高一数学不等式证明知识点

合集下载

高一数学必修一第二章第二课基本不等式

高一数学必修一第二章第二课基本不等式

高一数学必修一第二章第二课基本不等式摘要:一、基本不等式的概念与性质1.基本不等式的定义2.基本不等式的性质二、基本不等式的证明方法1.作差法2.替换法3.柯西-施瓦茨不等式三、基本不等式的应用1.求最值问题2.证明其他不等式四、练习与解答1.例题解析2.巩固练习正文:一、基本不等式的概念与性质在高中数学必修一第二章第二课中,我们学习了一个非常基础且重要的不等式——基本不等式。

基本不等式是指对于任意的实数a和b,都有a^2 + b^2 >= 2ab。

这个不等式在很多数学问题中都有广泛的应用,因此我们需要熟练掌握它的性质和证明方法。

二、基本不等式的证明方法1.作差法作差法是证明基本不等式最常用的方法。

具体操作如下:我们将a^2 + b^2 - 2ab分解因式,得到(a - b)^2。

因为一个数的平方一定大于等于0,所以(a - b)^2 >= 0,即a^2 + b^2 >= 2ab。

2.替换法替换法是将基本不等式中的a和b替换成其他表达式,从而简化证明过程。

常用的替换方法有柯西-施瓦茨替换和排序替换。

3.柯西-施瓦茨不等式柯西-施瓦茨不等式是基本不等式的一个推广,它是指对于任意的实数a1, a2, ..., an和b1, b2, ..., bn,都有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+ bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。

这个不等式在求解某些问题时,可以提供更强的工具。

三、基本不等式的应用1.求最值问题基本不等式可以用来求解一些最值问题,如求函数的最值、求解不等式的最值等。

2.证明其他不等式基本不等式是许多其他不等式的基础,如柯西不等式、排序不等式等。

通过基本不等式,我们可以证明这些不等式,从而进一步解决实际问题。

四、练习与解答1.例题解析我们来看一道例题:已知a + b = 2,求a^2 + b^2的最小值。

基本不等式知识点总结高一

基本不等式知识点总结高一

基本不等式知识点总结高一基本不等式知识点总结一、不等式的定义和性质不等式是数学中表示大小关系的一种符号方法。

不等式的定义如下:若两个数a、b满足条件a>b,则称a大于b,记作a>b;若a≠b 且a>b或a<b,则称a与b之间存在不等关系。

不等式的性质如下:1. 传递性:若a>b且b>c,则a>c。

2. 对称性:若a>b,则-b>-a。

3. 相反数性质:若a>b,且c>0,则 ac>bc;若a>b,且c<0,则 ac<bc。

4. 分解性质:若a>b,且c>0,则a+c>b+c。

5. 翻转性质:若a>b,且c<0,则-a<-b。

6. 加法性质:若a>b,则a+c>b+c。

7. 乘法性质:若a>b且c>0,则ac>bc;若a<b且c<0,则ac>bc。

二、基本不等式1. 加法不等式:若a>b,则a+c>b+c,其中c为任意实数。

2. 减法不等式:若a>b,则a-c>b-c,其中c为任意实数。

3. 乘法不等式:a) 正数乘法不等式:若a>b且c>0,则ac>bc。

b) 负数乘法不等式:若a>b且c<0,则ac<bc。

4. 除法不等式:a) 正数除法不等式:若a>b且c>0,则a/c>b/c。

b) 负数除法不等式:若a>b且c<0,则a/c<b/c。

5. 绝对值不等式:a) 若|a|<b,则-a<b<a。

b) 若|a|>b,则a<-b 或 a>b。

6. 平方不等式:a) 若a>b>0,则a^2>b^2。

b) 若a<b<0,则a^2>b^2。

三、解不等式的方法1. 加减法解法:对于不等式a+c>b+c,若c>0,则原不等式成立;若c<0,则原不等式不成立。

高一数学知识点不等式

高一数学知识点不等式

高一数学知识点不等式不等式是数学中的一个重要概念,它在高一数学学习中占据着重要的地位。

本文将讨论高一数学中的不等式知识点,包括不等式的基本概念、解不等式的方法等内容。

1.不等式的基本概念不等式是指包含不等号(>、<、≥、≤)的数学表达式。

它描述了两个数之间的相对大小关系。

在不等式中,我们称表达式的两边为左边和右边,其中,不等号左侧的表达式通常称为不等式的“左端”,不等号右侧的表达式通常称为不等式的“右端”。

2.不等式的表示形式不等式可以有多种表示形式,下面是一些常见的表示形式:- 一元一次不等式:形如ax+b>0的不等式,其中a和b为已知实系数,x为未知实数。

- 一元二次不等式:形如ax^2+bx+c>0的不等式,其中a、b和c为已知实系数,x为未知实数。

- 绝对值不等式:形如|ax+b|<c的不等式,其中a、b为已知实系数,c为已知正实数,x为未知实数。

3.不等式的解集表示解不等式是指找出满足不等式条件的数的集合。

解集可以使用不等式符号表示,也可以使用区间表示。

下面是一些常见的解集表示形式:- 不等式符号表示:例如,解集{x | x>2}表示满足不等式x>2的所有实数x的集合。

- 区间表示:例如,解集(-∞, 2)表示所有小于2的实数的集合。

4.不等式的性质和运算规则不等式有一些特殊的性质和运算规则,包括以下几点:- 不等式两边同时加(减)一个相同的数,不等式方向不变。

- 不等式两边同时乘(除)一个正数,不等式方向不变。

- 不等式两边同时乘(除)一个负数,不等式方向改变。

- 对于绝对值不等式,需要考虑绝对值的正负情况来确定解集。

5.不等式的解法方法解不等式的方法主要包括代入法、图像法和数轴法等。

在解题过程中,我们可以运用不等式的性质和运算规则,根据具体题目的要求采取不同的解题方法。

6.不等式的应用不等式在高一数学中有广泛的应用,常见的应用场景包括以下几个方面:- 解决实际问题中的数量关系,如寻找最大值、最小值等。

高一数学不等式证明知识点.doc

高一数学不等式证明知识点.doc

高一数学不等式证明知识点高一数学不等式证明知识点不等式公式如果 a,b 是正数,那么 (a+b)/2 ≥( 根号下 ab), 当且仅当 a=b 时,等号成立,我们称上述不等式为基本不等式。

若a,b ∈R,则 a 平方 +b 平方≥ 2ab 或 ab≤(a 平方 +b 平方 )/2.若 a,b ∈R,则 (a 平方 +b 平方 )/2 ≥[(a+b)/2] 的平方若 a,b ∈R※,则a+b>=2(根号ab) 或ab≤[(a+b)/2] 的平方高一数学不等式证明知识概要不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。

解决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,灵活运用常用的证明方法。

一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法 ( 简称为求差法 ) 和商值比较法 ( 简称为求商法 ) 。

(1)差值比较法的理论依据是不等式的基本性质:“a -b≥0a≥b;a - b≤0a≤b”。

其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体 ; ②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段 ; ③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

用范:当被的不等式两端是多式、分式或数式一般使用差比法。

(2)商比法的理依据是:“若 a,b∈R+,a/b ≥1a≥b;a/b ≤1a≤b”。

其一般步:①作商:将左右两端作商;② 形:化商式到最形式 ; ③判断商与 1 的大小关系,就是判定商大于 1 或小于 1。

高一数学不等式知识点总结

高一数学不等式知识点总结

高一数学不等式知识点总结一、要点精析1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。

其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。

其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。

应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。

其逻辑关系为:AB1B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。

用分析法证明AB的逻辑关系为:BB1B1B3…BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。

高一基本不等式知识点涵盖

高一基本不等式知识点涵盖

高一基本不等式知识点涵盖在高中数学学习中,不等式是一个非常重要的概念。

掌握不等式的基本知识点对于解决各类数学问题至关重要。

本文将对高一基本不等式知识点进行全面涵盖,帮助同学们更好地理解和应用不等式。

1. 不等式的定义不等式是数学中用不等号表示的一种关系。

常见的不等号包括大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)。

例如,a > b表示a大于b,a < b表示a小于b。

2. 不等式的性质(1)等号两侧加(减)相同的数,不等式的关系不变。

例如,如果a > b,则a + c > b + c。

(2)等号两侧乘(除)相同的正数,不等式的关系不变。

例如,如果a > b,则ac > bc(c > 0)。

(3)等号两侧乘(除)相同的负数,不等式的关系改变。

例如,如果a > b,则ac < bc(c < 0)。

(4)两个不等式相加(减),不等式的关系保持不变。

例如,如果a > b 且 c > d,则a + c > b + d。

(5)两个不等式相乘(除),不等式的关系无法确定。

例如,如果a > b 且 c > d,则ac和bd的大小关系无法确定。

3. 不等式的解集表示一元不等式的解集通常用数轴上的区间表示。

例如,对于不等式x > 3,其解集为x属于(3, +∞)。

4. 不等式的图像表示(1)一元不等式的图像表示是数轴上的一段区间。

例如,对于不等式x > 3,其图像表示为一个在数轴上从3开始的箭头。

(2)二元不等式的图像表示是二维平面上的一部分。

例如,对于不等式y > x,其图像表示为一条斜线,线上方的点属于不等式的解集。

5. 不等式的求解方法(1)根据不等式的性质进行变形求解。

例如,对于不等式2x - 3 > 5,我们可以先将其变形为2x > 8,然后得出x > 4。

高一基本不等式知识点讲解

高一基本不等式知识点讲解

高一基本不等式知识点讲解在高中数学中,基本不等式是一个重要的知识点。

本文将对高一基本不等式的知识点进行详细的讲解。

一、不等式的定义和性质不等式是数学中用于表示大小关系的符号,包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

在解不等式问题时,需要根据不等式的性质进行推导和分析。

1.1 大于和小于大于和小于是最基本的不等式关系。

对于两个实数a和b,如果a大于b,可以表示为a > b;如果a小于b,可以表示为a < b。

这种大小关系在数轴上可以直观地表示出来,通过比较两个实数在数轴上的位置来确定大小关系。

1.2 大于等于和小于等于大于等于和小于等于是包含了等于的不等式关系。

对于两个实数a和b,如果a大于等于b,可以表示为a ≥ b;如果a小于等于b,可以表示为a ≤ b。

这种不等式关系意味着两个数相等或者一个数大于另一个数。

在数轴上,可以用实心点表示。

二、基本不等式的证明和应用基本不等式是指一些常见且易证明的不等式,它们在解决实际问题时具有重要的作用。

接下来,我们将介绍几个常见的基本不等式及其应用。

2.1 三角不等式三角不等式是指对于任意实数a、b和c,有以下不等式成立:|a + b| ≤ |a| + |b|、|a - b| ≤ |a| + |b|。

这个不等式在解决绝对值问题和距离问题时特别有用。

2.2 平均不等式平均不等式是指对于任意一组非负实数x1、x2、...、xn,有以下不等式成立:(x1 + x2 + ... + xn)/n ≥ √(x1 * x2 * ... * xn)。

平均不等式在数论、代数等领域中有广泛的应用。

2.3 柯西不等式柯西不等式是指对于任意一组实数a1、a2、...、an和b1、b2、...、bn,有以下不等式成立:(a1 * b1 + a2 * b2 + ... + an * bn)²≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)。

高一数学不等式知识点的

高一数学不等式知识点的

高一数学不等式知识点的一、基本概念不等式是数学中的一种重要概念,表示两个量之间的大小关系。

在高一数学学习中,我们主要掌握以下几个基本概念:1. 不等式的符号在不等式中,常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

2. 不等式的解集解集是指使不等式成立的所有实数的集合。

可以用区间表示解集,比如(a, b)表示大于a小于b的实数集合。

二、一元一次不等式一元一次不等式是指只含有一个未知数,并且该未知数的最高次数为1的不等式。

我们可以通过移项和同乘(同除)等基本运算解决一元一次不等式的求解问题。

例如,对于不等式2x - 3 > 5,我们可以先将常数项移至另一侧,得到2x > 8,然后同除以2,得到x > 4。

因此,不等式的解集为(4, +∞)。

三、一元二次不等式一元二次不等式是指只含有一个未知数,并且该未知数的最高次数为2的不等式。

解决一元二次不等式的方法通常有以下几种:1. 寻找零点可以将不等式转化为一个二次函数的零点问题,通过求解二次函数的零点来得到不等式的解集。

2. 使用判别式对于形如ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,可以计算出其判别式Δ=b^2 - 4ac的值,并根据判别式的正负情况来确定不等式的解集。

3. 图像法通过绘制一元二次函数的图像,找到使函数大于(或小于)零的区间,从而确定不等式的解集。

四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式,常见的形式有|a - b| > c或|a - b| < c。

解决绝对值不等式的方法主要有以下几种:1. 分情况讨论法根据绝对值的定义,将绝对值不等式分解为正负两个部分,然后分别求解并合并解集。

2. 图像法通过绘制绝对值函数的图像,找到使函数大于(或小于)某个值的区间,从而确定绝对值不等式的解集。

五、常见的不等式性质在高一数学的学习中,我们还需了解一些常见的不等式性质,如:1. 不等式的加法、减法性质对于不等式a > b和c > d,有a + c > b + d和a - c > b - d的性质。

高一不等式的知识点及解法

高一不等式的知识点及解法

高一不等式的知识点及解法高中数学中,不等式是一个重要且常见的数学概念。

不等式是数学中表示两个数或两个函数之间大小关系的一种符号表达方式。

在高一阶段,学生将开始接触到不等式的知识,并学习如何解决不等式的问题。

本文将介绍一些高一不等式的基本知识点和解题方法。

一、基本概念和符号首先,我们需要了解不等式的基本概念和符号。

不等式可分为“大于”、“小于”、“大于等于”、“小于等于”四种类型。

分别用符号“>”、“<”、“≥”、“≤”表示,例如“a > b”表示a大于b。

在解不等式时,我们需要用到一些基本的性质。

例如,如果a > b,那么对于任意的正整数c,我们有a + c > b + c。

另外,如果a > b且b > c,那么a > c,这是不等式的传递性。

二、一元一次不等式一元一次不等式是指只包含一个未知数的一次方程。

例如,2x + 3 > 5是一个一元一次不等式。

解一元一次不等式可以通过图像法或代数法。

图像法是通过绘制函数的图像来确定不等式的解集。

以2x + 3 > 5为例,我们首先将其转化为等式2x + 3 = 5,得到x = 1。

然后,在数轴上标出1,再根据函数的斜率和截距,判断解集在1的左边或右边。

代数法是通过一系列的变换,将不等式转化为更简单的形式。

对于2x + 3 > 5,我们可以进行如下的代数变换:2x + 3 > 52x > 5 - 32x > 2x > 1因此,不等式的解集为x > 1。

三、一元二次不等式一元二次不等式是指包含一个未知数并且最高次幂为2的不等式。

例如,x^2 - 4x + 3 > 0是一个一元二次不等式。

解一元二次不等式可以通过图像法或代数法。

图像法同样是通过绘制函数的图像来确定不等式的解集。

以x^2 - 4x + 3 > 0为例,我们先将其转化为等式x^2 - 4x + 3 = 0,然后求得方程的根x = 1和x = 3,并且找到抛物线在x轴上的开口方向。

不等式数学知识点高一

不等式数学知识点高一

不等式数学知识点高一一、不等式的概念和性质1. 不等式的定义不等式是数之间不相等关系的表示形式,可分为大于、小于、大于等于、小于等于四种不等式类型。

2. 不等式的解集表示法当不等式成立时,将满足不等式的数值表示为解集,用集合的形式表示。

3. 不等式的性质(1)对于同一不等式,两边同时加(减)同一个数,不等式的成立关系不变。

(2)对于同一不等式,两边同时乘(除)同一个正数,不等式的成立关系不变,但若同除,需考虑除数不能为零。

(3)对于同一不等式,两边同时乘以同一个负数,不等式的成立关系改变。

二、一元一次不等式1. 一元一次不等式的解法针对一元一次不等式,通过图像法或数值法求解。

2. 一元一次不等式的图像法(1)将一元一次不等式转化为方程,得到直线的方程。

(2)绘制直线图像,并根据不等式的符号确定阴影部分,即为不等式的解集。

3. 一元一次不等式的数值法(1)根据不等式的性质,将x的系数乘以-1,使其系数为正数。

(2)列出方程,求解x的值,并根据解的大小关系确定不等式的解集。

三、一元二次不等式1. 一元二次不等式的解法针对一元二次不等式,通过图像法或配方法(改变形式法)求解。

2. 一元二次不等式的图像法(1)将一元二次不等式转化为方程,得到抛物线的方程。

(2)绘制抛物线图像,并根据不等式的符号确定阴影部分,即为不等式的解集。

3. 一元二次不等式的配方法(1)根据不等式的性质,将一元二次不等式化为标准形式。

(2)通过配方法(改变形式法)将不等式化简为平方项的形式。

(3)根据不等式的解集性质,确定不等式的解集。

四、绝对值不等式1. 绝对值不等式的解法针对绝对值不等式,通过正负号讨论法求解。

2. 绝对值不等式的正负号讨论法(1)根据绝对值的性质,将绝对值不等式拆分为正负号的形式。

(2)分别讨论正负号情况下的不等式,并求解不等式的解集。

五、不等式的运算和复合不等式1. 不等式的运算法则(1)对于同一不等式,两边同时加、减、乘、除同一个数,不等式的成立关系不变。

高一数学不等式知识点整理归纳

高一数学不等式知识点整理归纳

高一数学不等式知识点整理归纳一、不等式的基本性质1. 对称性:若 \(a > b\),则 \(b a\);若 \(a b\),则\(b > a\)。

2. 传递性:若 \(a > b\) 且 \(b > c\),则 \(a > c\);若\(a b\) 且 \(b c\),则 \(a c\)。

3. 加法性质:若 \(a > b\),则 \(a + c > b + c\)。

4. 乘法性质:若 \(a > b\) 且 \(c > 0\),则 \(ac > bc\);若 \(a > b\) 且 \(c 0\),则 \(ac bc\)。

二、一元一次不等式形如 \(ax + b > 0\) 或 \(ax + b 0\)(\(a \neq 0\))的不等式。

解法步骤:1. 移项:将常数项移到不等式的另一边。

2. 化简:将 \(x\) 的系数化为 \(1\),注意当系数为负数时,不等号方向改变。

三、一元二次不等式形如 \(ax^2 + bx + c > 0\) 或 \(ax^2 + bx + c 0\)(\(a \neq 0\))的不等式。

解法:1. 求出方程 \(ax^2 + bx + c = 0\) 的根(可用求根公式 \(x = \frac{b \pm \sqrt{b^2 4ac}}{2a}\) )。

2. 根据二次函数 \(y = ax^2 + bx + c\) 的图像与 \(x\) 轴的交点,确定不等式的解集。

当 \(a > 0\) 时:若方程有两个不同实根 \(x_1\) , \(x_2\) (\(x_1x_2\)),则不等式 \(ax^2 + bx + c > 0\) 的解集为 \(x x_1\)或 \(x > x_2\) ;不等式 \(ax^2 + bx + c 0\) 的解集为 \(x_1x x_2\) 。

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题一、不等式知识点总结。

(一)不等式的基本性质。

1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。

2. 传递性:如果a > b,b > c,那么a > c。

3. 加法单调性:如果a > b,那么a + c>b + c。

- 推论1:移项法则,如果a + b>c,那么a>c - b。

- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。

4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。

- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。

- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。

(二)一元二次不等式及其解法。

1. 一元二次不等式的一般形式。

- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。

2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。

- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。

- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。

高一的不等式知识点归纳总结

高一的不等式知识点归纳总结

高一的不等式知识点归纳总结不等式是数学中重要的一部分,其应用广泛,特别是在代数、几何和数论中。

在高一的数学学习中,不等式是一个重点内容,并为后续的数学学习打下基础。

下面是对高一阶段的不等式知识点进行归纳总结。

一、基础概念1.1 不等式的定义不等式是两个数或者表达式之间用不等号(<、>、≤、≥)联系起来的数学关系。

其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。

1.2 不等式的性质不等式存在传递性,即若a>b且b>c,则有a>c。

不等式两边同时加减一个相同的数,不等式的方向不变。

不等式两边同时乘除一个正数,不等式的方向不变。

不等式两边同时乘除一个负数,不等式的方向改变。

1.3 不等式的解集表示方法解集表示不等式中使得不等式成立的数的集合。

当不等式为严格不等号时,解集用开区间表示。

当不等式为不严格不等号时,解集用闭区间表示。

当不等式为大于号或小于号时,解集用开区间和闭区间表示。

二、一元一次不等式一元一次不等式是形如ax+b<0(或>)的不等式,其中a和b为已知数,x为未知数。

解一元一次不等式的基本思路是找到方程ax+b=0的解,然后根据a的正负情况确定解集。

三、一元二次不等式一元二次不等式是形如ax2+bx+c<0(或>)的不等式,其中a、b和c为已知数,x为未知数。

解一元二次不等式的基本思路是找到方程ax2+bx+c=0的解,然后根据a和二次项的系数的正负情况确定解集。

四、绝对值不等式绝对值不等式是形如|ax+b|<c(或>|)的不等式,其中a、b和c为已知数,x为未知数。

绝对值不等式的解集有两部分组成,即当ax+b>0和ax+b<0时的解集。

五、分式不等式分式不等式是形如f(x)<0(或>)的不等式,其中f(x)为一个分式函数。

解分式不等式的基本方法是找到分式函数的零点,然后根据分式函数的正负情况确定解集。

高一基本不等式知识点大全

高一基本不等式知识点大全

高一基本不等式知识点大全不等式在数学中起着重要的作用,它是数学分析和数学推理的基础。

在高一学年,学生需要掌握并理解基本不等式的概念、性质和解法。

下面将详细介绍高一基本不等式的知识点。

一、不等式的基本概念不等式是数学中比大小关系的一种表示方式,用符号“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)等表示。

二、不等式的性质1. 加减性质:对于不等式两边同时加(减)一个相同的数,不等号方向不变。

例如:若 a < b,则 a + c < b + c(其中 c 为常数)。

2. 乘除性质:对于两个不等式,若乘(除)以同一个正数,则不等号方向不变;若乘(除)以同一个负数,则不等号方向相反。

例如:若 a < b 且 c > 0,则 ac < bc;若 a < b 且 c < 0,则 ac > bc。

3. 倒置性质:若不等号两边同时倒置,则不等号方向改变。

例如:若 a < b,则 -a > -b。

三、不等式的解法1. 一元一次不等式的解法:(1) 将不等式看作等式,求解得到解集;(2) 在数轴上用表示不等式的符号表示解集。

2. 一元二次不等式的解法:(1) 将不等式化为一元二次函数的解析式;(2) 求解得到关于未知数的区间。

3. 绝对值不等式的解法:(1) 分情况讨论绝对值的取正负;(2) 求解得到关于未知数的区间。

4. 一元分式不等式的解法:(1) 得到分子和分母的符号条件;(2) 求解不等式。

5. 二元一次不等式的解法:(1) 将不等式化为方程组的解析式;(2) 求解得到关于两个未知数的区域。

四、不等式的应用不等式在各个学科中都有广泛应用,下面列举几个常见领域的应用:1. 几何应用:用不等式表示线段长度、角度大小等几何关系。

2. 经济学应用:用不等式表示供需关系、利润大小等经济问题。

3. 物理学应用:用不等式表示速度、加速度等物理量之间的关系。

高一数学必修一不等式

高一数学必修一不等式

高一数学必修一不等式不等式作为数学中的一种重要概念,是解决实际问题和推理证明的基础。

本文将介绍高一数学必修一中关于不等式的知识点,帮助同学们更好地理解和掌握这一内容。

1. 不等式的基本概念不等式是数学中比较两个数大小关系的一种表达方式。

例如,a<b表示a小于b,a>b表示a大于b,a≤b表示a小于等于b,a≥b表示a大于等于b。

在解不等式时,需要注意符号的含义,确保求解结果的准确性。

2. 不等式的性质不等式具有一些基本的运算性质,包括加法性质、减法性质、乘法性质和除法性质。

根据不等式的性质,可以进行合理的运算和推导,简化不等式的形式,更方便地求解问题。

3. 不等式的解集表示不等式的解可以用解集的形式表示。

解集是满足不等式条件的所有实数的集合。

例如,对于不等式2x-3>0,解集可以表示为{x|x>3/2},表示符合条件的x的取值范围。

4. 不等式的求解方法求解不等式需要根据不等式的具体形式选择不同的方法。

常用的方法包括:代入法、分类讨论法、图像法和数轴法。

在实际解题过程中,根据题目要求和不等式形式的不同,选择合适的求解方法,确保解的准确性。

5. 不等式的应用不等式在实际问题中具有广泛的应用,特别是涉及到数量关系和大小比较的情况。

例如,在经济学、物理学和几何学等领域中,都会遇到不等式问题。

通过学习不等式的知识,我们可以更好地理解和分析实际问题,为问题解决提供有效的数学工具。

高一数学必修一中的不等式内容是我们理解和掌握数学基础的重要一环。

通过对不等式的基本概念、性质、解集表示、求解方法和应用的学习,我们可以培养数学思维能力,提高问题解决能力。

希望同学们能够认真学习不等式知识,灵活运用于实际问题中,取得优异的成绩。

(此文档符合要求,按照给定的文档标题进行了撰写,内容准确描述了高一数学必修一中关于不等式的知识点,语言简洁明了,逻辑连贯。

并且内容无与主题无关的部分,没有出现任何不符合要求的逻辑词语。

高一不等式知识点归纳总结

高一不等式知识点归纳总结

高一不等式知识点归纳总结高一阶段学习数学,不等式是一个重点知识点,也是数学建模等应用题的常见考点。

在高中阶段,学生需要对不等式的性质、解集的表示和不等式的应用等方面进行深入学习。

本文将对高一阶段的不等式知识点进行归纳总结。

一、不等式的性质1. 不等式的传递性:如果a<b,b<c,那么a<c。

这个性质在证明不等式的过程中经常会用到。

2. 不等式的加减性:如果a<b,那么a±c<b±c。

即不等式两侧同时加(或减)一个常数,不等号的方向保持不变。

3. 不等式的乘法性:如果a<b,且c>0,那么ac<bc。

如果a<b,且c<0,那么ac>bc。

也就是说,不等式两侧同时乘以一个正数(或负数),则不等号的方向保持不变;若乘以一个负数,不等号的方向则反向。

4. 不等式的倒数性:如果a<b,且ab≠0,那么1/b<1/a。

当不等式两侧取倒数后,不等号的方向发生改变。

二、不等式解集的表示1. 不等式解的表示方式:不等式解集通常用区间表示,包括开区间、闭区间和无穷区间。

- 开区间:表示不包含某一值的解集,一般用(a, b)表示,表示a<b 之间的所有数但不包括a和b。

- 闭区间:表示包含某一值的解集,一般用[a, b]表示,表示a≤x≤b 之间的所有数。

- 无穷区间:表示解集没有上下界的情况,分为无穷大区间和无穷小区间。

2. 解不等式的步骤:解不等式的主要步骤有:移项、消项、分析正负、绘制数轴和表示解集。

三、不等式的类型1. 一元一次不等式:形如ax+b>0或ax+b<0的不等式,其中a和b 为已知实数,x为未知数。

- 解一元一次不等式的步骤:先将不等式化简为ax>c或ax<c的形式,然后根据a的正负情况进行讨论,最后找出解集。

2. 一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c<0的不等式,其中a、b和c为已知实数,x为未知数。

高一数学不等式知识点

高一数学不等式知识点

不 等 式1、 不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有: (1) 对称性:a>b ⇔b<a ;(2) 传递性:若a>b ,b>c ,则a>c ; (3) 可加性:a>b ⇒a+c>b+c ;(4) 可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。

不等式运算性质:(1) 同向相加:若a>b ,c>d ,则a+c>b+d ; (2) 异向相减:b a >,d c <d b c a ->-⇒. (3) 正数同向相乘:若a>b>0,c>d>0,则ac>bd 。

(4) 乘方法则:若a>b>0,n ∈N +,则n n b a >; (5) 开方法则:若a>b>0,n ∈N +,则n n b a >; (6) 倒数法则:若ab>0,a>b ,则b1a 1<。

2、基本不等式定理:假如R b a ∈,,则ab b a222≥+(当且仅当a=b 时取“=”号)推论:假如0,>b a ,则ab ba ≥+2(当且仅当a=b 时取“=”号) 算术平均数2ba +;几何平均数ab ;推广:若0,>ba ,则ba ab b a b a 1122222+≥≥+≥+当且仅当a=b 时取“=”号; 3、肯定值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a};|x |>a (a >0)的解集为:{x |x >a 或x <-a}。

(2)|b ||a ||b a |||b ||a ||+≤±≤- 4、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注意与不等式的运算性质联合运用; (3) 证明不等式的过程中,放大或缩小应适度。

高一数学不等式知识点

高一数学不等式知识点

高一数学不等式知识点在高一数学的学习中,不等式是一个重要的内容。

不等式不仅在数学中有着广泛的应用,也为我们解决实际问题提供了有力的工具。

接下来,让我们一起深入了解一下高一数学中不等式的相关知识点。

一、不等式的基本性质1、对称性:若 a > b,则 b < a 。

比如说,5 > 3 ,那么 3 < 5 。

2、传递性:若 a > b 且 b > c ,则 a > c 。

例如 7 > 5 ,5 > 3 ,所以 7 > 3 。

3、加法性质:若 a > b ,则 a + c > b + c 。

比如 8 > 6 ,那么 8 + 2 > 6 + 2 。

4、乘法性质:若 a > b 且 c > 0 ,则 ac > bc ;若 a > b 且 c <0 ,则 ac < bc 。

举个例子,若 4 > 2 ,当 c = 3 时,4×3 > 2×3;当 c =-3 时,4×(-3) < 2×(-3) 。

二、一元一次不等式形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(若有分母):根据不等式的性质,在不等式两边同时乘以分母的最小公倍数,去掉分母。

但要注意,当乘以或除以一个负数时,不等号的方向要改变。

2、去括号:运用乘法分配律去掉括号。

3、移项:将含未知数的项移到不等式的一边,常数项移到另一边。

4、合并同类项:将同类项合并,化简不等式。

5、系数化为 1 :在不等式两边同时除以未知数的系数,得到不等式的解集。

例如,解不等式 2(2x 1) 3(x + 1) < 5 ,首先去括号得 4x 2 3x 3 < 5 ,然后移项得 4x 3x < 5 + 2 + 3 ,合并同类项得 x < 10 。

三、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0 (其中a ≠ 0 )的不等式叫做一元二次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学不等式证明知识点
高一数学不等式证明知识点
不等式公式
如果a,b是正数,那么(a+b)/2≥(根号下ab),当且仅当a=b时,等号成立,我们称上述不等式为基本不等式。

若a,b∈R,则a平方+b平方≥2ab或ab≤(a平方+b平方)/2.
若a,b∈R,则(a平方+b平方)/2≥[(a+b)/2]的平方
若a,b∈R※,则a+b>=2(根号ab)或ab≤[(a+b)/2]的平方
高一数学不等式证明知识概要
不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方
法的灵活运用,也是各种思想方法的集中体现,因此难度较大。


决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,
灵活运用常用的证明方法。

一、要点精析
1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比
较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-
b≥0a≥b;a-b≤0a≤b”。

其一般步骤为:①作差:考察不等式左右
两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进
行变形,或变形为一个常数,或变形为若干个因式的积,或变形为
一个或几个平方的和等等,其中变形是求差法的关键,配方和因式
分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

应用范围:当被证的不等式两端是多项式、分式或对数式时一般使
用差值比较法。

(2)商值比较法的理论依据是:“若a,b∈R+,
a/b≥1a≥b;a/b≤1a≤b”。

其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是
判定商大于1或小于1。

应用范围:当被证的不等式两端含有幂、
指数式时,一般使用商值比较法。

2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从
“已知”看“需知”,逐步推出“结论”。

其逻辑关系为:AB1
B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得
出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。


分析法证明AB的逻辑关系为:BB1B1B3…
BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明
A为真,而已知A为真,故B必为真。

这种证题模式告诉我们,分
析法证题是步步寻求上一步成立的充分条件。

4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其
它性质,推出矛盾,从而肯定A>B。

凡涉及到的证明不等式为否定
命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不
可能”等词语时,可以考虑用反证法。

5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化
原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。

主要有两种换元形式。

(1)三角代换法:多用于条件不等式的证明,
当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑
三角代换,将两个变量都有同一个参数表示。

此法如果运用恰当,
可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据
具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,
y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对
于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。

(2)增量换元法:在对称式(任意交换两个字母,代
数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进
行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。

如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。

6.放缩法放缩法是要证明不等式A
二、难点突破
1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向。

2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜
于表述,因为它条理清晰,形式简洁,适合人们的思维习惯。

但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种
好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误。

而用综合法书写的形式,它掩盖了分析、探索的过程。

因而证明不等式时,分析法、综合法常常是不能分离的。

如果使用
综合法证明不等式,难以入手时常用分析法探索证题的途径,之后
用综合法形式写出它的证明过程,以适应人们习惯的思维规律。


有的不等式证明难度较大,需一边分析,一边综合,实现两头往中
间靠以达到证题的目的。

这充分表明分析与综合之间互为前提、互
相渗透、互相转化的辩证统一关系。

分析的终点是综合的起点,综
合的终点又成为进一步分析的起点。

3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件。

如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分
析法只能使用于证明等价命题了。

用分析法证明问题时,一定要恰
当地用好“要证”、“只需证”、“即证”、“也即证”等词语。

4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾。

5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果。

这是
换元法的重点,也是难点,且要注意整体思想的应用。

6.运用放缩法证明不等式时要把握好“放缩”的尺度,即要恰当、适度,否则将达不到预期的目的,或得出错误的结论。

另外,是分
组分别放缩还是单个对应放缩,是部分放缩还是整体放缩,都要根
据不等式的结构特点掌握清楚。

1、比较法(作差法)
在比较两个实数和的大小时,可借助
的符号来判断。

步骤一般为:作差——变形——判断(正号、负号、零)。

变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。

2、分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都
必须可逆。

3、综合法
证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。

例3、已知:,同号,求证:。

证明:因为,同号,所以,,则,即。

4、作商法(作比法)
在证题时,一般在,均为正数时,借助或来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。

5、反证法
先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。

6、迭合法(降元法)
把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。

7、放缩法(增减法、加强不等式法)
在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。

值得注意的是“放”、“缩”得当,不要过头。

常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。

8、数学归纳法
对于含有的不等式,当取第一个值时不等式成立,如果使不等式在时成立的假设下,还能证明不等式在时也成立,那么肯定这个不等式对
取第一个值以后的自然数都能成立。

9、换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化。

10、三角代换法
借助三角变换,在证题中可使某些问题变易。

相关文档
最新文档