绝对值导学案
初中数学最新版《绝对值》精品导学案(2022年版)
2.4 绝对值学习目标:1.理解绝对值的概念及其几何意义;〔重点〕2.会求一个数的绝对值,会根据绝对值求对应的数;〔重点〕 3.了解绝对值的非负性,并能用其非负性解决相关问题.〔重点、难点〕自主学习一、知识链接1.a 的相反数表示为.2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34 和34 的点呢? 二、新知预习〔预习课本P22-24〕填空并完成练习:1.在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示.2.一个正数的绝对值是_;一个负数的绝对值是它的__;0的绝对值是.3.任何一个有理数的绝对值总是正数和0〔通常也称〕,即对有理数a ,总有|a|0. 练习:1.写出以下各数的绝对值. +4,-21,0,-5.1. 2.计算:〔1〕|-1|+|+3|; 〔2〕|-1.2|+|-0.7|.合作探究一、要点探究探究点1:绝对值的意义及求法【概念提出】在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示. 问题1 分别写出3,0,-6的绝对值和到原点的距离,你发现了什么? 【要点归纳】一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 问题2 分别计算5和-5,3和-3,和的绝对值,你发现了什么? 【要点归纳】互为相反数的两个数的绝对值. 【典例精析】12,-53,,0.〔1〕|﹣0.25|; 〔2〕+|﹣3.14|; 〔3〕﹣|2.3|.【针对训练】化简:〔1〕﹣|+2.5|; 〔2〕-|﹣4|; 〔3〕|﹣〔﹣3〕|. 探究点2:绝对值的性质及应用思考1:观察这些数的绝对值,它们有什么共同点? |5|=5;|-10|=10;;|-5000|=5000;|0|=0……思考2: 假设字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a >0时,|a |=;(2)当a<0时,|a|=;(3)当a=0时,|a|=.【要点归纳】任何一个有理数的绝对值总是正数和0〔通常也称〕.【典例精析】(1)绝对值等于0的数是;(2)绝对值等于的正数是_;(3)绝对值等于的负数是;2的数是_.|a|+|b|=0,求a,b的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.【方法总结】几个非负数的和为0,那么这几个数都为0.二、课堂小结1.数轴上表示数a的点与原点的距离叫做数a的绝对值.2.绝对值的性质:(1)|a|≥0;(2)(0)||(0)0(0)a aa a aa>⎧⎪=-<⎨⎪=⎩当堂检测6.﹣|﹣2|=;|﹣〔﹣〕|=;|﹣〔+〕|=;﹣|﹣1|=.7.计算:〔1〕56-++; 〔2〕5.02.1---; 〔3〕535-⨯-. 参考答案自主学习一、知识链接1.-a2.解:-5和5到原点的距离均为5,-34 和34 到原点的距离都是34 . 二、新知预习1.原点的距离 | |2.它本身 相反数 03.非负数 ≥ 练习:1.解:它们的绝对值分别是4,21,0,5.1. 2.解:〔1〕原式=1+3=4; 〔2〕原式=1.2+0.7=1.9. 合作探究 二、要点探究探究点1:绝对值的意义及求法【概念提出】原点的距离 | | 〞表示. 【要点归纳】它本身 相反数 0 【要点归纳】相等 【典例精析】〔1〕|12|=12;〔2〕|﹣53|=53;〔3〕|﹣7.5|=;〔4〕|0|=0.解:〔1〕|﹣0.25|=;〔2〕+|﹣3.14|=;〔3〕﹣|2.3|=﹣.【针对训练】解:〔1〕﹣|+2.5|=﹣;〔2〕-|﹣4|=-4;〔3〕|﹣〔﹣3〕|=|3|=3. 探究点2:绝对值的性质及应用思考1:解:它们的绝对值都是正数或0. 思考2: (1)a (2)-a (3)0 【要点归纳】非负数 【典例精析】(2)5.25 (3)-5.25 (4)±2|a|≥0,|b|≥0,|a|+|b|=0,所以|a|=0,|b|=0,所以a=0,b=0. 当堂检测6.﹣2 ﹣17.解:〔1〕115656=+=-++;〔2〕7.05.02.15.02.1=-=---;〔3〕3535535=⨯=-⨯-. 第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法那么,并运用它们进行运算.(重点)2.熟练应用运算法那么进行计算.(难点) 一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手答复:同底数幂的乘法公式:a m ·a n =a m +n(m ,n 为正整数).幂的乘方公式:(a m )n =a mn(m ,n 为正整数).积的乘方公式:(ab )n =a n b n(n 为正整数).2.教师肯定学生的答复,并引入课题——单项式与单项式、多项式相乘. 二、合作探究探究点一:单项式乘以单项式【类型一】 直接利用单项式乘以单项式法那么进行计算计算:(1)(-23a 2b )·(56ac 2);(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法那么和单项式乘以单项式的法那么计算即可. 解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n与7x n -6y-3-m的积与x4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,那么剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法那么是解题的关键. 探究点二:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法那么进行计算计算: (1)(23ab 2-2ab )·12ab ;(2)-2x ·(12x 2y +3y -1).解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法那么计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a2+50ab )立方米.方法总结:通过此题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法那么是解题的关键.【类型三】 化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法那么去掉括号,然后合并同类项,最后代入的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】 单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值.解析:原式先算乘方,再利用单项式乘多项式法那么计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法那么:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法那么:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法那么,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法那么有一定的根底,因此课前可以要求学生先复习该局部的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法那么的得出,教师通过“试一试〞逐步解题,通过计算演示法那么的内容,更有利于学生理解运算法那么.。
绝对值导学案
绝对值导学案第6课时绝对值一、学习目标1.理解、掌握绝对值概念,根据绝对值的意义判断代数式的符号;2.掌握求一个已知数的绝对值的方法;3.体验绝对值非负性的应用.二、知识回顾小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离相同0到原点的距离是10 ,—10到原点的距离也是10到原点的距离等于10的数有 2 个,它们的关系是一对相反数.三、新知讲解1.绝对值的概念一般地,数轴上表示a的点与原点的距离叫做数a 的绝对值,记作|a| .这里的数a可以是正数、负数和0 .例如5和-5,它们与原点的距离都是5个单位长度,所以5和-5的绝对值都是5.显然|0|=0.2.求一个数的绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 .即(1)如果a0,那么|a|= a ;(2)如果a=0,那么|a|= 0 ;(3)如果a0,那么|a|= -a 绝对值的非负性应用绝对值表示距离,由于距离不可能是负数,所以任何数的绝对值总是正数或0,即对于任意有理数a,总有|a| ≥0.四、典例探究.绝对值的几何意义【例1】(1)式子∣-5.7∣表示的意义是与原点的距离是.(2)-2的绝对值表示它离开原点的距离是个单位,记作;总结:|a|表示点a与原点的距离,|-a|表示点-a与原点的距离.根据绝对值的几何意义,互为相反数的两个数的绝对值相等.练1(1)一个数的绝对值越大,表示它的点在数轴上越靠右.()(2)一个数的绝对值越大,表示它的点在数轴上离原点越远.()2.求一个数的绝对值【例2】求下列各数的绝对值-3,-5.2, , ,200,0总结:求一个数的绝对值,应先判断该数是正数、负数还是0,再根据绝对值的代数意义求解.当然也可以根据几何意义,借助数轴求解.练2判断下列各式是否正确(1)|7|=|-7|;(2)-7=|-7|;(3)-|7|=|-7|.3.绝对值的性质1(根据|a|=±a判断a的符号)【例3】绝对值等于其相反数的数一定是………………()A.负数 B.正数 C.负数或零 D.正数或零总结:若|a|=a,则a≥0;若|a|=-a,则a≤0;特别地,若|a|=0,则a=0.练3给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个练4判断题:当a≠0时,|a|总是大于0.()4.绝对值的性质2(绝对值非负性的应用)【例4】若实数a,b满足|3a-1|+|b-2|=0,求a+b的值.总结:任何数的绝对值总是非负数,即|a|≥0.进一步,我们还可以得到|a|≥±a,即|a|±a≥0.如果几个数的绝对值(或几个非负数)之和为0,那么这几个数都为0.练5若|x-2|+|y-3|=0,求x,y的值.五、课后小测一、选择题1.-4的绝对值是()A. B. C.4 D.-42.若|x|=5,则x的值是()A.5B.-5C.±5 D若a与1互为相反数,则等于(). A.2 B.-2 C.1 D.-下列说法错误的是().A.一个正数的绝对值一定是正数 B.一个负数的绝对值一定是正数C.任何数的绝对值一定是正数 D.任何数的绝对值都不是负数二、填空题5.-8的绝对值是,记作________.6.化简的结果为________.三、解答题7.写出下列各数的绝对值,并指出这些数中,哪个数的绝对值最大,哪个数的绝对值最小.-(-6.3),+(),-(+2.5),-(-10).8.若|x- |+|y-7|=0,求y-x的值.典例探究答案:【例1】(1)-5.7与原点的距离是5.7 ;(2)2 |-2| 练1.(1)× (2)√【例2】3,-3,-5.2, , ,200,0的绝对值分别是:3,3,5.2, , ,200,0.练2.(1)正确;(2)不正确;(3)不正确【例3】C练3.B练4.√【例4】解:由绝对值的非负性知|3a-1|≥0,|b-2|≥0,所以只有当|3a-1|和|b-2|都为0时,它们的和才为0,否则它们的和大于0.所以|3a-1|=0,且|b-2|=0时,|3a-1|+|b-2|=0才成立,解得a= ,b=2.所以a+b=2 .练5.解:根据绝对值的非负性,可得x-2=0,y-3=0,解得x=2,y=3课后小测答案:1.A.解析:根据一个负数的绝对值等于这个数的相反数,直接得出答案.2.C.解析:根据绝对值的几何意义可知绝对值等于5即表示到原点的距离为5,所以有是5或-解析:a与1互为相反数,所以a=-1,即解析:因为绝对值表示的一个数到原点的距离,所以任何数的绝对值都大于或等于0,由此可知C错|-8|.解析:根据一个负数的绝对值是它的相反数可知-8的绝对值是8,表示一个数的绝对值时用绝对值符号“| |”并把数写在里面-4.解析:绝对值里面不管有多少正负号,化简完之后一定不含有任何正负号根据绝对值的定义一一进行求解,各数的绝对值依次是:6.3,8 ,2.5,10.8.根据绝对值的非负性,可得x= ,y=7,所以y-x=。
七年级数学上册2.3《绝对值》导学案
2.3 绝对值【学习目标】1.借助数轴,理解绝对值和相反数的概念2.知道|a |的含义以及互为相反数的两个数在数轴上的位置关系.3.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【学习方法】 自主学习与合作探究【自主学习】一、自学指导看书学习第30~31页的内容,思考下面的问题.1.在数轴上和原点相距3个单位长度的点表示的数是什么?-5在原点的哪一侧,与原点相距几个单位?你能在数轴上标出这些距离吗?2.通过学习,你能写出绝对值的定义吗?3.一个有理数a 的相反数怎样表示?通过本节的学习你知道一个有理数a 的绝对值怎样表示吗?二、知识探究1.一般地, ,叫做数a 的绝对值.2.一个正数的绝对值是 ,即:若a>0,则|a|= ; 一个负数的绝对值是 ,即:若a<0,则|a|= ;0的绝对值是 (双重性).3、两个负数比较大小, .三、自学反馈(检测题) 1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是 .所以|6.03|= ,|-6.03|= .2.求下列各数的绝对值: +13、 -8、 +513、 -8.22(温馨提示:注意解题格式呦) 3.-312的绝对值是 ,绝对值等于312的数是 ,它们是一对 .4.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离.5.在|-7|,5,-(+3),-|0|中,负数共有( )A.1个B.2个C.3个D.4个6.一个数的绝对值等于这个数本身,这个数是( )A.1B.+1,-1,0C.1或-1D.非负数非负数的绝对值是它本身,负数的绝对值是它的相反数.7、比较大小:-3 -6【合作探究】一、活动1:小组讨论1.-2的相反数是 ,a 的相反数是 ,-a 的相反数是 。
2.下列四组数中不相等的是( )A.-(+3)和+(-3)B.+(-5)和-5C.+(-7)和-(-7)D.-(-1)和|-1|3.判断: (1).一个数的绝对值的相反数一定不是负数 ( )(2).一个数的绝对值一定不是负数 ( )(3).一个数的绝对值一定是正数 ( )(4).一个数的绝对值一定是非正数 ( )4.若|x-3|+|y-2|=0,则x= ,y= .二、活动2:小组比赛完成课本第32页“随堂练习”,比一比那个小组做的又快又好。
2.3绝对值导学案
1 ,则 x 的相反数是____. 5 1 1 ,24,-7 ; 2 2
4.求下列各数的相反数和绝对值:-3,,6.5,-
我的疑惑:
二、合作探究:
1 .在数轴上表示下列各数,求出他们的绝对值,并比较它们的大小; (1) - 1.5 , - 3 ; (2) -1 , -5; 2.已知:│x-2│+│y-3│=0,求 3x+4y 的值 3.字母 a 表示一个有理数,-a 表示什么数?-a 一定是负数吗?
1 |,则 x=_______. 2
) C.-2 ) D.以上都错
1 1 a|=- a,则 a 一定是( 2 2
A.负数 B.正数 C.非正数 D.非负数 3.一个数在数轴上对应点到原点的距离为 m,则这个数为( ) A.-m B.m C.±m D.2m 4.如果一个数的绝对值等于这个数的相反数,那么这个数是( ) A.正数 B.负数 C.正数、零 D.负数、零 5.下列说法中,正确的是( ) A.一个有理数的绝对值不小于它自身 B.若两个有理数的绝对值相等,则这两个数相等 C.若两个有理数的绝对值相等,则这两个数互为相反数 D.-a 的绝对值等于 a 三、判断题 1.若两个数的绝对值相等,则这两个数也相等. ( ) 2.若两个数相等,则这两个数的绝对值也相等. ( ) 3.若 x<y<0,则|x|<|y|. ( ) 四、解答题 1.若|x-2|+|y+3|+|z-5|=0 计算:(1)x,y,z 的值.(2)求|x|+|y|+|z|的值.
七年级数学导学案第 10 课时
主备人:施晓海
审核人:
审批人: 教师个性化设计、学 法指导或学生笔记
课题:2.3 绝对值 学习目标:1.借助数轴,理解绝对值和相反数的概念
最新北师大版七年级数学上册《绝对值》优质导学案
2.3 绝对值【学习目标】1.认真阅读课本15—17页,想一想,有理数的绝对值在数轴上看有什么意义?正数、零、负数的绝对值分别有什么特征?2.你会求一个数的绝对值吗?任何一个数的绝对值是一个什么数?3.已知一个数的绝对值,怎样求这个数?4.请思考互为相反数的两个数的绝对值有什么关系?【重点,难点】重点:绝对值的概念 难点:绝对值的实际意义是什么?为什么它是整数或零?【自主学习】一、绝对值的概念 我们把一个数在 上对应的点到 的 叫做这个数的绝对值二.求一个数(不涉及字母)的绝对值;会求绝对值已知的数1. 求下列各数的绝对值:一般地,一个正数的绝对值是它 ;一个负数的绝对值是它的 ;零的绝对值是 ;互为相反数的两个数的绝对值 。
3,3,0,51,2+--+2. 求绝对值等于2的数三、计算:1.19++-2.810---四、绝对值与相反数完成书本P16课内练习第1题【合作探究】1.见书本P17作业题第1、2题2.见书本P17作业题第3、4题3.见书本P17作业题第5题4.见书本P 17作业题第6题5.写出绝对值小于4的所有整数巩固提高:6.已知031=-++b a ,求a 与b 的值7. 如图,M,N,P,R 分别是数轴上的四个整数所对应的点,其中有一点是原点,且MN=NP=PR=1。
数a 对应的点在M 与N 之间,数b 对应的在P 与R 之间,若|a|+|b|=3,则原点是( )A .M 或R B.N 或P C.M 或N D.P 或R【课后作业】 班级 姓名 学号1.-0.125的相反数是 ,绝对值是2.数轴上表示-6 和6的两点,它们到原点的距离都是3.=-21 ;=--41 ;=-3121 4.=÷-31432 ;=--831611 ;=-π14.35.符号是“+”号,绝对值是7的数是6.绝对值是5.1,符号是“-”号的数是7.若两个数相等,那么它的绝对值 ;若两个数的绝对值相等,那么这两个数的关系为8.绝对值最小的有理数是 ,绝对值等于它的相反数的数是 ,绝对值等于它本身的数是 .(填“零”、“非负数”、“正数”、“非正数”、“负数”)9.抽查4个零件的长度,超过规定长度的记为正,不足规定长度的记为负,下列是4个零件的抽查结果,则其中误差最大的是( )A.-0.3B.-0.2C.0.1D.0.0510.若a 是有理数,则下列说法正确的是( ) A.-a 是负有理数 B.a 是正数 C. a 是非负数 D.-a 是负数 11.已知数轴上A 点到原点的距离是2,那么数轴上到A 点的距离为3的点所表示的数有( )A.1个B.2个C.3个D.4个12.探索下列一组数的规律,然后填空: ⋅⋅⋅--+-+-,13,,9,8,5,4,1,0x(1)根绝你探索的规律,则x 的值为 ;(2)利用你找出的x ,可得x 的相反数与x 的绝对值的和是 ;(3)探索出第10个数是 .13.一辆出租车从O 站出发,先向东行驶12km ,接着向西行驶10km ,然后又向东行驶5km(1)画一条数轴,以O 站出发,向东为正方向,在数轴上表示出租车每次行驶的终点位置;(2)求各次路程的绝对值的和.这个数据的实际意义是什么?【当堂检测】1.-8的绝对值是 ,记作 = .2.-3.2的相反数是 ,绝对值是 .3.=212 ;=0 ;=-31 4.=-6.1 ;=--21 5.计算:=--5.25.2 ;=⨯326.绝对值是21的数是励志名言:1、学习从来无捷径,循序渐进登高峰。
1.2.4.2 绝对值 第2课时 导学案 2022-2023学年 人教版数学 七年级上册
1.2.4.2 绝对值第2课时导学案
一、学习目标
1.了解绝对值的概念;
2.掌握绝对值的运算性质;
3.能够利用绝对值解决实际问题。
二、课前预习
1.课本P16、P17页的练习题和题解;
2.了解数轴的基本概念和绘制方法(可参考网络资料);
3.复习取反和相反数的定义及运算规律。
三、课堂授课
1.绝对值的定义:对任何实数x,其绝对值|x|都是一个非负数,它的值为x
与0之间的距离,即|x| = { x , (x≥0);-x , (x<0)}。
2.绝对值的运算性质:
•非负性:对于任何实数x,都有|x|≥0,且|x|=0当且仅当x=0;
•三角不等式:对于任何实数x、y,都有|x+y|≤|x|+|y|和|x-y|≥|x|-|y|;
•分类讨论应用:
|x| + |y| = |x + y| 或 |x - y|,当且仅当 x、y 同号时成立。
|x| - |y| = |x - y| 或 |x + y|,当且仅当 x、y 异号时成立。
3.绝对值的实际应用举例:
•温度计:温度计的刻度设定为-30,-29,-28,……,0,……,29,30度,每个刻度之间相隔1度。
则0度和-10度之间的温度差为10度,而0度和10度之
间的温度差仍然是10度。
用绝对值符号将该温度差表达为:|0-(-10)| = 10;
•立体几何:求两个点在空间中的距离。
•等等……
四、课后作业
1.完成课本P20页练习31~35题;
2.总结绝对值的定义及运算性质,并完成一道综合练习题。
人教版七年级数学上册同步备课1.2.4绝对值(第2课时有理数大小的比较)(导学案)
1.2.4 绝对值(第2课时有理数大小的比较)学案掌握有理数大小的比较方法.★知识点1:有理数大小的比较比较有理数大小可以利用数轴,它们从左到右的顺序,即是从小到大的顺序;也可以利用数的性质比较异号两数及与0的大小,利用绝对值比较两个负数的大小.★知识点2:有理数大小的比较方法①正数与正数比较,用小学学过的方法比较;②正数与零比较,正数大于零;③正数与负数比较,正数大于负数;④零与负数比较,零大于负数;⑤负数与负数比较,绝对值大的反而小;⑥在数轴上表示有理数,左边的数小于右边的数.1. 正数0,0 负数,正数负数.2. 两个负数,绝对值大的.问题1:图1给出了一周中每天的最高气温和最低气温,其中最低的是℃,最高的是℃.你能将这14个温度按从低到高的顺序排列吗?我们把这些数在数轴上表示的话,我们看看他们在数轴上呈现什么规律?问题2:说一说,利用数轴比较有理数的大小的步骤.问题3:把下列各数表示在数轴上,并用“<”把它们连接起来:-8,3,-10,-4,2,12.有理数的大小比较,一定要借助于数轴吗?能直接进行比较吗?还差什么?归纳:两个负数比较大小:绝对值大的反而小.两个负数比较大小的步骤?口答(用“>”或“<”填空)(1)2 12;(2)2 -3;(3)0 0.25;(4)-15 0;(5)-5 -5.5.例:比较下列各组数的大小:(1)-2与-3;(2)35-与-0.8;(3)-0.2与-0.25;(4)-0.1与-0.01;(5)34-与45-;(6)38-与58-.从上面的比较,我们可以看出:①不同符号的数比较大小,只看符号;②相同符号的数比较大小,看符号的同时,还要判断绝对值的大小.同是正数的时候绝对值越大就越大,同是负数的时候绝对值越大反而小.1.(2022•郴州)有理数-2,12-,0,32中,绝对值最大的数是( ) A .-2 B .12- C .0 D .322.(2021•呼和浩特)几种气体的液化温度(标准大气压)如下表:其中液化温度最低的气体是( )A .氦气B .氮气C .氢气D .氧气3.(2021•宁夏)下列各数中,比-3小的数是( )A .1B .0C .-2D .-44.(2021•桂林)有理数3,1,-2,4中,小于0的数是( )A .3B .1C .-2D .4【参考答案】1. >;>;>;2. 反而小.问题1:-4;+9. 按从低到高的顺序排列略.①数轴上的数由左到右是从小到大排列;②数轴上的数左边的数小于右边的数.问题2:(1)先在数轴上用点表示;(2)再根据排列的顺序确定大小.问题3:-10<-8 <-4 < 2 < 3 < 12①不一定;能直接进行比较:正数>0;负数<0;正数>负数.②负数与负数的大小比较.③(1)先分别求两数的绝对值;(2)再比较绝对值,绝对值越大,原来的负数就越小.口答:(1)<;(2)>;(3)<;(4)<;(5)>.例:解:(1)-2>-3; (2)35->-0.8; (3)-0.2>-0.25; (4)-0.1<-0.01;(5)34->45-;(6)38->58-.1.【解析】解:-2的绝对值是2,12-的绝对值是12,0的绝对值是0,32的绝对值是32. 因为312022>>>, 所以-2的绝对值最大.故选A .2.【解析】解:因为-268<-253<-195.8<-183,所以其中液化温度最低的气体是氦气.故选:A .3.【解析】解:因为|-4|比|-3|大,所以-4<-3,所以-4<-3<-2<0<1,所以比-3小的数是-4.故选:D.4.【解析】解:-2<0<1<3<4,故小于0的数是-2.故选:C.。
2.4.1绝对值一_导学案
D.正数或零
5 ______; 2 1
3
______;
2.31 ______; ______.
2. 3
2 2 的绝对值是______;绝对值等于 3 的数是______,它们互为________. 5 5
3 ,则 a ______, a ______ .
a a 时, a ______0 ;当 a 0 时, a ______.
7.绝对值等于 4 的数是______. 8.绝对值等于其相反数的数一定是 A.负数 【自主检测】 1. B.正数 C.负数或零
请用绝对值知识说明: (1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?
2 3
,那么这个数为______.
9. 某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有 0.002L 误 差.现抽查 6 瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的 升数记作负数.检查结果如下表: +0.0018 ( ) -0.0023 +0.0025 -0.0015 +0.0012 +0.0010
的距 与
【三】展现提升。答案写到预习笔记栏 1.写出下列各数的绝对值。6,-8,-3.9, 100. π-5, 2.
x 7 ,则 x ______ ; x 7 ,则 x ______ .
5 ∣、∣0∣的意义及其值。 2
3.如果 a
3 ,则 a 3 ______, 3 a ______.
;一个 。
问题 1:小红和小明从同一处 O 出发,分别向东、西方向行走 10 米,他
们行走的路线
例 1:求下列各数的绝对值; 1 (填相同或不相同) , 他们行走的距离 (即路程远近) 15 - , ,-4.75, 10.5 2 10
1.2.3 绝对值导学案ywm
1.2.3 绝对值导学案学习目标:1.借助数轴,初步理解绝对值的意义,能求出一个数的绝对值。
2.会利用绝对值比较两个负数的大小。
学习重点、难点:重点:绝对值的概念难点:利用绝对值比较两个负数的大小学习过程:一【阅读思考】阅读P11“动脑筋”,你有什么发现吗?二【自主探究】1、观察数轴,回答下列问题:(1)数轴上表示5,2,的点到原点的距离分别是多少?(2)数轴上表示-5,-2,- 的点到原点的距离分别是多少?(3)数轴上表示0的点到原点的距离是多少?2、阅读教材P12,思考:什么叫数a 的绝对值?3、有理数a 的绝对值怎样表示?4、请填空:|2|=____;|-π|=_____; |-15|=_____;|-2|____;|0|=_____。
从上面的填空,你发现一个数和它的绝对值有什么关系?三【知识归纳】1、数轴上表示数a 的点与原点的距离叫做数a 的___________,记作|a|;2、正数的绝对值是_________;负数的绝对值是_________;0的绝对值是______。
3、任何一个有理数的绝对值都是________。
4、||a =⎩⎨⎧a (a______)-a (a______) 叙述为:____________的绝对值是它本身;_____________的绝对值是它的相反数。
5、-2到原点的距离是__________,因此|-2|=_________。
四【知识延伸】1、比较两个负数的大小:你会比较-1与-3的大小吗?问题一:气温在零下20℃和零下200℃,哪个更冷?问题二:你会比较-1和-3的大小吗?它们的绝对值的大小呢?- 和- 呢?2、你能猜想出两个负数的大小与它们的绝对值的大小有什么关系吗?结论_______________________________________________三、典型例题【例1】6的绝对值与-6的绝对值有什么关系?的绝对值与- 的绝对值有什么关系?互为相反数的两个数的绝对值有什么关系?你能得到什么结论?结论:________________________________________________。
绝对值导学案
义务教育教科书(北师)七年级上册第二章有理数及其运算2.3.《绝对值》导学案学习目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。
(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。
第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动内容2:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?。
第二环节合作交流,探索新知活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”1. 引入绝对值概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
一个数a 的绝对值记作│a │.如│+3│=3,│-3│=3,│0│=0.2.例1 求下列各数的绝对值:- 7.8, 7.8, - 21, 21,-94,94, 03.议一议:(1)互为相反数的两个数的绝对值有什么关系?(2)一个数的绝对值与这个数有什么关系?4.归纳总结: 互为相反数的两个数的绝对值( ).正数的绝对值是( );负数的绝对值是( );0的绝对值是( )5.“做一做”:(1)在数轴上表示下列各数,并比较它们的大小:-1.5,-3,-1,-5;(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?第三环节:应用迁移,巩固提高活动内容:例2 比较下列每组数的大小:(1)-1和-5;(2)65-和-2.7。
目标检测:1.在数轴上距离原点2个单位长度的点表示的数是 ,也就是说绝对值等于2的数是 .2. 在数轴上表示下列各数,并求它们的绝对值:,6 ,-3 , ; 3.比较下列各组数的大小:(1) (2) (3) (4) 4.下面的说法是否正确?请将错误的改正过来.(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.第四环节:总结反思,知识内化活动内容:总结:1.本节学习的数学知识;2.本节学习的数学方法。
1.2.4 绝对值(2)导学案 2022-2023学年人教版数学七年级上册
1.2.4 绝对值(2)导学案 2022-2023学年人教版数学七年级上册一、知识回顾1. 什么是绝对值?•绝对值是一个数与0的距离。
表示为|a|,其中a为被求绝对值的数。
•绝对值的值总是非负的。
2. 绝对值的计算方法•当a≥0时,|a|=a。
•当a<0时,|a|=-a。
•例如,|3|=3,|-5|=5。
3. 绝对值的性质•对于任意实数a和b,有以下性质:–|a|≥0,绝对值的值总是非负的。
–|-a| = |a|,即绝对值的值不会受到正负号的影响。
–|a+b|≤|a|+|b|,即绝对值的加法不等式。
两个数的绝对值之和不超过它们的绝对值分别相加。
–|a-b|≥|a|-|b|,即绝对值的减法不等式。
两个数的绝对值之差不小于它们的绝对值之差。
二、新知学习1. 绝对值的提法•当绝对值运算符只对数字进行运算时,可以省略括号,也可以用一个竖线表示。
•例如,|3-5| 可以写成 3-5。
2. 绝对值的运算法则•对于任意实数a和b,有以下运算法则:–|ab|=|a|·|b|,即两个数的绝对值的乘积等于这两个数的绝对值分别相乘。
–|a/b|=|a|/|b|,即两个数的绝对值的比值等于这两个数的绝对值分别相除。
–|a n|=|a|n,即一个数的绝对值的n次方等于这个数的绝对值的n次方。
三、例题解析1. 求解绝对值的计算结果•示例1:计算|2-5|的结果。
–解析:2-5=-3,因为-3<0,所以|2-5|=3。
•示例2:计算|11|的结果。
–解析:11≥0,所以|11|=11。
•示例3:计算|-13|的结果。
–解析:-13<0,所以|-13|=13。
2. 解决绝对值不等式•示例:解决|2x+1|≥3的不等式。
–解析:由绝对值不等式的特性可得:•当2x+1≥3时,有2x+1=3,解得x=1。
•当-(2x+1)≥3时,有-(2x+1)=3,解得x=-2。
四、总结提升•通过本节课的学习,我们了解了绝对值的基本概念、计算方法和性质。
绝对值导学案人教版七年级数学上册
1.2.4 绝对值 第一课时一、教学目标(一)学习目标1.理解绝对值的概念及通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;2.会求一个数的绝对值;知道一个数的绝对值,会求这个数;3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.(二)学习重点理解绝对值的概念,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法(三)学习难点会求一个数的绝对值,知道一个数的绝对值,会求这个数 二、教学设计 (一)课前设计 1.预习任务(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . (2)一个正数的绝值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. (3)一个数的绝对值一定是一个非负数.(4)⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.预习自测(1)-2017的绝对值是( )A.-2017 B .2017 C .20171 D . 20171- (2)2+的相反数是 . (3)下列说法中正确的是( ) A.符号相反的数互为相反数;B.一个数的绝对值越大,表示它的点在数轴上越靠右;C.一个数的绝对值越大,表示它的点在数轴上离原点越远;D.当a a =时, 0>a . (4)下列等式不成立的是( )A .55=-B .55--=-C .55=-D .55-=--(二)课堂设计 1.知识回顾(1)数轴的三要素是什么?(2)什么叫互为相反数?它的几何意义是什么? 2.问题探究探究一 绝对值的定义及其几何意义 ●活动①: 绝对值的概念及其几何意义两辆汽车从同一处O 出发,分别向东、西方向行驶10km ,到达A 、B 两处。
问题:(1)两辆车的行驶路线相同吗? (2)它们的行驶路程相等吗?(3)若以出发地为原点,在数轴上分别标出A 、B 两地的具体位置并指出A 、B 两点各表示的数是多少?一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a因为10和-10,它们与原点的距离都是10个单位长度,所以10和-10的绝对值都是10,即1010,1010=-=探究二 绝对值的法则★ ●活动①: 绝对值的法则请根据绝对值的定义写出下列数的绝对值:6,-8,-3,9,25,112-,100,0. 师生共同得出其结果.由计算结果可得:6,8,3,9,25,112,100,0. (1)任何数的绝对值均为非负数,即0≥a(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a●活动② :绝对值法则的运用例1. 计算:①_____|5.3|=+;②_____|-2.4|=;③____|3|=--;④|0|=________. 练习:计算:①5.0 ② 31- ③)2(-- ④5.1-- ●活动③例2.(1)绝对值等于2的数有 个,它们是 . (2)若1=x ,则x = .若9-=-x ,则x = . (3)若|a -3|+|b -2015|=0,求a ,b 的值.练习:(1)若一个数的绝对值等于4,则这个数为 . (2)若2=x 且0<x ,则=x ;若01=-x ,则=x . (3)若,012=-+-b a 则b a = . ●活动④例3. a 为何值时,下列各式成立? (1)a a =;(2)a a -=; (3)a a >;练习:若a a =,则数a 在数轴上的对应点一定在( )A .原点左侧B .原点及原点左侧C .原点及原点右侧D .原点右侧 ●活动①例4.第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.【知识点】绝对值的意义练习:某出租车司机一天上午在南北方向的大街上营运,如果规定向南为正,向北为负,他这天上午行车里程如下(单位:千米):+10,-3,+8,-5,12,11,-10,-10.若汽车耗油量为0.07升/千米,求上午他一共用掉了多少升油? 3.课堂总结 知识梳理(1)一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a . (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. (3)一个数的绝对值一定是一个非负数.(4)⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a重难点归纳(1)任何数的绝对值均为非负数,即0≥a(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)若a a =,则0≥a ,若a a -=,则0≤a(三)课后作业 基础型 自主突破1.数轴上的点A 到原点的距离是6,则点A 表示的数为( ) A .6或-6 B .6 C .-6 D .3或-3 【知识点】绝对值【解题过程】解:数轴上的点A 到原点的距离是6,则点A 表示的数为6或-6. 【思路点拨】根据绝对值的定义即可求解. 【答案】A2.-5的绝对值是( )A .-5B .±5C .51D .5【知识点】绝对值【解题过程】-5的绝对值是5【思路点拨】根据绝对值的法则即可求解. 【答案】D3.若||||y x =,则x 与y 的关系是( )A .相等B .互为相反数C .都为0D .相等或互为相反数 【知识点】绝对值【解题过程】解:若||||y x =,则x 与y 的关系是相等或互为相反数. 【思路点拨】根据绝对值的意义即可求解. 【答案】D4.若a 是有理数,则下列说法正确的是( )A .|a |一定是正数B .a -一定是负数C .||a -一定是负数D .1||+a 一定是正数 【知识点】绝对值【解题过程】解:A .|a |一定是正数是错误的,应该是非负数;B .a -一定是负数是错误的,当a 是正数是,a -为负,当a 为负数时,a -为正;当a 为0时,a -为0.故B 错误; C .||a -一定是负数是错误的,应该是非正数;故应选D【思路点拨】根据任何数的绝对值均为非负数即可求解. 【答案】D5.(1)绝对值等于5的数有 个,它们是 ; (2)绝对值最小的有理数是 ; (3)绝对值等于它本身的是数是 ; (4)若4=x ,则x = . 【知识点】绝对值【解题过程】解:(1)绝对值等于5的数有两个,它们是5±; (2)绝对值最小的有理数是0;(3)绝对值等于它本身的是数是非负数; (4)若4=x ,则x =4±.【思路点拨】根据绝对值的定义及性质即可求解.【答案】(1)两个,5± ;(2)0; (3)非负数 ; (4)4±6.已知0|3||34|=-+-y x ,求|8|y x -的值. 【知识点】绝对值【解题过程】解:由题意得,03,034=-=-y x 所以03,034=-=-y x 故3,43==y x 所以334388=-⨯=-y x【思路点拨】根据任何数的绝对值均为非负数,而非负数的和为零时,只有各部分分别为零,从而可分别求出y x ,的值,再代入即可求解. 【答案】3能力型 师生共研1.若5=x ,则x = ;若7-=-x ,则x = . 【知识点】绝对值【解题过程】解:若5=x ,则x =5±;若7-=-x ,则x =7±.【思路点拨】根据绝对值等于一个正数的数有两个,它们互为相反数即可求解. 【答案】5±; 7±.2.如果a a -=-||,下列各式成立的是( )A .0<aB .0≤aC .0>aD .0≥a【知识点】绝对值【解题过程】解: 如果a a -=-||,则0≤a ,则应选B【思路点拨】根据任何一个数的绝对值均是一个非负数即可求解. 【答案】B探究型 多维突破1.大家知道|5|=|5-0|,它在数轴上的意义是表示5的点与原点即表示0的点之间的距离.又如式子|6-3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a +5|在数轴上的意义是 . 【知识点】绝对值 【数学思想】数形结合【解题过程】解:式子|a +5|在数轴上的意义是表示数a 的点与表示-5的点之间的距离. 【思路点拨】先读懂题目的意思,了解数轴上两个点的距离等于表示这两个点的数的差的绝对值.【答案】表示数a 的点与表示-5的点之间的距离 2.求|991981||3121||211|-++-+-+|1001991-|的值. 【知识点】绝对值【解题过程】解:原式=100199199198141313121211-+-++-+-+-=10011-=10099【思路点拨】先分别求出各自的绝对值,再把互为相反数的数相加即可求解. 【答案】10099 自助餐1.绝对值不大于3的非负整数的个数是( ) A .4 B .5 C .7 D .9【知识点】绝对值【解题过程】解:绝对值不大于3的非负整数有:0,1,2,3,共4个【思路点拨】可以先画出数轴,根据绝对值不大于3即指到原点的距离不大于3的非负整数即可求解. 【答案】A2.下列各对数中,互为相反数的是 ( )A .)5(--与|5|--B .|-3|与|+3|C .)4(--与|4|-D .|-a |与|a |【知识点】绝对值【解题过程】解: 55,5)5(-=--=-- ,故A 中两数互为相反数;;333==-;44)4(=-=--aa =-B 、C 、D 三个选项的值相等. 【思路点拨】先分别化简即可判断. 【答案】A3.若0|3||2|=++-b a ,则a = ,b = . 【知识点】绝对值【解题过程】解: 因为032=++-b a ,所以03,02=+=-b a 故3,2-==b a 【思路点拨】根据任意数的绝对值始终是非负数即可求解. 【答案】3,2-==b a4.计算:(1) |-16|+|-24|-|-30| = ; (2) |+0.25|×|-8.8|×|-40|+|-1|= 。
小升初数学导学案-绝对值-人教新课标
小升初数学导学案-绝对值-人教新课标一、引言在小学阶段,学生已经接触到了一些基本的数学概念和运算方法,为进入初中阶段的学习打下了基础。
绝对值作为初中数学中的一个重要概念,对于学生后续学习不等式、函数等知识具有重要意义。
本导学案旨在帮助小升初学生理解绝对值的概念,掌握绝对值的性质和运算方法,为初中数学学习奠定基础。
二、绝对值的概念1. 定义:绝对值是一个数与零之间的距离。
在数轴上,一个数的绝对值表示这个数所对应的点到原点的距离。
2. 表示方法:绝对值用符号“| |”表示,例如,数a的绝对值表示为|a|。
3. 性质:(1)非负性:任何数的绝对值都是非负数,即|a|≥0。
(2)对称性:互为相反数的两个数的绝对值相等,即|-a|=|a|。
(3)等价性:绝对值相等的两个数相等或互为相反数,即|a|=|b|表示a=b或a=-b。
三、绝对值的运算1. 正数的绝对值:一个正数的绝对值等于它本身,即如果a>0,那么|a|=a。
2. 负数的绝对值:一个负数的绝对值等于它的相反数,即如果a<0,那么|a|=-a。
3. 零的绝对值:零的绝对值是零,即|0|=0。
4. 含绝对值的表达式运算:(1)如果a≥0,那么|a b|=a b;如果a<0,那么|a b|=-(a b)。
(2)如果a≥0,那么|a-b|=a-b;如果a<0,那么|a-b|=-(a-b)。
四、应用与拓展1. 在数轴上表示绝对值:绝对值可以帮助我们在数轴上表示一个数的范围。
例如,|x-3|≤2表示x在数轴上距离3的点的范围在[-1,5]之间。
2. 绝对值在实际问题中的应用:绝对值可以表示距离、温度变化等实际问题中的非负量。
例如,某地气温从早上8点到下午2点下降了5℃,可以表示为|-5|=5℃。
3. 绝对值不等式的解法:通过分析绝对值的性质,我们可以求解含绝对值的不等式。
例如,|x-2|<3可以分解为两个不等式:x-2<3和x-2>-3,进而求解得到x的范围。
《1.2.4 第1课时 绝对值》教案和导学案
1.2.4 绝对值 《第1课时 绝对值》教案【教学目标】1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点) 3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.【教学过程】 一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( ) A .3 B .-3 C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明. (2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎨⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎨⎧a (a ≥0)-a (a <0)【教学反思】绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.《第1课时绝对值》导学案【学习目标】:1.理解绝对值的概念及性质.2.会求一个有理数的绝对值.【重点】:理解绝对值的概念及性质.【难点】:会求一个有理数的绝对值.【自主学习】一、知识链接1.a的相反数表示为 .2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34和34的点呢?二、新知预习问题1:什么是绝对值?怎样表示一个有理数的绝对值?【自主归纳】在数轴上,表示一个数的点到叫做这个数的绝对值,用“”表示.问题2:(1)一个正数的绝对值是什么?(2)一个负数的绝对值是什么?(3)0的绝对值是什么?【自主归纳】一个正数的绝对值是__________;一个负数的绝对值是它的__________;0的绝对值是______.由于绝对值表示距离,猜想:一个数的绝对值是一个_______数(不小于_____的数).三、自学自测求下列各数的绝对值:215 ,101,-4.75,10.5.四、我的疑惑______________________________________________________________________________________________________________________________________________________【课堂探究】 要点探究探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10km 到达A 处,记作 km ,乙车向西行驶10km 到达B 处,记做 km.(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A 、B 的位置,则A 、B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示.-5到原点的距离是5,所以-5的绝对值是 ,记做 =5; 0到原点的距离是 ,所以0的绝对值是 ,记做|0|= ; 4到原点的距离是 ,所以4的绝对值是 ,记做|4|= .探究点2:绝对值的性质及应用观察与思考:观察这些数的绝对值,它们有什么共同点? |5|=5 |-10|=10 |3.5|= 3.5 |100|=100 |-3|=3 |50|=50 |-4.5|=4.5 |-5000|=5000 |0|=0 …思考1: 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.任何一个有理数的绝对值都是非负数.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数. 思考2:若字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a 是正数时,|a |=____; 正数的绝对值是它本身. (2)当a 是负数时,|a |=____; 负数的绝对值是它的相反数. (3)当a=0时,|a |=____. 0的绝对值是0.反思:相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.绝对值相等,符号相反的两个数互为相反数.例1 求下列各数的绝对值:12,-53, -7.5, 0.例2 填空(1)绝对值等于0的数是______, (2)绝对值等于5.25的正数是_____, (3)绝对值等于5.25的负数是______, (4)绝对值等于2的数是_______.例3:若|a|+|b|=0,求a,b 的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.例4:已知|x-4|+|y-3|=0,求x+y 的值.归纳总结: 几个非负数的和为0,则这几个数都为0.1.判断下列说法是否正确.(1)一个数的绝对值是4,则这个数是-4. (2)|3|>0. (3)|-1.3|>0.(4)有理数的绝对值一定是正数. (5)若a =-b ,则|a|=|b|. (6)若|a|=|b|,则a =b. (7)若|a|=-a ,则a 必为负数. (8)互为相反数的两个数的绝对值相等.2.如果3>a ,则______3=-a ,______3=-a .3.已知|a-1|+|b+2|=0,求a,b的值.。
2024秋季新教材人教版七年级上册数学1.2.4-绝对值导学案
第一章有理数1.2有理数1.2.4绝对值教学目标:1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法.2.通过应用绝对值解决实际问题.重点:正确理解绝对值的概念,会求一个数的绝对值.难点:利用绝对值比较两个负数的大小.自主学习一、新课导入甲、乙两辆汽车从同一处O出发,分别向东西方向行驶10km,达到A,B两处,请在数轴上表示出来并回答问题(规定向东为正方向).(1)它们行驶的路线相同吗?(2)它们行驶的路程相等吗?课堂探究一、要点探究探究点1:绝对值的意义及求法合作探究探究一探究两辆车的行驶路线相同吗?行驶路程相同吗?请用数轴解释(规定向东为正方向).知识要点:绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫作数a的绝对值,记作|a|.探究二对于任意数a,你能求出它的绝对值吗?思考1:一个正数的绝对值是什么数?一个负数的绝对值是什么数?0的绝对值是什么数?结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.任何一个有理数的绝对值都是非负数.|a|≥0结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数.思考2:若字母a表示一个有理数,你知道a的绝对值等于什么吗?(1)当a是正数时,|a|=____;正数的绝对值是它本身.(2)当a是负数时,|a|=____;负数的绝对值是它的相反数.(3)当a=0时,|a|=____.0的绝对值是0.例1(1)写出1,-0.5,−74的绝对值;(2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d,这四个数中,绝对值最小的是哪个数?总结:一个数的绝对值越小,数轴上表示它的点离原点越近,反过来,数轴上表示它的点离原点越近,它的绝对值越小.3.已知|x-4|+|y-3|=0,求x+y的值.归纳总结:几个非负式的和为0,则这几个式子都为0.二、课堂小结1.判断对错:(1)一个数的绝对值等于本身,则这个数一定是正数;()(2)一个数的绝对值等于它的相反数,这个数一定是负数;()(3)如果两个数的绝对值相等,那么这两个数一定相等;()(4)如果两个数不相等,那么这两个数的绝对值一定不等;()(5)有理数的绝对值一定是非负数.()2.化简:|0|=;|x|=(x<0);|m–n|=(m>n).3.某工厂生产一批螺帽,根据产品质量要求,螺帽的内径可以有0.02毫米的误差,抽查5只螺帽,超过规定内径的毫米数记作正数,不足规定内径的毫米数记作负数,检查结果如下表:(1)根据调查结果,指出哪些产品是合乎要求的(即在误差范围内的);(2)指出合乎要求的产品中哪一个质量好一些,并用绝对值的知识说明.参考答案合作探究一、要点探究合作探究练一练:1.5 3.53 3.50思考1略.思考2(1)a(2)-a(3)0【典例精析】解:(1)|1|=1,|-0.5|=0.5,−=47(2)因为在点A,B,C,D中,点C离原点最近,所以在有理数a,b,c,d中,c的绝对值最小.2.5,3.5,12024,653.解:根据题意可知|x-4|=0,|y-3|=0,x-4=0,y-3=0.所以x=4,y=3,故x+y=7.二、课堂小结当堂检测1.(1)×(2)×(3)×(4)×(5)√2.3,0,-x,m-n.3.解:(1)螺帽的内径误差是-0.018和+0.015符合要求;(2)|-0.018|=0.018;|+0.015|=0.015.因为0.018>0.015,所以螺帽的内径误差是+0.015毫米的质量好些.。
《绝对值和相反数》导学案
绝对值和相反数绝对值的概念假设把汽车行的路想像成数轴,将车站定为原点,向东行驶3千米到达A点,向西行驶2千米到达B点.数轴上点A与原点的距离是____个单位长度,点B与原点的距离是_____个单位长度.B A定义:叫做这个数的绝对值.绝对值的符号:“”注意:1.任何有理数的绝对值都是数2.绝对值最小的数是考点01:绝对值【典例分析01】定义“”运算,观察下列运算:(+2)(+13)=15,(﹣10)(﹣12)=22;(﹣5)(+13)=﹣18,(+8)(﹣10)=﹣18;0(+13)=﹣13,(﹣10)0=10.(1)请你认真思考上述运算,归纳“”运算的法则:两数进行“”运算时,同号,异号,并把绝对值;特别地,0和任何数进行“”运算或任何数和0进行“”运算,都得这个数的.(2)计算:(﹣15)[0(+7)];(3)若(2a)×3+2=4a,求a的值.【典例分析02】若|a﹣2|=5,|b|=9且a+b<0,试求a﹣b的值.【举一反三01】(1)在8个连续整数1,2,3,…8的前面,恰当地添上正号或者负号,使他们的和为0.请写出两种不同的算式.(2)在n个连续整数1,2,3,…n的前面,恰当地添上正号或者负号,使他们和的绝对值最小求这个最小值.【举一反三02】|﹣2023|=.【举一反三03】若|x+a|+|x+1|的最小值为3,则a的值为.考点02:非负数的性质:绝对值【典例分析03】若|a﹣2|+|b+3|=0,则b a的值为.【典例分析04】已知|x﹣y|+|y+2|=0,则x+y=.【举一反三04】请根据图示的对话解答下列问题.(1)a=,b=.(2)已知|m﹣a|+|b+n|=0,求mn的值.【举一反三05】如果|m﹣3|+|n+5|=0,求的值.【举一反三06】若|a﹣4|与|3+b|互为相反数,则b﹣a+(﹣1)的结果为()A.﹣6B.﹣7C.﹣8D.﹣9基础达标一.选择题1.下列各数中,﹣2的相反数是()A.2B.﹣2C.D.±22.﹣2022的绝对值是()A.﹣2022B.2022C.D.3.下列四个数中,3的相反数是()A.3B.﹣3C.D.4.若,,,d=﹣2,则绝对值最大的数是()A.a B.b C.c D.d5.若|m|=|﹣3|,则m的值为()A.﹣3B.3C.±3D.二.填空题6.已知a、b互为相反数,则=.7.下列四个关系式中(1)|a|=a,(2)|a|>a,(3)|a|=﹣a,(4)a<﹣a能够推出有理数a为负数的是:.8.若a,b互为相反数,则(a+b)2=.9.整数a、b、c满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c的最小值是.10.若|a+3|+|b﹣2|=0,则(a+b)2022=.三.解答题11.若|x﹣3|+|y+2|=0,求x、y的值.12.写出下列各数的绝对值.(1)﹣1.5;(2);(3)﹣6;(4)﹣;(5)3.13.(1)绝对值是1的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是﹣2022的数是否存在?若存在,请写出来.14.若|a+2|+|b﹣5|=0,求的值.15.请根据下面的对话解答下列问题.我不小心把老师留的作业题弄丢了,只记得式子是8﹣a+b﹣c.我告诉你:“a的相反数是3,b的绝对值是7,c与b的和是﹣8.”这时数学老师笑着补充说:a和b的符号相同奥!(1)a=,b=,c=.(2)求8﹣a+b﹣c的值,16.若|a+2|=11,|b|=17,且|a+b|=﹣(a+b),求a﹣b的值.练一练一.选择题1.若|﹣7|=﹣a,则a的值是()A.7B.﹣7C.D.2.已知2x﹣3的绝对值与x+6的绝对值相等,则x的相反数为()A.9B.1C.1或﹣9D.9或﹣13.已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5B.0或±1C.0或±5D.±1或±54.已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c5.2023的相反数是()A.2023B.C.D.﹣2023二.填空题6.若有理数a,b满足ab≠0,则的值为.7.已知a、b、c的位置如图所示,化简|a+b|﹣|c﹣a|+|b+c|=.8.若(m﹣3n)的相反数是7,则(5﹣m+3n)的值为.9.若|x﹣1|+(y−3)2=0,则y﹣x=.10.已知a、b互为相反数,则a+b的值为.11.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是.12.已知|x﹣1|=3,|y|=2.则x﹣y的最大值是.13.如果一个物体某个量的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b是.三.解答题14.画数轴,并在数轴上描出表示下列各个数的点:﹣,﹣2,0,﹣(﹣3),|1.5|15.已知|a|=3,|b|=5,且a>b,求b﹣2a的值.16.已知a=﹣1,|﹣b|=|﹣|,c=|﹣8|﹣|﹣|,求﹣a﹣b﹣c的值.17.已知表示数a的点在数轴上的位置如图所示.(1)在数轴上表示出a的相反数的位置.(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的数与数a的相反数表示的点相距5个单位长度,求b表示的数是多少?。
绝对值导学案
绝对值导学案绝对值是数学中的一个概念,用来表示一个数与0之间的距离。
在数学中,绝对值常常用符号“|x|”来表示,其中x可以是任意实数。
绝对值有许多有趣且实用的性质,我们将在本导学案中探索并学习这些性质。
一、绝对值的定义及性质1. 绝对值的定义绝对值是一个数与0之间的距离。
对于任意实数x,它的绝对值表示为|x|。
2. 绝对值的非负性质对于任意实数x,其绝对值永远为非负数,即|x| ≥ 0。
3. 绝对值的正数性质对于任意实数x,如果x > 0,则 |x| = x;如果x < 0,则 |x| = -x。
4. 绝对值的零性质对于任意实数x,如果x = 0,则 |x| = 0。
二、绝对值的计算与应用1. 计算绝对值对于给定的实数x,可以使用以下步骤计算其绝对值:a) 如果x > 0,则|x| = x;b) 如果x < 0,则|x| = -x;c) 如果x = 0,则 |x| = 0。
2. 用途1:表示距离绝对值的主要用途之一是表示距离。
例如,如果一个物体在数轴上的位置是x,则与该物体的距离是|x|。
3. 用途2:解决不等式问题绝对值经常用于解决不等式问题。
当我们遇到形如|f(x)| > a的不等式时,可以将问题转化为-f(x) > a 或 f(x) < -a的形式,并求解。
4. 用途3:确定数的范围绝对值还可以用来确定某个数的范围。
例如,如果|x - 3| ≤ 5,则x 的值在-2到8之间。
三、等式和不等式中的绝对值1. 绝对值的基本性质对于任意实数a和b,有以下两个基本性质:a) |a| = |-a|,即绝对值的值与正负号无关;b) |a * b| = |a| * |b|,即绝对值的积等于各因数的绝对值之积。
2. 绝对值的等式对于两个实数a和b,若|a| = b,则有以下两种情况:a) a = b 或 a = -b;b) 如果b = 0,则a = 0。
3. 绝对值的不等式对于两个实数a和b,若|a| < b (或|a| > b),则有以下两种情况:a) a < b 且 a > -b (或 a > b 或 a < -b);b) 如果b = 0,则a ≠ 0。
绝对值导学案
绝对值一、引入-4所对应的点在原点的 ,距原点 个单位。
5所对应的点在原点的 ,距原点 个单位。
4.1所对应的点在原点的 ,距原点 个单位。
-9所对应的点在原点的 ,距原点 个单位。
二、绝对值的定义1、几何定义:2、表示:5的绝对值表示为3、求下列各数的绝对值2 -3 04 -15 -96 -10.28.3 -102.65三、代数定义观察上面各数的绝对值,你可以得到什么结论:或四:练习1、下列说法错误的是( )A .一个正数的绝对值一定是正数;B .任何数的绝对值都是正数C .一个负数的绝对值一定是正数;D .任何数的绝对值都不是负数 2、绝对值等于227的数有 ;绝对值等于0的数是 . 3、绝对值等于它本身的数是 ,相反数等于它本身的数是 . 绝对值最小的整数是 ;绝对值最小的有理数是 . 4、比较下列各组数的大小:(1)-3与-5 (2) -13与-0.3 (3)-113与-54(4) -(-4)-5-5、画出数轴,观察并回答下列问题(1)绝对值等于2的数有几个?是什么数?(2)绝对值小于3的整数有哪些数? (3)绝对值不大于4的正整数是哪些数?5.1绝对值小于2的整数是_________.绝对值大于-3而不大于3的整数的个数有 5.2绝对值小于4且不小于2的整数有个,它们是;5.3绝对值大于1且不大于3的负整数有个,它们是;6、若│x │=5,则x=________,若│x-3│=0,则x=_________.│3.14-π│=_______. 6.1若│x-7│=2,则x=_________如果01=-a ,那么a=;如果,21=+a 那么a=6.2若│a │=4,│b │=9,求│a+b │的值7、若,023=++-y x 则x=,y=;已知c b a c b a 32,0432++=-+-+-计算。
导学案:绝对值不等式的解法
绝对值不等式的解法(一)【学习目标】1. 掌握一些简单的含绝对值的不等式的解法;2. 理解含绝对值不等式的解法思想:去掉绝对值符号,等价转化【自主学习】1.一个实数的绝对值是如何定义的?2. 绝对值的几何意义是什么?3.绝对值三角不等式的内容是什么?4. 设为正数, 则()<⇔f x a ;()f x a >⇔ __ . 设0b a >>, 则()≤<⇔a f x b .()f x ≥()g x ⇔ ;()()f x g x <⇔ .【自主检测】1. 函数46y x x =-+-的最小值为( )A .B .C .D .2.不等式213+<-x x 的解集为 . 不等式x x ->-213的解集为 .3.解下列不等式(1)1422<--x x (2)212+>-x x .(3)42≥-+x x (4)21<++x x【典型例题】例1. 解不等式(1)52312≥-++x x ; (2)512≥-+-x x . 例2. 解不等式(1) |2||1|x x -<+;(2)4|23|7x <-≤ .例3.(1)若不等式26ax +<的解集为()1,2-,则实数等于( )(2)不等式31++-x x >,对x ∈R 都成立,则实数的取值范围是 ________.【课堂检测】1.解下列不等式(1).1122>-x (2)01314<--x (3).631≥++-x x(4)12-+<x x2. 已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值3. 解关于的不等式2||x a a -<(a R ∈)4. 已知{23}A x x a =-<,{B x x =≤,且A B ⊂≠,求实数的范围.【总结提升】解含绝对值不等式的基本思路是把它转化为不含绝对值的不等式.常用的方法有:利用定义、零点分区间法、两边平方等.另外数形结合也是一种常用的方法.。
绝对值 导学案(骄阳教育)
2.3绝对值【学习目标】知识目标:借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两负数的大小。
能力目标:会通过学习绝对值的概念,应用绝对值解决实际问题,体会绝对值的意义,并进一步明确数学知识在实际生活中的用途。
情感目标:通过学习,积极参与数学学习活动,学会与人合作,与人交流。
【学习重点、难点】重点:绝对值的概念和求一个数的绝对值。
难点:绝对值概念的理解以及绝对值的非负性。
【使用说明及学法指导】【预习案】一、知识链接:1、具有 、 、 的 叫做数轴。
2、3到原点的距离是 ,—5到原点的距离是 ,到原点的距离是6的数有 ,到原点距离是1的数有 。
3、2的相反数是 ,—3的相反数是 ,a 的相反数是 ,a —b 的相反数是 。
二、 自学指导(请安静的阅读并理解书本绝对值的类容,完成下面类容) 1. 自主学习:问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。
若规定向东为正,则A处记做__________, B处记做__________。
(1) 请画出数轴,并在数轴上标出A 、B 的位置;(2) 这两辆出租车在行驶的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(3)在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示- 34 和34 的点呢? 归纳:一般地,在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作: 例如:4的绝对值记作 ,它表示在 上 到 的距离,所以| 4|= 。
同理:—6的绝对值记作 ,它表示在 上 到 的距离, 所以|—6|= 。
【探究案】2. 合作探究、展示点评1、请在小组内说出| 7|、∣—2.25∣、∣25-∣、∣0∣的意义及其值。
2、(1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ;(3)|-3|= ,|-0.2|= ,|-8.2|= .归纳:把你所发现的规律写在下面,并在小组内验证是否正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级 1 班姓名时间: 2016年 9 月 18 日
“绝对值”导学案
主备课人: 迟媛苑审核人:张德辉,孙艺芬
学习目标:
1、借助数轴,理解绝对值与相反数得概念、
2、知道得含义以及互为相反数得两个数在数轴上得位置关系、
3、能求一个数得绝对值与相反数,会利用绝对值比较两个负数得大小。
4、通过应用绝对值解决实际问题,体会绝对值得意义与作用。
教学过程:
一、相反数得学习
(1)自主探究——理解相反数:
观察下列数,
3与—3 ,与—,5与—5
解决下面问题:
1.把它们在数轴上标出:
2.上述各对数之间有什么特点?
3.表示每对数得两个点在数轴上得位置有什么特点?
4.您能够写出具有上述特点得数吗?
(2)归纳总结:
1、只有得个数叫做互为相反数。
2、特别规定:
3、互为相反数得两个点分别位于原点得,且到原点得距离。
反过来说您明白吗?
位于原点两侧且到原点距离相等得两个点所表示得数就是。
(3)随堂练习:
1.分别说出9,—7,0,—0、2 得相反数
2、指出—2、4 , ,1,—就是什么数得相反数?
3.同桌互练:任意说出4个数,同桌回答相反数。
(4)猜想一下:
如果字母表示一个有理数,那么它得相反数就是什么?
二、绝对值得学习
(1)回顾旧知展新知:
-3 -2-10 1 2 3
问:
距原点有多远?(一个单位长度为1cm)
定义:在数轴上,一个数所对应得点与原点得距离叫做这个数得。
4得绝对值记作 ,它表示在上与得距离, 所以| 4|= 。
—3得绝对值记作,它表示在上与得距离,所以
|—3|= 。
一个数a得绝对值记作:,它表示在上与得距离。
(2)交流展示,形成规律:
做一做:
1、求下列各数得绝对值: —1、5, 0, —7, 2
2、求下列各组数得绝对值:(1)4,—4;
(2) 0、8,—0、8;
小结:从上面得结果您发现了什么?
议一议:(1)|+2|= ,||= ,|+8、2|=;
(2) |—3|= ,|—0、2|= ,|—8|= ;
(3)|0|= 。
您能从中发现什么规律?
小结:正数得绝对值就是它 ,负数得绝对值就是它得,0得绝对值就是。
思考:绝对值就是它本身得有
绝对值就是它得相反数得有
小试牛刀:求下列各数得绝对值
+6 —3—2、70
您会熟练地求各个有理数得绝对值吗?
三、比较大小
做一做:
1、( 1 )在数轴上表示下列各数,并比较它们得大小:—3 , —1
( 2 ) 求出(1)中各数得绝对值,并比较它们得大小
(3)您发现了什么?2、比较下列每组数得大小。
(1) —1与— 5 (2)—与—2、7 (3)—8与—3
3、若就是两个正数比较大小呢?结论就是否一样?举个例子试一试
4、总结规律:
两个正数比较大小:
两个负数比较大小:
四、应用规律,巩固新知
课本P32随堂练习2、3题
P33习题2、3第2、3题
四、比较大小
做一做:
1、( 1 )在数轴上表示下列各数,并比较它们得大小:—3 ,—1
( 2 ) 求出(1)中各数得绝对值,并比较它们得大小
(3)您发现了什么?
2、比较下列每组数得大小。
(1)—1与— 5 (2)—与—2、7 (3)—8与—3
5、若就是两个正数比较大小呢?结论就是否一样?举个例子试一试
6、总结规律:
两个正数比较大小:
两个负数比较大小:
五、应用规律,巩固新知
课本P32随堂练习2、3题
P33习题2、3第2、3题
六年级班姓名时间:年9月 19 日
“绝对值”导学案(讲改)
主备课人: 迟媛苑审核人:张德辉,孙艺芬
学习目标:
1、借助数轴,理解绝对值与相反数得概念、
2、知道得含义以及互为相反数得两个数在数轴上得位置关系、
3、能求一个数得绝对值与相反数,会利用绝对值比较两个负数得大小。
4、通过应用绝对值解决实际问题,体会绝对值得意义与作用。
教学过程:
上节课我们学习了数轴,知道了所有有理数都可以在数轴上表示出来,这节课我们借助数轴来认识两个新得朋友——(通过预习您能猜到就是哪两个朋友吗?)相反数与绝对值。
首先来瞧相反数
一、相反数得学习
(1)自主探究——理解相反数:
观察下列数,(瞧到“观察”用手指着,一起读)
3与—3 , 与—,5与—5
解决下面问题:
1、把它们在数轴上标出:
2、上述各对数得符号之间有什么特点?数字又有什么特点?
3、表示每对数得两个点在数轴上得位置与原点有什么关系?
4、您能够写出2组具有上述特点得数吗?
小组讨论完成四个题,提醒:注意小组分工,指派代表发言
(2)归纳总结:这样得数组有很多,我们把这样得数组叫做互为相反数
1、只有得个数叫做互为相反数。
为什么要强调两个数呢?我举几个例子您来好好听,判断我说得对不对
-5就是相反数。
为什么不对?自己一个人不能称为同桌
-5与+3就是互为相反数。
-5与+5就是互为相反数。
2、特别规定:
3、互为相反数得两个点分别位于原点得,且到原点得距离。
反过来说您明白吗?
位于原点两侧且到原点距离相等得两个点所表示得数就是。
(4)随堂练习:
2.分别说出9,—7,0,—0、2得相反数
2、指出—2、4 ,,1,—就是什么数得相反数?
4.同桌互练:任意说出4个数,同桌回答相反数。
(4)猜想一下:
如果字母表示一个有理数,那么它得相反数就是什么?
二、绝对值得学习
(1)回顾旧知展新知
:
-3 -2 -1 0 1 2 3
问:
距原点有多远?(一个单位长度为1c m)
定义:在数轴上,一个数所对应得点与原点得距离叫做这个数得 。
4得绝对值记作 ,它表示在 上 与 得距离, 所以| 4|= 。
—3得绝对值记作 ,它表示在 上 与 得距离, 所以 |—3|= 。
一个数a 得绝对值记作: ,它表示在 上 与 得距离。
(2)交流展示,形成规律: 做一做:
1、求下列各数得绝对值: —1、5, 0, —7, 2
2、求下列各组数得绝对值:(1)4,—4;
(2) 0、8,—0、8; 小结:从上面得结果您发现了什么?
议一议:(1)|+2|= ,||= , |+8、2|= ;
(2) |—3|= ,|—0、2|= ,|—8|= ; (3) |0|= 。
您能从中发现什么规律?
小结:正数得绝对值就是它 ,负数得绝对值就是它得 ,0得绝对值就是 。
思考:绝对值就是它本身得有
绝对值就是它得相反数得有 小试牛刀:求下列各数得绝对值
+6 —3 —2、7 0 您会熟练地求各个有理数得绝对值吗? 三、比较大小 做一做:
1、( 1 )在数轴上表示下列各数,并比较它们得大小:—3 , —1
( 2 ) 求出(1)中各数得绝对值,并比较它们得大小 (3)您发现了什么? 2、比较下列每组数得大小。
(1) —1与 — 5 (2)—与—2、7 (3)—8与 —3
7、若就是两个正数比较大小呢?结论就是否一样?举个例子试一试 8、总结规律: 两个正数比较大小: 两个负数比较大小: 四、应用规律,巩固新知 课本P32随堂练习2、3题 P33习题2、3第2、3题。