2010-2013北约自主招生数学笔试试题及解答

合集下载

---2013“北约”、“华约”自主招生数学试题

---2013“北约”、“华约”自主招生数学试题

取到三个,设其中三个分别为 3a r、3b r 、3c r , 则 (3a r ) (3b r ) (3c r ) 3(a b c r ) ,不可能为素数 .所以每类数最多只能取两
个.
结合上述两条,我们知道最多只能取 2 2 4个数,才有可能满足题设条件 .
另一方面,设所取的四个数为 1、 7、 5、 11,即满足题设条件 .
最上面一行的红色车位置选定后, 中间一行的红色车位置有 5 种选择; 上面两行的红色车位 置选定后, 最下面一行的红色车位置有 4 种选择。 三辆红色车的位置选定后, 黑色车的位置
3
有 3! =6 种选择。所以共有 C6 6 5 4 6 14400 种停放汽车的方法 .
3.已知 x2 2 y 5, y 2 2 x 5 ,求 x3 2x 2 y 2 y 3的值 .
.否则,若三类数都有取到,设所取
数为 3a , 3k 1 型数为 3b 1, 3k 2 型数为 3c 2 ,
3k 型
则 3a (3b 1) (3c 2) 3(a b c 1) ,不可能为素数 .所以三类数中, 最多能取到两类 .
其次, 我们容易知道, 每类数最多只能取两个 .否则, 若某一类 3k r (r 0、1、2) 型的数至少
综上所述,若要满足题设条件,最多能取四个两两不同的正整数
.
8 . 已 知 a1、 a2、 a3、 、 a2013 R , 满 足 a1 a2 a3
a2013 0 , 且
a1 2 a2
a2 2 a3
a23
a4
a22 0 1 2 a
2 0 2a,1 3 求 a2证0 1 :3
1
a1 a2 a3
a2013 0 .
5.数列 an 满足 a1 1,前 n 项和为 Sn , Sn 1 4an 2 ,求 a2013 . 解析:根据条件知: 4an 1 2 Sn 2 an 2 Sn 1 an 2 4an 2 an 2 4 an 1 4an . 又根据条件知: a1 1,S2 a1 a2 4a1 2 a 2 5 .

2013年北约数学试题

2013年北约数学试题

2013年北约自主招生数学试题解析1、以2和321-为两根的有理系数多项式的次数最小是( )A .2B .3C .5D .62、在66⨯的棋盘中停放着3个红色車和3个黑色車,每一行、每一列都只有一个車,共有多少种停放方法 ( )A .720B .20C .518400D .144003、已知522+=y x ,522+=x y ,求32232y y x x +-的值.4、如图,ABC ∆中,AD 为BC 边上的中线,DN DM ,分别为ADC ADB ∠∠,的角平分线,试比较CN BM +与MN 的大小关系,并说明理由.5、设数列{}n a 满足11=a ,前n 项和为n S ,241+=+n n a S ,求2013a .6、模长为1的复数z y x ,,满足0≠++z y x ,求zy x zxyz xy ++++.ACN27、最多有多少个两两不等的正整数,满足其中任意三数之和都为素数.8、已知i a ,2013,,3,2,1 =i 为2013个实数,满足02013321=++++a a a a ,且212a a -322a a -==…120132a a -=,求证02013321=====a a a a .9、对于任意的θ,求θθθθ2cos 154cos 66cos cos 326---的值.10、已知有mn 个实数,排列成n m ⨯阶数阵,记作{}n m ij a ⨯使得数阵的每一行从左到右都是递增的,即对任意的m i ,,3,2,1 =,当21j j <时,有21ij ij a a <;现将{}nm ij a ⨯的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的n m ⨯阶数阵,记作{}nm ija ⨯',即对任意的n j ,,3,2,1 =,当21i i <时,有j i j i a a 21''<,试判断{}n m ij a ⨯'中每一行的各数的大小关系,并加以证明.【参考答案】1、解析:显然)2)1)((2(32+--x x 为满足要求的多项式,其次数为5.若存在n 次有理系数多项式)(x f 以2和321-为两根,则)(x f 必含有因式)2)1)((2(32+--x x ,∴5≥n ,即最小次数为5.故选C .2、解析:先排3个红色車,从6行中任取3行,有2036=C 种取法;在选定的3行中第一行有6种停法,第一行选定后第二行有5种停法,第二行选定后第三行有4种停法;红車放定后,黑車只有6种停法. 故停放方法共14400645620=⨯⨯⨯⨯种.故选D .3、解析:∵32232y y x x +-)52()52)(52(2)52(++++-+=x y x y y x50)(154-+--=y x xy ,又由522+=y x ,522+=x y ,有)(222y x y x --=- ∴y x =或2-=+y x .当y x =时,有522+=x x ,61±=x ,50)(154-+--y x xy 503042---=x x 7038--=x 7038--=x 638108±-=;当2-=+y x 时,5)2(22++-=x x ,1)2(=+x x50)(154-+--y x xy 20)2(4----=x x 80)2(4-+=x x 16-=.4、解析:延长ND 至E ,使ED ND =,连结ME BE ,,则BED ∆≌CND ∆,MED ∆≌MND ,MN ME =,由EM BE BM >+,得MN CN BM >+.5、解析:∵11=a ,24121+=+a a a ,∴52=a ;由 241+=+n n a S ,有2≥n 时,241+=-n n a S ,于是1144-+-=n n n a a a ,特征方程442-=x x 有重根2,可设n n c c a 2)(21⨯+=,将11=a ,52=a 代入上式,得411-=c ,432=c ,于是22)13(2)4143(-⨯-=⨯-=n n n n n a ,∴2011201326038⨯=a . 6、解析:取1===z y x ,便能得到zy x zxyz xy ++++=1.ACN4下面给出证明,1===z z y y x x ,于是2z y x zx yz xy ++++⎪⎪⎭⎫ ⎝⎛++++++++=z y x zx yz xy z y x zx yz xy zy x zxyz xy z y x zx yz xy ++++⨯++++= 1111111=++++++++++++++++=xy x z x z x y z y z x x y x z x z x y z y z x . ∴z y x zxyz xy ++++=1. 7、解析:设满足条件的正整数为n 个.考虑模3的同余类,共三类,记为0,1,2.则这n 个正整数需同时满足①不能三类都有;②同一类中不能有3个和超过3个.否则都会出现三数之和为3的倍数.故4≤n .当4=n 时,取1,3,7,9,其任意三数之和为11,13,17,19均为素数,满足题意, 所以满足要求的正整数最多有4个.8、解析:设212a a -322a a -==…120132a a -=k =,若0=k ,则212a a =,322a a =,…,201320122a a =,120132a a =, 于是0222212011121112013321=+++++=++++a a a a a a a a a , ∴01=a ,进而02013321=====a a a a .若0>k ,则212a a -,322a a -,…,120132a a - 这2013个数去掉绝对值号后只能取k 和k -两值,又212a a -+-+322a a …201320122a a -+0212013=-+a a , 即这2013个数去掉绝对值号后取k 和k -两值的个数相同,这不可能. 9、解析:42cos 122cos 122cos 4)22cos 1(32cos 322336+++=+=θθθθθ, θθθ2cos 32cos 46cos 3+-=-,62cos 124cos 62+-=-θθ, θθ2cos 152cos 15-=-,各式相加,得102cos 154cos 66cos cos 326=---θθθθ.10、解析:数阵{}nm ija ⨯'中的中每一行的各数仍是递增的.下面用反证法给出证明.若在第p 行存在)1(''+>q p pqa a,令)1()1('++=q i q k k a a ,其中m k ,,3,2,1 =,{}{}m i i i i m ,,3,2,1,,,,321 =,则当p t ≤时,)1(+≤q i qi t ta a )1('+=q t a <≤+)1('q p a pq a '即在第q 列中至少有p 个数小于pq a ',也就是pq a '在数阵{}n m ij a ⨯'中的第q 列中至少排在第1+p 行,这与pq a'排在第p 行矛盾.所以数阵{}n m ij a ⨯'中的中每一行的各数仍是递增的.。

2013年三大联盟自主招生数学试题及答案

2013年三大联盟自主招生数学试题及答案
ak al am an . 设 an a1 n 1 d ,则
ak al am an
a1 k 1 d a1 l 1 d a1 m 1 d a1 n 1 d k l mn k l mn ≥ mn 2 2 因此命题得证,
b2013 0 ,进而易得 a1 a2
b2013 mx m 2013 x m 2x 2013 .
a2013 0 .
(理科第 9 题,文科第 9 题) 对任意 ,求 32cos6 cos6 6cos 4 15cos 2 的值. 【解析】 32cos6 cos6 6cos 4 15cos 2
1 2 【解析】 B.
AB BC CA 的模等于( A BC

A.
B. 1
C. 3
D.不能确定
A B C A B C
A B C A B C


3 AB AC BA BC C A CB
AB BC CA AB BC CA
(理科第 7 题,文科第 8 题) 至多可以找到多少个两两不同的正整数使得它们中任意三个的和都是质数?证明你的结论. 【解析】 至多可以找到 4 个,如 1, 3 , 7 , 9 . 下面证明不能找到 5 个符合题意的正整数. 考虑它们模 3 的余数,设余数为 0 、 1 、 2 的分别有 a 、 b 、 c 个,则 1° 若 a 、 b 、 c 均不为零,则存在三个数,它们的和为 3 的倍数,一定不是质数; 2° 若 a 、 b 、 c 中有零,则根据抽屉原理,至少存在三个数,它们的余数相同. 此时它们的和为 3 的倍数,一定不是质数. 综上,不能找到 5 个符合题意的正整数. (理科第 8 题,文科第 10 题) 实数 a1 , a2 ,

“北约”自主招生数学试题及解答2010

“北约”自主招生数学试题及解答2010

1.(仅文科做)02απ<<,求证:sin tan ααα<<.2.AB 为边长为1的正五边形边上的点.证明:AB (25分)3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分)2012年“北约”自主招生数学试题及解答《自主招生》三大系列《全国重点高校自主招生备考指南·高一、高二基础版》从从高高一一开开始始行行动动起起来来!!⊙专为高一、高二学生设计,细致分析自主招生关键信息,深入讲解自主招生备考方略。

《全国重点高校自主招生备考指南·华约+卓越联盟版》《全国重点高校自主招生备考指南·北约版》(含复旦千分考)政政策策、、选选校校、、笔笔试试、、面面试试,,一一本本全全搞搞定定!!⊙细致分析政策信息,解答历年考生的常见问题⊙教你锁定目标高校,汇编盟内高校的关键信息⊙参照历年真题的题型、知识分布、难度范围,编制仿真模拟卷,供你冲刺练兵⊙指点面试要津,列举面试真题、模拟题,助你顺利闯过最后关卡《名牌大学自主招生高效备考》(高三学生适用)为为优优秀秀高高中中生生量量身身定定制制,,分分学学科科深深入入导导航航⊙分学科侧重补充中学教材上未涉及的但在自主招生笔试中经常考到的重要知识⊙以清华北大复旦交大等校的历年考题为例展示这些知识和原理的运用⊙辅以一线教师精选的试题供参加自主招生考试的学生训练使用11《名牌大学自主招生同步辅导》(高一、高二学生适用)⊙按照学科,又分上下册 ⊙每册书大体按小专题(讲)编写,次序与学校教学内容的次序大体相同,上册内容紧扣高一教材,下册内容紧扣高二教材。

自主招生北约数学试题及解答(2010-2014)

自主招生北约数学试题及解答(2010-2014)

2010年“北约”自主招生数学试题及解答1.(仅文科做)02απ<<,求证:sin tan ααα<<. 【解析】 不妨设()sin f x x x =-,则(0)0f =,且当02x π<<时,()1cos 0f x x '=->.于是()f x 在02x π<<上单调增.∴()(0)0f x f >=.即有sin x x >. 同理可证()tan 0g x x x =->.(0)0g =,当02x π<<时,21()10cos g x x'=->.于是()g x 在02x π<<上单调增。

∴在02x π<<上有()(0)0g x g >=。

即tan x x >。

注记:也可用三角函数线的方法求解.2.AB 为边长为1的正五边形边上的点.证明:AB.(25分) 【解析】 以正五边形一条边上的中点为原点,此边所在的直线为x 轴,建立如图所示的平面直角坐标系.⑴当,A B 中有一点位于P 点时,知另一点位于1R 或者2R 时有最大值为1PR ;当有一点位于O 点时,1max AB OP PR =<;⑵当,A B 均不在y 轴上时,知,A B 必在y 轴的异侧方可能取到最大值(否则取A 点关于y 轴的对称点A ',有AB A B '<).不妨设A 位于线段2OR 上(由正五边形的中心对称性,知这样的假设是合理的),则使AB 最大的B 点必位于线段PQ 上.且当B 从P 向Q 移动时,AB 先减小后增大,于是max AB AP AQ =或;对于线段PQ 上任意一点B ,都有2BR BA ≥.于是22max AB R P R Q == 由⑴,⑵知2max AB R P =.不妨设为x .下面研究正五边形对角线的长.I HG FE 1111x x-1如右图.做EFG ∠的角平分线FH 交EG 于H . 易知5EFH HFG GFI IGF FGH π∠=∠=∠=∠=∠=. 于是四边形HGIF 为平行四边形.∴1HG =. 由角平分线定理知111EFEH x FG x HG ===-.解得x =3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)【解析】 不妨设过A 点的切线交x 轴于点C ,过B 点的切线交x 轴于点D ,直线AC 与直线BD 相交于点E .如图.设1122(,),(,)B x y A x y ,且有222211121,1,0y x y x x x =-=->>.由于2y x '=-,于是AC 的方程为2222x x y y =--;① BD 的方程为1122x x y y =--. ②联立,AC BD 的方程,解得121221(,1)2()y y E x x x x ---. 对于①,令0y =,得222(,0)2y C x -;对于②,令0y =,得112(,0)2y D x -. 于是221212121222112222y y x x CD x x x x --++=-=-. 121(1)2ECD S CD x x ∆=-.不妨设10x a =>,20x b -=>,则 2222111111()(1)(22)44ECD a b S ab a b a b ab a b a b∆++=++=+++++1111()(2)(2)44a b ab ab ab ab=+++⋅++≥ ③0s >,则有331111111(2)(.....)223399ECD S s s s s s s s s∆=++=++++++ 6个 9个1243691616111116)]8()2393s s s ⋅⋅[⋅(⋅()=⋅≥3218)3=⋅(= ④又由当12x a x b s ===-==∴min ()ECD S ∆ 注记:不妨设311()(2)2g s s s s=++,事实上,其最小值也可用导函数的方法求解. 由2211()(32)2g s s s'=+-知当2103s <<时()0g s '<;当213s <时()0g s '>.则()g s 在(0,上单调减,在)+∞上单调增.于是当s =时()g s 取得最小值. 4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分) 【解析】 不妨设OA ,OB 夹角为α,则1,2OP t OQ t =-=,令 222()(1)42(1)2cos g t PQ t t t t α==-+-⋅-⋅2(54cos )(24cos )1t t αα=++--+. 其对称轴为12cos 54cos t αα+=+.而12()54x f x x +=+在5(,)4-+∞上单调增,故12cos 1154cos 3αα+-+≤≤. 当12cos 1054cos 3αα++≤≤时,012cos 1(0,)54cos 5t αα+=∈+,解得223αππ<<. 当12cos 1054cos αα+-<+≤时,()g t 在[0,1]上单调增,于是00t =.不合题意. 于是夹角的范围为2[,]23ππ. 5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分) 【解析】 不存在;否则有(cos sin )(cos sin )cos sin cot tan sin cos x x x x x x x x x x-+-=-=, 则cos sin 0x x -=或者cos sin 1sin cos x x x x+=.若cos sin 0x x -=,有4x π=1,1不成等差数列;若cos sin 1sin cos x x x x+=,有2(sin cos )12sin cos x x x x =+.解得有sin cos 1x x =. 而11sin cos sin 2(0,]22x x x =∈,矛盾!2011年“北约”自主招生数学试题及解答2012年“北约”自主招生数学试题及解答2013年北约自主招生数学试题与答案1.1A. 2B. 3C. 5D. 6解析:显然,多项式23()(2)(1)2f x x x ⎡⎤=---⎣⎦和11 5. 若存在一个次数不超过4的有理系数多项式432()g x ax bx cx dx e =++++,其两根分别为1,,,,a b c d e 不全为0,则:420(42)(2020a c e ga c eb d b d ++=⎧=++++=⇒⎨+=⎩(1(7)(232(630g a b c d e a b c d a b c =-+----+++++=702320a b c d e a b c d +---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb d a bcde a b c d a b c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解. 由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a =,代入(7)、(8)得:0b c ==,代入(1)、(2)知:0d e ==.于是知0a b c d e =====,与,,,,a b c d e 不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x11为两根的有理系数多项式的次数最小为5.2. 在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法? A. 720 B. 20 C. 518400 D. 14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。

北约自主招生数学题及解答

北约自主招生数学题及解答

北约自主招生数学题及解答∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

解:由对角线的平方和等于四边的平方和:所以36+x 2=2(9+25),x 2=32,∴x=4√2。

∎2求过抛物线y =2x 2−2x −1,y =−5x 2+2x +3交点的直线方程。

解:{y =2x 2−2x −1y =−5x 2+2x +3,{5y =10x 2−10x −52y =−10x 2+4x +6,7y=−6x+1,∴6x+7y −1=0为所求。

∎3、等差数列a 1,a 2,⋯满足a 3=−13,a 7=3,这个数列的前n 项和为S n ,数列S 1,S 2,⋯中哪一项最小,并求出这个最小值。

解:d=a 7−a 37−3=164=4,∴a 1=−21,S n =2n 2−23n ,当n=234,即n=6时S n 最小,最小为−66。

∎4、∆ABC 的三边a,b,c 满足a+b ≥2c ,A,B,C 为∆ABC 的内角,求证:C ≤60°。

解:ab ≤(a+b 2)2,cosC=a 2+b 2−c 22ab=(a+b)2−2ab−c 22ab≥(a+b)2−c 2(a+b)22−1=1−2c 2(a+b)2≥1−2c 24c 2=12,所以C ≤60°。

∎ 5、是否存有四个正实数,它们的两两乘积分别是2,3,5,6,10,16?解:设存有四个正实数分别为a<b<c<d ,依题意:ab=2,ac=3,ad=5,bc=6,bd=10,cd=16,∴a 2bc =6,∴a =1,b=2,c=3,d=5,而cd=15≠16,故不存有。

或解:∵abcd=32,而(abcd)3=1800×16,不满足,故不存有。

∎6、C 1和C 2是平面上两个不重合的固定圆,C 是该平面上的一个动圆,C 和C 1,C 2都相切,则C 的圆心的轨迹是何种曲线?说明理由。

2013北约自主招生试题及答案(数学)

2013北约自主招生试题及答案(数学)

2013“北约”自主招生试题2013-03-16(时间90分钟,满分120分)杨育球整理一、选择题(每题8分,共48分)11 C )A. 2B. 3C. 5D. 62.66⨯方阵,3个红车,3个黑车,且6个均不在同一行且不在同一列,有( )种方法A. 720B. 20C. 518400D. 144003.已知225x y =+,225y x =+,(x y ≠),则32232x x y y -+值为( ) A. 10- B. 12- C. 14- D. 16-4.在数列{}n a 中,11a =,142n n S a +=+(1n ≥),则2013a 值为( )A. 201230192⨯B. 201330192⨯C. 201230182⨯D. 无法确定5.在ABC ∆中,D 为BC 中点,DM 平分ADB ∠交AB 于点M ,DN 平分ADC ∠交AC于N ,则BM CN +与MN 的关系为( )A. BM CN MN +>B. MN CN MN +<C. BM CN MN +=D. 无法确定6.若,,A B C 为三个复数A B C ≠≠,且模全为1,则BC AC AB A B C ++++=( ) A. 12- B. 1 C. 2 D. 无法确定二、解答题(每题18分,共72分)7.最多能找多少个两两不相等的正整数使其任意三个数之和为质数,并证明你的结论。

8.已知12320130a a a a ++++= ,且 122320131|2||2||2|a a a a a a -=-==- 证明:12320130a a a a =====9.对于任意θ,求632cos cos612cos415cos2θθθθ---的值10.有一个m n ⨯的数表,已知每一行的数均是由小到大排列。

现在将每一列的数由小到大重新排列,则新的数表中每一行的数满足什么样的关系?请证明你的结论。

历年自主招生试题分类汇编三角函数.docx

历年自主招生试题分类汇编三角函数.docx

历年自主招生试题分类汇编——三角函数7.( 2014 年北约)证明tan3是无理数 .【证明】由三角公式tan22 tan,tan()tan tan, 1tan21tan tan若 tan3 是有理数,则 tan6 ,tan12 ,tan 24为有理数 ,再由tan 6和 tan24 可得 tan 30为有理数 ,这与tan303为无理数矛盾 !因此 , tan3是无理数 . 3法二:设t0Q a n3,则t 0Q a nQ6a, n这与 1Q 2t Qtan3003Q 矛盾.39.( 2013 年北约)对于任意的,求32 cos6cos 6 6 cos 415 cos 2 的值.解析32 cos632(1cos 2) 34cos3 212 cos2 212 c o s2 4 ,2c o s633 c o s2 ,4 c o s 26 cos 426 ,12 c o s215 cos 215 c o s2,各式相加,得 32 cos6cos 6 6 cos 415 cos210 .题 7( 2012 年北约)求使得 sin 4 x sin 2 x sin xsin 3 x a 在0,上有唯一解的 a 。

解:设f x sin4 xsin2 x sin xsin3 x1cos6 x cos2x1cos4 x cos2x221sin5 x sin xcos6x cos4 x2∵ f x sin 55x sin x sin5 x sin x f x∴ f x关于直线 x对称2故 f x a 在 0,上有唯一解,只能x 0或 x2当 x0时, a0,此时 sin xsin 5 x0 在0,上不是唯一解,舍去当x时, a 1 ,此时 sin x sin 5 x12∵ 0, 时, sin x 0 ∴ sin x 1 且 sin 5 x 1 ,得 x 为唯一解 ∴ a 12评析: 本题要求掌握函数对称性与三角函数知识,考查学生知识应用的迁移能力。

2013年北约自主招生数学试题与答案解析

2013年北约自主招生数学试题与答案解析

2013年北约自主招生数学试题与答案2013-03-16(时间90分钟,满分120分)(1(7)(232(630g a b c d e a b c d a b c =-+----+++++702320a b c d e a b c d +---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c e b d a b c d e a b c d a b c ++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解.由(1)+(3)得:110a b c d ++-= (6) 由(6)+(2)得:1130a b c ++= (7) 由(6)+(4)得:13430a b c ++= (8) 由(7)-(5)得:0a =,代入(7)、(8)得:0b c ==,代入(1)、(2)知:0d e ==.于是知0a b c d e =====,与,,,,abcd e不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和11为两根的有理系数多项式的次数最小为5.2.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法?A. 720B. 20C. 518400D. 14400解析:先从6行中选取3行停放红色车,有36C 种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。

三辆红色车的位置选定后,黑色车的位置有3!=6种选择。

所以共有36654614400C ⨯⨯⨯⨯=种停放汽车的方法. 3.已知2225,25x y y x =+=+,求32232x x y y -+的值. A. 10 B. 12 C. 14 D. 16 解析:根据条件知:32232(25)2(25)(25)(25)x x y y x y y x y x -+=+-++++1515450x y xy =---由2225,25x y y x =+=+两式相减得()()22x y x y y x -+=-故y x =或2x y +=-①若x y =则225x x =+,解得1x =±于是知1x y ==+1x y ==当1x y ==+3223222415()50430504(25)3870x x y y xy x y x x x x x -+=-++-=---=-----3870108x =--=--.当1x y ==-3223222415()50430504(25)3870x x y y xy x y x x x x -+=--+-=---=-+---22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-3870108x =--=-+.(2)若x y ≠,则根据条件知:22(25)(25)2()2x y y x y x x y +=+-+=-⇒+=-,于是22(25)(25)2()106x y y x x y +=+-+=++=,进而知222()()12x y x y xy +-+==-. 于是知:32232415()5016x x y y xy x y -+=-+-=-.综上所述知,32232x x y y -+的值为108-±或16-.4.数列{}n a 满足11a =,前n 项和为1,42n n n S S a +=+,求2013a . A. 3019⨯22012B. 3019⨯22013C. 3018⨯22012D.无法确定解析:根据条件知:1221221424244n n n n n n n n n a S a S a a a a a ++++++++==+=++⇒=-.又根据条件知:1212121,425a S a a a a ==+=+⇒=.所以数列{}1221:1,5,44n n n n a a a a a a ++===-.又212114422(2)n n n n n n n a a a a a a a +++++=-⇔-=-.令12n n n b a a +=-, 则11212,23n n b b b a a +==-=,所以132n n b -=⋅.即11232n n n a a -+-=⋅.对11232n n n a a -+-=⋅,两边同除以12n +,有113224n n n n a a ++-=,即113224n n n n a a ++=+.令2n nn a c =,则134n n c c +=+,11122a c ==,于是知1331(1)244n n c n -=+-=.所以231,2(31)24nn n n a n --==-⋅.于是知:201120122013(320131)230192a =⨯-⋅=⋅.5.如图,ABC ∆中,AD 为BC 边上中线,,DM DN 分别,ADB ADC ∠∠的角平分线,试比较BM CN +与MN 的大小关系,并说明理由. A. BM+CN>MNB. MN +CN <MNC. BM+CN =MND.无法确定解析:如图,延长ND 到E ,使得DE DN =,连接BE ME 、.易知BDE CDN ∆≅∆,所以CN BE =.又因为,DM DN 分别为,ADB ADC ∠∠的角平分线,所以90MDN ∠=︒,知MD 为线段EN 的垂直平分线,所以MN ME =.所以B M C N B M B E +=+>=.6.模长为1的复数A B C 、、,满足0A B C ++≠,求AB BC CAA B C++++的模长.A. -1/2B. 1C. 2D.无法确定解析:根据公式z =1,1,1A A B B C C ⋅=⋅=⋅=.于是知:AB BC CAA B C ++=++=1==.所以AB BC CAA B C++++的模长为1.7.最多能取多少个两两不等的正整数,使得其中任意三个数之和都为素数. 解析:所有正整数按取模3可分为三类:3k 型、31k +型、32k +型.首先,我们可以证明,所取的数最多只能取到两类.否则,若三类数都有取到,设所取3k 型数为3a ,31k +型数为31b +,32k +型数为32c +,则3(31)(32)3(1)a b c a b c ++++=+++,不可能为素数.所以三类数中,最多能取到两类.其次,我们容易知道,每类数最多只能取两个.否则,若某一类3(012)k r r +=、、型的数至少取到三个,设其中三个分别为333a r b r c r +++、、,则(3)(3)(3)3()a r b r c r a b c r +++++=+++,不可能为素数.所以每类数最多只能取两个.结合上述两条,我们知道最多只能取224⨯=个数,才有可能满足题设条件. 另一方面,设所取的四个数为1、7、5、11,即满足题设条件. 综上所述,若要满足题设条件,最多能取四个两两不同的正整数.8.已知1232a a a a R ∈ 、、、、,满足12320130a a a a ++++= ,且122334201220132013122222a a a a a a a aa a -=-=-==-=- ,求证:12320130a a a a ===== .解析:根据条件知:122334************(2)(2)(2)(2)()0a a a a a a a a a a a a -+-+-++-=-++++= ,(1)另一方面,令12233421312222a a a a a a a a m -=-=-==-= ,则1223342222a a a a a a a a ---- 、、、、中每个数或为m ,或为m -.设其中有k 个m ,(2013)k -个m -,则:12233420131(2)(2)(2)(2)(2013)()(22013)a a a a a a a a k m k m k m-+-+-++-=⨯+-⨯-=- (2)由(1)、(2)知:(22013)0k m -= (3)而22013k -为奇数,不可能为0,所以0m =.于是知:12233420122013201312,2,2,,2,2a a a a a a a a a a ===== .从而知:2013112a a =⋅,即得10a =.同理可知:2320130a a a ==== .命题得证.9.对任意的θ,求632cos cos66cos 415cos 2θθθθ---的值. 解析:根据二倍角和三倍角公式知:632cos cos66cos 415cos 2θθθθ---622232cos (2cos 31)6(2cos 21)15(2cos 1)θθθθ=------63222232cos 2(4cos 3cos )162(2cos 1)115(2cos 1)θθθθθ⎡⎤⎡⎤=--------⎣⎦⎣⎦664242232cos (32cos 48cos 18cos 1)(48cos 48cos 6)(30cos 15)θθθθθθθ=--+---+--10=.10.已知有mn 个实数,排列成m n ⨯阶数阵,记作{}mxnija ,使得数阵中的每一行从左到右都是递增的,即对任意的123i m = 、、、、,当12j j <时,都有12ij ij a a ≤.现将{}mxnija 的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的m n ⨯阶数阵,记作{}mxnija ',即对任意的123j n = 、、、、,当12i i <时,都有12i j i j a a ''≤.试判断{}mxnija '中每一行的n 个数的大小关系,并说明理由.解析:数阵{}mxnija '中每一行的n 个数从左到右都是递增的,理由如下:显然,我们要证数阵{}mxnija '中每一行的n 个数从左到右都是递增的,我们只需证明,对于任意123i m = 、、、、,都有(1)iji j a a +''≤,其中1231j n =- 、、、、. 若存在一组(1p qp qa a +''>.令(1)(1)k k q i q a a ++'=,其中123k m = 、、、、,{}{}123,,,,1,2,3,,m i i i i m = .则当t p ≤时,都有(1)(1)(1)tti q i q t q p q pq a a a a a +++'''≤=≤<.也即在(123iq a i = 、、、、m)中,至少有p 个数小于pq a ',也即pq a '在数阵{}mxnij a '的第q 列中,至少排在第1p +行,与pq a '排在第p 行矛盾.所以对于任意123i m = 、、、、,都有(1)iji j a a +''≤,即数阵{}mxnij a '中每一行的n 个数从左到右都是递增的.。

北约自主招生能力测试数学试题(含参考答案

北约自主招生能力测试数学试题(含参考答案

综合性大学自主选拔录取联合考试自然科学基础——理科试卷数学部分(北约)一、选择题(每小题8分,合计48分)1.圆心角为3π的扇形的面积为6π,则它围成的圆锥的表面积为( B ).A .B .7πC .D .解:由2166S R ππ==扇形得6R =,由263r ππ=⨯得1r =,故它围成的圆锥的表面积为267r πππ+=.2.将10个人分为3组,一组4人,另两组各3人,共有( C )种分法.A .1070B .2014C .2100D .4200解:433106321002C C C N ==. 3.已知2()2()()33a b f a f b f ++=,(1)1f =,(4)7f =,则(2014)f =( A ). A .4027 B .4028 C .4029 D .4030 解:421(4)2(1)(2)()333f f f f +⨯+===,124(1)2(4)(3)()533f f f f +⨯+===,猜想*()21()f n n n N =-∈,假设()21f n n =-对3(1)n k k ≤≥都成立,则(31)3(1)2(1)2(31)1f k f k f k +=+-=+-,(32)3(2)2(2)2(32)1f k f k f k +=+-=+-,(33)3(3)2(3)2(33)1f k f k f k +=+-=+-,所以*()21()f n n n N =-∈.4.若2()lg(2)f x x ax a =-+的值域为R ,则a 的取值范围是( D ).A .01a ≤≤B .C .D .0a ≤或1a ≥解:由题知,{}2(0,)2y y x ax a +∞⊆=-+,故2(2)40a a ∆=--≥,解得:0a ≤或1a ≥.5.已知1x y +=-,且x 、y 均为负实数,则1xy xy+有( B ). A .最大值174 B .最小值174 C .最大值174- D .最小值174-解:1()()x y =-+-≥104xy <≤,而函数1()f t t t=+在(0,1)上单调递减,在(1,)+∞单调递增,故1()()4f xy f ≥,即1174xy xy +≥,当且仅当12x y ==-时取等号. 6.已知22()arctan14x f x C x +=+-在(,)44ππ-上为奇函数,则C =( B ). A .0 B .arctan 2- C .arctan 2 D .不存有解:由()0f x =得arctan(2)arctan 2C =-=-,此时()()f x f x +-22arctan14x x +=-22arctan 214x C x -+++4arctan()2arctan 203=--=,故arctan 2C =-符合题意.二、解答题(每题18分,共72分)7.证明:0tan3R ∉.证明:设0tan 3Q ∈,则0tan 6tan12tan 24tan 30tan(624)Q Q Q Q ∈⇔∈⇔∈⇔=+∈,这与0tan 303Q =矛盾. 8.已知实系数二次函数()f x 和()g x ,若方程()()f x g x =和3()()0f x g x +=都只有一个偶重根,方程()0f x =有两个不等的实根,求证:方程()0g x =没有实根. 解:设2()f x ax bx c =++,2()g x dx ex f =++,0ad ≠,所以2()4()()b e a d c f -=--,2(3)4(3)(3)b e a d c f +=++,所以223124b e ac df +=+,又240b ac ->,所以22()44(4)0g x e df b ac ∆=-=--<,所以方程()0g x =没有实根.9.已知1a ,2a ,…,13a 成等差数列,{}113i j k M a a a i j k =++≤<<≤,问:0,72,163是否能够同时在M 中?并证明你的结论.解:设该数列的公差为d ,∴p ∃,q ,*r N ∈,130a pd +=,173()2a p q d ++=,1163()3a p q r d +++=,∴2111q r =,∴21q ≥,11p ≥,又0123p ≥++=,∴35p q r ++≥, 又12111033p q r ++≤++=,与上式矛盾,故0,72,163不能够同时在M 中.10.i x (1i =,2,…,n )为正实数,且11nii x==∏,求证:1)1)nn i i x =≥∏.解:由AM GM -不等式得:11(n i n =≥,11(ni n =≥两式相加得:1≥,故1)1)nn i i x =≥∏.。

2013年自主招生数学试题及答案

2013年自主招生数学试题及答案

2013年自主招生数学试题一.选择题:(本大题共12个小题,每个4分,共48分,将所选答案填涂在机读卡上) 1、下列因式分解中,结果正确的是( )A.2322()x y y y x y -=-B.424(2)(x x x x -=+C.211(1)x x x x x--=--D.21(2)(1)(3)a a a --=--2、“已知二次函数2y ax bx c =++的图像如图所示,试判断a b c ++与 0的大小.”一同学是这样回答的:“由图像可知:当1x =时0y <, 所以0a b c ++<.”他这种说明问题的方式体现的数学思想方法叫 做( )A.换元法B.配方法C.数形结合法D.分类讨论法 3、已知实数x 满足22114x x x x ++-=,则1x x-的值是( )A.-2B.1C.-1或2D.-2或14、若直线21y x =-与反比例函数k y x =的图像交于点(2,)P a ,则反比例函数ky x=的图像还必过点( )A. (-1,6)B.(1,-6)C.(-2,-3)D.(2,12)5、现规定一种新的运算:“*”:*()m nm n m n -=+,那么51*22=( )A.54B.5C.3D.96、一副三角板,如图所示叠放在一起,则AOB COD ∠+∠=( )A.180°B.150°C.160°D.170°7、某中学对2005年、2006年、2007年该校住校人数统计时发现,2006年比2005年增加20%,2007年比2006年减少20%,那么2007年比2005年( )A.不增不减B.增加4%C.减少4%D.减少2%8、一半径为8的圆中,圆心角θ为锐角,且θ=,则角θ所对的弦长等于( )A.8B.10C. D.169、一支长为13cm 的金属筷子(粗细忽略不计),放入一个长、宽、高分别是4cm 、3cm 、16cm 的长方体水槽中,那么水槽至少要放进( )深的水才能完全淹没筷子。

2010-2013北约自主招生数学笔试试题及答案(精校版+完整版)

2010-2013北约自主招生数学笔试试题及答案(精校版+完整版)

2010年“北约”自主招生数学试题1.(仅文科做)02απ<<,求证:sin tan ααα<<.2.AB 为边长为1的正五边形边上的点.证明:AB (25分)3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分)2011北约自主招生数学试题∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

∎2求过抛物线2,交点的直线方程。

∎3、等差数列满足=,,这个数列的前n项和为,数列中哪一项最小,并求出这个最小值。

∎4、∆ABC的三边a,b,c满足a+b≥2c,A,B,C为∆ABC的内角,求证:C≤。

∎ 5、是否存在四个正实数,它们的两两乘积分别是2,3,5,6,10,16?∎6、和是平面上两个不重合的固定圆,C是该平面上的一个动圆,C和都相切,则C的圆心的轨迹是何种曲线?说明理由。

∎7、求f(x)=的最小值。

2012年“北约”自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;2、求1210272611=+-+++-+x x x x 的实数根的个数;3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -;4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。

2013年“北约”自主招生训练题二

2013年“北约”自主招生训练题二

2013年“北约”自主招生训练题二1、函数sin cos y x x =+(x ∈R )的单调减区间是 .2、设函数()f x 的定义域为R ,若()1f x +与()1f x -都是关于x 的奇函数,则函数()y f x =在区间[]0,100上至少有 个零点.3、圆环形手镯上等距地镶嵌着4颗小珍珠,每颗珍珠镀金、银两色中的一种.其中镀2金2银的概率是 .4、在三棱锥A B C D -中,已知A C B C B A ∠=∠,A C D A D C B C D B D C ∠=∠=∠=∠θ=,且cos 10θ=.已知棱A B的长为,则此棱锥的体积为 .5、设复数列{}n x 满足1n x a ≠-,0,且11n n n a x x x +=+.若对任意n ∈N * 都有3n n x x +=,则a 的值是 .6、已知平面上两定点A (-3,0),B (0,-4),P 为曲线12(0)y x x=>上任意一点,过点P作PC ⊥x 轴,PD ⊥y 轴,垂足分别为C,D ,则四边形ABCD 面积S 的最小值为 7、函数()2f x x =-__________________________.8、函数22*()sincos()kkf x x x k N =+∈的最小值为9、设O 是平面上一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足||||A C A BO P O A A C A B λλ-=+,其中[0,)λ∈+∞,则点P 的轨迹为_________________. 10、函数21)(2+-=x x x f 的值域是__________________。

11、若ABC ∆为锐角三角形,满足)cos(sin sin B A BA +=,则A tan 的最大值是___________。

12、将9,,2,1 随机填入右图正方形ABCD 的九个格子中,则其每行三数,每列三数自上而下、自左至右顺次成等差数列的概率P=__________。

2013年北约自主招生数学试题(精校word版,无答案)-历年自主招生考试数学试题大全

2013年北约自主招生数学试题(精校word版,无答案)-历年自主招生考试数学试题大全
2013“华约”自主招生数学试题
2013-03-16
(时间90分钟,满分100分)
1.(10分)集合 , 为 的子集,若集合 中元素满足以下条件:①任意数字都不相等;②任意两个数之和不为9。
(1) 中两位数有多少?三位数有多少?
(2) 中是否有五位数?六位数?
(3)若将集合 的元素按从小到大的顺序排列,第 个数为多少?
历年自主招生考试数学试题大全
专题下载链接:/a760682.html
链接打开方法:
1、按住ctrl键单击链接即可打开专题链接
2、复制链接到网页
(3)若所取出的4个球颜色相同,求恰好全黑的概率。
5.(15分) , , ,求证:
(1)对 ,总存在正 整数 ,使 满足 ;
(2) , ,对任意 总存在 使得 时, 。
6.(15分) 是两两不相等且大于 的正整数,若 ,求 的所有值。
7.(15分)已知
求证:(1)对 , ;
(2)若 ,求证: 单调递减且 。
2.(15分) , ,求 与 的值。
3.直线 与 上两点 、 ,
(1)求 中点 的轨迹 ;学-科网
(2)若曲线 与 相切于两点,求证两个切点在定直线上,并求过两切点的切线方程。
4.(15分)7个红球,8个黑球,从中任取4个球
(1)求取出的球中恰有1个是红球的概率;
(2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年“北约”自主招生数学试题1.(仅文科做)02απ<<,求证:sin tan ααα<<.2.AB 为边长为1的正五边形边上的点.证明:AB .(25分)3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分)2010年“北约”自主招生数学解析1.(仅文科做)02απ<<,求证:sin tan ααα<<. 【解析】 不妨设()sin f x x x =-,则(0)0f =,且当02x π<<时,()1cos 0f x x '=->.于是()f x 在02x π<<上单调增.∴()(0)0f x f >=.即有sin x x >. 同理可证()tan 0g x x x =->. (0)0g =,当02x π<<时,21()10cos g x x '=->.于是()g x 在02x π<<上单调增。

∴在02x π<<上有()(0)0g x g >=。

即tan x x >。

注记:也可用三角函数线的方法求解.2.AB 为边长为1的正五边形边上的点.证明:AB.(25分) 【解析】 以正五边形一条边上的中点为原点,此边所在的直线为x 轴,建立如图所示的平面直角坐标系.⑴当,A B 中有一点位于P 点时,知另一点位于1R 或者2R 时有最大值为1PR ;当有一点位于O 点时,1max AB OP PR =<;⑵当,A B 均不在y 轴上时,知,A B 必在y 轴的异侧方可能取到最大值(否则取A 点关于y 轴的对称点A ',有AB A B '<).不妨设A 位于线段2OR 上(由正五边形的中心对称性,知这样的假设是合理的),则使AB 最大的B 点必位于线段PQ 上.且当B 从P 向Q 移动时,AB 先减小后增大,于是max AB AP AQ =或; 对于线段PQ 上任意一点B ,都有2BR BA ≥.于是22max AB R P R Q ==由⑴,⑵知2max AB R P =.不妨设为x .下面研究正五边形对角线的长.如右图.做EFG ∠的角平分线FH 交EG 于H . 易知5EFH HFG GFI IGF FGH π∠=∠=∠=∠=∠=. 于是四边形HGIF 为平行四边形.∴1HG =.由角平分线定理知111EF EH x FGx HG===-.解得x =.3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分) 【解析】 不妨设过A 点的切线交x 轴于点C ,过B 点的切线交x 轴于点D ,直线AC 与直线BD 相交于点E .如图.设1122(,),(,)B x y A x y , 且有222211121,1,0y x y x x x =-=->>. 由于2y x '=-,于是AC 的方程为2222x x y y =--;①BD 的方程为1122x x y y =--. ②联立,AC BD 的方程,解得121221(,1)2()y y E x x x x ---. 对于①,令0y =,得222(,0)2y C x -;对于②,令0y =,得112(,0)2y D x -. 于是221212121222112222y y x x CD x x x x --++=-=-. 121(1)2ECD S CD x x ∆=-.不妨设10x a =>,20x b -=>,则2222111111()(1)(22)44ECD a b S ab a b a b ab a b a b ∆++=++=+++++1111()(2)(2)44a b ab ab ab ab =+++⋅++≥ ③0s >,则有331111111(2)(.....)223399ECD S s s s s s s s s∆=++=++++++6个 9个I H GFE 1111x x-11243691616111116)]8()2393s s s ⋅⋅[⋅(⋅()=⋅≥3218)3=⋅(= ④又由当12x a x b s ===-==∴min ()ECD S ∆注记:不妨设311()(2)2g s s s s=++,事实上,其最小值也可用导函数的方法求解.由2211()(32)2g s s s '=+-知当2103s <<时()0g s '<;当213s <时()0g s '>.则()g s 在(0,上单调减,在)+∞上单调增.于是当s =时()g s 取得最小值.4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分)【解析】 不妨设OA ,OB 夹角为α,则1,2OP t OQ t =-=,令222()(1)42(1)2cos g t PQ t t t t α==-+-⋅-⋅2(54cos )(24cos )1t t αα=++--+.其对称轴为12cos 54cos t αα+=+.而12()54x f x x +=+在5(,)4-+∞上单调增,故12cos 1154cos 3αα+-+≤≤.当12cos 1054cos 3αα++≤≤时,012cos 1(0,)54cos 5t αα+=∈+,解得223αππ<<. 当12cos 1054cos αα+-<+≤时,()g t 在[0,1]上单调增,于是00t =.不合题意.于是夹角的范围为2[,]23ππ.5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分) 【解析】 不存在;否则有(cos sin )(cos sin )cos sin cot tan sin cos x x x x x x x x x x-+-=-=,则cos sin 0x x -=或者cos sin 1sin cos x xx x+=.若cos sin 0x x -=,有4x π=1,1不成等差数列;若cos sin 1sin cos x x x x+=,有2(sin cos )12sin cos x x x x =+.解得有sin cos 1x x =.而11sin cos sin 2(0,]22x x x =∈,矛盾!2011北约自主招生数学试题∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

∎2求过抛物线错误!未找到引用源。

2错误!未找到引用源。

,错误!未找到引用源。

交点的直线方程。

∎3、等差数列错误!未找到引用源。

满足错误!未找到引用源。

=错误!未找到引用源。

,错误!未找到引用源。

,这个数列的前n项和为错误!未找到引用源。

,数列错误!未找到引用源。

中哪一项最小,并求出这个最小值。

∎4、∆ABC的三边a,b,c满足a+b≥2c,A,B,C为∆ABC的内角,求证:C≤错误!未找到引用源。

∎ 5、是否存在四个正实数,它们的两两乘积分别是2,3,5,6,10,16?∎6、错误!未找到引用源。

和错误!未找到引用源。

是平面上两个不重合的固定圆,C是该平面上的一个动圆,C和错误!未找到引用源。

都相切,则C的圆心的轨迹是何种曲线?说明理由。

∎7、求f(x)=错误!未找到引用源。

的最小值。

2011北约自主招生数学试题解析∎1、已知平行四边形的其中两条边长分别是3和5,一条对角线长是6,求另一条对角线的长。

解:由对角线的平方和等于四边的平方和:所以36+错误!未找到引用源。

=2(9+25),错误!未找到引用源。

=32,∴x=4错误!未找到引用源。

∎2求过抛物线错误!未找到引用源。

2错误!未找到引用源。

,错误!未找到引用源。

交点的直线方程。

解:错误!未找到引用源。

,错误!未找到引用源。

,7y=错误!未找到引用源。

6x+1,∴6x+7y 错误!未找到引用源。

1=0为所求。

∎3、等差数列错误!未找到引用源。

满足错误!未找到引用源。

=错误!未找到引用源。

,错误!未找到引用源。

,这个数列的前n项和为错误!未找到引用源。

,数列错误!未找到引用源。

中哪一项最小,并求出这个最小值。

解:d=错误!未找到引用源。

,∴错误!未找到引用源。

,当n=错误!未找到引用源。

,即n=6时错误!未找到引用源。

最小,最小为错误!未找到引用源。

∎4、∆ABC的三边a,b,c满足a+b≥2c,A,B,C为∆ABC的内角,求证:C≤错误!未找到引用源。

解:ab≤错误!未找到引用源。

,cosC=错误!未找到引用源。

≥错误!未找到引用源。

,所以C≤错误!未找到引用源。

∎ 5、是否存在四个正实数,它们的两两乘积分别是2,3,5,6,10,16?解:设存在四个正实数分别为a<b<c<d,依题意:ab=2,ac=3,ad=5,bc=6,bd=10,cd=16,∴错误!未找到引用源。

,错误!未找到引用源。

=1,b=2,c=3,d=5,而cd=15≠16,故不存在。

或解:∵abcd=32,而错误!未找到引用源。

,不满足,故不存在。

∎6、错误!未找到引用源。

和错误!未找到引用源。

是平面上两个不重合的固定圆,C是该平面上的一个动圆,C和错误!未找到引用源。

都相切,则C的圆心的轨迹是何种曲线?说明理由。

解:设两定圆⊙错误!未找到引用源。

的半径分别为错误!未找到引用源。

,动圆C的半径为R。

⑴当错误!未找到引用源。

①错误!未找到引用源。

相交时a).⊙C与它两都外切,轨迹是线段错误!未找到引用源。

的垂直平分线去掉两圆的公共弦;b).⊙C与它两都内切,轨迹是线段错误!未找到引用源。

的垂直平分线;c).⊙C与两圆一个内切,一个外切时,|错误!未找到引用源。

|=错误!未找到引用源。

R,|错误!未找到引用源。

|=错误!未找到引用源。

+R,|错误!未找到引用源。

|+|错误!未找到引用源。

|=错误!未找到引用源。

,轨迹是以错误!未找到引用源。

为焦点的椭圆。

相关文档
最新文档