逐一判断.解答:解:A、抛物线开口向上,a>0,抛物线与y轴交于正半轴,c>0,所以ac>0,错误;B、由图象可知,当x=1时,y<0,错误;C、方程ax2+bx+c=0(a≠0)有一个根小于1,一个根大于1,错误;D、存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大,正确.故选D.点评:本题考查抛物线的形状与抛物线表达式系数的关系,涉及的知识面比较广.16.(2008•仙桃)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C.1D.2考点:二次函数的图象.专题:压轴题.分析:由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.解答:解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.点评:巧妙利用了抛物线的对称性.17.(2007•烟台)下列图中阴影部分的面积相等的是()A.①②B.②③C.③④D.①④考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:压轴题.分析:根据坐标系的点的坐标特点,分别求出三角形的底和高,计算面积,再比较.解答:解:①与坐标轴的两个交点为(0,2)(2,0),阴影部分的面积为2×2÷2=2;②当x=1时,y=3,阴影部分的面积为1×3÷2=1.5;③与x轴的两个交点的横坐标为﹣1,1,两点间的距离为:1﹣(﹣1)=2,与y轴的交点为(0,﹣1).阴影部分的面积为2×1÷2=1;④当x=1时,y=4,阴影部分的面积为1×4÷2=2.①④面积相等.故选D.点评:解决本题的关键是根据各函数的特点得到相应的三角形的边以及边上的高.18.(2007•达州)已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>2考点:二次函数的图象.专题:压轴题.分析:先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y>0时,x的取值范围.解答:解:因为抛物线过点(2,0),对称轴是x=﹣1,根据抛物线的对称性可知,抛物线必过另一点(﹣4,0),因为抛物线开口向下,y>0时,图象在x轴的上方,此时,﹣4<x<2.故选B.点评:解答本题,利用二次函数的对称性,关键是判断图象与x轴的交点,根据开口方向,形数结合,得出结论.19.(2007•泰州)已知:二次函数y=x2﹣4x﹣a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=3考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点;二次函数与不等式(组).专题:压轴题.分析:A、当x<1时,在对称轴右侧,由此可以确定函数的单调性;B、若图象与x轴有交点,即△=16+4a≥0,利用此即可判断是否正确;C、当a=3时,不等式x2﹣4x+a<0的解集可以求出,然后就可以判断是否正确;D、根据平移规律可以求出a的值,然后判断是否正确.解答:解:二次函数为y=x2﹣4x﹣a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故选项正确;B、若图象与x轴有交点,即△=16+4a≥0则a≥﹣4,故选项错误;C、当a=3时,不等式x2﹣4x+a<0的解集是1<x<3,故选项正确;D、原式可化为y=(x﹣2)2﹣4﹣a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3﹣a.函数过点(1,﹣2),代入解析式得到:a=3.故选项正确.故选B.点评:此题主要考查了二次函数的性质与一元二次方程之间的关系,以及图象的平移规律.这些性质和规律要求掌握.20.(2009•塘沽区一模)下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是()x 3.3 3.4 3.5 3.6y ﹣0.06 ﹣0.02 0.03 0.09A.3.25 B.3.35 C.3.45 D.3.55考点:图象法求一元二次方程的近似根.分析:把三点代入解方程式,则代入y等于0时,x的值是多少即可.解答:解:代入各点坐标解得y=0.5x2﹣2.95x+4.23解得x=3.47左右则C最符合,故选C.点评:本题考查了一元二次方程的近似根,代入求近似值,再进行对比则最接近的即可.21.(2010•徐汇区一模)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根考点:图象法求一元二次方程的近似根.专题:计算题.分析:结合图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),借助(0,1)两点可求出二次函数解析式,从而得出抛物线的性质.解答:解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C.点评:此题主要考查了二次函数解析式的求法,以及由解析式求函数与坐标轴的交点以及一元二次方程根的判别式的应用.22.(2013•沙湾区模拟)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1<y2成立的x的取值范围是()A.x>2 B.x<﹣2 C.x>0 D.﹣2<x<8考点:二次函数的性质.分析:根据两函数交点坐标得出,能使y1<y2成立的x的取值范围即是图象y2在图象y1上面是x的取值范围,即可得出答案.解答:解:∵二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2),∵结合图象,∴能使y1<y2成立的x的取值范围是:﹣2<x<8,故选:D.点评:此题主要考查了利用函数图象判定两函数的大小关系,此题型是中考中考查重点也是难点,同学们应熟练掌握.23.(2012•北辰区一模)在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y1有最大值1、没有最小值;②y1有最大值1、最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;⑤若y2=2x+4,则y1≤y2.其中正确的个数是()A.2B.3C.4D.5考点:二次函数的性质;二次函数的图象.专题:数形结合.分析:根据二次函数的性质,结合图象可判断①②③;根据二次函数与一元二次方程的关系可判断④;求出y2=2x+4与两坐标轴的交点画出直线y=2x+4,求出抛物线的解析式,根据y2﹣y1的符号即可判断出⑤.解答:解:由图象可知,在﹣3≤x≤0范围内,y1有最大值1、最小值﹣3,故①错误,②正确;由图象可知,当﹣3≤x<﹣1时,y1随x的增大而增大,当﹣1<x<0时,y1随x的增大而减小,故③错误;由于y1的最大值是1,所以y1=ax2+bx+c与y=2没有交点,即方程ax2+bx+c=2无解,故④正确;如图所示,由于y2=2x+4经过点(0,4),(﹣2,0),由图可知,二次函数(a≠0)中,当x=1时,y=﹣1;x=﹣2时,y=0,所以,解得,故此二次函数的解析式为y1=﹣x2﹣2x,所以y2﹣y1=2x+4+x2+2x=(x+2)2,因为=(x+2)2≥0,所以y1≤y2,故⑤正确.故选B.点评:本题考查的是二次函数的性质,能利用数形结合求出不等式的解集是解答此题的关键.24.(2011•苏州模拟)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 1 34…y …0 4 6 4 0 …根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()A.1B.2C.3D.4考点:二次函数的性质.专题:计算题.分析:根据抛物线的对称性,抛物线的顶点坐标为(1,6),且函数值6为最大值,由此判断.解答:解:观察表格可知,抛物线的顶点坐标为(1,6),且抛物线开口向下,故①②③正确;∵抛物线与x轴的两个交点为(﹣2,0),(4,0),顶点坐标为(1,6),∴抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为×(4+2)×6=18,故④错误.其中正确说法是①②③.故选C.点评:本题考查了二次函数的性质.关键是由表格观察出抛物线的顶点坐标,开口方向及与x轴交点坐标.25.(2010•河北)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)考点:二次函数的性质.专题:综合题;压轴题.分析:已知抛物线的对称轴为x=2,知道A的坐标为(0,3),由函数的对称性知B点坐标.解答:解:由题意可知抛物线的y=x2+bx+c的对称轴为x=2,∵点A的坐标为(0,3),且AB与x轴平行,可知A、B两点为对称点,∴B点坐标为(4,3)故选D.点评:本题主要考查二次函数的对称性.26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤考点:二次函数的性质.专题:压轴题.分析:根据二次函数图象反映出的数量关系,逐一判断正确性.解答:解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选B.点评:主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.27.已知二次函数y=x2+2(a﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()A.a≥﹣5 B.a≤﹣5 C.a≥﹣3 D.a≤﹣3考点:二次函数的性质.分析:抛物线开口向上,由x≤4时,y随x增大而减小,可知对称轴x=1﹣a≥4,解不等式即可.解答:解:∵二次函数对称轴为直线x=1﹣a,开口向上,∴当x≤1﹣a时,y随x增大而减小,∴1﹣a≥4,解得a≤﹣3.故选D.点评:本题考查了二次函数的增减性.抛物线开口向上时,在对称轴左边,y随x的增大而减小,右边y随x的增大而增大;抛物线开口向下时,在对称轴左边,y随x的增大而增大,右边y随x的增大而减小.28.如图,平行于y轴的直线l被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平方单位.A.3B.4C.6D.无法可求考点:二次函数的性质.分析:由于抛物线y=0.5x2+1是y=0.5x2﹣1向上平移2个单位长度得到的,平行于y轴的直线l与2个函数图象的交点纵坐标是个定值2,通过截补法可知阴影部分的面积是6个单位长度.解答:解:抛物线y=0.5x2+1是y=0.5x2﹣1向上平移2个单位长度得到的,即|y1﹣y2|=2.当直线l向右平移3个单位时,阴影部分的面积是:2×3=6.故选C.点评:主要考查了函数图象动态变化中的不变量,本题的关键点是能看出阴影部分的面积通过截补法是个平行四边形.29.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4B.3C.2D.1考点:二次函数的性质.专题:计算题;压轴题.分析:解:通过计算发现,当O与C重合时,S△ABC=2,据此据此推断出以AB为底边的三角形的高,从图上找到点C1、C2,再作CC3∥AB,使得C3与C到AB的距离相等,若求出C的坐标,则存在C3点,使得以AB为底的三角形面积为2.解答:解:∵S△ABC=×2×2=2,可见,当O与C重合时,S△ABC=2,作CD⊥AB,∵AO=BO=2,。

初中数学二次函数的图像和性质习题精选

初中数学二次函数的图像和性质习题精选

初中数学 二次函数的图像和性质习题精选一填空1.二次函数2y ax =的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

2.抛物线y=-b 2x +3的对称轴是___,顶点是___。

3.抛物线y=-21(2)2x +-4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

4.化243y x x =++为y=243x x ++为y =a 2()x h -k +的形式是____,图像的开口向____,顶点是____,对称轴是____。

5.抛物线y=24x x +-1的顶点是____,对称轴是____。

二选择题1.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同2.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值3.在抛物线2y x =-上,当y <0时,x 的取值范围应为( )A .x >0B .x <0C .x ≠0D .x ≥04.对于抛物线2y x =与2y x =-下列命题中错误的是( )A .两条抛物线关于x 轴对称B .两条抛物线关于原点对称C .两条抛物线各自关于y 轴对称D .两条抛物线没有公共点5.抛物线22(1)3y x =+-的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)6.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )A .y=32(1)x --2B .y=32(1)x ++2C .y=32(1)x +-2D .y=-32(1)x +-27.二次函数2y ax =的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a 2(2)x -+3B .y=a 2(2)x --3C .y=a 2(2)x ++3D .y=a 2(2)x +-38.抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)9.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反10.函数y=a 2x +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )11.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=412.二次函数y=221x x --+图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.如果抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为( )A .0B .6C .3D .914.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-115.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限16.如图所示,满足a >0,b <0的函数y=2ax bx +的图像是( )17.通过配方变形,说出函数2288y x x =-+-的图像的开口方向,对称轴,顶点坐标,这个函数有最大值还是最小值?这个值是多少?18如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.19.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.20.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求出该二次函数图象的顶点坐标和对称轴;(3)在所给坐标系中画出二次函数y=x2+bx+c的图象.。

二次函数的性质精选题35道

二次函数的性质精选题35道

二次函数的性质精选题35道一.选择题(共10小题)1.对于二次函数y=﹣x2+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点2.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.或C.D.13.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤34.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3B.4C.5D.65.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是26.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣37.二次函数y=ax2+bx+c(a≠0)的大致图象如图,与x轴交点为(﹣1,0)和(2,0),关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣29.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)10.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)二.填空题(共18小题)11.二次函数y=x2﹣2x+3图象的顶点坐标为.12.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.13.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.14.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.15.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.16.对于实数p,q,且(p≠q),我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.17.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.18.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.19.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A 作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.20.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.21.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k 的值为.22.抛物线y=3(x﹣1)2+8的顶点坐标为.23.二次函数y=x2+2x﹣4的图象的对称轴是,顶点坐标是.24.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的有.25.已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为.26.已知抛物线y=+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为,P是抛物线y=+1上一个动点,则△PMF周长的最小值是.27.已知抛物线y=x2+mx+9的顶点在x轴上,则m的值为.28.抛物线y=x2﹣6x+1的顶点坐标是.三.解答题(共7小题)29.如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.30.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.31.如图,已知抛物线y=x2﹣(k+1)x+1的顶点A在x轴的负半轴上,且与一次函数y=﹣x+1交于点B和点C.(1)求k的值;(2)求△ABC的面积.32.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =﹣c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,求n .33.在平面直角坐标系xOy 中,抛物线G :y =mx 2+2mx +m ﹣1(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线:y =mx +m ﹣1(m ≠0).(1)当m =1时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长.(2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.34.在平面直角坐标系xOy 中,抛物线y =ax 2+bx 经过点(3,3).(1)用含a 的式子表示b ;(2)直线y =x +4a +4与直线y =4交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段AB 恰有一个公共点,直接写出a (a <0)的取值范围.35.小明根据学习函数的经验,对函数y =x 4﹣5x 2+4的图象与性质进行了探究. 下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x … ﹣2 ﹣10 1 2 …y … 4.3 3.2 0 ﹣﹣0 2.8 3.7 4 3.7 2.8 0 ﹣﹣m 3.2 4.3 …2.2 1.4 1.4 2.2其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程x4﹣5x2+4=0有个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1y2(填“>”、“<”或“=”);③若关于x的方程x4﹣5x2+4=a有4个互不相等的实数根,则a的取值范围是.。

中考数学-二次函数的图象和性质经典53例

中考数学-二次函数的图象和性质经典53例

中考数学二次函数的图象和性质经典53例第1题. 对于抛物线22y x =+和2y x =-的论断:(1)开口方向不同;(2)形状完全相同;(3)对称轴相同.其中正确的有( ) A .0个 B .1个 C . 2个 D .3个答案:D第2题. 下列关于抛物线221y x x =++的说法中,正确的是( ) A .开口向下B .对称轴是直线x =1C .与x 轴有两个交点D .顶点坐标是(-1,0)答案:D第3题. 二次函数y =ax 2+bx +c (a ≠0)的图象如图,a ,b ,c 的取值范围( ) A .a <0,b <0,c <0 B .a <0,b >0,c <0 C .a >0,b >0,c <0D .a >0,b <0,c <0答案:D第4题. 与抛物线224y x x =--关于y 轴对称的图象表示的函数关系式是( ) A .224y x x =-++ B .224y x x =++ C .224y x x =+- D .224y x x =-+答案:C第5题. 若抛物线2(1)221y m x mx m =-++-的图象的最低点的纵坐标为零,则m =_______.答案:35+第6题. 对于抛物线2(0)y ax bx c a =++≠,当顶点纵坐标等于_________时,顶点在x 轴上,此时抛物线与x 轴只有一个公共点,而a ≠0,所以,抛物线与x 轴只有一个公共点的条件是_________. 答案:0,4ac -b 2=0,且a ≠0第7题. 若抛物线22y x x m =++与x 轴只有一公共点,则m =_________.xyO第8题. 函数243y x x =+-的图象开口向_________,顶点坐标为__________ 答案:上,(-2,-7)第9题. 二次函数22y x =+的图象开口_____,对称轴是________,顶点坐标是_______. 答案:向上, y 轴,(0,2)第10题. 抛物线223y x x =+-与x 轴交点个数为________. 答案:2个第11题. 二次函数2(3)y x =-的图象向右平移3个单位,在向上平移1个单位,得到的图象的关系式是____.答案:21237y x x =-+或2(6)1y x =-+第12题. 抛物线2261y x x =-+-的顶点坐标为_________,对称轴为________. 答案:(32,72),x =32第13题. 作出下列函数的图象:222y x =- 答案:略第14题. 作出下列函数的图象:22y x =- 答案:略第15题. 用描点法画出下列二次函数的图象:2y x =答案:略第16题. 已知二次函数2y ax =的图象经过点A(-1,1)① 求这个二次函数的关系式; ② 求当x =2时的函数y 的值. 答案:2y x =,4y =第17题. 若抛物线2221y x mx m m =-+++的顶点在第二象限,则常数m 的取值范围是( )A .12m m <->或B .12m -<<C .10m -<<D .1m >第18题. 如下图,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A .x >3 B .x <3 C .x >1 D .x <1答案:C第19题. 二次函数243y x x =-+的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为( ) A .6 B .4 C .3 D .1答案:C第20题. 抛物线24y x =-与x 轴交于B 、C 两点,顶点为A ,则△ABC 的面积为( ) A 16 B 8 C 4 D 2答案:B第21题. 若抛物线21y a x =,22y a x =的形状相同,那么( )A .12a a =B .12a a =-C .|a 1|=|a 2|D .a 1与a 2的关系无法确定答案:C第22题. 为了备战世界杯,中国足球队在某次集训中,一队员在距离球门12米处的挑射,正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线c bx ax y ++=2(如图6),则下列结论:①a <601-;②601-<a <0; ③a -b +c >0;④0<b <-12a .其中正确的是( )A .①③B .①④C .②③D .②④答案:D第23题. 与抛物线242y x x =--关于x 轴对称的图象表示为( ) A .242y x x =++ B .242y x x =+-C .242y x x =-+D .242y ax x =--答案:A第24题. 若抛物线2y ax bx c =++全部在x 轴的下方,那么a _________0,同时,OXY 2.412b 2-4ac _________0.答案:<,<第25题. 把抛物线22y x =向右平移一个单位,在向下平移3个单位,得到的抛物线的解析式是_________. 答案:2241y x x =--第26题. 若点(2,-1)在抛物线2y ax =上,那么,当x =2时,y =_________答案:-1第27题. 抛物线2(0)y ax bx c a =++≠,关于x 轴对称的图象的关系式是_______________. 答案:2y ax bx c =--第28题. 抛物线22y x =和23y x =-中开口较大的是__________. 答案:22y x =第29题. 已知抛物线213y x =,另一条抛物线y 2的顶点为(2,5),且形状、大小与y 1相同,开口方向相反,则抛物线y 2的关系式为______________.答案:223127y x x =-+-第30题. 抛物线2y x k =-的顶点为P ,与x 轴交于A 、B 两点,如果△ABP 是正三角形,那么,k =_________. 答案:3第31题. 设二次函数2y ax bx c =++的图象开口向下,顶点在第二象限内. ①确定a ,b ,24b ac -的符号;②若此二次函数的图象经过原点,且顶点的横坐标与纵坐标互为相反数,顶点与原点的距离为32 答案:① a <0,b <0,b 2-4ac >0; ②2123y x x =--第32题. 抛物线226y x x m =-+与x 轴交于A 、B 两点,如果要求点A 在(0,0)与(1,0)之间,点B 在(2,0)与(3,0)之间,请确定m 的取值范围 答案:04m ≤≤第33题. 是否存在以y 轴为对称轴的抛物线,经过(3,-4)和(-3,4)两点,若存在,请写出抛物线的解析式;若不存在请说明理由. 答案:不存在.若存在以y 轴为对称轴的抛物线,经过(3,-4)和(-3,4)两点,必然也过他们的对称点(-3,-4)、(3,4)这样,抛物线的解析式便可以有两种形式,y =a (x +3)(x -3)+4和y =a (x +3)(x -3)-4,这样的a 不存在第34题. 若点P (1,a )和Q (-1,b )都在抛物线21y x =+上,则线段PQ 的长为_____ 答案:2第35题. 二次函数224y x x c =-+的值永远为正,则c 的取值范围是( )A .2c =B .4c =C .2c >D .4c >答案:C第36题. 二次函数2y ax bx c =++的图象如图,则点M (bc,a )在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限答案:D第37题. 若二次函数2y ax c =+,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( ) A .a c +B .a c -C .c -D .c答案:D第38题. 二次函数2()2(0)y a x m m a =-+≠的顶点在( ) A .2y x = B .2y x =- C .x 轴上 D .y 轴上答案:A第39题. 关于二次函数247y x x =+-的最大(小)值,叙述正确的是( ) A .当2x =时,函数有最大值B .当2x =时,函数有最小值C .当2x =-时,函数有最大值D .当2x =-时,函数有最小值 答案:D第40题. 若直线y =2y ax b =+不经过第三,第四象限,则抛物线2y ax bx c =++( ) A .开口向上,对称轴是y 轴 B .开口向下,对称轴是y 轴 C .开口向上,对称轴平行于y 轴 D .开口向下,对称轴平行于y 轴 答案:C第41题. 抛物线2(2)3y x =-+对称轴是( )A .直线3x =-B .直线3x =C .直线2x =-D .直线2x = 答案:D第42题. 已知函数215322y x x =---,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2<x 3,则对应的函数值的大小关系是( )A .y 3>y 2>y 1B .y 1>y 3>y 2C .y 2<y 3<y 1D .y 3<y 2<y 1 答案:A第43题. 下列关于抛物线221y x x =++的说法中,正确的是( ) A .开口向下 B .对称轴方程为x =1 C .与x 轴有两个交点 D .顶点坐标为(-1,0) 答案:D第44题. 函数2ax y =(a ≠0)的图象与a 的符号有关的是( ) A .对称轴 B .顶点坐标 C .开口方向 D .开口大小 答案:C第45题. 请你写出函数21)(+=x y 与12+=x y 具有一个共同性质为__________. 答案:图象都是抛物线,开口向上,都有最低点(或最小值)第46题. 试写出一个开口向上,对称轴为直线x=2,与y 轴的交点的坐标为(0,3)的抛物线的解析式____________________.答案:如243y x x =-+等 47题. 函数21(1)73y x =--的图象可以通过213y x =的图象向____移动______个单位,再向______移动____个单位后得到. 答案:右,1,下,7第48题. 已知二次函数26y x x m =-+的最小值为1,那么m 的值是 . 答案:10第49题. 由函数解析式画图象,一般按 、 、 三个步骤进行. 答案:列表,描点,连线第50题. 已知抛物线l 1:243y x x =-+(1)在平面直角坐标系中,画出抛物线243y x x =-+,并求出抛物线l 1的顶点关于y 轴对称的点的坐标;(2)已知抛物线l 2与抛物线l 1关于y 轴对称,求抛物线l 2的函数解析式. 答案:(1)图略,(-2,-1) (2)243y x x =++第51题. 已知二次函数2(2)(3)2y m x m x m =-++++的图象过点(0,5). (1)求m 的值,并写出二次函数的解析式; (2)求出二次函数图象的顶点坐标、对称轴 答案:(1)m =3,则265y x x =++ (2)顶点坐标为(-3,-4),对称轴3x =-第52题. 判断函数242+-=x x y 的图象是否经过第三象限?说明理由. 答案:不经过第三象限,当0<x 时, 04,02>->x x ,则042>-x x ,024>+-x x 即0242>+-=x x y ,故当点),(y x 的横坐标0<x 时,纵坐标y总是正数,也就是说横纵坐标不能同时为负数,因而该函数图象不可能经过第三象限第53题. 函数y ax b =+与2y ax bx c =++如图所示,则下列选项中正确的是( ) A .ab >0,c>0 B .ab <0,c>0 C .ab >0,c<0 D .ab <0,c<0答案:D。

2021中考数学 专项突破:二次函数的图象及性质(含答案)

2021中考数学 专项突破:二次函数的图象及性质(含答案)

2021中考数学专项突破:二次函数的图象及性质一、选择题(本大题共10道小题)1. 下列对二次函数y=x2-x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()x -10 1ax2 1ax2+bx+c 83A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y34. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<25. 已知二次函数y=ax2+bx+c的图象如图,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D .b <0,c >06. 若抛物线y =x 2-2x +3不动,将平面直角坐标系........xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为( )A. y =(x -2)2+3B. y =(x -2)2+5C. y =x 2-1D. y =x 2+47. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a +c <b ;④b 2-4ac >0,其中正确的个数是( ) A. 1 B. 2 C. 3 D. 48. 已知二次函数y =a (x -1)2+c 的图象如图,则一次函数y =ax +c 的图象大致是( )9. 函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c>0;②b +c +1=0;③3b +c +6=0;④当1<x<3时,x 2+(b -1)x +c<0.其中正确的结论有( )A .1个B .2个C .3个D .4个10. 如图是二次函数y =ax 2+bx +c 的图象,其对称轴为直线x =1,有下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-32,y 1),(103,y 2)是抛物线上的两点,则y 1<y 2.其中正确的结论是()A.①②B.②③C.②④D.①③④二、填空题(本大题共6道小题)11. 已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”“>”或“=”).12. 已知二次函数y=-(x-1)2+2,当t<x<5时,y随x的增大而减小,则实数t的取值范围是.13. 某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).14. 抛物线y=ax2+bx+c经过点A(-3,0),对称轴是直线x=-1,则a+b+c=________.15. 已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题(本大题共4道小题)17. 2019·天门在平面直角坐标系中,已知抛物线C:y=ax2+2x-1和直线l:y =kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.18. 如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B 的面积是△A′B′O面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出它的两条性质.19. 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图220. (2019·山东滨州)如图①,抛物线211482y x x =-++与y 轴交于点A ,与x 轴交于点,B C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离; ②当点P 到直线AD 的距离为52时,求sin PAD ∠的值.2021中考数学 专项突破:二次函数的图象及性质-答案一、选择题(本大题共10道小题)1. 【答案】C [解析] (1)∵二次函数y =x 2-x 的二次项系数为1>0,∴图象开口向上,可见A 选项错误;(2)∵对称轴为直线x =-b 2a =12,可见B 选项错误;(3)∵原点(0,0)满足二次函数解析式y =x 2-x ,∴抛物线经过原点,可见C 选项正确;(4)∵抛物线的开口向上,∴图象在对称轴右侧部分是上升的,可见D 选项错误.综上所述,选C.2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.4. 【答案】A [解析] 抛物线的对称轴是直线x =-2a2a =-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.5. 【答案】B[解析] ∵二次函数y =ax 2+bx +c 的图象开口向下,∴a <0.∵二次函数图象的对称轴x =-b2a >0,∴b >0.∵二次函数图象与y 轴交于负半轴,∴c <0.故选B.6. 【答案】C【解析】由抛物线y =x 2-2x +3得y =(x -1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y =(x -1+1)2+2-3=x 2-1.7. 【答案】C 【解析】∵图象开口向下,∴a <0,∵对称轴在y 轴右侧,∴a ,b异号,∴b>0,故①错误;∵图象与y轴交于x轴上方,∴c>0,故②正确;当x=-1时,a-b+c<0,则a+c<b,故③正确;图象与x轴有两个交点,则b2-4ac>0,故④正确.8. 【答案】B[解析] 根据二次函数的图象开口向上,得a>0,根据c是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选 B.9. 【答案】B10. 【答案】C[解析] ∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=-b2a=1,∴b=-2a>0.∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,∴①错误.∵b=-2a,∴2a+b=0,∴②正确.∵抛物线与x轴的一个交点的坐标为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点的坐标为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,∴③错误.∵点(-32,y1)到对称轴的距离比点(103,y2)到对称轴的距离远,∴y1<y2,∴④正确.故选C.二、填空题(本大题共6道小题)11. 【答案】>[解析]因为二次项系数为-1,小于0,所以在对称轴x=1的左侧,y随x的增大而增大;在对称轴x=1的右侧,y随x的增大而减小,因为a>2>1,所以y1>y2.故填“>”.12. 【答案】1≤t<5[解析]抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y的值随x值的增大而减小,因为t<x<5时,y随x的增大而减小,所以1≤t<5.13. 【答案】答案不唯一,如y=x214. 【答案】0[解析] ∵抛物线y=ax2+bx+c经过点A(-3,0),对称轴是直线x=-1,∴抛物线y=ax2+bx+c与x轴的另一交点的坐标为(1,0),∴a+b+c=0.15. 【答案】0<m<[解析]由y=x+m与y=-x2+2x联立得x+m=-x2+2x,整理得x 2-x +m=0,当有两个交点时,b 2-4ac=(-1)2-4m>0,解得m<. 当直线y=x +m 经过原点时与函数y=的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m 的取值范围为0<m<.16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共4道小题)17. 【答案】解:(1)∵点A (-3,-3),B (1,-1)在直线y =kx +b 上, ∴⎩⎨⎧k +b =-1,-3k +b =-3, 解得⎩⎪⎨⎪⎧k =12,b =-32,∴直线l 的解析式为y =12x -32.联立y =ax 2+2x -1与y =12x -32,则有2ax 2+3x +1=0, ∵抛物线C 与直线l 有交点, ∴Δ=9-8a ≥0且a ≠0, ∴a ≤98且a ≠0.(2)根据题意可得y =-x 2+2x -1. ∵a <0,∴抛物线开口向下,对称轴为直线x =1. ∵m ≤x ≤m +2时,y 有最大值-4,∴当y =-4时,有-x 2+2x -1=-4, ∴x =-1或x =3.①在x =1左侧,y 随x 的增大而增大,∴x =m +2=-1时,y 有最大值-4,∴m =-3; ②在对称轴x =1右侧,y 随x 的增大而减小, ∴x =m =3时,y 有最大值-4. 综上所述,m =-3或m =3. (3)①若a <0,当x =1时,y ≤-1, 即a +1≤-1,∴a ≤-2; ②若a >0,当x =-3时,y ≥-3, 即9a -7≥-3, ∴a ≥49.联立y =ax 2+2x -1与y =12x -32, 则有ax 2+32x +12=0, 由题意得Δ=94-2a >0, ∴a <98,∴a 的取值范围为49≤a <98或a ≤-2.18. 【答案】(1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0, 2).因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2. (2)S △A ′B ′O =1.如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3. 如图2,作PD ⊥OB ,垂足为D . 设点P 的坐标为 (x ,-x 2+x +2).232'1111(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形.2321113(2)(2)22222PDB S DB PD x x x x x ∆=⨯=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ∆=+=-+四边形梯形. 解方程-x 2+2x +2=3,得x 1=x 2=1. 所以点P 的坐标为(1,2).图2 图3 图4(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线. 考点伸展第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.'11'222PB O P S B O x x x ∆=⋅=⨯=. 22112(2)222PBO P S BO y x x x x ∆=⋅=⨯-++=-++.所以2'''2+2PB O PBO PB A D S S S x x ∆∆=+=-+四边形. 甚至我们可以更大胆地根据抛物线的对称性直接得到点P :作△A ′OB ′关于抛物线的对称轴对称的△BOE ,那么点E 的坐标为(1,2).而矩形EB ′OD 与△A ′OB ′、△BOP 是等底等高的,所以四边形EB ′A ′B 的面积是△A ′B ′O 面积的4倍.因此点E 就是要探求的点P .19. 【答案】(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G . 在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值. 在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图420. 【答案】 (1)当0x =时,4y =,则点A 的坐标为()0,4,当0y =时,2110482x x =-++,解得,124,8x x =-=,则点B 的坐标为()4,0-,点C 的坐标为()8,0,∴4OA OB ==,∴45OBA OAB ∠=∠=︒,∵将直线AB 绕点A 逆时针旋转90︒得到直线AD ,∴90BAD ∠=︒,∴45OAD =︒,∴45ODA ∠=︒,∴OA OD =,∴点D 的坐标为()4,0,设直线AD 的函数解析式为,y kx b =+440b k b =⎧⎨+=⎩,得14k b =-⎧⎨=⎩, 即直线AD 的函数解析式为4y x =-+;(2)作PN x ⊥轴交直线AD 于点N ,如图①所示,设点P 的坐标为211,482t t t ⎛⎫-++ ⎪⎝⎭,则点N 的坐标为(),4t t -+,∴2211134(4)8282PN t t t tt ⎛⎫=-++--+=-+ ⎪⎝⎭, ∴PN x ⊥轴,∴PN y ∥轴,∴45OAD PNH ∠=∠=︒,作PH AD ⊥于点H ,则90PHN ∠=︒, ∴2222213232292(6)82PH PN t t t t t ⎛⎫==-+=-+=--+ ⎪⎝⎭, ∴当6t =时,PH 取得最大值92,此时点P 的坐标为(56,2), 即当点P 到直线AD 的距离最大时,点P 的坐标是(56,2),最大距离是92; ②当点P 到直线AD 的距离为52时,如图②所示,则2232521644t t -+=,解得:122,10t t ==, 则1P 的坐标为(92,2),2P 的坐标为(10,)72-,当1P 的坐标为(92,2),则221917(20)42P A ⎛⎫=-+-= ⎪⎝⎭,∴125344sin 17P AD ∠==; 当2P 的坐标为(10,)72-,则222725(100)422P A ⎛⎫=-+--= ⎪⎝⎭,∴24sin 25102P AD ∠==; 由上可得,sin PAD ∠. 【名师点睛】本题是一道二次函数的综合性题目,关键在于设P 点的横坐标,最后将其转化成二次函数的最值问题,通过求解二次函数的最值问题来求解最短距离,难度系数较大,是一道特别好的题目,应当熟练的掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图象性质精选30题
★★★二次函数的图像抛物线的时候应抓住以下五点:
开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.
★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)
一般式:y=ax 2+bx+c ,三个点
顶点式:y=a (x -h )2+k ,顶点坐标(h ,k ),对称轴x=h
交点式:y=a(x- x 1)(x- x 2),与x 轴的两个交点坐标x 1,x 2,对称轴为2
21x x h += 顶点坐标(-,).
★★★a 、b 、c 作用分析
│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,
b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴
x=-<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=->0,即对称轴在y 轴右侧,
c•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0
时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.
1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为
2.二次函数的图象顶点坐标为(2,1),形状开口与抛物线y= - 2x 2相同,这个函数解析式为________。

3.(08绍兴)已知点11()x y ,,均在抛物线上,下列说法中正确的是( )
A .若,则
B .若,则
C .若,则
D .若,则
4.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大
★5.已知二次函数2)3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为
★6.若函数k h x y ---=2)(的顶点在第二象限,则h 0 ,k 0
2b a 2
44ac b a
-b 2b a
22()x y ,21y x =-12y y =12x x =12x x =-12y y =-120x x <<12y y >120x x <<12y y >
7.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )
(A )12 (B )11 (C )10 (D )9
8.不论x 为何值,函数y=ax 2+bx+c(a≠0)的值恒大于0的条件是( )
A.a>0,△>0
B.a>0, △<0
C.a<0, △<0
D.a<0, △<0
★9.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为
10.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是
11.若抛物线
22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a < C.1a ≥ D.1a ≤
12.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21
x+2上,求函数解析式。

★★13.y= ax 2+bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式
二次函数图象与系数关系+增减性
14.二次函数
c bx ax y +-=2,图象如右,则a,b,c 取值范围是______________________
15.已知y=ax 2+bx+c 的图象如下,
则:a____0、b___0、c___0、a+b+c____0,a-b+c__ 0、2a+b____0
b 2-4ac___0、4a+2b+
c 0
★16.二次函数
c bx ax y ++=2的图象如图所示.有下列结论: ①240b ac -<; ②0ab >; ③0a b c -+=;
④40a b +=; ⑤当2y =时,x 等于0.
⑥02=++c bx ax 有两个不相等的实数根
⑦22=++c bx ax 有两个不相等的实数根
⑧0102=-++c bx ax 有两个不相等的实数根
⑨42-=++c bx ax 有两个不相等的实数根
其中正确的是( )
17.小明从右边的二次函数
c bx ax y ++=2图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确的个数为( )
A.2 B.3
C.4 D.5
18.直已知y=ax 2+bx+c 中a<0,b>0,c<0 ,△<0,函数的图象过 象限。

19.若),41(),,45(),,413(321y C y B y A --为二次函数
245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )
A .
123y y y << B .213y y y << C .312y y y << D .132y y y <<
★20.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )
21.二次函数
c bx ax y ++=2的图象如图所示,则直线y bx c =+的图象不经过( ) A.第一象限
B.第二象限
C.第三象限 D.第四象限 22.已知二次函数y=a +bx+c,且a <0,a-b+c >0,则一定有( )
A >0 B=0
C<0 D≤0
2x 24b ac -24b ac -24b ac -24b ac
-
A. B.
C. D.
★★★23.(10包头)已知二次函数
的图象与轴交于点、,且,与轴的正半轴的交点在
的下方.下列结论:①;②;③;④.其中正确结论的个数是 个.
★★★24.(10 四川自贡)y=x 2+(1-a )x +1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )。

A .a=5
B .a≥5 C.a =3 D .a≥3
2抛物线与x 轴有两个交点A (2,0)B (-1,0),则ax 2+bx+c>0的解是____________; ax 2+bx+c<0的解是____________
26.已知二次函数y=x 2+mx+m-5,求证①不论m 取何值时,抛物线总与x 轴有两个交点;②当m 取何值时,抛物线与x 轴两交点之间的距离最短。

27.如果抛物线y=21
x 2-mx+5m 2与x 轴有交点,则m______
28.(大连)右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像 写出y 2≥y 1时,x 的取值范围_______.
29. (10山东潍坊)已知函数y 1=x 2与函数y 2=-1
2x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是( ).
A.-32<x <2 B .x >2或x <-32 C .-2<x <32 D . x <-2或x >3
2
30.(10山东日照)如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 .
2y ax bx c =++x (20)-,1(0)x ,112x <<y (02),420a b c -+=0a b <
<20a c +>210a b -+>。

相关文档
最新文档