八年级上第二章实数测试
北师大版八年级数学上册《第二章实数》测试卷-带答案
北师大版八年级数学上册《第二章实数》测试卷-带答案学校班级姓名考号一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若成立,则x的值可以是()A.-2 B.0 C.2 D.33.下列运算正确的是()A.B.C.D.4.如图所示的数轴被墨迹污染了,则下列选项中可能被覆盖住的数是()A.B.﹣C.﹣D.﹣5.已知,且,则的值为()A.1 B.-7 C.-1 D.1或-76.是某三角形三边的长,则等于()A.B.C.10 D.47.已知,则代数式的值是()A.0 B.C.D.8.如图,长方形ABCD的边AD=2,AB=1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则点E表示的数是()A.+1 B.﹣1 C.D.1﹣二、填空题9.写出一个在1到4之间的无理数.10.计算:.11.请写出一个正整数m的值使得是整数;.12.已知:,则.13.如果的小数部分为a,的整数部分为b,则的值为.三、计算题14.计算:(1)(2)15.已知:16.已知和.(1)求的值.(2)若x的整数部分是a,y的小数部分是b,求的值.17.已知某正数的两个平方根分别是和,的立方根为-3.(1)求的值.(2)求的立方根.18.我们知道无理数都可以化为无限不循环小数,所以的小数部分不可能全部写出来,若的整数部分为a,小数部分为b,则,且b<1.(1)的整数部分是,小数部分是;(2)若的整数部分为m,小数部分为n,求的值.参考答案:1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】B9.【答案】10.【答案】611.【答案】812.【答案】13.【答案】114.【答案】(1)原式=﹣()××=﹣=﹣1﹣=﹣1(2)原式=3﹣1﹣3+=﹣115.【答案】解:∴ . ∴原式=16.【答案】(1)解:.(2)解:∵∴∴x的整数部分是,y的小数部分是∴.17.【答案】(1)解:∵某正数的两个平方根分别是和∴∴∵的立方根为-3∴∴∴(2)解:当时∴的立方根为4.18.【答案】(1)4;(2)解:∵∴∴m=5,-5 ∴。
八年级数学上册《第二章实数》单元测试题(含答案)
第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3=5B .43-33=1C .23×33=63D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+3B.2-3C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b 2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510m ,宽为415m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
八年级数学上册第二章实数测试题含答案解析
第二章实数检测题(本检测题满分:100分;时间:90分钟)一、选择题(每小题3分;共30分)1.(2016·天津中考)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(2015·安徽中考)与1+最接近的整数是()A.4B.3C.2D.13.(2015·南京中考)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间4.(2016·浙江衢州中考)在;﹣1;﹣3;0这四个实数中;最小的是()A. B.﹣1 C.﹣3 D.05.(2015·重庆中考)化简12的结果是()A.43B.23C.32D.266.若a;b为实数;且满足|a-2|+2b-=0;则b-a的值为()A.2 B.0 C.-2 D.以上都不对7.若a;b均为正整数;且a>7;b>32;则a+b的最小值是()A.3B.4C.5D.68.已知3a=-1;b=1;212c⎛⎫-⎪⎝⎭=0;则abc的值为()A.0 B.-1 C.-12D.129.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示;则下列式子正确的是()第9题图A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.有一个数值转换器;原理如图所示:当输入的x=64时;输出的y等于()是有理数A.2 B.8 C.2D.2二、填空题(每小题3分;共24分)11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.12.(2016·福州中考)若二次根式在实数范围内有意义;则x 的取值范围是 .13.已知:若 3.65≈1.910;36.5≈6.042;则365000≈ ;±0.000365≈ .14.绝对值小于π的整数有 .15.已知|a -5|+3b +=0;那么a -b = .16.已知a ;b 为两个连续的整数;且a >28>b ;则a +b = . 17.(福州中考)计算:(2+1)(2-1)=________. 18.(2016·山东威海中考) 化简:= .三、解答题(共46分) 19.(6分)已知;求的值.20.(6分)若5+7的小数部分是a ;5-7的小数部分是b ;求ab +5b 的值. 21.(6分)先阅读下面的解题过程;然后再解答: 形如n m 2±的化简;只要我们找到两个数a ;b ;使m b a =+;n ab =;即m b a =+22)()(;n b a =⋅;那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+;这里7=m ;12=n ; 因为;;即7)3()4(22=+;1234=⨯; 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小;并说明理由: (1)与6; (2)与.23.(6分)大家知道是无理数;而无理数是无限不循环小数;因此的小数部分我们不能全部写出来;于是小平用-1来表示的小数部分;你同意小平的表示方法吗? 事实上小平的表示方法是有道理的;因为的整数部分是1;用这个数减去其整数部分;差就是小数部分. 请解答:已知:5+的小数部分是;5-的整数部分是b ;求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值;(3++⋅⋅⋅+的值.第二章 实数检测题参考答案一、选择题1.C 解析: 19介于16和25之间;∵ 16<19<25;∴∴ 45;∴的值在4和5之间.故选C.2.B 解析:∵ 4.84<5<5.29;∴即2.22.3;∴ 1+2.2<11+2.3;即3.2<13.3;∴ 与1最接近的整数是3.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<∴ 0.60.65<<;故选C .4.C 解析:根据实数的大小比较法则(正数都大于0;负数都小于0;正数大 于一切负数;两个负数比较大小;绝对值大的反而小)比较即可. ∵ ﹣3<﹣1<0<;∴ 最小的实数是﹣3;故选C . 5.B 解析:212432323=⨯=⨯=.6.C 解析:∵ |a -2|+2b -=0;∴ a =2;b =0;∴ b -a =0-2=-2.故选C .7.C 解析:∵ a ;b 均为正整数;且a >7;b >32;∴ a 的最小值是3;b 的最小值是2; 则a +b 的最小值是5.故选C .8.C 解析:∵ 3a =-1;b =1;212c ⎛⎫- ⎪⎝⎭=0;∴ a =-1;b =1;c =12;∴ abc =-12.故选C . 9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2;﹣1<b <0;∴ ab <0;a +b >0;|a |>|b |;a ﹣b >0.故选D .10.D 解析:由图得64的算术平方根是8;8的算术平方根是22.故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±;4的算术平方根是2.12.x ≥﹣1 解析:若二次根式在实数范围内有意义;则x +1≥0;解得x ≥﹣1.13.604.2 ±0.019 1 解析:436500036.510=⨯≈604.2;±0.000365=±43.6510-⨯ ≈±0.019 1. 14. ±3;±2;±1;0 解析:π≈3.14;大于-π的负整数有:-3;-2;-1;小于π的正整数有:3;2;1;0的绝对值也小于π.15. 8 解析:由|a -5|+3b +=0;得a =5;b =-3;所以a -b =5-(-3) =8. 16.11 解析:∵ a >28>b ; a ;b 为两个连续的整数; 又25<28<36;∴ a =6;b =5;∴ a +b =11. 17. 1 解析:根据平方差公式进行计算;(2+1)(2-1)=()22-12=2-1=1.18.2 解析:先把二次根式化简;再合并同类二次根式;得18-832-222==.三、解答题19.解:因为;;即; 所以.故;从而;所以;所以.20.解:∵ 2<7<3;∴ 7<5+7<8;∴ a =7-2. 又可得2<5-7<3;∴ b =3-7.将a =7-2;b =3-7代入ab +5b 中;得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意;可知;因为;所以.22.分析:(1)可把6转化成带根号的形式;再比较它们的被开方数;即可比较大小;(2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36;35<36;∴ 35<6. (2)∵ -5+1≈-2.236+1=-1.236;-22≈-0.707;1.236>0.707; ∴ -5+1<-22.23.解:∵ 4<5<9;∴ 2<<3;∴ 7<5+<8;∴ =-2.又∵ -2>->-3;∴ 5-2>5->5-3;∴ 2<5-<3;∴ b =2; ∴ +b =-2+2=.24. 解:(1)原式=623332223-+⨯ (2)原式=()266321343-+--- =6236623-+ =432213--.=1362323-.11(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++=-11001+10=9.。
八年级(上)第二章《实数》单元测试题含答案
八年级(上)第二章 《实数》单元测试题命题人:吉安八中八年级数学备课组温馨提示:亲爱的同学们,经过这一章的学习,相信你已经拥有了本章的许多知识财富!下面这套试卷是为了展示你对本章的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易言弃,就一定会有出色的表现!本试卷共100分,用100分钟完成。
一、认真填一填 —— 要相信自己.(30分) 1.写出和为8的两个无理数 .22,那么a = . 3.下列实数:12,π3-,|1|-0.1010010001,0中,有m 个有理数,n 个无理数,5位有效数字).4.如果x-4+(y+6)2=0,那么x+y= . 5.满足-2<x<3的整数x 是 .6.若一个正数的平方根是2a-1和-a+2,则a= ,这个正数是 .7.已知按一定规律排列一组数:1,12,13,…,119,120,…用计算器探索:如果从中选出若干个数,使它们的和大于3,那么至少需要选出 个.8.若14x <<= .9.若2b +和5的立方根,则a = ,b = .10.如图1,在日历中成“十”字型的5个数之和是50,则a = ,b = ,c = ,d= ,e = .二、细心选一选 —— 要认真考虑.(24分)11.若a 都有意义,则a 的值是( ) A .a ≥0B .a ≤0C .a =0D .a ≠012 )A .24(4)x + B .22(4)x +C .24x +D13.x 是2(的平方根,y 是64的立方根,则x y +的值为( )A .3B .7C .3或7D .1或714. ) A .±4B .2C .±2D .不存在15.已知:a b c ===a ,b ,c 的大小关系是( )A .a b c <<B .b c a >>C .a c b >>D .c a b >>16.面积为11的正方形边长为x ,则x 的范围是( ) A .13x << B .34x << C .510x << D .10100x <<17.下列各组数中,互为相反数的是( )A .2-与12-B .|C D18.设4a ,小整数部分为b ,则1a b-的值为( )A .1BC .1D .三、精心做一做 —— 要注意审题.(46分)19.用计算器比较大小,A =B =(6分)20.化简:(9分)(1)(2; (3)22(7(7+-21.求下列各式中x 的值:(8分)(1)2163610x -=; (2)38(3)27x --=.y=,求x y的平方根.(7分)22.已知323.观察图2,每个小正方形的边长均为1,(8分)(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间.(3)把边长在数轴上表示出来.24问:(1)被开方数a的小数点位置移动有无规律?若有规律,请写出它的移动规律.=-,你能求出a的值吗?(2, 1.8(3a的大小.参考答案1.2+,6-(答案不惟一); 2.16; 3.1.5874; 4.2- ; 5.±1,0;6.±1,1或9 ; 7.5;8.52x -; 9.6,1;103; 11.C 12.D 13.D 14.C 15.A 16.B 17.C 18.A 19.A >B .20.(1)3;(2)15-;(3) 21.(1)194±;(2)32.22.xy 的平方根为±3.23.(1)图中阴影部分的面积是17;(2)边长的值在4与5之间;(3)图略. 24.表略.(1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位. (2)a =3240000.(3)当0<a <1a ;当a =1a =;当a >1a <.。
第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册
第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。
北师大版八年级数学上册第二章《实数》测试题及答案
八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。
7 (B)±0.7 (C)0.7 (D)0。
494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。
x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。
141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。
3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。
八年级数学上册 第二章 实数单元测试(含答案)
第二章实数单元测试一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.42.下列各式中正确的是()A.=±4B. =4C. =3D. =53.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数5.的算术平方根是()A.4B.±4C.2D.±26.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<1009.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.5:8B.3:4C.9:16D.1:2二.填空题.11.比较下列实数的大小(填上>或<符号=)①______12;②______0、5;③﹣+1______﹣.12.在数轴上表示﹣的点离原点的距离是______.13.已知|x|的算术平方根是8,那么x的立方根是______.14.若m、n互为相反数,则|m﹣5+n|=______.15.如果的平方根等于±2,那么a=______.16.计算+=______.17.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______.18.若0<a<1,且,则=______.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.四、求x值:20.求x值(1)2x2=8 (2)x2﹣=0 (3)(2x﹣1)3=﹣8 (4)340+512x3=﹣3.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?22.已知: =0,求实数a,b的值.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.参考答案一、选择题.1.下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,其中无理数的个数是()A.1B.2C.3D.4【解答】解:下列各数0、4,,3、14,0、80108,π﹣|1﹣π|,0、1010010001…,,0、451452453454…,无理数是:,0、1010010001…,0、451452453454…,共3个.故选C.2.下列各式中正确的是()A.=±4B. =4C. =3D. =5【解答】解:A、,错误;B、,正确;C、负数没有算术平方根,错误;D、,错误;故选B.3.对于来说()A.有平方根B.只有算术平方根C.没有平方根D.不能确定【解答】解:由题意得:<0,故可得()没有平方根.故选C.4.能与数轴上的点一一对应的是()A.整数B.有理数C.无理数D.实数【解答】解:根据实数与数轴上的点是一一对应关系.5.的算术平方根是()A.4B.±4C.2D.±2【解答】解:∵(±2)2=4=,∴的算术平方根是2.故选C.6.下列运算中,正确的是()A.=±3B. =2C.(﹣2)0=0D.2﹣1=【解答】解:A、=3,故本选项错误;B、=﹣2,故本选项错误;C、(﹣2)0=1,故本选项错误;D、2﹣1=,故本选项正确.故选D.7.下列说法正确的是()A.(﹣3)2的算术平方根是﹣3B.的平方根是±15.C.当x=2时,x=0D.是分数【解答】解:A、(﹣3)2=9,9算术平方根是3,错误;B、=15,15的平方根是±,错误;C、当x=2时,x=0,正确;D、是无理数,错误,故选C8.面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<100【解答】解:∵正方形的面积为11,而3<x<4.故选B.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.10.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是()A.5:8B.3:4C.9:16D.1:2【解答】解:方法1:利用割补法可看出阴影部分的面积是10个小正方形组成的,所以阴影部分面积与正方形ABCD的面积比是10:16=5:8;方法2: =,()2:42=10:16=5:8.故选A.二.填空题.11.比较下列实数的大小(填上>或<符号=)①<12②>0、5③﹣+1 <﹣.【解答】解:① =140,122=144,∵140<144,∴<12.②∵﹣0、5=﹣1>1﹣1=0,∴>0、5.③∵﹣+1<﹣2+1=﹣1,∴﹣+1<﹣1,又∵﹣>﹣1,∴﹣+1<﹣.故答案为:<、>、<.12.在数轴上表示﹣的点离原点的距离是.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.13.已知|x|的算术平方根是8,那么x的立方根是4或﹣4 . 【解答】解:由题意得:|x|=64,即x=64或﹣64,则64或﹣64的立方根为4或﹣4.故答案为:4或﹣4.14.若m、n互为相反数,则|m﹣5+n|= 5 .【解答】解:m、n互为相反数,|m﹣5+n|=|﹣5|=5,故答案为:5.15.如果的平方根等于±2,那么a= 16 .【解答】解:∵(±2)2=4,∴=4,∴a=()2=16. 故答案为:16.16.计算+= 1 .【解答】解:原式=3π﹣9+10﹣3π =1.故答案为:1.17.点A 在数轴上表示的数为,点B 在数轴上表示的数为,则A ,B 两点的距离为 4 .【解答】解:∵A 在数轴上表示的数为,点B 在数轴上表示的数为,∴A,B 两点的距离是:|3﹣(﹣)|=4, 故答案为:4.18.若0<a <1,且,则= ﹣2 . 【解答】解:∵a+=6,∴(﹣)2=a ﹣2+=6﹣2=4, ∵0<a <1,∴0<<1,>1,∴﹣=﹣=﹣2.故答案为:﹣2.三、计算题.19.计算题:(1)+﹣(2)(3)+•(4)3+﹣4.【解答】解:(1)原式=2+4﹣=5;(2)原式==×=8×9=72;(3)原式=+3×3=;(4)原式=9+﹣2=8.四、求x值:20.求x值(1)2x2=8(2)x2﹣=0(3)(2x﹣1)3=﹣8(4)340+512x3=﹣3.【解答】解:(1)方程变形得:x2=4,开方得:x=2或x=﹣2;(2)方程变形得:x2=,开方得:x=±;(3)(2x﹣1)3=﹣8,开立方得:2x﹣1=﹣2,解得:x=﹣;(4)x3=﹣,开立方得:x=﹣.五、解答题21.一个正数a的平方根是3x﹣4与2﹣x,则a是多少?【解答】解:根据一个正数有两个平方根,它们互为相反数得:3x﹣4+2﹣x=0,即得:x=1,即3x﹣4=﹣1,则a=(﹣1)2=1.22.已知: =0,求实数a,b的值.【解答】解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21.六、阅读下列解题过程:23.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m, =,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.。
2024~2025学年八年级数学上册第二章实数单元检测[含答案]
1的结果是( )A .2BC .D .2.有一个数值转换器,原理如图所示.当输入的x 为-512时,输出的y 是 ( )A .-2B .C .D .3.如图,实数3在数轴上的大致位置是( )A .点AB .点BC .点CD .点D4a 的取值为( )A .0B .12-C .﹣1D .15用不等号连接起来为( )A B C D 6.已知有理数a 、b 、c 在数轴上的位置如图所示,试化简:2a a c b a b c -++--+-.( )A .-2bB .-bC .-2aD .a 7.最简二次根式与是同类二次根式,则a 为( )A .6B .2C .3或2D .18.下列关于实数a 说法正确的是( )A .a 的相反数是-aB .a 的倒数是-aC .a 的绝对值是±aD.a的平方是正数9.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③2(4)-的平方根是4-;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图为张小亮的答卷,他的得分应是()姓名张小亮得分?填空(每小题20分,共100分)①1-的绝对值是1 .②2的倒数是2-.③2-的相反数是2 .④1的立方根是1 .⑤1-和7的平均数是3 .A.100分B.80分C.60分D.40分11=.12.计算:2-=.13=x满足14.若0x-=,则1y x+的值为.15.如图,从一个大正方形中截去面积分别为8和18的两个小正方形,则图中阴影部分面积为.16.如图,已知Rt△ABC中,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数为.17.对于任意不相等的两个实数a 、b ,定义一种运算如下:a ⊗,如图3⊗8⊗5= .18.观察下列各式:2225(23)+=++=++=,2228(17)121(1+=++=++´=,…….请运用以上的方法化简= .19.计算:(2)(3)+)21.20.已知A =-B =,12C =-A 、B 、C 是可以合并的最简二次根式,求a 、b 及A B C +-的值.21.秦九韶(1208年~1268年),字道古,南宋著名数学家.与李冶、杨辉、朱世杰并称宋元数学四大家,他精研星象、音律、算术、诗词、弓剑、营造之学,他于1247年完成的著作《数学九章》中关于三角形的面积公式与古希腊几何学家海伦的成果并称“海伦−秦九韶公式”,它的主要内容是,如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,S 为三角形的面积,那么S =.(1)如图在ABC V 中,5BC =,6AC =,7AB =,请用上面的公式计算ABC V 的面积;(2)一个三角形的三边长分别为a ,b ,c ,15s p ==,10a =,求bc 的值,22.问题探究:因为21)3=-1,=因为21)3=+1,=因为2(27=-2=请你根据以上规律,结合你的经验化简下列各式:;23.[材料一]两个含有二次根式且非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.2=1)1)2+´-=,11互为有理化因式.(1的有理化因式是______(写出一个即可),2_______(写出一个即可);[材料二]如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.(2+[材料三]与分母有理化类似,将代数式分子、分母同乘分子的有理化因式,从而消去分子中的根式,这种变形叫做分子有理化.=(31.C故选C.2.D【分析】把-512按给出的程序逐步计算即可.【详解】由题中所给的程序可知:把-512取立方根,结果为-8,因为-8是有理数,所以再取立方根为-2,因为-2是有理数,所以再取立方根为因为.故选d.【点睛】本题考查了立方根,此类题目比较简单,解答此类题目的关键是弄清题目中所给的运算程序.3.C【详解】分析:根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.详解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选C.点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.4.B【详解】分析:二次根式一定是非负数,则最小值即为0,列方程求解即可.详解:0³,=时为最小值.即:210a+=,∴12 a=-.故选B.点睛:本题考查了二次根式有意义的条件.5.D【详解】≈1.414=1.380,1.380<1.414<1.442,故选D.6.A【详解】根据数轴上点的位置得:a<b<0<c,且|b|<|c|<|a|,∴-a>0,a+c<0,b−2a>0,b−c<0,则原式=-a-( a+c)-( b−2a)-(b−c)=-a-a-c-b+2a-b+c=-2b,故选A.7.B【详解】由题意可得a2+3=5a−3,解得a=2或a=3;当a=3时,a2+3=5a−3=12不是最简根式,因此a=3不合题意,舍去;因此a=2.故选B.8.A【详解】A.a的相反数是−a,故A正确;B.a的倒数是1a,故B错误;C.|a|是非负数,故C错误;D.a的平方是非负数,故D错误;故选A.9.C【分析】根据平方根和算术平方根、立方根的意义,逐一判断即可.【详解】①5是25的算术平方根,正确;②56是2536的一个平方根,正确;③()24-的平方根是4±,不正确;④立方根和算术平方根都等于自身的数是0和1,正确.故选C.【点睛】此题主要考查了平方根、算术平方根、立方根的意义,熟练掌握概念是解题关键. 10.B【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【详解】解:−1的绝对值是1,2的倒数是12,−2的相反数是2,1的立方根为1,−1和7的平均数是3,答对了4题,故小亮得了80分,故选B .【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.11= =【点睛】本题主要考查二次根式的分母有理化,利用平方差公式进行分母有理化计算是解题关键.12【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22éù-ëû【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.13.2≤x<3【分析】因为二次根式的除法法则)0,0a b =³>,=:20,30-³->x x ,解得:23x £<.=,根据二次根式除法法则可得:2030x x -³ìí->î,解得:23x £<.故答案为:23x £<.【点睛】本题主要考查二次根式的除法法则,解决本题的关键是要熟练掌握二次根式除法法则.14.12-【详解】∵,∴x−y=0,y+2=0,解得:x=-2,y=-2.∴x y+1=(-2)-2+1=12-.故答案为12-.15.24【分析】此题考查了二次根式的应用,利用二次根式化简求出两个小正方形的边长,得到大正方形的边长,求出大正方形的面积,即可得到阴影面积,正确掌握二次根式的化简是解题的关键.==,∴大正方形的边长为=,∴大正方形的面积为(250=,∴图中阴影部分面积为5081824--=故答案为24.16.【详解】根据勾股定理可知D 点的坐标为故答案为点睛:此题主要考查了实数与数轴的对应关系,解题关键是先根据勾股定理求出AC=AD,.17【详解】根据新定义得:8⊗=.18+【分析】本题考查了复合二次根式的化简,完全平方公式的应用;按照题中提供的方法进行化简即可.===+.19.(2)6(3)1+(4)4【分析】本题主要考查了二次根式的混合计算:(1)先化简二次根式,再根据二次根式的加减计算法则求解即可;(2)根据二次根式的乘除混合计算法则求解即可;(3)先计算二次根式乘除法,再计算加减法即可;(4)先计算二次根式乘法,再计算加减法即可.【详解】(1==(2)解:==6=;(3)解:22=-32=-+1=+(4)2113=-31=-4=.20.1a =,45b =-,A B C +-=【分析】由A 、B 、C 是可以合并的最简二次根式可得A 、B 、C 的被开方数相等,由此可得关于a 、b 的方程,解出a 、b 的值后,即可求出A B C +-的值.【详解】解:∵A =-,B =C =A 、B 、C 是可以合并的最简二次根式,∴ 131a a +=-.∴1a =,则A =-B ,且()1012b +=.∴45b =-,则C =故A B C +-=-=【点睛】本题考查了最简二次根式和同类二次根式的定义以及合并同类二次根式的法则,正确理解题意,得出关于a 、b 的方程是求解的关键.21.(1)(2)78bc =【分析】本题考查二次根式的应用,解答本题的关键是明确题意,熟悉掌握海伦-秦九韶公式求三角形的面积.(1)根据题意,了解海伦-秦九昭公式,根据具体的数字先计算p 的值,然后再代入公式,计算三角形的面积即可;(2)根据2a b c p ++=得以得到20b c +=,再根据面积可以得到3002253bc -+=,计算即可.【详解】(1)由题意,18922BC AC AB p ++===,∴S ===.即ABC V 的面积为;(2)由题意,101522a b c b c p ++++===,∴20b c +=,∵S p ==,∴15S ==∴()()15153b c --=.∴()152253bc b c -++=,即3002253bc -+=∴78bc =.22.12+【分析】(1)因为22523=+=+,且2=为完全平方式,进一步因式分解,化简得出答案即可;(2)因为229112442æö=+=+ç÷èø122=´方式,进一步因式分解,化简得出答案即可.【详解】(112.【点睛】此题考查活用完全平方公式,把数分解成完全平方式,进一步利用二次根式的性质化简,注意在整数分解时参考后面的二次根号里面的数值.23.(1,2;(2)1;(3>【分析】本题考查分母有理化,估算无理数的大小及规律探索问题,熟练掌握分母有理化的步骤及方法是解题的关键.(1)根据有理化因式的定义即可求得答案;(2)根据所得规律计算即可;(3==【详解】(1)解:5=,;∵((22431´=-=,∴2的有理化因式是2+;,2;(2+1=-K1=-1=1=;(3>.理由如下:====,<<,>。
北师大版八年级上册数学第二章 实数 含答案
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、在实数、3.1415、π、、、2.123122312223……(1和3之间的2逐次加1个)中,无理数的个数为()A.2个B.3个C.4个D.5个2、9的算术平方根是()A.±3B.3C.±D.3、计算的结果是A.±3B.3C.±3D.34、在下列各数0,0.2,3π,,6.1010010001…(1之间逐次增加一个0),,中,无理数的个数是()A.1B.2C.3D.45、-8的立方根为()A. B. C. D.6、实数0、、、中,无理数有()A.1个B.2个C.3个D.4个7、下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者08、实数,﹣,0.1010010001,,π,中,无理数的个数是()A.1B.2C.3D.49、9的算术平方根是()A.±3B.3C.D.10、下列各数中,是有理数的是().A. B. C. D.11、底面为正方形的水池容积为4.86m3,池深1.5m,则底面边长是()A.3.24mB.1.8mC.0.324mD.0.18m12、比值为的比例被公认为是最能引起美感的比例,因此被称为黄金分割.我们国家的国旗宽与长之比接近这个比例,估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间13、关于的叙述正确的是()A.在数轴上不存在表示的点B. =+C. =±2D.与最接近的整数是314、下列说法正确的是()A.0和1的平方根等于本身B.0和1的算术平方根等于本身C.立方根等于本身的数是0D.﹣9的立方根是﹣315、的近似值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间二、填空题(共10题,共计30分)16、当________时,二次根式有意义17、已知m=1+ ,n=1- ,则代数式的值为________18、已知5+ 小数部分为m,11﹣为小数部分为n,则m+n=________.19、一个正数的平方根是2a﹣1和3﹣a,则这个正数是________.20、函数中,自变量x的取值范围是________.21、读取表格中的信息,解决问题.n=1 a1= +2 b1= +2 c1=1+2n=2 a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3 a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是________.22、已知a<b,化简二次根式的正确结果是________.23、计算: ________.24、已知:如图CA=CB,那么数轴上的点A所表示的数是________.25、计算的结果是________.三、解答题(共5题,共计25分)26、计算:﹣2×+()﹣1+(π﹣2017)0.27、求下列各式中的x:(1)(x+2)2=4;(2)1+(x﹣1)3=﹣7.28、计算,其中,小明算出了这样的结果:当a=-1时,;请你说出小明的错误在哪里.29、计算:|﹣2|+30﹣(﹣6)×(﹣).30、已知x+12平方根是±,2x+y﹣6的立方根是2,求3xy的算术平方根.参考答案一、单选题(共15题,共计45分)2、B3、D4、C5、A6、B7、C8、C9、B10、D11、B12、C13、D14、B15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
八年级数学上册 第二章 实数 单元测试卷(北师版 2024年秋)
八年级数学上册第二章实数单元测试卷(北师版2024年秋)八年级数学上(BS版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列实数中,是无理数的是()A.23B.-14C.0D.-1.010101 2.(2023潍坊)在实数1,-1,0,2中,最大的数是()A.1B.-1C.0 D.23.利用科学计算器求值时,小明的按键顺序为■4=S⇔D,则计算器面板显示的结果为()A.-2B.2C.±2D.44.要使x+1在实数范围内有意义,则x的取值范围是()A.x≤1B.x≥-1C.x<-1D.x>15.下列根式中,是最简二次根式的是()A.19B.4C.a2D.a+b6.下列各选项的两个数互为相反数的是()A.22和(-2)2B.-327和3-27 C.64和-364 D.37和3-77.(2023徐州)2023的值介于()A.25与30之间B.30与35之间C.35与40之间D.40与45之间8.(新考法分类讨论法)若2m-4与3m-1是同一个正数的平方根,则m的值为()A.-3B.1C.-1D.-3或1 9.下列计算正确的是()A.(-3)2=-3 B.12=23C.3-1=1D .(2+1)(2-1)=310.(教材P 43习题T 4变式)如图,每个小正方形的边长都为1,点A ,B 都在格点上,若BC =2133,则AC 的长为()A.13B.4133C .213D .313二、填空题(每题3分,共24分)11.(2023吉林)计算:|-5|=________.12.3-2的相反数是________,绝对值是________.13.(新趋势跨学科)已知当鸡蛋落地时的速度大于1.2m/s 时鸡蛋会被摔碎.若鸡蛋从高处自由下落,其落地时的速度v(m/s)与开始下落时离地面的高度h (m)满足关系v 2=20h ,现有一鸡蛋从0.15m 处自由下落,则鸡蛋________摔碎.(填“会”或“不会”,提示:3≈1.73)14.(教材P 50复习题T 10变式)如图,四边形ODBC 是正方形,以点O 为圆心,OB 的长为半径画弧交数轴的负半轴于点A ,则点A 表示的数是________.15.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是________.16.(教材P 31随堂练习T 2变式)若一个正方体的棱长是5cm ,再做一个体积是它的两倍的正方体,则所做正方体的棱长约是____________(用计算器计算,结果精确到0.1cm).17.实数a ,b ,c 在数轴上对应点的位置如图所示,化简(b -a )2-(a +c )2+(c -1)2=________.18.(新视角规律探究题)如图,正方形ABCD的边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算下列各题:(1)9-20240+2-1;(2)(2+5)(2-5)+(2-1)2;-12-1+6÷2-|2-3|+(π-3)0-12.20.求下列各式中x的值:(1)9(3x+2)2-64=0;(2)-(x-3)3=125.21.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.22.在4×4的方格中,每个小正方形的边长均为1.(1)图①中正方形ABCD的面积为________,边长为________;(2)如图②,若点A在数轴上表示的数是-1,以A为圆心、AD长为半径画圆弧与数轴的正半轴交于点E,求点E表示的数.23.(2024石家庄裕华区期末)某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5 3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.24.(新考法分类讨论法)对于不同的实数p,q,我们用符号max{p,q}表示p,q两数中较大的数,如max{1,2}=2,(1)请直接写出max{-2,-3}的值;(2)我们知道,当m2=1时,m=±1,利用这种方法解决下面问题:若max{(x-1)2,x2}=4,求x的值.答案一、1.B 2.D 3.B 4.B5.D6.D7.D8.D9.B10.B点拨:由勾股定理得AB 2=62+42=52,所以AB =213.所以AC =AB -BC =213-2133=4133.二、11.512.2-3;2-313.会14.-2215.316.6.3cm 17.b +118.42点拨:根据勾股定理得出正方形的对角线是边长的2倍,第1个正方形的边长为1,其对角线长为2;第2个正方形的边长为2,其对角线长为(2)2;第3个正方形的边长为(2)2,其对角线长为(2)3;…;第n 个正方形的边长为(2)n -1.所以第6个正方形的边长为(2)5=4 2.三、19.解:(1)原式=3-1+12=52.(2)原式=(2)2-(5)2+(2-22+1)=2-5+3-22=-2 2.(3)原式=-2+3-(2-3)+1-23=-2+3-2+3+1-23=-3.20.解:(1)原方程可化为(3x +2)2=649.由平方根的定义,得3x +2=±83,解得x =29或x =-149.(2)原方程可化为(x -3)3=-125.由立方根的定义,得x -3=-5,解得x =-2.21.解:由题意可知2a -1=9,3a +b -1=16,所以a =5,b =2.所以a +2b =5+2×2=9.22.解:(1)10;10点拨:因为正方形ABCD 的面积是4×4-4×12×1×3=10,所以正方形ABCD 的边长为10.(2)因为正方形ABCD 的边长为10,所以AE =AD =10,所以点E 表示的数比-1大10,即点E 表示的数为-1+10.23.解:(1)400=20(m),4×20=80(m),所以原来正方形场地的周长为80m.(2)这些铁栅栏够用,理由如下:设这个长方形场地的宽为3a m ,则长为5a m.由题意得3a ×5a =315,解得a =±21,因为a >0,所以a =21,所以3a =321,5a =521.所以这个长方形场地的周长为2(321+521)=1621(m),因为80=16×5=16×25>1621,所以这些铁栅栏够用.24.解:(1)max {-2,-3}的值为- 2.(2)分以下两种情况讨论:①当(x -1)2<x 2时,max {(x -1)2,x 2}=x 2=4,所以x =±2,当x =-2时,(-2-1)2>(-2)2.所以x =-2不符合题意,舍去.故x =2.②当(x -1)2>x 2时,max {(x -1)2,x 2}=(x -1)2=4,所以x -1=±2,解得x =3或x =-1,当x =3时,(3-1)2<32,所以x =3不符合题意,舍去.故x=-1.综上所述,x=2或-1.。
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)
八年级数学上册第二章《实数》综合测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028. 20. 解:因为m -15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-22+3(2-3)×(2+3)3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
北师大版八年级数学上册《第二章实数》单元测试卷(带答案)
北师大版八年级数学上册《第二章实数》单元测试卷(带答案)一、选择题、1.8、π这4个数中,无理数有()1.在√6、32A.1个B.2个C.3个D.4个2.下列说法错误的是()A.4的算术平方根是2B.√2是2的平方根C.−1的立方根是−1D.−3是√(−3)2的平方根3.下列式子中,属于最简二次根式的是()A.√8B.√11C.√45D.√164.如图,√7在数轴上对应的点可能是()A.点E B.点F C.点M D.点P5.无理数−√10+1在()A.−3和−2之间B.−4和−3之间C.−5和−4之间D.−6和−5之间6.若使二次根式√x−3在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x≠3D.x>37.下列计算正确的是()A.(2√2)2=4√2B.√2×√3=√6C.√2+√3=√5D.√12÷√3=48.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2 +1 C.1﹣√2D.﹣√2二、填空题9.若一个正数的两个平方根分别是5a+1和a+5,则a的值是.10.一个数的平方等于64,则这个数的立方根是 .11.若a 是√7的整数部分,b 是它的小数部分,则a ﹣b = .12.计算:|1−√3|+√14= . 13.若x ,y 是实数,且y =√x −4+√4−x +3,则12√xy 的值为 .三、解答题14.计算:(1)√−273+√(−3)2+√−13; (2)−12+√643−(−2)×√9.15.计算:(1)√27÷√3−2√15×√10+√8 (2) √3(√2−√3)−√24−|√6−3|16.把下列各实数填在相应的大括号内整 数{ …};分 数{ …};无理数{ …}.17.已知5a +2的立方根是3,4a +2b +1的平方根是±5,求a -2b 的算术平方根.18.如图,有一块长方形木板,木工沿虚线在木板上截出两个面积分别为12 dm 2和27 dm 2的正方形木板,求原长方形木板的面积.1.B2.D3.B4.C5.A6.B7.B8.C9.−110.±211.4−√712.√3−1213.√314.(1)解:√−273+√(−3)2+√−13 =﹣2+|﹣3|﹣1=﹣4+3﹣1=﹣5;(2)解:−12+√645−(−2)×√9=﹣5+4﹣(﹣2)×4=3﹣(﹣6)=3+6=9.15.(1)解:原式=3√3÷√3−25√5×√10+2√2=3−2√2+2√2=3(2)解:原式=√6−3−2√6−3+√6=−617.解:因为5a+2的立方根是3,4a+2b+1的平方根是±5,所以5a+2=27,4a+2b+1=25,解得a =5,b=2,所以a-2b=5-4=1,所以a-2b的算术平方根为118.解:∵两个正方形的面积分别为12 dm2和27 dm2∴这两个正方形的边长分别为√12 dm和√27 dm由题图可知,原长方形的长为(√12+√27) dm,宽为√27 dm∴原长方形的面积为:(√12+√27)×√27=18+27=45(dm2).。
北师大版八年级上册数学第二章 实数 含答案
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、下列说法中正确的是()A.25的平方根是5B.0.8的立方根是0.2C. 是的一个平方根D.和数轴上一一对应的数是有理数2、﹣125开立方,结果是()A.±5B.5C.﹣5D.±3、下列说法正确的是()A.绝对值等于它本身的数是正数B.最小的整数是0C.实数与数轴上的点一一对应D.4的平方根是24、的立方根是()A.-B.C.±D.5、的平方根是()A.6B.±6C.D.±6、下列数中,是无理数的是()A. B. C.—2.171171117 D.7、已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<58、 4的平方根为()A.2B.±2C.4D.±49、的立方根为()A.2B.C.D.10、下列关于的说法中,错误的是()A. 是无理数B.C.5的平方根是D.11、下列四个实数中,是无理数的为()A. B. C. D.3.141592612、(-2)2的算术平方根是()A.2B.±2C.-2D.13、若5x+19的立方根是4,则2x+7的平方根是( )A.25B.-5C.5D.±514、下列各组数中,互为相反数的是()A.-2与−B.-2与-C.-2与D.|-2|与-215、下列说法中,正确的是()A. =±4B.-3 2的算术平方根是3C.1的立方根是±1D.-是7的一个平方根二、填空题(共10题,共计30分)16、估算=________(误差小于0.1).17、计算:﹣2(+2)2014(﹣2)2015=________.18、若x3=﹣,则x=________.19、命题“如果x2=y2”,那么“x=y”是________命題(填“真”成“假”).20、数轴上有两个点A和B,点A表示的数是,点B与点A相距2个单位长度,则点B所表示的实数是________.21、计算:( -)÷=________.22、化简()2+ =________.23、在实数中,是无理数的是________.24、计算的结果是________.25、已知x、y是有理数,且x、y满足,则x+y=________三、解答题(共5题,共计25分)26、计算:27、在如图数轴上作出表示﹣的点.28、计算(1)(﹣4)﹣(3﹣2);(2)(﹣)2+2×3;(3)5•(﹣4)(a≥0,b≥0).29、2cos45°﹣(π+1)0++()﹣1.30、计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、B5、D6、D7、C8、B10、C11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、30、。
八年级上册 数学 第二章《实数》测试卷 练习题
第二章《实数》复习题 班级 姓名 学号一.选择题(每小题3分,共30分)1.( )A .3B .3-C .3±D 2. 在-1.414,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( )A .5B .2C .3D .43.化简4)2(-的结果是 ( )A . 4B . -4C .±4D .无意义4.下列各式中,正确的是 ( )A .416±=B .754925-=C .92814±=± D .4643±= 5. 下列计算正确的是 ( )A 、20=102B 、632=⋅C 、224=-D 3=-6. 要使33)3(x -=3-x ,则 x 的取值范围 ( )A .x ≤3B .x ≥3C .0≤x ≤3D .任意数6.已知|x |=2,则下列四个式子中一定正确的是 ( )A .x=2B .x=-2C .x 2=4D .x 3=87. 若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 ( )A .2B .0C .-2D .以上都不对8. 若a a =-2)3(-3,则a 的取值范围是 ( )A . a >3B . a ≥3C . a <3D . a ≤39. 若x <0,则332x x -等于 ( )A .xB .2xC .0D .-2x10. a 为大于1的正数,则有 ( )A .a=aB .a>aC .a<aD .无法确定二.填空(每题3分,共15分)11.若x 的立方根是-41,则x =___________. 12.如果2180a -=,那么a 的算术平方根是 .13.已知1)12(2-++b a =0,则-20042b a +=_______.14.比较大小:722_________π. 15.若(x -1)与(x+7)是一个数的平方根,则这个数是_______.三.计算题(共18分)16.求下列各式的值:(6分)(1)3216--; (2 (3)3973.01-;(4)32004524⨯⨯; (5); (6)81643-.17.(2))23()23(-⨯+18.(1) 16461)21(3=-+x (2) 126942-=x四.解答题(共37分)19.比较215-与85的大小。
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。
八年级上第二章实数测试
八年级上第二章《实数》测试总分:120分 班级 姓名 成绩一、 选择题。
(共30分,10×3)。
1,下列各数:3.141592,—3,0.16,210-,π-, 1010010001.0,722,35 2.0 ,8是无理数的有( )个。
A, 2 B,3 C ,4 D,5 2,16的算术平方根是( )A ,4 B,±4 C ,2 D,±23, 边长为2正方形的对角线长是( )A. 整数B. 分数C. 有理数D. 不是有理数4, 26)(-的平方根是( )A 、-6B 、36C 、±6D 、±65,下列说法正确的是( ) A,3-没有意义; B.负数没有立方根;C.平方根是它本身的数是0,1;D.数轴上的点只可以表示有理数。
6,下列等式中:①,81161= ②,2233=-)( ③,4)4(2±=- ④,610-=0.001 ⑤, 4364273-=-⑥, 3388-=-⑦,(—5)2=25中正确的有( )个。
A,2 B ,3 C ,4 D.57,下列说法错误的是( ) A, 2是2的平方根;B ,两个无理数的和,差,积,商仍为无理数;C ,—27的立方根是—3;D ,无限小数是无理数。
8,下列计算正确的是( )。
A, 2+3=5;B,=-3333;C ,752863=+;D ,942188+=+ 9,若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或810,圆的面积增加为原来的n 倍,则它的半径是原来的( )。
二.填空题。
(每题2分,共24分)。
11,请你任意z 找一个你觉得最大的数,用计算器求它的算术平方根,得出的结果再求算术平方根,再求算术平方根……一直算下去,算到最后你的结果是 ; 12,64的平方根是 ;0)5(-的平方根是13,计算:316437-= ; 14,=-2)4( . =-33)6( , 2)10(-= .15,一个直角三角形的两直角边分别为2,3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数检测题
(本检测题满分:100分,时间:90分钟)
一、选择题(每小题3分,共30分)
1.(2016·天津中考)估计的值在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
2.(2015·安徽中考)与1+错误!未找到引用源。
最接近的整数是()
A.4
B.3
C.2
D.1
3.(2015·南京中考)估计错误!未找到引用源。
介于()
A.0.4与0.5之间
B.0.5与0.6之间
C.0.6与0.7之间
D.0.7与0.8之间
4.(2016·浙江衢州中考)在,﹣1,﹣3,0这四个实数中,最小的是()
A. B.﹣1 C.﹣3 D.0
5.(2015)
A. B. C. D.
6.若a,b为实数,且满足|a-,则b-a的值为()
A.2 B.0 C.-2 D.以上都不对
7.
若a,b均为正整数,且a b a+b的最小值是()
A.3
B.4
C.5
D.6
8.11,
2
1
2
c
⎛⎫
-
⎪
⎝⎭
=0,则abc的值为()
A.0 B.-1 C.-1
2
错误!未找到引用源。
D.错误!未找到
引用源。
9.(2016·黑龙江大庆中考)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()
第9题图
A.a•b>0
B.a+b<0
C.|a|<|b|
D.a﹣b>0
10.有一个数值转换器,原理如图所示:当输入的x错误!未找到引用源。
=64时,输出的y 等于()
是有理数
A.2 B.8 C.D.
二、填空题(每小题3分,共24分)
11.(2015·南京中考)4的平方根是_________;4的算术平方根是__________.
12.(2016·福州中考)若二次根式在实数范围内有意义,则x的取值范围
是.
13.
14.绝对值小于π的整数有.
15.
已知|a-5|=0,那么a-b=.
16.已知a,b为两个连续的整数,且a b,则a+b=.
1711)=________.
18.(2016·山东威海中考)错误!未找到引用源。
错误!未找到引用源。
化简:
=.
三、解答题(共46分)
19.(6分)已知错误!未找到引用源。
,求错误!未找到引用源。
的值.
20.(5分)
21.(6分)
.
22.(6分)比较大小,并说明理由:
(1)
与6;
(2)与.
23.(8分)计算:(1)8
62⨯-82734⨯+;
(2))62)(31(-+-2)132(-.
(3)
(4)
25.(6分)
第二章 实数检测题参考答案
一、选择题
1.C 解析: 19介于16和25之间,∵ 16<19<25,∴
∴ 4未找到引用源。
<5,∴
错误!未找到引用源。
的值在4和5之间.故选C.
2.B 解析:∵ 4.84<5<5.29,∴
即2.2 2.3,∴ 1+2.2<1+2.3,
即3.2< 3.3,∴ 与 3.
3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<
∴ 0.60.65<<,故选C. 4.C 解析:根据实数的大小比较法则(正数都大于0,负数都小于0,正数大 于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.
∵ ﹣3<﹣1<0<,
∴ 最小的实数是﹣3,故选C .
5.B ==
6.C 解析:∵ |a -2|0,∴ 错误!未找到引用源。
a =2,b =0,∴ b -a =0-2=-2.故选C .
7.C 解析:∵ a ,b 均为正整数,且a b ∴ a 的最小值是3,b 的最小值是2, 则a +b 的最小值是5.故选C .
8.C 解析:∵
11,2
12c ⎛⎫- ⎪⎝⎭=0,∴ a =-1,b =1,c =12,错误!未找到引用源。
错误!未找到引用源。
∴ abc =- 12错误!未找到引用源。
.故选C .
9.D 解析:根据实数a 、b 在数轴上对应的点的位置可知1<a <2,﹣1<b <0,∴ ab <0,a +b >0,|a |>|b |,a ﹣b >0.故选D .
10.D 解析:由图得64的算术平方根是8,8的算术平方根是.故选D .
二、填空题
11.2± 2 解析:∵ ()2
224,24,=-=∴ 4的平方根是2±,4的算术平方根是2. 12.x ≥﹣1 解析:若二次根式在实数范围内有意义,则x +1≥0,解得x ≥﹣1.
13.604.2 ±0.019 1 解析:≈604.2错误!未找到引用源。
;
≈±错误!未找到引用源。
0.019 1.
14. ±3,±2,±1,0 解析:π≈3.14,大于-π错误!未找到引用源。
的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π错误!未找到引用源。
.
15. 8 解析:由|a -5|=0,得a =5,b =-3,所以a -b =5-(-3) =8.
16.11 解析:∵ a b , a ,b 为两个连续的整数,
a =6,
b =5,∴ a +b =11.
17. 1 1)(2-1)=()22-12
=2-1=1.
==.
三、解答题
19.解:因为错误!未找到引用源。
,
错误!未找到引用源。
,即错误!未找到引用源。
,
所以错误!未找到引用源。
.
故错误!未找到引用源。
,
从而错误!未找到引用源。
,所以错误!未找到引用源。
,
所以错误!未找到引用源。
.
20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a =7-2.
又可得2<5-7<3,∴ b =3-7.
将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2.
21.解:根据题意,可知错误!未找到引用源。
,因为错误!未找到引用源。
,
所以错误!未找到引用源。
.
22.分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小; (2)可采用近似求值的方法来比较大小.
解:(1)∵,35<36,∴ <6.
(2)∵ 1≈-2.236+1=-1.236≈-0.707,1.236>0.707,
∴ 1. 23.解:∵ 4<5<9,∴ 2<错误!未找到引用源。
<3,∴ 7<5+错误!未找到引用源。
<8,∴ 错误!未找到引用源。
=错误!未找到引用源。
-2.
又∵ -2>-错误!未找到引用源。
>-3,∴ 5-2>5-错误!未找到引用源。
>5-3,∴ 2<5-错误!未找到引用源。
<3,∴ b =2,
∴ 错误!未找到引用源。
+b =错误!未找到引用源。
-2+2=错误!未找到引用源。
.
24. 解:(1
(2(13-
=13.
25.1
=解:(
(2
==(3
++ 错误!未找到引用源。
=-11+10=9.
错误!未找到引用源。