沪教版2019--2020学年度第一学期期末质量检测九年级数学试卷
2019_2020学年度第一学期九年级阶段性测评
2019~2020学年度第一学期九年级阶段性测评数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母序号填入下表相应位置)1.一元二次方程x(x-2)=0的根为( )A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=-22.如图,直线a//b//c,点A,B在直线a上,点C,D在直线c上,线段AC,BD分别交直线b于点E,F,则下列线段的比与AEAC一定相等的是()A.CE ACB.BF BDC.BF FDD.AB CD3.中国人民银行于2019年9月10日陆续发行中华人民共和国成立70周年纪念币一套.该套纪念币共7枚,均为中华人民共和国法定货币.任意掷两枚质量均匀的纪念币,恰好都是国徽一面朝上的概率是()A.1 2B.1 3C.1 4D.3 44.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是( )A.AC⊥BDB.AC=BDC.∠ABC=90°D.∠ABC=∠BAC5.根据中国人民政治协商会议第一届全体会议主席团1949年9月27日公布的国旗制法说明,我国五种规格的国旗旗面为相似矩形,已知一号国旗的标准尺寸是长288cm,高192cm,则下列国旗尺寸不符合标准的是( )6.若一元二次方程x2+mx+2=0有两个相等的实数根,则m的值是()A.2B.2±C.8±±D.227.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是( )。
A.65°B.60°C.50°D.40°8.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到后期自动续期,两期结束后共收回本息10926元.设此款理财产品每期的平均收益率为x,根据题意可得方程()。
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)
沪教版-九年级(初三)数学上册-期中考试复习试卷试题及答案(Word版)AC51.将抛物线y=x^2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为哪一个?A。
y=(x-1)^2+2B。
y=(x+1)^2+2C。
y=(x-1)^2-2D。
y=(x+1)^2-22.已知二次函数y=ax^2-1的图象经过点(1,-2),那么a的值为多少?A。
a=-2B。
a=2C。
a=1D。
a=-13.对于非零向量a、b,如果2|a|=3|b|,且它们的方向相同,那么用向量a表示向量b正确的是哪一个?A。
b=a*(3/2)B。
b=a*(2/3)C。
b=-a*(3/2)D。
b=-a*(2/3)4.在四边形ABCD中,若AB=a,AD=b,BC=c,则CD等于哪一个?A。
a-b-cB。
-a+b-cC。
a-b+cD。
-a+b+c5.在直角三角形ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于哪一个?A。
3sinαB。
3cosαC。
sinα/3D。
cosα/36.在直角三角形ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为多少?A。
3/4B。
4/3C。
5/3D。
3/57.在直角三角形ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是哪一个?A。
sinA=3/2B。
tanA=1/2C。
cosB=3/2D。
tanB=3/48.抛物线y=-3x^2+2x-1的图象与x轴交点的个数是多少?A。
没有交点B。
只有一个交点C。
有且只有两个交点D。
有且只有三个交点9.关于二次函数y=(x+1)^2的图象,下列说法正确的是哪一个?A。
开口向下B。
经过原点C。
对称轴右侧的部分是下降的D。
顶点坐标是(-1,0)10.在三角形ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE//BC的是哪一个?A。
DE^2/BC^2=3/2B。
2019-2020学年度第一学期期末教学质量检测试卷九年级语文答案
2019-2020学年度第一学期期末教学质量检测试卷九年级语文答案说明1.主观题答案与参考答案意思相近即可;如果考生的答案与参考答案不一致,但符合题目要求且言之成理,可酌情给分。
2.除有特别说明的题目外,答案中出现错别字每3个扣1分(重复不计),但扣分不得超过该小题的分值。
3.附加题给分应从严。
题号分值参考答案及评分说明一241 10 (每句1分,每句多、错、漏1字扣0.5分,扣完该句分值为止)(1) 1 蜡炬成灰泪始干(2) 1 沉舟侧畔千帆过(3) 2 长风破浪会有时,直挂云帆济沧海(4) 2 佳木秀而繁阴,风霜高洁(5) 4 欲为圣明除弊事,肯将衰朽惜残年!云横秦岭家何在?雪拥蓝关马不前。
2 4 (1)拮据(2)亵渎(3)根深蒂固(4)自吹自擂(每词1分,错一字该题不得分。
)3 3 C【解析】C项中“鳞次栉比”本意是像鱼鱗和梳子的齿一样,一个挨着一个地排列着,多形容房屋等密集,这里用来形容街道,用错对象。
4 3 A【解析】该选项否定不当,应删掉“防止”或“不再”5 4 (1)(2分)示例一:品功夫茶是盛行于闽南、潮汕地区的风俗,讲究品饮功夫。
示例二:功夫茶起源于宋,盛行于闽南、潮汕,讲究沏泡品饮功夫。
(答出“盛行于闽南、潮汕地区”给1分,答出“讲究品饮功夫”或“讲究沏泡品饮功夫”给1分,语句不够通顺可适当扣0.5分)(2)(2分)示例:功夫茶如诤友,先苦后甘,令人神清气爽,回味无穷。
(开放性题目,根据学生答题灵活给分,能正确使用修辞手法给1分,语句通顺、表达优美给0.5分、书写工整给0.5分)二 46(一) 106 3 (1)消失(2)意趣、情趣(3)尽力(每小题1分)7 4 (1)冰花周围弥漫着白汽,天和云和山和水,从上到下都是白茫茫的一片。
(2分)(关键词:雾凇沆砀一)(2)山势回环,路也跟着转弯,有一座亭子,(亭角翘起)像鸟张开翅膀一样,高踞于泉水之上,这就是醉翁亭啊!(2分)(关键词:回,转,翼然,临,判断句式)8 3 B 【解析】按照由远及近、由大到小的次序(二) 99 3 C【解析】A项前者为“连词,表目的,来”,后者为“介词,凭借,借助”。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
2019-2020上海市中小学学业质量绿色指标综合评价学科测试沪教版(2015秋) (图片版无答案)
小学数学试卷S姓名: 准考证号:一、选择题(共11小题.)1在计算下面式子时,需要先计算“496-56的是( )A.496-56÷8B.496-56+8C.496-(56+8)D.496-56×82.用算式表示3402,可以是( )A.3000+400+2B.300+40+2C.30+4+2D.3+4+23.桌上放着一个茶杯,四位同学从各自的方向进行观察。
小芳看到的是图( )A B C D4.有一些同样长的小棒,用(A.6B.7.C.8.D.95.由1个千和3个一组成的数是( )A.1003.B.1300.C.1111.D.10306.住佳每天从家上学需用30分钟,放学回家比上学少用7需要多长时间?下面列式正确的是( )A.30X7.B.30÷7.C.30+7.D.30-77.小巧上午8:30出发,去爷爷家,11:00A.2小时.B.2小时30分钟C.3小时8.小明家买了30个苹果,3天吃了12A.30+12.B.30-12C.30-12÷3.9.小丁丁在计算120÷3时,算成了的商再(. )。
A.乘2.B.除以2.C.乘3.10.用36朵花扎花束,每3竖式中箭头所指的表示的是(. )A.已经用去了3朵B.已经用去了6朵C.已经用去了30朵D.已经用去了36朵11.根据已给图形的排列规律,4号图应是( )1 2 3 4 5A. B C D二、填空题(共有6道小题,请将正确答案写在答题卡相应的位置上。
)12、700厘米=( )米13、比较大小:7254 734814、数一数,右面的图形中有( )个直角15.用同样长的小棒按如下方式摆三角形。
那么,摆4个三角形要 根小棒你可以画一画,数一数(请把你的思考过程写在答题卡指定的位置上.)16.妈妈带47元钱买牛奶,每盒牛奶4元钱.妈妈最多可以买 盒牛奶17.知道下面条件中的 和 ,就可以求出:“一共运来了多少瓶矿泉水 (请写出符合条件的序号)①一共运来50箱矿泉水 ②每瓶矿泉水5元③每箱矿泉水12瓶 ④还有120箱矿泉水没有运来三、解答题(共6小题,请把你的计算过程或思考过程写在答题卡相应的位置上)18.计算下列各题,请把你的计算过程写在指定的位置(1)705=529= (2)549÷9=19.学校准备组织三年级的同学去游玩.对于游玩地点,学校要满足大多数人的需求,所以进行了调查.下面是调查的结果.(每人只选择一个景点)三年级同学希望游玩地点人数统计表景点 人数(人)动物园 16博物馆 28天文馆 32游乐园 70(1)一共调查了( )同学(2)根据调查结果,如果你是组织者,你决定去( )你的理由是20.在一个游戏中,小刚、小丽、刘芳、张浩在做减法问题他们每个人有四张这样的卡片,分别是1、2、5、6,规定获得最大结果的人将赢得比赛.下面是这四位同学摆出的减法算式小刚 小丽 刘芳 张浩5 6 5 6 5 6 6 1- 1 2 - 2 1 - 5 1 - 5 2(1)哪位同学赢得了比赛?请写出他(或她)的名字22.六一儿童节来临之际,将出售如右图所示的大礼包(1)配两个大礼包需要几包干和几袋糖果?(2)现有饼干10包,糖果30袋,最多能配成几个大礼包?23.合唱队中年级学生的人数是低年级学生人数的3倍(1)下面图中表示出了低年级的人数,请根据倍数关系画出表示中年级学生人数 低年级学生的人数:中年级学生人数:(2)合唱队除了低、中年级的学生外,还有高年级的学生.低年级学生共有15人 已知:合唱队共有学生80人根据上面的信息,请你提出一个用两步或者两步以上计算解决的问题,并解答 问题解答过程:。
九年级数学上册2020-2021学年度第一学期九年级期末学业水平质量检测含答案
2020—2021学年第一学期九年级期末学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项)1.如图,点D、E分别在△ABC的AB、AC边上,下列条件中:①∠ADE=∠C;②AE DEAB BC=;③AD AEAC AB=. 使△ADE与△ACB一定相似的是A.①②B.②③C.①③D.①②③2. 如图,A、B、C是半径为4的⊙O上的三点. 如果∠ACB=45°,那么AB的长为A.πB.2πC.3πD.4π3. 小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地. 如果他再抛第5次,那么硬币正面朝上的概率为A.1 B.12C.14D.154.如图,数轴上有A、B、C三点,点A、C关于点B对称,以原点O为圆心作圆,如果点A、B、C分别在⊙O外、⊙O内、⊙O上,那么原点O的位置应该在A.点A与点B之间靠近A点B.点A与点B之间靠近B点C.点B与点C之间靠近B点D.点B与点C之间靠近C点5. 如图,P A和PB是⊙O的切线,点A和点B为切点,AC是⊙O的直径. 已知∠P=50°,那么∠ACB的大小是A.65°B.60°C.55°D.50°6. 如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为80米.如果设河的宽度为x米,那么下列关系式中正确的是A.1802xx=+B.180xx=+C.802xx=+D.803xx=+cCBA7. 体育节中,某学校组织九年级学生举行定点投篮比赛, 要求每班选派10名队员参加.下面是一班和二班 参赛队员定点投篮比赛成绩的折线统计图(每人投 篮10次,每投中1次记1分),请根据图中信息判断:①二班学生比一班学生的成绩稳定;②两班学生成绩的中位数相同;③两班学生成绩的众数相同. 上述说法中,正确的序号是 A .①② B .①③C .②③D .①②③8. 运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线可以看作是一条抛物线,不考虑空气阻力,足球距离地面的高度y (单位:m )与足球被踢出后经过的时间x (单位:s )近似满足函数关系()20y ax bx c a =++≠.如图记录了3个时刻的数据,根据函数模型和所给数据,可推断出足球飞行到最高点时,最接近的时刻x 是 A .4 B .4.5C .5D .6二、填空题(本题共8个小题,每小题2分,共16分)9. 如图,线段BD 、CE 相交于点A ,DE ∥BC .如果AB =4,AD =2,DE =1.5, 那么BC 的长为_________.10.在平面直角坐标系xOy 中,二次函数()214y x =--+的图象如图,将二次函数()214y x =--+的图象平移,使二次函数()214y x =--+的图象的最高点与坐标原点重合,请写出一种平移方法:__________________________________________.11.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O ,另一边所在直线与半圆相交于点D 、E ,量出半径OC =5cm ,弦DE =8cm ,则直尺的宽度为____cm.12. “阅读让自己内心强大,勇敢面对抉择与挑战.”某校倡导学生读书,下面的表格是该校九年级学生本学期内阅读课外书籍情况统计表. 请你根据统计表中提供的信息,求出表中a 、b 的值:a = ,b = .13.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y 美元. 设2017年到2019年该地区居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是________________________. 图书种类 频数 频率 科普常识 210 b 名人传记 204 0.34 中外名著 a 0.25 其他360.06x s ()y m ()182014O yx4O 1EDBCA二班一班成绩/分109876109876543201514. 如图,直角三角形纸片ABC ,90ACB ∠=︒,AC 边长为10 cm. 现从下往上依次裁剪宽为4 cm 的矩形纸条, 如果剪得第二张矩形纸条恰好是正方形,那么BC 的长 度是____cm .15. 已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出一组满足条件的a ,b 的值:a =______,b =________.16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线a 和直线外一点P . 求作:直线a 的垂线,使它经过P . 作法:如图2.(1)在直线a 上取一点A ,连接P A ; (2)分别以点A 和点P 为圆心,大于12AP 的长为半径 作弧,两弧相交于B ,C 两点,连接BC 交P A 于点D ; (3)以点D 为圆心,DP 为半径作圆,交直线a 于点E (异于点A ),作直线PE .所以直线PE 就是所求作的垂线.请回答:该尺规作图的依据是_____________________________________________. 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17.计算:(4cos30π1︒+--.18. 已知:如图,AB 为⊙O 的直径,OD ∥AC . 求证:点D 平分BC .19.如图,在□ABCD 中,连接DB ,F 是边BC 上一点,连接DF 并延长,交AB=∠A . (1)求证:△BDF ∽△BCD ;(2)如果BD =9BC =,求ABBE的值. 图1aaP20. 如图,菱形ABCD 的对角线交于点O ,点E 是菱形外一点,DE ∥AC ,CE ∥BD . (1)求证:四边形DECO 是矩形;(2)连接AE 交BD 于点F ,当∠ADB =30°,DE=2时,求AF 的长度.21.如图,直线2y x =+与反比例函数()00ky k x x=>>,的图象交于点A (2,m ),与y 轴交于点B .(1)求m 、k 的值;(2)连接OA ,将△AOB 沿射线BA 方向平移,平移后A 、O 、B 的对应点分别为A'、O'、B',当点O'恰好落在反比例函数()0ky k x=>的图象上时,求点O' 的坐标; (3)设点P 的坐标为(0,n )且04n <<,过点P 作平行于x 轴的直线与直线2y x =+和反比例函数()0ky k x=>的图象分别交于点C ,D ,当C 、D 间距离小于或等于4时,直接写出n 的取值范围.22.如图,AB 为⊙O 的直径,C 、D 为⊙O 上不同于A 、B 的两点,∠ABD =2∠BAC ,连接CD ,过点C 作CE ⊥DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点. (1)求证:CF 是⊙O 的切线; (2)当185BD=,3sin 5F=时,求OF 的长.23. 为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每名被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有_______人,扇形统计图中α的度数是_______; (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或画树状图法求出选中书法与乐器组合在一起的概率.24.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,30CAB ∠=︒,D 是直径AB 上一动点,连接CD 并过点D 作CD 的垂线,与⊙O 的其中一个交点记为点E (点E 位于直线CD 上方或左侧),连接EC .已知AB =6 cm ,设A 、D 两点间的距离为x cm ,C 、D 两点间的距离为1y cm ,E 、C 两点间的距离为2y cm . 小雪根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小雪的探究过程:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值,请将表格补充完整; x /cm 0 1 2 3 4 5 61y /cm5.20 4.36 3.60 2.65 2.65 2y /cm5.204.564.224.244.775.606.00 (2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y ),(x ,y ),并画出函数y 的图象;y 2cm6543学生选修课程条形统计图学生选修课程扇形统计图25. 在平面直角坐标系xOy 中,抛物线()240y ax ax m a =-+≠与x 轴的交点为A 、B ,(点A 在点B 的左侧),且AB =2. (1)求抛物线的对称轴及m 的值(用含字母a 的代数式表示);(2)若抛物线()240y ax ax m a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,求a 的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接 写出a 的取值范围.26. 如图1,在正方形ABCD 中,点F 在边BC 上,过点F 作EF ⊥BC ,且FE =FC (CE <CB ),连接CE 、AE ,点G 是AE 的中点,连接FG .(1)用等式表示线段BF 与FG 的数量关系是___________________;(2)将图1中的△CEF 绕点C 按逆时针旋转,使△CEF 的顶点F 恰好在正方形ABCD 的对角线AC 上,点G 仍是AE 的中点,连接FG 、DF .①在图2中,依据题意补全图形; ②求证:DF =.图2图127. 在平面直角坐标系xOy中,⊙C的半径为r,点P与圆心C不重合,给出如下定义:若在⊙C上存在一点M,使30MPC∠=︒,则称点P为⊙C的特征点.(1)当⊙O的半径为1时,如图1.①在点P1(-1,0),P2(1,P3(3,0)中,⊙O的特征点是______________.②点P在直线y b=+上,若点P为⊙O的特征点,求b的取值范围.(2)如图2,⊙C的圆心在x轴上,半径为2,点A(-2,0),B(0,.若线段AB上的所有点都是⊙C的特征点,直接写出圆心C的横坐标m的取值范围.2020—202021学年第一学期九年级期末学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 3 10. 向左平移1个单位,再向下平移4个单位(答案不唯一) 11. 312. 150,0.3513. ()23001y x =+ 14. 20 15. 1,2(答案不唯一) 16. 到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对的圆周角是直角,两点确定一条直线三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=411+-, ………………… 4分 =11+-,=0. ………………… 6分18. 证明:连接CB . ………………… 1分∵AB 为⊙O 的直径,∴90ACB ∠=︒. ………………… 3分 ∵OD ∥AC ,∴OD ⊥CB ,. …………………5分 ∴点D 平分BC . ………………… 6分 另证:可以连接OC 或AD .19. (1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AE ,A C ∠=∠,AB =DC . ………………… 1分 ∵EDB A ∠=∠,∴EDB C ∠=∠. ………………… 2分 ∵DBF CBD ∠=∠,∴△BDF ∽△BCD . ………………… 3分(2)解:∵△BDF ∽△BCD ,∴BF BDBD BC =. ………………… 4分9=.∴5BF=. …………………5分∵DC∥AE,∴△DFC∽△EFB.∴CF DCBF BE=.∴45ABBE=. …………………6分20. (1)证明:∵四边形ABCD是菱形,∴AC⊥BD. ………………1分∵DE∥AC,CE∥BD,∴四边形DECO是平行四边形.∴四边形DECO是矩形. ………………2分(2)解:∵四边形ABCD是菱形,∴AO OC=.∵四边形DECO是矩形,∴DE OC=.∴2DE AO==. ………………3分∵DE∥AC,∴OAF DEF∠=∠.∵AFO EFD∠=∠,∴△AFO≌△EFD.∴OF DF=. ………………4分在Rt△ADO中,tanOAADBDO∠=.∴2DO=.∴DO=………………5分∴FO=∴AF===. ………………6分方法二:∴△AFO≌△EFD.在Rt △ACE 中,AC =4,CE =OD=∴AE=∴AF =12AE. 21. 解:(1)∵直线2y x =+过点A (2,m ),∴224m =+=. ……………… 1分 ∴点A (2,4). 把A (2,4)代入函数ky x=中, ∴42k =. ∴8k =. ……………… 2分 (2)∵△AOB 沿射线BA 方向平移,∴直线OO' 的表达式为y x =. ……………… 3分∴,8y x y x =⎧⎪⎨=⎪⎩.解得x =. ……………… 4分 ∴点O'的坐标为(. ……………… 5分(3)24n <≤. ……………… 6分22. (1)证明:连接OC .∵CB CB =,∴2BOC BAC ∠=∠. ……………… 1分 ∵∠ABD =2∠BAC , ∴BOC ABD ∠=∠.∴BD ∥OC . ……………… 2分 ∵CE ⊥DB ,∴CE ⊥OC . ……………… 3分 ∴CF 是⊙O 的切线.(2)解:连接AD .∵AB 为⊙O 的直径,∴BD ⊥AD . ∵CE ⊥DB , ∴AD ∥CF .在Rt △ABD 中, ∴3sin sin 5BD F=BAD AB ∠==. ∴18355AB =. ∴6AB =. ……………… 5分 ∴3OC =. 在Rt △COF 中, ∴3sin 5OC F OF ==. ∴335OF =. ∴5OF =. ……………… 6分 另解:过点O 作OG ⊥DB 于点G .23. 解:(1)40,108︒; ……………… 2分 (2)条形统计图补充正确; ……………… 4分 (3)列表法或画树状图正确: ……………… 5分∴P (AC )=126=. ……………… 6分 24. 解:(1)3,3 ……………… 2分(2) ……………… 4分 (3)4.5 或6 ……………… 6分25.解:(1)对称轴为直线422ax a-=-=. ……………… 1分 ∵AB =2,点A 在点B 的左侧,∴A ()10,,B ()30, 把A (1,0)代入()240y ax ax m a =-+≠中,y 2cm 65432∴3m a =. ……………… 2分(2)∵抛物线()2430y ax ax a a =-+≠与y 轴的交点在(0,-1)和(0,0)之间,∴0a <. ……………… 3分当抛物线()2430y ax ax a a =-+≠经过点(0,-1)时,可得13a =-. ∴a 的取值范围是103a -<<. ……………… 4分 (3)32a -<-≤或2<3a ≤. ……………… 6分26. (1)BF =. ……………… 1分(2)①依据题意补全图形; ……………… 3分②证明:如图,连接BF 、GB .∵四边形ABCD 是正方形,∴AD =AB ,90ABC BAD ∠=∠=︒,AC 平分BAD ∠. ∴45BAC DAC ∠=∠=︒. 在△ADF 和△ABF 中,AD AB DAC BAC AF AF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADF ≌△ABF . ……………… 4分∴DF BF =.∵EF ⊥AC ,90ABC ∠=︒,点G 是AE 的中点,∴AG EG BG FG ===. ……………… 5分 ∴点A 、F 、E 、B 在以点G 为圆心,AG 长为半径的圆上. ∵BF BF =,45BAC ∠=︒,∴290BGF BAC ∠=∠=︒. ……………… 6分 ∴△BGF 是等腰直角三角形.∴BF =.∴DF =. ……………… 7分27. 解:(1) P 1,P 2.……………… 2分②当0b >时,设直线y b =+与以2为半径的⊙O 相切于点C ,与y 轴交于点E ,与x 轴交于点F . ∴E (0,b ),F,0),OC ⊥EF .∴3tan OF FEO OE b ∠===. ∴30FEO ∠=︒. (3)∵1sin 2OC FEO OE ∠==,∴212b =. ∴4b =. ……………… 4分 当0b <时,由对称性可知:4b =-. ……………… 5分 ∴b 的取值范围是44b -≤≤. ……………… 6分 (2)∴m 的取值范围为22m -<≤. ……………… 7分。
2020届上海市杨浦区初三一模数学试卷+详解答案
杨浦区2019学年度第一学期期末质量调研初 三 数 学 试 卷 2019.12(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.把抛物线2x y =向左平移1个单位后得到的抛物线是A .21y x =+();B .21y x =-();C .21y x =+;D .21y x =-.2.在Rt △ABC 中,∠C =90°,如果AC =2,3cos 4A =,那么AB 的长是 A .52;B .83;C .103; D3.已知a 、b 和c 都是非零向量,下列结论中不能判定//a b 的是A .////a c b c ,;B .12a c =,2bc =;C .2a b =;D .a b =.4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A 、B ,如果线段AB 与网格线的其中两个交点为M 、N ,那么AM ∶MN ∶NB 的值是 A .3∶5∶4; B .3∶6∶5; C .1∶3∶2;D .1∶4∶2.5.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上 水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是236042y x x x =-+≤≤(),那么水珠的高度达到最大时,水珠与喷头的水平距离是 A .1米; B .2米; C .5米; D .6米.6.如图,在正方形ABCD 中,△ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP ,AC 与BF 相交于点H ,下列结论中错误的是 A .AE =2DE ;B .△CFP ∽△APH ;C .△CFP ∽△APC ;D .CP 2=PH •PB .二、填空题:(本大题共12题,每题4分,满分48分) 7.如果cot αα= ▲ 度.8.如果抛物线231y x x m =-+-+经过原点,那么m = ▲ . 9ADBCEP F H第6题图第4题图10.已知点11A x y (,)、22B x y (,)为抛物线22y x =-()上的两点,如果122x x <<,那么1y ▲ 2y . (填“>”、“<”或“=”)11.在比例尺为1:8 000 000地图上测得甲、乙两地间的图上距离为4厘米,那么甲、乙两地间的实际距离为 ▲ 千米.12.已知点P 是线段AB 上的一点,且2BP AP=⋅ 13.已知点G 是△ABC 的重心,过点G 作MN ∥BC 分别交边AB 、AC 于点M、N ,那么AMNABCS S ∆∆14.如图,某小区门口的栏杆从水平位置AB 绕固定点O 旋转到位置DC ,已知栏杆AB 的长为3.5米,OA 的长为3米,点C 到AB 的距离为0.3米,支柱OE 的高为0.6米,那么栏杆端点D 离地面的距离为▲ 米. 15.如图,某商店营业大厅自动扶梯AB 的坡角为31°,AB 的长为12米,那么大厅两层之间BC 的高度为 ▲ 米.(结果保留一位小数)【参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】 16.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,4tan 3A =,那么CD = ▲ .17.定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线.在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC= ▲ 度.18.在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题6分,第(2)小题4分)抛物线y =ax 2+bx +c 中,函数值y 与自变量x 之间的部分对应关系如下表:(1)求该抛物线的表达式;(2)如果将该抛物线平移,使它的顶点移到点M (2,4)的位置,那么其平移的方法是 ▲ .ABC第15题图31°第16题图第14题图20.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,已知在梯形ABCD 中,AB //CD ,AB =12,CD =7,点E 在边AD 上,23DE AE =,过点E 作EF //AB 交边BC 于点F .(1)求线段EF 的长;(2)设AB a =,AD b =,联结AF ,请用向量a 、b 表示向量AF .21. (本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在△ABC 中,∠ACB=90º,3sin 5B =,延长边BA 至点D ,使AD =AC ,联结CD . (1)求∠D 的正切值;(2)取边AC 的中点E ,联结BE 并延长交边CD 于点F ,求CFFD的值.22.(本题满分10分)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m 1.414≈ 1.732≈ 2.449) 23.(本题满分12分,每小题各6分)如图,已知在ABC △中,AD 是ABC △的中线,DAC B ∠=∠,点E 在边AD 上,CE CD =.(1)求证:AC BDAB AD =; (2)求证:22AC AE AD =⋅.第21题图ABCD第20题图第23题图A CDE30º 45º 第22题图A B C DFEM24.(本题满分12分,每小题各4分)已知在平面直角坐标系xOy 中,抛物线224y mx mx =-+(0)m ≠与x 轴交于点A 、B (点A 在点B 的左侧),且AB=6.(1)求这条抛物线的对称轴及表达式;(2)在y 轴上取点E 02(,),点F 为第一象限内抛物线上一点,联结BF 、EF ,如果=10OEFB S 四边形, 求点F 的坐标;(3)在第(2)小题的条件下,点F 在抛物线对称轴右侧,点P 在x 轴上且在点B 左侧,如果直线PF 与y 轴的夹角等于∠EBF ,求点P 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)已知在菱形ABCD 中,AB=4,120BAD ∠=︒,点P 是直线AB 上任意一点,联结PC ,在∠PCD 内部作射线CQ 与对角线BD 交于点Q (与B 、D 不重合),且∠PCQ=30︒. (1)如图,当点P 在边AB 上时,如果3BP =,求线段PC 的长;(2)当点P 在射线BA 上时,设BP =x ,CQ =y ,求y 关于x 的函数解析式及定义域; (3)联结PQ ,直线PQ 与直线BC 交于点E ,如果△QCE 与△BCP 相似,求线段BP 的长.第24题图 A BC DPQ第25题图备用图A BCD杨浦区2019学年度第一学期初三数学期末质量调研试卷答案2019.12一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.B ; 3.D ; 4.C ; 5.B ; 6.C 二、填空题:(本大题共12题,每题4分,满分48分)7.8.1; 9.0(,-1);10.320; 1213 14.2.4; 15.6.2; 16.145; 18.、4(本大题共7题,满分78分) 19.解:(1)∵二次函数2y ax bx c =++图像过点10(-,)、 (01)-,和(14)-,, ∴01 4.a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩,, ··········································································· (3分) ∴121.a b c =-⎧⎪=-⎨⎪=-⎩,,∴二次函数解析式为221y x x =---. ·································· (3分) (2)平移的方法是先向右平移3个单位再向上平移4个单位或先向上平移4个单位再向右平移3个单位. ······················· (4分)20.解:(1)过D 作DH //BC 交AB 于H ,交EF 于G .∵DH //BC ,AB //DC ,∴四边形DHBC 是平行四边形. ································· (1分) ∴BH =CD ,∵CD=7,∴BH =7.······························································ (1分) 同理GF =7. ······················································································· (1分) 又AB=12,∴AH =5. ············································································ (1分) ∵EF //AB , ∴EG DEAH DA=. ···································································· (1分) ∵23DE AE =,∴25DE DA =. ∴255EG =,2EG =,∴9EF =. ·························································· (1分) (2)3345a b →→+ ··················································································· (4分)21. 解:(1)过C 作CH ⊥AB 于H .在Rt △ABC 中,∵3sin =5B ,∴3=5AC AB . ·········································· (1分) ∴设AC =3k ,AB =5k ,则BC =4k . ∵1122ABC S AC BC AB CH ∆=⋅=⋅,∴125AC BC CH k AB ⋅==. ··············· (1分) ∴9=5AH k . ················································································ (1分)∵AD=AC ,∴DH =924355k k k +=. ················································· (1分)在Rt △CDH 中,1215tan =2425kCH CDH DH k ∠==. ··································· (1分) (2)过点A 作AH//CD 交BE 于点H.∵AH//CD ,∴AH AECF EC =. ···································································· (1分) ∵点E 为边AC 的中点,∴AE CE =.∴AH CF =. ···································· (1分) ∵AH//CD ,∴AH ABDF BD=. ···································································· (1分) ∵AB =5k ,BD =3k ,∴58AB BD =.∴58AH DF =. ·············································· (1分) ∴58CF DF =. ······················································································· (1分) 22.解:由题意可知∠MCA =90°,∠MAC =30°,∠MBC =45°,AB =40,CF =1.5.设MC =x 米,则在Rt △MBC 中,由 tan MCMBC BC ∠=得BC =x . ················· (2分)又Rt △ACM 中,由cot ACMAC MC∠=得AC=. ···································· (2分)∴40x -=. ············································································· (2分)∴x=20+. ··············································································· (1分) ∴MF =MC+CF=56.1≈米. ····················································· (2分) 答:此楼MF 的高度是56.1米. ······························································ (1分)23.证明:(1)∵CD =CE ,∴∠CED =∠CDA . ········································ (1分) ∴∠AEC =∠BDA . ······························································· (1分) 又∵∠DAC =∠B ,∴△ACE ∽△BAD. ········································ (1分)∴AC CEAB AD=. ····································································· (1分) ∵AD 是ABC △的中线,∴BD CD =. ········································ (1分)∵CD =CE ,∴BD CE =.∴AC BDAB AD=. ······································· (1分) (2)∵∠DAC =∠B ,又∠ACD =∠BCA ,∴△ACD ∽△BCA. ······················· (1分)∴AC CD BC AC=,∴2AC CD CB =?. ················································· (1分) ∵AD 是ABC △的中线,∴2BC CD =,∴222AC CD =. ·················· (1分)∵△ACE ∽△BAD ,∴CE AEAD BD=. ················································ (1分) 又∵CD =CE=BD ,∴2CD AD AE =?. ············································ (1分) ∴22AC AD AE =?. ································································ (1分)24.解:(1)抛物线对称轴212mx m-=-=... ................................................................. (1分) ∵AB =6,∴抛物线与x 轴的交点A 为(20),-,B (40),.................................................. (1分) ∴4440m m ++=(或16840m m -+=).. ................................................................ (1分)∴12m =-.∴抛物线的表达式为2142y x x =-++. ..................................................... (1分)(2)设点F 21(4)2x x x ,-++. ...................................................................................... (1分) ∵点E 02-(,),点B 4(,0),∴OE = 2,OB = 4. ∵=+10OEF OBF OEFB S S S ∆∆=四边形, ∴211124(4)10222x x x ⨯⨯+⨯⨯-++=.. .................... (1分)∴12x =或,∴点F 912(,)、24(,).. ............................................................................... (2分)(3)∵=+10OBE BEF OEFB S S S ∆∆=四边形,又1142422OBE S OB OE ∆=⋅=⨯⨯=,∴6BEF S ∆=.过F 作FH BE ⊥,垂足为点H .∵162BEF S BE FH ∆=⋅=,又BE =FH =............................... (1分)又BF ==BH =∴在Rt BFH ∆中,tan ∠EBF=3584FH BH ==.................................................................. (1分)设直线PF 与y 轴的交点为M ,则∠PMO=∠EBF ,过F 作FG x ⊥轴,垂足为点G.∵FG//y 轴,∴∠PMO=∠PFG . ∴tan ∠PFG=tan ∠EBF ................................................ (1分)∴tan ∠PFG=34PG FG =.又FG =4,∴PG =3.∴点P 的坐标10(-,). .......................................................................................................... (1分)25.解:(1)过P 作PH BC ⊥,垂足为点H.在Rt BPH ∆中,∵BP =3,∠ABC =60°,∴32BH PH ==,................................. (2分)在Rt PCH ∆中,35422CH PC =-==,................................... (1分) (2)过P 作PH BC ⊥,垂足为点H. 在Rt BPH ∆中,12BH x PH ==,. ∴在Rt PCH ∆中,142CH x PC =-, ............ (1分) 设PC 与对角线BD 交于点G .∵AB//CD ,∴4BP PG BG xCD GC GD ===.∴BG CG ==. ···················································· (1分) ∵∠ABD =∠PCQ ,又∠PGC =∠QGC ,∴△PBG ∽△QCG .∴PB BG CQ CG =,∴x y . ···················································· (1分)∴y =08x ≤<). ······················································ (2分)(3)i )当点P 在射线BA 上,点E 在边BC 的延长线时.∵BD 是菱形ABCD 的对角线,∴∠PBQ =∠QBC=1302ABC ∠=︒.∵△PBG ∽△QCG ,∴PG BGQG CG=,又∠PGQ =∠BGC ,∴△PGQ ∽△BGC . ∴∠QPG =∠QBC 30=︒, 又∠PBQ =∠PCQ 30=︒,∴60CQE QPC QCP ∠=∠+∠=︒. ∴ 60CQE PBC ∠=∠=︒. ···································································· (1分) ∵PCB E ∠>∠,∴ PCB QCE ∠=∠.又180PCB QCE PCQ ∠+∠+∠=︒,∠PCQ 30=︒,∴ 75PCB QCE ∠=∠=︒. 过C 作CN BP ⊥,垂足为点N ,∴在Rt CBN ∆中,2BN CN ==,∴在Rt PCN ∆中,PN CN ==∴2BP = . ................................................................................................................. (2分) ii )当点P 在边AB 的延长线上,点E 在边BC上时,同理可得2BP = . ...... (3分)。
沪教版2019-2020学年第一学期八年级数学上册期末考试复习试卷及答案
沪教版八年级数学上册期末考试复习试卷一.选择题(共15小题)1()A B+C D2.将根号外的因式移到根号内,得()A B.C.D3.实数a、b在数轴上位置如图,则化简||a b+为()A.a-B.3a-C.2b a+D.2b a-4.关于x的方程232ax x ax+=+是一元二次方程,那么()A.0a≠B.1a≠C.2a≠D.3a≠5.若2222440x xy y x-+-+=,那么yx-的值是()A.14B.4-C.14-D.46.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x名同学,列方程为()A.1(1)3802x x-=B.(1)380x x-=C.2(1)380x x-=D.(1)380x x+=7.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.12(1)45x x-=B.12(1)45x x+=C.(1)45x x-=D.(1)45x x+=8.反比例函数kyx=的图象经过点(1,2)-,1(A x,1)y、2(B x,2)y是图象上另两点,其中12x x<<,那么1y、2y的大小关系是()A.12y y>B.12y y<C.12y y=D.都有可能9.已知函数y kx=中y随x的增大而减小,那么它和函数kyx=在同一直角坐标系内的大致图象可能是()A .B .C .D .10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A .B .C .D .11.下列命题中是真命题的是( ) A .反比例函数2y x=,y 随x 的增大而减小B .一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C .直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D .如果1a =-,那么一定有a l < 12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2D .点B 到AC 14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194二.填空题(共17小题)161<+的解集是 .17.比较大小:< “”或“= “”或“>” )18= . 19.若224941250x y x y +--+=,则322x y += . 20.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是 .21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 .22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = . 23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 .24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 .25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 人. 26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为 .27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 度.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= .29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH 的长是 .(用含a 、b 的代数式表示)30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 .31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = cm .32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 . 三.解答题(共18小题)3303)+-.3426(31)+-+35-36.当t =的值.37.已知x =2623x x x -+-的值.38.解方程:2(3)3(3)0x x x -+-=39.用配方法解方程:212302x x -+=.40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米. (1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2. (1)求m 的值以及这两个函数的解析式;(2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.47.如图,在平面直角坐标系中,OA OB ⊥,AB x ⊥轴于点C ,点A ,1)在反比例函数ky x=的图象上. (1)求反比例函数ky x=的表达式; (2)求AOB ∆的面积;(3)在坐标轴上是否存在一点P ,使得以O 、B 、P 三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P 的坐标:若不存在,简述你的理由.48.已知:如图,在BCD ∆中,CE BD ⊥于点E ,点A 是边CD 的中点,EF 垂直平分线AB (1)求证:12BE CD =;(2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.参考答案一.选择题(共15小题)1( )A B +CD2x y ==+, 故选:C .2.将根号外的因式移到根号内,得( )A B .C .D解:== 故选:B .3.实数a 、b 在数轴上位置如图,则化简||a b +为( )A .a -B .3a -C .2b a +D .2b a -解:0b a <<,且||||b a >, 0a b ∴+<,∴||a b +()a b a a b =----- 3a =-,故选:B .4.关于x 的方程232ax x ax +=+是一元二次方程,那么( ) A .0a ≠B .1a ≠C .2a ≠D .3a ≠解:232ax x ax +=+,2(3)20ax a x +-+=,依题意得:0a ≠. 故选:A .5.若2222440x xy y x -+-+=,那么y x -的值是( ) A .14B .4-C .14-D .4解:2222440x xy y x -+-+=,2222440x xy y x x ∴-++-+=, 22()(2)0x y x ∴-+-=,∴020x y x -=⎧⎨-=⎩, 解得22x y =⎧⎨=⎩.∴原式2124-==. 故选:A .6.过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A .1(1)3802x x -=B .(1)380x x -=C .2(1)380x x -=D .(1)380x x +=解:设全班有x 名同学,由题意得: (1)380x x -=,故选:B .7.有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( ) A .12 (1)45x x -= B .12(1)45x x += C .(1)45x x -= D .(1)45x x +=解:有x 支球队参加篮球比赛,每两队之间都比赛一场, ∴共比赛场数为1(1)2x x -, ∴共比赛了45场, ∴1(1)452x x -=, 故选:A . 8.反比例函数ky x=的图象经过点(1,2)-,1(A x ,1)y 、2(B x ,2)y 是图象上另两点,其中120x x <<,那么1y 、2y 的大小关系是( )A .12y y >B .12y y <C .12y y =D .都有可能解:反比例函数ky x=的图象经过点(1,2)-, 2k ∴=-,∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,120x x <<,1(A x ∴,1)y 、2(B x ,2)y 两点均位于第二象限,12y y ∴<.故选:B .9.已知函数y kx =中y 随x 的增大而减小,那么它和函数ky x=在同一直角坐标系内的大致图象可能是( )A .B .C .D .解:函数y kx =中y 随x 的增大而减小, 0k ∴<,∴函数y kx =的图象经过二、四象限,故可排除A 、B ;0k <, ∴函数ky x=的图象在二、四象限,故C 错误,D 正确. 故选:D . 10.已知函数(0)ky k x=≠中,在每个象限内,y 随x 的增大而增大,那么它和函数(0)y kx k =-≠在同一直角坐标平面内的大致图象是( )A.B.C.D.解:函数kyx=中,在每个象限内,y随x的增大而增大,k∴<,∴双曲线在第二、四象限,∴函数y kx=-的图象经过第一、三象限,故选:A.11.下列命题中是真命题的是()A.反比例函数2yx=,y随x的增大而减小B.一个三角形的三个内角的度数之比为1:2:3,则三边长度之比是1:2:3C.直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形D.如果1a=-,那么一定有a l<解:A、反比例函数2yx=,在第一、三象限,y随x的增大而减小,本说法是假命题;B、一个三角形的三个内角的度数之比为1:2:3,这三个角的度数分别为30︒、60︒、90︒,则三边长度之比是2,本说法是假命题;C、直角三角形中,斜边上的中线等于斜边上的高,则该直角三角形是等腰直角三角形是真命题;D1a=-,那么一定有a l…,本说法是假命题;故选:C.12.下列命题的逆命题为假命题的是( )A .如果一元二次方程20(0)ax bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.解:A 、逆命题为:如果一元二次方程20(0)ax bx c a ++=≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,为真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题, 故选:C .13.如图,在ABC ∆中,90C ∠=︒,12BC AB =,BD 平分ABC ∠,2BD =,则以下结论错误的是( )A .点D 在AB 的垂直平分线上 B .点D 到AB 的距离为1C .点A 到BD 的距离为2 D .点B 到AC 解:在ABC ∆中,90C ∠=︒,12BC AB =, 30A ∴∠=︒, 60ABC ∴∠=︒,BD 平分ABC ∠, 30ABD CBD ∴∠=∠=︒,A ABD ∴∠=∠,112CD BD ==, 2AD BD ∴==,∴点D 在AB 的垂直平分线上,过D 作DE AB ⊥于E , 1DE DC ∴==,∴点D 到AB 的距离为1,BC ==∴点B 到AC ,过A 作AF BD ⊥交BD 的延长线于F , 12AF AB BC ∴===,∴点A 到BD ,故选:C .14.如图,在ABC ∆中,20AB AC cm ==,DE 垂直平分AB ,垂足为E ,交AC 于D ,若DBC ∆的周长为35cm ,则BC 的长为( )A .5cmB .10cmC .15cmD .17.5cm解:DBC ∆的周长35BC BD CD cm =++=(已知) 又DE 垂直平分ABAD BD ∴=(线段垂直平分线的性质)故35BC AD CD cm ++= 20AC AD DC =+=(已知) 352015BC cm ∴=-=.故选:C .15.如图字母B 所代表的正方形的面积是( )A .12B .13C .144D .194解:由题可知,在直角三角形中,斜边的平方169=,一直角边的平方25=,根据勾股定理知,另一直角边平方16925144=-=,即字母B 所代表的正方形的面积是144. 故选:C .二.填空题(共17小题)161<+的解集是 x <1<x <x <+故答案为x <+17.比较大小:3< “”或“= “”或“>” )解:23=,23∴-<故答案为:<.184- .解:原式|44=-=-,4.19.若224941250x y x y +--+=,则322x y += 2 . 解:222222494125(441)(9124)(21)(32)0x y x y x x y y x y +--+=-++-+=-+-=, 210x ∴-=且320y -=,解得:12x =,23y =, 则3132221122223x y +=⨯+⨯=+=. 故答案为:220.已知关于x 的方程221(2)104x m x m +-+-=有两个实数根,那么m 的取值范围是2m … .解:关于x 的方程221(2)104x m x m +-+-=有两个实数根,∴△221(2)41(1)4804m m m =--⨯⨯-=-+…,2m ∴….故答案为:2m ….21.若关于x 的一元二次方程22(21)10a x a x +-+=有两个实数根,则a 的取值范围是 14a …且0a ≠ .解:根据题意得20a ≠且△22(21)40a a =--…, 解得14a …且0a ≠. 故答案为14a …且0a ≠. 22.如果关于x 的方程22(2)10m x m x --+=的两个实数根互为倒数,那么m = 1- . 解:方程22(2)10m x m x --+=的两个实数根互为倒数, ∴211m =,解得1m =或1m =-, 当1m =时,方程变形为210x x ++=,△141130=-⨯⨯=-<,方程没有实数解, 所以m 的值为1-. 故答案为:1-.23.等腰ABC ∆中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 25或16 .解:当8AB BC ==,把8x =代入方程得64800m -+=,解得16m =, 此时方程为210160x x -+=,解得18x =,22x =;当AB AC =,则10AB AC +=,所以5AB AC ==,则5525m =⨯=.故答案为25或16.24.如图,在长为32米、宽为20米的长方形绿地内,修筑两条同样宽且分别平行于长方形相邻两边的道路,把绿地分成4块,这4块绿地的总面积为540平方米.如果设道路宽为x 米,由题意所列出关于x 的方程是 (20)(32)540x x --= .解:设道路的宽为x 米.依题意得: (32)(20)540x x --=,故答案为:(32)(20)540x x --=.25.某校六年级(1)班同学在“六一”节前夕,每个同学都向其他同学赠送纪念品一件,全班共送出纪念品870件,那么该班共有学生 30 人. 解:设有x 人,则 (1)870x x -=30x =或29x =-(舍去). 全班共有30人. 故答案为:30.26.如图,已知两个反比例函数11:C y x =和21:3C y x=在第一象限内的图象,设点P 在1C 上,PC x ⊥轴于点C ,交2C 于点A ,PD y ⊥轴于点D ,交2C 于点B ,则四边形PAOB 的面积为3.解:PC x ⊥轴,PD y ⊥轴,11111||23236AOC BOD S S ∆∆∴===⨯=,1PCOD S =矩形, ∴四边形PAOB 的面积121263=-⨯=, 故答案为23.27.如图,Rt ABC ∆中,90C ∠=︒,2BD CD =,AD 是BAC ∠的角平分线,CAD ∠= 30 度.解:过点D 作DE AB ⊥于E 点,AD 是BAC ∠的角平分线,DC AC ⊥,DE AB ⊥, DC DE ∴=. 2BD CD =,2BD DE ∴=. 30B ∴∠=︒. 90C ∠=︒, 60CAB ∴∠=︒.160302CAD ∴∠=⨯︒=︒. 故答案为30.28.如图:在Rt ABC ∆中,90C ∠=︒,AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,65AEF ∠=︒,那么CAE ∠= 40︒ .解:AB 的垂直平分线EF 分别交BC 、AB 于点E 、F ,AF BF ∴=,EF AB ⊥, AE BE ∴=,65BEF AEF ∴∠=∠=︒, 130AEB ∴∠=︒, 90C ∠=︒,40CAE AEB C ∴∠=∠-∠=︒,故答案为:40︒.29.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC a =,CE b =,H 是AF 的中点,那么CH (用含a 、b 的代数式表示)解:连接AC 、CF ,在正方形ABCD 和正方形CEFG 中, 45ACG ∠=︒,45FCG ∠=︒, 90ACF ∴∠=︒, BC a =,CE b =,AC ∴=,CF =,由勾股定理得,AF == 90ACF ∠=︒,H 是AF 的中点,CH ∴=30.如图,三角形ABC 三边的长分别为22AB m n =-,2AC mn =,22BC m n =+,其中m 、n 都是正整数.以AB 、AC 、BC 为边分别向外画正方形,面积分别为1S 、2S 、3S ,那么1S 、2S 、3S 之间的数量关系为 123S S S += .解:22AB m n =-,2AC mn =,22BC m n =+,222AB AC BC ∴+=,ABC ∴∆是直角三角形,设Rt ABC ∆的三边分别为a 、b 、c ,21S c ∴=,22S b =,23S a =,ABC ∆是直角三角形,222b c a ∴+=,即123S S S +=.故答案为:123S S S +=.31.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,边AB 的垂直平分线DE 交AC 于D ,若10CD cm =,则AD = 20 cm .解:DE 是边AB 的垂直平分线,10DE CD cm ∴==,DE AB ⊥,30A ∠=︒,220AD DE cm ∴==,故答案为:20.32.把命题“等角的补角相等”改写成“如果⋯那么⋯”的形式是 如果两个角是等角的补角,那么它们相等 .解:题设为:两个角是等角的补角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是等角的补角,那么它们相等. 故答案为:如果两个角是等角的补角,那么它们相等.三.解答题(共18小题)3303)+-.解:原式|3|1=-+3)1=--+31=++4=-3426(31)+-+解:原式311)=+-+42=+-2=+.35-解:原式2=+-2=++.36.当t =的值.解:当t ==|3|t =-|3=-3=-37.已知x =2623x x x -+-的值. 解:x ==3=+ 原式2(3)293x x -+-=-====. 38.解方程:2(3)3(3)0x x x -+-=解:2(3)3(3)0x x x -+-=,(3)(23)0x x ∴-+=,则30x -=或230x +=,解得:13x =,232x =-. 39.用配方法解方程:212302x x -+=. 解:239912()0216162x x -+-+=, 23912()0482x --+=, 2352()48x -= 235()416x -=34x -=x = 40.某企业研制的产品今年第一季度的销售数量为300件,第二季度由于市场等因素,销售数量比第一季度减少了4%,从第三季度起,该企业搞了一系列的促销活动,销售数量又有所提升,第四季度的销售量达到了450件,假设第三季度与第四季度销售数量的增长率相同,求这个增长率.解:设这个增长率是x ,根据题意,得2300(14%)(1)450x -+=, 整理,得225(1)16x +=, 解得10.25x =,2 2.25x =-(不合题意舍去).答:这个增长率是25%.41.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.解:(1)由图可知,花圃的面积为(402)(602)a a --;(2)由已知可列式:36040(402)(602)60408a a ⨯---=⨯⨯, 解得:15a =,245a =(舍去).答:所以通道的宽为5米.42.某工地利用一面16米长的墙和简易板材围一个面积为140平方米的长方形临时堆场,已知和墙平行的一边要开一个宽为2米的门,除留作门以外部分的板材总长度为32米,求这个长方形临时堆场的尺寸.解:如图,设这个长方形临时堆场垂直于墙面的一边为x 米,则平行于墙面的一边为(3222)x -+米,根据题意有,(342)140x x -=,解得7x =或10x =,其中7x =时,3422016x -=>,所以10x =.答:这个长方形垂直于墙面的一边为10米,平行于墙面的一边为14米.43.如图,利用长20米的一段围墙,用篱笆围一个长方形的场地,中间用篱笆分割出2个小长方形,总共用去篱笆36米,为了使这个长方形的ABCD的面积为96平方米,求AB、BC边各为多少米.解:设AB为x米,则BC为(363)x-米,(363)96x x-=解得:14x=,28x=当4x=时3632420x-=>(不合题意,舍去)当8x=时36312x-=.答:8AB=米,12BC=米.44.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长 2 千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.解:(1)由题意和图象可得,小强去学校时下坡路为:312-=(千米),故答案为:2;(2)小强下坡的速度为:2(106)0.5÷-=千米/分钟,故答案为:0.5;(3)小强上坡时的速度为:1166÷=千米/分钟, 故小强回家骑车走这段路的时间是:211410.56+=(分钟), 故答案为:14.45.为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y (毫克)与时间x (时)成正比例;药物释放结束后,y 与x 成反比例;如图所示,根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数解析式;(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?解:(1)药物释放过程中,y 与x 成正比,设(0)y kx k =≠,函数图象经过点(2,1)A ,12k ∴=,即12k =, 12y x ∴=; 当药物释放结束后,y 与x 成反比例,设(0)k y k x ''=≠, 函数图象经过点(2,1)A ,212k '∴=⨯=,2y x∴=;(2)当0.25y =时,代入反比例函数2y x=,可得 8x =, ∴从药物释放开始,至少需要经过8小时,学生才能进入教室.46.已知:如图,点(1,)A m 是正比例函数1y k x =与反比例函数2k y x=的图象在第一象限的交点,AB x ⊥轴,垂足为点B ,ABO ∆的面积是2.(1)求m 的值以及这两个函数的解析式; (2)若点P 在x 轴上,且AOP ∆是以OA 为腰的等腰三角形,求点P 的坐标.解:(1)ABO ∆的面积是2,2224k ∴=⨯=,∴反比例函数的解析式为4y x=. 当1x =时,44m x==, ∴点A 的坐标为(1,4). 又点(1,4)A 在正比例函数1y k x =的图象上,14k ∴=,∴正比例函数的解析式为4y x =.(2)AOP ∆是以OA 为腰的等腰三角形,OA OP ∴=或OA AP =.①当OA OP =时,点A 的坐标为(1,4),OA ∴==,OP ∴=,∴点P 的坐标为(,0)或,0);②当OA AP=时,22OP OB==,∴点P的坐标为(2,0).综上所述:点P的坐标为(,0),0),(2,0).47.如图,在平面直角坐标系中,OA OB⊥,AB x⊥轴于点C,点A,1)在反比例函数kyx=的图象上.(1)求反比例函数kyx=的表达式;(2)求AOB∆的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.解:(1)将A1)代入kyx=,得:1=,解得:k=∴反比例函数的表达式为y=.(2)点A的坐标为,1),AB x⊥轴于点C,OC∴=1AC=,22OA AC∴===,30AOC∴∠=︒.OA OB ⊥,90AOB ∴∠=︒,30B AOC ∴∠=∠=︒,24AB OA ∴==,11422AOB S AB OC ∆∴==⨯= (3)在Rt AOB ∆中,2OA =,90AOB ∠=︒,30ABO ∠=︒,tan 30OA OB ∴==︒. 分三种情况考虑: ①当OP OB =时,如图2所示,2OB =,OP ∴=,∴点P 的坐标为(-0),0),(0,-,(0,; ②当BP BO =时,如图3,过点B 做BD y ⊥轴于点D ,则3OD BC AB AC ==-=, BP BO =,2OP OC ∴==或26OP OD ==,∴点P 的坐标为0),(0,6)-;③当PO PB =时,如图4所示.若点P 在x 轴上,PO PB =,60BOP ∠=︒,BOP ∴∆为等边三角形,OP OB ∴==,∴点P 的坐标为0);若点P 在y 轴上,设OP a =,则3PD a =-,PO PB =,222PB PD BD ∴=+,即222(3)1a a =-+,解得:2a =,∴点P 的坐标为(0,2)-.综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(-,0),0),(0,-,(0,,(0,6)-.-,(0,2)48.已知:如图,在BCD⊥于点E,点A是边CD的中点,EF垂直平分线AB ∆中,CE BD(1)求证:12BE CD =; (2)当AB BC =,25ABD ∠=︒时,求ACB ∠的度数.【解答】(1)证明:连接AE ,CE BD ⊥,点A 是边CD 的中点,12AE AD CD ∴==, EF 垂直平分线AB ,EA EB ∴=,12BE CD ∴=; (2)EA EB =,25EAB ABD ∴∠=∠=︒,50AED EAB ABD ∴∠=∠+∠=︒,EA AD =,50D AED ∴∠=∠=︒,75BAC ABD D ∴∠=∠+∠=︒,AB BC =,75ACB BAC ∴∠=∠=︒.49.已知:如图,BP 、CP 分别是ABC ∆的外角平分线,PM AB ⊥于点M ,PN AC ⊥于点N .求证:PA 平分MAN ∠.【解答】证明:作PD BC ⊥于点D , BP 是ABC ∆的外角平分线,PM AB ⊥,PD BC ⊥, PM PD ∴=,同理,PN PD =,PM PN ∴=,又PM AB ⊥,PN AC ⊥, PA ∴平分MAN ∠.50.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O .求证:点O 到EB 与ED 的距离相等.【解答】证明://AD BC ,180ADC BCD ∴∠+∠=︒, DB 平分ADC ∠,CE 平分BCD ∠, 90ODC OCD ∴∠+∠=︒,90DOC ∴∠=︒,又CE 平分BCD ∠, CB CD ∴=,OB OD ∴=,CE ∴是BD 的垂直平分线,EB ED ∴=,又90DOC ∠=︒, EC ∴平分BED ∠, ∴点O 到EB 与ED 的距离相等.。
2019-2020学年度第一学期九年级英语期末测试卷(含答案和答题卡)
九年级英语第 1 页 共 6 页2019—2020学年度第一学期期末质量检测九年级 英语试题(卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)Ⅰ、单项选择(每小题1分,共20分) 1.I often ______ mistakes ____ grammar.A. do, inB. do, atC. make, inD. make, at 2.She doesn't have a pen ______.A. writeB. to writeC. to write withD. writing with 3.-- delicious the mooncakes !-- Yes, I agree with you. They are the best mooncakes I’ve ever had. A. How; tastes B. What; tastes C. How; taste D. What; taste 4.—I'm not sure ________ there are living things on other planets or not. —Even scientists aren't sure about it.A. whetherB. whereC. whyD. that 5.—I’d like to know ___________ —Maybe in the forest.A. whether we will go campingB. where we will go campingC. whether will we go campingD. where will we go camping6.Wechat(微信) is very popular. ____ the young ____ the old are getting interested in it. A. Neither ; nor B. Either ; or C. Not only ; but also D. Between ; and7.Doing eye exercises ______ one of the best ways to protect our eyes. A. is B. are C. has D. have8.Uncle Li ______ to his office in the morning, but now he ______ to work by bike. A. used to drive; is used to go B. used to driving; is used to go C. used to drive; is used to going D. used to driving; is used to going9.China's hot words ,like tuhao ,dama ,_____ in the western media. A. use widely B. is widely used C. are widely used D. widely use 10.The book is made _____ paper. A. of B. in C. from D. at11.I regret ________ up to watch the football game last night. I am very tired and sleepy now. A. stay B. to stay C. staying D. stayed12.My parents always keep me ________ computer games on school days ,so I can only play on weekends.A. from playingB. playingC. to playD. play 13.We are surprised that a ________ girl can draw so well.A. ten-year oldB. ten-years-oldC. ten-year-oldD. ten years old 14.The students ________ two groups to play the game yesterday afternoon. A. are divided among B. are divided into C. were divided among D. were divided into15.–Listen! Helen is singing in the next room. -It ___ be Helen. She has gone to Beijing. A. can’t B. mustn’t C. may D. should16.–Mum, must I do my homework now? - No, you _____. A. mustn’t B. can’t C. shouldn’t D. needn’t17.I prefer to go to the cinema rather than ____ video at home. A. to watch B. watch C. watching D. to watching18.—What do you think of the house that Amy Winterbourne built herself out of trash? —It reminds me of the days ___________ I spent in the countryside. A. when B. that C. who D. where 19.I think he’s supposed ______ next week.A. returnB. returnsC. to returnD. returning 20.They ____ their way to make me____ at home.A. get in; stayB. go out of; feelC. get on; to beD. get up ;be Ⅱ、完形填空(每小题1分,共10分)AWe find it difficult to learn English, but not Chinese, because Chinese is our mother language. In fact Chinese is much more difficult to___ than English. However some students in other countries can speak Chinese as___ as English. What ___them successful? “I think conversation is the most helpful way. They try to speak in____ If you only listen to what others speak, you will be good at___, but if you talk as much as possible, you will find you can speak __,” says Alice Smith, an English girl now___ Chinese at Beijing University. ___is interested in Chinese and its history. She thinks that to learn a language, one must try to know___ about the country. Chinese is different from English , ____we can use the same way in learning it. It is conversation.21.A. talk B. say C. learn D. know 22.A. well B. good C. bad D. badly 23.A. makes B. make C. let D. lets24.A. English B. Japan C. French D. Chinese 25.A. listen B. talk C. listening D. talking26.A. good English B. good Chinese C. bad English D. bad Chinese 27.A. picking B. catching up C. studying D. teaching 28.A. He B. She C. Her D. His29.A. something B. anything C. nothing D. everything 30.A. so B. and C. also D. butB从方框中选择恰当的词,并用其适当的形式填空,每词只限用一次。
2019--2020第一学期九年级数学期末考试及答案
2019-2020学年度第一学期期末调研考试九年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号 一 二 20 21 22 23 24 25 26 总分 得分一、 选择题(本题共16小题,总分42分。
1~10小题,每题3分;11~16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件D .不可能事件2. 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是( ) A .72° B .108° C .144° D .216° 3.反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限4.用配方法将方程0142=--x x 变形为m x =-2)2(,则m 的值是( )A. 4B. 5C. 6D. 75. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.6. 一元二次方程220200x +=的根的情况是( )A .有两个相等的实根B .有两个不等的实根C .只有一个实根D .无实数根 7. 如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )得分 评卷人A .105°B .115°C .125°D .135°8. 已知三角形面积一定,则它的底边a 上的高h 与底边a 之间的函数关系图象是( )9. 下列对二次函数2y x x =-图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 10. 参加一次聚会的每两人都握了一次手,所有人共握手10次。
2020届上海市普陀区初三一模数学试卷+详解答案
普陀区2019学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.已知35x y =,那么下列等式中,不一定正确的是( ▲ ) (A )5=3x y ; (B )+8x y =; (C )+85x y y =; (D )35x x y y +=+. 2.下列二次函数中,如果函数图像的对称轴是y 轴,那么这个函数是( ▲ )(A )22y x x =+; (B )221y x x =++; (C )22y x =+; (D )2(1)y x =-. 3.已知在Rt △ABC 中,90C ∠=︒,1sin 3A =,那么下列说法中正确的是( ▲ ) (A )1cos 3B =; (B )1cot 3A =; (C)tan A =; (D)cot B = 4.下列说法中,正确的是( ▲ )(A )如果,a 是非零向量,那么0ka =; (B )如果e 是单位向量,那么1e =; (C )如果b a =,那么b a =或b a =-;(D )已知非零向量a ,如果向量5b a =-,那么a ∥b .0k =5.如果二次函数()2y x m n =-+的图像如图1所示,那么一次函数y mx n =+的图像经过( ▲ ) (A )第一、二、三象限; (B )第一、三、四象限; (C )第一、二、四象限; (D )第二、三、四象限.6.如图2,在Rt △中,90ACB ∠=︒,CD AB ⊥,垂足为点D ,如果32ADC CDB C C =△△,9AD =,那么BC 的长是( ▲ )(A )4; (B )6; (C) (D).二、填空题:(本大题共12题,每题4分,满分48分) 7.化简:12()()2a b a b →→→→+--= ▲ . 8.抛物线2(2)y a x =-在对称轴左侧的部分是上升的,那么a 的取值范围是 ▲ . 9.已知函数2()321f x x x =--,如果2x =,那么()f x = ▲ .10.如果抛物线22y ax ax c =++与x 轴的一个交点的坐标是(1,0),那么与x 轴的另一个交点的坐标是 ▲ .11.将二次函数222y x x =-+的图像向下平移m (0)m >个单位后,它的顶点恰好落在x轴上,那么m 的值等于 ▲ .12.已知在Rt △ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC = ▲ .13.如图3,△ABC 的中线AD 、CE 交于点G ,点F 在边AC 上,GF //BC ,那么GFBC的值是 ▲ .14.如图4,在△ABC 与△AED 中,AB BCAE ED=,要使△ABC 与△AED 相似,还需添加 一个条件,这个条件可以是 ▲ .(只需填一个条件)ABC 图 3ABCDEG F图2AD CB图5ABCD 图4ABCEDO图115. 如图5,在Rt △中,90C ∠=︒,AD 是三角形的角平分线,如果AB =AC =那么点D 到直线AB 的距离等于 ▲ .16.如图6,斜坡AB 长为100米,坡角30ABC ∠=︒,现因“改小坡度”工程的需要,将斜坡AB 改造成坡度1:5i =的斜坡BD (、、C 三点在地面的同一条垂线上),那么由点到点下降了 ▲ 米.(结果保留根号)17.如图7,在四边形ABCD 中,90ABC ∠=︒,对角线AC 、BD 交于点O ,AO CO =,CD BD ⊥,如果3CD =,5BC =,那么AB = ▲ .18.如图8,在Rt △ABC 中,90C ∠=︒,5AC =,5sin 13B =,点P 为边BC 上一点,3PC =, 将△ABC 绕点P 旋转得到△A B C '''(点A 、B 、C 分别与点A '、B '、C '对应),使B C ''//AB ,边A C ''与边AB 交于点G ,那么A G '的长等于 ▲ . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:222sin 60cos60tan 604cos45︒-︒︒-︒.20.(本题满分10分)如图9,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE //BC ,EF //AB ,:1:3AD AB =.(1)当5DE =时,求FC 的长;(2)设AD a =,CF b =,那么FE = ▲ ,EA = ▲ (用向量a 、b 表示).ABC A D A DABDE F图9图8ABC图7ADC BOAD B图6C如图10,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA AB ⊥,垂足为点A ,DP BC ⊥,垂足为点P ,AP BPPD CD=. (1)求证:APD C ∠=∠;(2)如果3AB =,2DC =,求AP 的长.22.(本题满分10分)函数m y x =与函数xy k=(m 、k 为不等于零的常数)的图像有一个公共点()3,2A k -,其中正比例函数y 的值随x 的值增大而减小,求这两个函数的解析式.23.(本题满分12分)已知:如图11,四边形ABCD 的对角线AC 、BD 相交于点O ,AOD BOC S S =△△. (1)求证:OACOOB DO =; (2)设△OAB 的面积为S ,k ABCD=,求证:2(1)ABCD S k S =+四边形.CDBAO图11图10CDBAP在平面直角坐标系中(如图12),已知抛物线28()3y ax a x c =+++(0)a ≠经过点A ()3,2--,与y 轴交于点B ()0,2-,抛物线的顶点为点C ,对称轴与x 轴交于点D .(1)求抛物线的表达式及点C 的坐标;(2)点E 是x 轴正半轴上的一点,如果AED BCD ∠=∠,求点E 的坐标;(3)在(2)的条件下,点P 是位于y 轴左侧抛物线上的一点,如果△PAE 是以AE 为直角边的直角三角形,求点P 的坐标.xOy 图12O11如图13,在梯形ABCD 中,AD //BC ,90C ∠=︒,2AD =,5BC =,3DC =,点E 在边BC 上,tan 3AEC ∠=.点M 是射线DC 上一个动点(不与点D 、C 重合),联结BM 交射线AE 于点N ,设DM x =,AN y =. (1)求BE 的长;(2)当动点M 在线段DC 上时,试求y 与x 之间的函数解析式,并写出函数的定义域; (3)当动点M 运动时,直线BM 与直线AE 的夹角等于45︒,请直接写出这时线段DM 的长.备用图ABCD ENM图13AB CDE普陀区2019学年度第一学期初三质量调研数学试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(B); 2.(C); 3.(A); 4.(D); 5.(B); 6.(C).二、填空题:(本大题共12题,每题4分,满分48分)三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式212⨯-= ··································································· (4分)31-=······················································································· (3分)3=+ ······················································································ (3分)20.解:(1)∵DE //BC ,EF //AB ,∴DE BF =. ··················································································· (1分) ∵5DE =,∴5BF =. ······································································ (1分) ∵DE //BC ,∴AD DEAB BC =. ·················································································· (1分) ∵13AD AB =,∴513BC =. ···································································· (1分) 解得 15BC =, ················································································ (1分)7. 2a b →→+; 8. 2a <; 9. 7; 10.30-(,) ;11.1; 12.6;13. 13;14.B E ∠=∠(AB ACAE AD=等); 15.2 ; 16.50- 17.154; 18.2013.10FC =. ························································································ (1分) (2)FE =2a -,EA =12a b -+. ······················································· (2分+2分)21.解:(1)∵PA AB ⊥,DP PC ⊥,∴90BAP CPD ∠=∠=︒. ··································································· (1分) 在Rt △ABP 与Rt △PCD 中,AP BPPD CD=, ∴Rt △ABP ∽Rt △PCD . ·································································· (1分) ∴APB PDC ∠=∠. ··········································································· (1分) ∵DPB APB APD ∠=∠+∠,DPB PDC C ∠=∠+∠,得APD C ∠=∠. ··············································································· (2分) (2)∵Rt △ABP ∽Rt △PCD . ∴B C ∠=∠.∴AB AC =. ··················································································· (1分) ∵3AB =,2DC =,∴1AD =. ························································· (1分) ∵APD C ∠=∠,PAD CAP ∠=∠,∴△APD ∽△ACP . ········································································ (1分) ∴AD APAP AC=. ················································································ (1分)得AP ···················································································· (1分)22.解:由点A ()3,2k -在函数xy k=的图像上,可得 32k k-=.················································································ (1分) 整理,得2230k k --=. ·································································· (1分) 解得 13k =,21k =-. ····································································· (2分) ∵正比例函数y 的值随x 的值增大而减小,∴1k =-. ······················································································· (2分) 得 y x =-,点A ()3,3-. ································································· (2分)由点A ()3,3-在函数my x=的图像上,可得 9m =-. ·················································································· (1分) ∴9y x=-. ····················································································· (1分) 两个函数的解析式分别为y x =-,9y x=-.23.证明:(1)过点A 作AH ⊥BD ,垂足为点H . ···················································· (1分)∵S △AOD =AH DO ⋅⋅21, S △AOB =AH OB ⋅⋅21, ∴OB DO AH OB AHDO S S AOBAOD =⋅⋅⋅⋅=∆∆2121.····························································· (2分) 同理,BOC AOB S COS OA∆∆=. ········································································· (1分) ∵AOD BOC S S =△△,∴DO COOB OA=.··············································································· (1分)(2)∵OACOOB DO =,AOB COD ∠=∠, ∴△OCD ∽△OAB . ····································································· (1分) ∴CD DO COk AB BO AO===. ·································································· (1分) 22k AB CD S S OAB OCD =⎪⎭⎫ ⎝⎛=∆∆. ·································································· (1分) ∵△OAB 的面积为S ,∴S k S OCD ⋅=∆2. ············································ (1分) 又∵k OBDOS S OAB AOD ==∆∆,∴S k S AOD ⋅=∆. ············································ (1分) 同理,S k S BOC ⋅=∆. ······································································ (1分) ∴AOB BOC COD DOA ABCD S S S S S =+++△△△△四边形S k S k S k S ⋅+⋅+⋅+=2 S k k ⋅++=)12(2S k 2)1(+=. ································································ (1分)24.解:(1)由抛物线28()3y ax a x c =+++经过点A ()3,2--和点B ()0,2-,得2,893() 2.3c a a c =-⎧⎪⎨-++=-⎪⎩ 解得4,32.a c ⎧=⎪⎨⎪=-⎩ ··············································· (2分) ∴抛物线的表达式是24423y x x =+-.············································· (1分) 点C 的坐标是3(,5)2--. ··································································· (1分)(2)联结AB 交CD 于点F ,过点A 作AH OD ⊥,H 为垂足.∵A ()3,2--,B ()0,2-,∴3AB =. 由对称性可得 32BF =. ····································································· (1分) ∵5CD =,∴3CF =.在Rt △BCF 中,1tan 2BF BCF CF ∠==.················································· (1分) 在Rt △AEH 中,tan AHAEH EH∠=,∵AED BCD ∠=∠, ∴12AH EH =.∴4EH =.···································································· (1分) ∵3OH =,∴1OE =.∴点E 的坐标是()1,0. ······································································ (1分) (3)∵△PAE 是以AE 为直角边的直角三角形, ∴90PAE ∠=︒或90PEA ∠=︒.设点P 点的坐标为24(,42)3m m m +-.①当90PAE ∠=︒时,点P 只能在AE 的下方. 过点P 作PG AH ⊥,G 为垂足.∴3PG m =+,2443AG m m =--.∵GAE AHE AEH ∠=∠+∠,GAE PAE PAG ∠=∠+∠,∴PAG AEH ∠=∠.∴tan tan PAG AEH ∠=∠. ∴PG AH AG EH =.∴2314243m m m +=--.··················································· (1分) 解得3m =-,32m =-. ∵3m =-不合题意舍去,∴32m =-. ∴点P 的坐标是3(,5)2--. ······························································· (1分) ②当90PEA ∠=︒时.同理可得点P的坐标是. ··································· (2分)25.解:(1)过点A 作AH BC ⊥,H 为垂足.∵AH BC ⊥,∴90AHE ∠=︒.∵90C ∠=︒,∴AHE C ∠=∠.∴AH //DC .∵AD //BC ,3DC =∴3AH DC ==. ·······························································(1分) 同理可得2HC AD ==. ····························································································(1分) 在Rt △AEH 中,90AHE ∠=︒,tan 3AEH ∠=,∴3AH HE=. ∴1EH =. ················································································································(1分) ∵5BC =,∴2BE =. ·····························································································(1分)(2)延长BM 、AD 交于点G . ·············································································(1分) ∵DG //BC ,∴DG DM BC MC=. 由DM x =,3DC =,5BC =, 得53DG x x =-,解得53x DG x=-.···········································································(1分) ∴633x AG x+=-. ·········································································································(1分) ∵AG //BC ,∴AN AG BN BE =. 在Rt △AEH 中,90AHE ∠=︒,1EH =,3AH =,可得AE =. ··········································································································(1分)。
2022-2023学年度九年级数学第一学期期末质量检测试卷(含答案)
2022-2023学年度第一学期期末质量检测九年级数学试卷(考试时间:120分钟;满分:120分)友情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本次考试只交答题纸,请同学们务必将学校、班级、姓名写在答题纸的卷面上,务必在答题纸规定的位置上写答案,在其它位置写答案不得分!一、单选题(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案涂在答题纸规定的位置.1.两个形状相同、大小相等的小木块放置于桌面上,则其左视图是( ) .A .B .C .D .2.如图,在Rt △ABC 中,∠C =90°,BC =3,AB =2,则下列结论正确的是( )A .23sin =B B .21tan =BC .23cos =A D .3tan =A 3.小丽和小强在阳光下行走,小丽身高1.6米,她的影长2.0米,小丽比小强矮10cm,此刻小强的影长是( )米.A .817 B .178 C .815 D .158 4.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.A .8B .9C .14D .15ACB第2题图 第1题图5.方程22x -5x +m = 0没有实数根,则m 的取值范围是( )A.m >825 B.m <825 C.m ≤825 D.m ≥825 6.如图,□ABCD 中,O 是对角线AC 、BD 的交点,△ABO 是等边三角形,若AC =8cm ,则□ABCD 的面积是( )cm 2 . A .16 B .43C .83D .1637.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为( )m 2A . 0.5B .2C .0.05D . 20第7题图8.如图,在□ABCD 中,AB =6,BC =9,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点O ,则△EFO 与△BCO 面积之比是( )A .1:3B . 1:9C .2:3D . 9:1 二、填空题(本题满分24分,共有8道小题,每小题3分) 请将 9—16各小题的答案填写在答题纸规定的位置.9.计算:tan45°+3sin60°=__________.10.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是 多少?设这个降低百分率为x ,则根据题意,可列方程: . 11.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC , 若AD = 6,DB = 8,AE =4,则AC = .12.在平面直角坐标系中,已知点A (﹣4,﹣4),B (﹣6,2),以原点O 为位似中心,ADE 第11题图B C A (8,30)AODCB第6题图AODCB第8题图F E位似比为2:1,将△ABO 缩小,则点B 的对应点B ′的坐标是 .13.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域40m 长的篱笆围成一个面积为384m 2矩形花园.设宽AB =x m ,且AB <BC ,则x = m . 14.如图,在水平的地面BD 上有两根与地面垂直且长度相等的电线杆AB ,CD ,以点B 为坐标原点,直线BD 为x 轴建立平面直角坐标系.已知电线杆之间的电线可近似地看成抛物线62.38.02+-=x x y 则电线最低点离地面的距离是 米.15.已知二次函数c bx ax y ++=2的图象如图所示,它与x 轴的两个交点的坐标分别为 (﹣1,0)(2,0).下列结论:①0<abc ;②042>-ac b ;③当021<<x x 时,21y y <;④当﹣1<x <2时,y <0.正确的有 .(填正确结论的序号).16.如图,在菱形ABCD 中,对角线AC =8cm ,BD =4cm , AC ,BD 相交于点O ,过点A 作AE ⊥CD 交CD 的延长线于点E ,过点O 作OF ⊥AE 交AE 于点F ,下列结论: ①tan ∠FOA =21; ②GO FG =; ③558=FO cm ;④S 梯形ABCE =5104cm 2. 正确的有 . (填正确结论的序号).F D OCGBAE第15题图 -1Oxy2第14题图ABxy(米) DC第13题图ABDOC第16题图三、作图题(本题满分4分)(保留作图痕迹,不写做法) 17.已知:线段m .求作:正方形ABCD,使正方形ABCD 边长AB=m .四、解答题(本题满分68分)18.解方程:(本小题满分8分,每小题4分)(1)872=-x x (用配方法). (2)282-22+=+x x x (用适当方法).19.(本小题满分6分)在一个不透明的盒子里,装有四个分别标有数字3、-3、6、-6的小球,小球的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或树状图法表示出(x ,y )所有可能出现的结果; (2)求小明、小华各取一次小球所确定的数字和为0的概率.m如图,在矩形ABOC 中,AB =4,AC =6,点D 是边AB 的中点,反比例函数xky =1(x <0)的图象经过点D ,交AC 边于点E ,直线DE 的关系式为2y =m x +n (m ≠0).(1)求反比例函数的关系式和直线DE 的关系式;(2)在第二象限内,根据图象直接写出当x 时,21y y >.21.(本题满分8分)为全面实施乡村振兴战略,促进农业全面升级、农村全面进步、农民全面发展.如图,四边形ABCD 是某蔬菜大棚的侧面示意图,已知墙BC 与地面垂直,且长度为5米,现测得∠ABC =112°,∠D =67°,AB =4米,,求此蔬菜大棚的宽CD 的长度.(精确到0.1米)(参考数据:sin22°≈83,cos22°≈1615,tan22°≈53,sin67°≈1312, cos67°≈135,tan67°≈512)CB D ABDBOxy CDA E如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF :BF =1 :2时,判断四边形DEFG 是什么特殊四边形?并说明理由.23.(本小题满分10分)“互联网+”时代,网上购物备受消费者青睐.越来越多的人可以足不出户就能进行网上购物,网上支付,中国电子商务的发展走在了世界的前列.某网店专售一种书包,其成本为每个40元,已知销售过程中,当售价为每个50元时,每月可销售500个.据市场调查发现,销售单价每涨2元,每月就少售20个.物价部门规定:销售单价不低于成本单价,且这种商品的利润率不得高于60%.设每个书包售x 元,每月销售量y 个.(1)求出y 与x 的函数关系式;(2)设该网店每月获得的利润为W 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出100元资助贫困学生.为了保证捐款后每月获得的利润不低于6650元,且让消费者得到最大的实惠,如何确定该商品的销售单价?D A CBGOEF(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=x5(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=2155x x -=211255x x x x -=21125x x x x )(-. ∵0<1x <2x ,∴2x ﹣1x >0,1x 2x >0. ∴21125x x x x )(->0.即f (1x )﹣f (2x )>0.∴f (1x )>f (2x ). ∴函数f (x )=x5(x >0)是减函数. (2)根据以上材料,解答下面的问题: 已知:函数f (x )=x x 31212++(x <0), ①计算:f (﹣1)= ,f (﹣2)= ; ②猜想:函数f (x )=x x 31212++(x <0)是 函数(填“增”或“减”); ③验证:请仿照例题证明你对②的猜想.如图,矩形ABCD 中,AB =4cm ,AD =5cm ,E 是AD 上一点,DE =3cm ,连接BE 、CE .点P 从点C 出发,沿CE 方向向点E 匀速运动,运动速度2 cm/s ,同时点Q 从点B 出发,沿BC 方向匀速运动,运动速度均为1cm/s ,连接PQ . 设点P 、Q 的运动时间为t (s )(0<t <2.5).(1)当t 为何值时,△PQC 是等腰三角形?(2)设五边形ABQPE 的面积为y (cm 2),求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得S五边形ABQPE:S矩形ABCD=23:50?若存在,求出t的值,并求出此时PQ 的长;若不存在,请说明理由.APD CBEQA DCBE备用图参考答案及评分标准一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分24分,共有8道小题,每小题3分 ) 9.25 10.5980(1-x )2=4698 11.328 12.(-3,1),(3,-1) 13.16 14. 2.8 15.①①① 16.①①① 三、作图题(本题满分4分)17.作图正确3分,结论1分 四、解答题(本题满分68分)18.(本题满分8分,每小题4分 )本题只给出最后结果,阅卷时注意分步得分. (1)1,821-==x x …………4分 (2) 313,13321-=+=x x ……………4分19.(本题满分6分)20. (本小题满分8分)解:(1)∵点D 是边AB 的中点,AB =4,∴B D =2,∵四边形ABOC 是矩形,AC =6, ∴D (-6,2), ∵反比例函数xky =1(x <0)的图象经过点D , ∴k =-12,∴反比例函数的关系式为xy 121-=(x <0),…….4分 当y =4时,x =-3, ∴E (-3,4),把D (-6,2)和E (-3,4)代入y 2=mx +n (m ≠0)得,⎩⎨⎧=+-=+-4326n m n m∴⎪⎩⎪⎨⎧==632n m 解得∴直线DE 的解析式为6322+=x y …….6分 (2)03-6<<-<x x 或或(03-69<<-<<-x x 或)(两个答案都可以)……8分BOxyCD AE21. (本小题满分8分)解:如图,过点A 作AE ⊥BC 于点E ,过点B 作BF ⊥AE 于点F ,…….1分 根据题意可知:AB =4,,CB=5,∠ABF =22°,分米。
上海市虹口区2021届九年级上学期期末(中考一模)质量调研数学试卷(简答版)
22. 图 9-1 是一款家用落地式取暖器,如图 9-2 是其放置在地面上时的侧面示意图,其中矩形 ABCD 是取 暖器的主体,等腰梯形 BEFC 是底座,烘干架连杆 GH 可绕边 CD 上一点 H 旋转,以调节角度,已知 CD=50cm,BC=8cm,EF=20cm,DH=12cm,GH=15cm,∠CFE=30°,当∠GHD=53°时,求点 G 到地 面的距离(精确到 0.1cm)
虹口区 2020 学年度第一学期期终学生学习能力诊断测试
初三数学 试卷
2021.1
一、选择题
1. 在 ABC 中,∠C=90°,如果 BC=3,AC=4,那么 tanA 的值是(
3 A. 4
4 B. 3
3 C. 5
)
4 D. 5
2. 如果向量 a 和 b 是单位向量,那么下列等式中,成立的是( )
A. a b
三、解答题
19. 计算:
tan2 45 2sin 60
cot 30 2 cos 45
教育资源分享店铺
网址:https://
微信号:kingcsa333
20. 已知二次函数的解析式为 y 1 x2 2x . 2
(1)用配方法把该二次函数的解析式化为 y a x m2 k 的形式;
上的中线,如果 BC=3,AD=2.4, B 'C ' 2 ,那么 A' D ' 的长是
15. 如图 3,AB//CD,AD、BC 相交于点 E,过 E 作 EF//CD 交 BD 于点 F,如果 AB=3,CD=6,那么 EF 的长是
2019版沪教版(上海)九年级数学综合拓展卷(一)(I)卷
2019版沪教版(上海)九年级综合拓展卷(一)(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,则EF的长是()A.4B.5C.D.2 . 抛物线y=﹣(x+1)2+3的顶点坐标()A.(1,﹣3)B.(1,3)C.(﹣1,﹣3)D.(﹣1,3)3 . 已知,下列说法中,不正确的是()A.B.与方向相同C.D.4 . 如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的三倍,则称这样的方程为“3倍根方程”,以下说法不正确的是()A.方程x2﹣4x+3=0是3倍根方程B.若关于x的方程(x﹣3)(mx+n)=0是3倍根方程,则m+n=0C.若m+n=0且m≠0,则关于x的方程(x﹣3)(mx+n)=0是3倍根方程D.若3m+n=0且m≠0,则关于x的方程x2+(m﹣n)x﹣mn=0是3倍根方程5 . 如图,由点,,,确定的的面积是,则的值是().A.B.C.D.或6 . 图是一个“庆祝国庆60周年”的图标,图标中两圆的位置关系不存在的是A.外离B.相交C.外切D.内含二、填空题7 . 如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是______.8 . 计算:sin260°+cos260°﹣tan45°=________.9 . 如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小华的距离ED=2米时,小华刚好从镜子中看到铁塔顶端点A,已知小华的眼睛距地面的高度CD=1.5米,则铁塔AB的高度是____米;10 . 如图,为等腰的外接圆,直径,P为弧上任意一点(不与B,C重合),直线CP 交AB延长线于点Q,在点P处切线PD交BQ于点D,下列结论正确的是.(写出所有正确结论的序号)①若,则弧BP的长为;②若,则AP平分;③若,则;④无论点P在弧BC上的位置如何变化,为定值.11 . 如图,在中,垂直弦于点,交于点,若,半径,则的长是________.12 . 如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB,AC于点D和点A.若CE=2,则AB的长是_____.13 . 若∠是锐角,且,则∠的度数为__________.14 . 已知是任一向量,,,用表示,其结果是______.15 . 我县某天的最高气温为5℃,最低气温为零下2℃,则温差______.16 . 已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是_____.17 . 如图,抛物线y=x2–7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是__________.18 . 在等腰中,交直线于点,若,则的顶角的度数为.三、解答题19 . 用直接开平方法解方程:(1) (x-3)2-9=0;(2) (2t-1)2=16.20 . 已知关于的二次函数,当取何值时,它的图像开口向下?当取何值时,它的图像开口向上?21 . 计算:22 . 如图,在中,,,的垂直平分线交于点,联结,若,则的长是______.23 . 如图,在中,,,是的平分线.(1)和相似吗?为什么?(2)、、之间有什么关系?为什么?24 . 已知:如图,AB是⊙O的弦,⊙O的半径为5,OC⊥AB于点D, 交⊙O于点C,且AB =8,求CD的长.25 . 青山村种的水稻2015年平均每公顷产,2017年平均每公顷产.求该村种的水稻每公顷产量的年平均增长率.参考答案一、单选题1、2、3、4、5、6、二、填空题1、2、3、4、5、6、7、8、9、10、11、12、三、解答题1、2、3、4、5、6、7、。
上海市徐汇区2021-2022学年九年级上学期期末质量检测数学试卷
2021学年度第一学期期终学生学习能力诊断测试初三数学试卷一、选择题:(本大题共6小题,每题4分,满分24分)1.在Rt △ABC 中,∠C =90°,AB =5,AC =4,则sinA 的值为()A .35B .45C .34D .432.如图,已知AB ∥CD ∥EF ,BD :DF =2:3,那么下列结论中,正确的是()A .:2:5CD EF =B .:2:5AB CD =C .:2:5AC AE =D .:2:5CE EA =3.无人机在空中点A 处观察地面上的小丽所在位置B 处的俯角是50°,那么小丽在地面点B 处观察空中点A 处的仰角是()A .40°B .50°C .60°D .70°4.已知点C 是线段AB 的中点,下列结论中正确的是()A .ACBC=uuu r uu u rB .0AC BC +=uuu r uu u rC .12BC AB=D .12CA BA= 5.下列对二次函数()2213y x =-++的图像的描述中,不正确的是()A .抛物线开口向下B .抛物线的对称轴是直线=1x -C .抛物线与y 轴的交点坐标是()0,3D .抛物线的顶点坐标是()1,3-6.如图,在ABC 中,90ACB ∠=︒,CD 、CE 分别是斜边AB 上的高和中线,下列结论不一定成立的是()A .A DCB ∠=∠B .tan CD ECB AD∠=C .2CD AD DB =⋅D .22BC DB EC=⋅二、填空题:(本大题共12小题,每题4分,满分48分)7.计算:()1242a ab --=______.8.冬日暖阳,下午4点时分,小明在学校操场晒太阳,身高1.5米的他,在地面上的影长为2米,则此时高度为9米的旗杆在地面的影长为______米.9.将抛物线223y x =+先向左平移1个单位,再向下平移4个单位后,所得抛物线的表达式是______.10.如果点A (2,y 1),B (5,y 2)在二次函数y =x 2−2x +n 图像上,那么1y ______2y (填>、=、<)11.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)12.如图,ABC 中,8AB =,7BC =,点D 、E 分别在边AB ,AC 上,已知4AE =,AED B ∠=∠,则线段DE 的长为______.13.如图,BE 是ABC 的角平分线,过点E 作ED BC ∥交边AB 于点D .如果3AD =,2DE =,则BC 的长度为______.14.二次函数的图像如图所示,对称轴为直线=1x -,根据图中信息可求得该二次函数的解析式为______.15.小明同学逛书城,从地面一楼乘自动扶梯,随扶梯移动了13米,到达距离地面5米高的二楼,则该自动扶梯的坡度i =______.16.如图,已知点G 是等边ABC 的中心,记向量AB a = ,AC b = ,则向量AG =______.(用向量xa xb +的形式表示,其中x 、y 为实数)17.如图,已知点A 是抛物线2y x =图像上一点,将点A 向下平移2个单位到点B ,再把A 绕点B 顺时针旋转120°得到点C ,如果点C 也在该抛物线上,那么点A 的坐标是______.18.如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D =______.三、解答题:(本大题共7小题,满分78分)19.计算:sin 603tan 30cos6012cot 45cot 30︒+︒⋅︒-︒+︒.20.二次函数()2f x ax bx c =++的自变量x 的取值与函数y 的值列表如下:x …﹣2﹣10…234…()y f x =…﹣53…3﹣5…(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图像的顶点落在直线y x =上,并写出平移后二次函数的解析式.21.已知:如图,在梯形ABCD 中,AD BC ∥,4=AD ,6BC =,对角线BD 、AC 相交于点E ,过点A 作AF DC ∥,交对角线BD 于点F .(1)求BFEF 的值;(2)设AB a = ,AD b = ,请用向量a 、b 表示向量AE .22.如图1是一种自卸货车,图2是该货车的示意图,货箱侧面是一个矩形,长4AB =米,宽2BC =米,初始时点A 、B 、F 在同一水平线上,车厢底部AB 离地面的高度为1.3米.卸货时货箱在千斤顶的作用下绕着点A 旋转,箱体底部AB 形成不同角度的斜坡.(1)当斜坡AB 的坡角为37°时,求车厢最高点C 离地面的距离;(2)点A 处的转轴与后车轮转轴(点E 处)的水平距离叫做安全轴距,已知该车的安全轴距为0.7m .货厢对角线AC 、BD 的交点G 是货厢侧面的重心,卸货时如果A 、G 两点的水平距离小于安全轴距时,会发生车辆倾覆安全事故.当斜坡AB 的坡角为45°时,根据上述车辆设计技术参数,该货车会发生车辆倾覆安全事故吗?试说明你的理由.(精确到0.1米,参考值:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 1.4142≈)23.如图,已知Rt ABC 中,90ACB ∠=︒,射线CD 交AB 于点D ,点E 是CD 上一点,且AEC ABC ∠=∠,联结BE .(1)求证:ACD EBD△△∽(2)如果CD 平分ACB ∠,求证:22AB ED EC =⋅.24.如图,抛物线2410233y x x =-++与x 轴相交于点A ,与y 轴交于点B ,C 为线段OA 上的一个动点,过点C 作x 轴的垂线,交直线AB 于点D ,交该抛物线于点E .(1)求直线AB 的表达式,直接写出顶点M 的坐标;(2)当以B ,E ,D 为顶点的三角形与CDA 相似时,求点C 的坐标;(3)当2BDE OAB ∠=∠时,求BDE △与CDA 的面积之比.25.如图,在ABC 中,90C ∠=︒,cot A =D 为边AC 上的一个动点,以点D 为顶点作BDE A ∠=∠,射线DE 交边AB 于点E ,过点B 作射线DE 的垂线,垂足为点F .(1)当点D 是边AC 中点时,求tan ABD ∠的值;(2)求证:AD BF BC DE ⋅=⋅;(3)当:3:1DE EF =时,求:AE EB .1.A【分析】根据三角函数的定义就可以求解.【详解】根据题意画出图形如图所示:在Rt△ABC中,∠C=90°,AB=5,AC=4,∴BC=3.则sin A=3 5.故选A.【点睛】考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比边.2.C【分析】三条平行线截两条直线,所得的对应线段成比例,据此可得结论.【详解】解:∵AB∥CD∥EF,BD:DF=2:3,∴CD:EF的值无法确定,故A选项错误;AB:CD的值无法确定,故B选项错误;AC:AE=2:5,故C选项正确;CE:EA=3:5,故D选项错误;故选:C.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.3.B【分析】根据仰角是向上看的视线与水平线所成的角、俯角是向下看的视线与水平线所成的角以及平行线的性质求解即可.【详解】解:如图,由题意,∠A =50°,AC ∥BD ,∴∠B=∠A =50°,故小丽在地面点B 处观察空中点A 处的仰角是50°,故选:B .【点睛】本题考查仰角、俯角、平行线的性质,熟知仰角、俯角的概念是解答的关键.4.D 【分析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.【详解】解:如图所示∵点C 是线段AB 的中点∴A 、AC CB =,故错误;B 、0AC BC += ,故本选项正确;C 、12BC AB =- ,故本选项错误;D 、12CA BA =,故本选项正确.故选:D .【点睛】本题主要考查线段的中点定义,难度不大,注意向量的方向及运算法则.5.C 【分析】根据二次函数的性质对各小题分析判断即可得解.【详解】解:∵a =-2<0,∴抛物线的开口向下,故选项A 正确,不符合题意;∴对称轴为直线x =-1,故选项B 正确,不符合题意;当x =0时,()22013231y =-++=-+=,即抛物线与y 轴的交点坐标是()0,1,故选项C 错误,符合题意;顶点坐标为(-1,3),故选项D 正确,不符合题意;故选:C .【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标.熟练掌握二次函数的性质是解答本题的关键.6.B 【分析】根据90ACB ∠=︒,CD AB ⊥,B ∠的余角相等即可判断A ,根据直角三角形斜边上的中线等于斜边的一半,即EB EC =,可得ECB B ∠=∠,则tan tan tan CD AC ADECB B DCA DB CB CD ∠====∠=,即可判断B 选项,根据A 选项可得tan tan A DCB =∠,即CD DBAD CD=,即可判断C ,根据sin sin A DCB =∠,可得BC DBAB BC=,2EC AB =,即可判断D 选项.【详解】解: 90ACB ∠=︒,CD AB ⊥,∴90B A B DCB ∠+∠=∠+∠=︒A DCB∴∠=∠故A 选项正确,不符合题意;CD 、CE 分别是斜边AB 上的高和中线,∴EB EC =,90,90DCA A B A ∠+∠=︒∠+∠=︒ECB B DCA B ∴∠=∠∠=∠,∴tan tan tan CD AC ADECB B DCA DB CB CD∠====∠=tan AD ECB CD∴∠=故B 选项不正确,符合题意;A DCB∠=∠∴tan tan A DCB =∠,即CD DBAD CD=,∴2CD AD DB=⋅故C 选项正确,不符合题意;A DCB∠=∠∴sin sin A DCB =∠,即BC DBAB BC=,2BC AB DB∴=⋅又12EC AB =∴22BC DB EC=⋅故D 选项正确,不符合题意.故选B .【点睛】本题考查了三角形中线,高线,直角三角形斜边上的中线等于斜边的一半,锐角三角函数,找出图中相等的角是解题的关键.7.322a b+【分析】根据向量的线性运算法则计算即可.【详解】解:()1242a ab --= 1222a a b -+ =322a b + ,故答案为:322a b + .【点睛】本题考查向量的线性运算,熟练掌握向量的线性运算法则是解答的关键.8.12【分析】设高度为9米的旗杆在地面的影长为x 米,根据同一时刻,物高与影长成比例解答即可.解:设高度为9米的旗杆在地面的影长为x 米,根据题意,得:21.59x =,解得:x =12,∴高度为9米的旗杆在地面的影长为12米,故答案为:12.【点睛】本题考查相似三角形的应用,熟知同一时刻,物高与影长成比例是解答的关键.9.()2211y x =+-【分析】抛物线的平移规律:左加右减,上加下减,根据平移规律直接作答即可.【详解】解:抛物线223y x =+先向左平移1个单位,再向下平移4个单位后,所得抛物线的表达式是:()22134,y x =++-即()2211,y x =+-故答案为:()2211y x =+-【点睛】本题考查的是抛物线的平移,掌握“抛物线的平移规律”是解本题的关键.10.<【分析】题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系.【详解】解:∵二次函数y =x 2-2x +n 的图象的对称轴是直线x =1,且a =1>0,在对称轴的右边y 随x 的增大而增大,∵点A (2,y 1)、B (5,y 2)是二次函数y =x 2-2x +1的图象上两点,2<5,∴y 1<y 2.故答案为:<.本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.11.()88##(-【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=12-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x =,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】=较长线段:全线段是解答的关键.12.3.5##72##132【分析】先证明,ADE ACB ∽可得,AE DE AB BC=再代入数据进行计算即可.【详解】解: AED B ∠=∠,,A A ∠=∠,ADE ACB ∴ ∽,AE DE AB BC∴= 8AB =,7BC =,4AE =,4,87DE \= 3.5,DE \=故答案为:3.5【点睛】本题考查的是相似三角形的判定与性质,掌握“两个角对应相等的两个三角形相似”是解本题的关键.13.103##133【分析】先根据角平分线定义和平行线性质证得∠DBE=∠DEB,∠ADE=∠ABC,再根据等角对等边证得DE=BD,然后证明△ADE∽△ABC,利用相似三角形的性质求解即可.【详解】解:∵BE是ABC的角平分线,∴∠DBE=∠EBC,∵ED∥BC,∴∠EBC=∠DEB,∠ADE=∠ABC,∴∠DBE=∠DEB,∴BD=DE=2,∴AB=AD+BD=5,∵∠ADE=∠ABC,∠A=∠A,∴△ADE∽△ABC,∴AD DEAB BC=,即325BC=,解得:103 BC=,故答案为:10 3.【点睛】本题考查角平分线的定义、平行线的性质、等腰三角形的判定、相似三角形的判定与性质,熟练掌握等角对等边证明边相等和相似三角形的判定与性质是解答的关键.14.y=-x2-2x+3【分析】根据图象与x、y轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.【详解】解:设该二次函数的解析式为y=ax2+bx+c(a≠0),由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,则0312a b c c b a⎧⎪++=⎪=⎨⎪⎪-=-⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为y =-x 2-2x +3,故答案为:y =-x 2-2x +3.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.15.5:12【分析】先利用勾股定理求得水平距离,再利用坡度的知识即可求解.【详解】解:如图,根据题意知:AB =13米,BC =5米,∴AC==12(米),∴该自动扶梯的坡度i =512BC AC =,∴该自动扶梯的坡度为i =5:12,故答案为:5:12.【点睛】本题考查了解直角三角形的应用,理解坡度的定义是解题的关键.16.13a +13b 【分析】首先根据题意画出图形,由点G 是等边△ABC 的中心,即可得BD =CD =12BC ,AG =23AD ,然后利用三角形法则求得BD 的值,继而求得AD 与AG 的值.【详解】解:∵点G 是等边△ABC 的中心,∴BD =CD =12BC ,AG =23AD ,∵BC =AC -AB =b -a ,∴BD =12BC =12(b -a ),∴AD =AB +BD =a +12(b -a )=1 2(a +b ),∴AG =23AD =23×12(a +b )=13a +13b .故答案为:13a +13b .【点睛】本题考查了平面向量的知识.注意掌握三角形法则的应用,注意数形结合思想的应用.17.(3)【分析】设A (x ,x 2),根据平移、旋转的性质求出C 点坐标,代入抛物线求出x ,故可求解.【详解】解:∵点A 是抛物线2y x =图像上一点故设A (x ,x 2),∵将点A 向下平移2个单位到点B ,故B (x ,x 2-2)∵把A 绕点B 顺时针旋转120°得到点C ,如图,过点B 作BD ⊥AB 于B ,过点C 作CD ⊥BD 于D ,AB =BC =2,∠ABC =120°,∠ABD =90°,∴∠DBC =30°故CD =112BC =,BD =故C (xx 2-3),把C (xx 2-3)代入2y x =,∴x 2-3=(2,解得x∴A (3)故答案为:(3).【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.18【分析】先证明A 、B ′、C 、D 四点共圆,推出∠CB ′D =∠CAD ,过点D 作DE ⊥AC 于点E ,利用平行线分线段成比例定理得到AE =3CE ,由勾股定理得到AD ,再由正弦函数即可求解.【详解】解:∵∠CAB =90°,AB =AC ,∴∠ACB =∠B =45°,由折叠的性质得∠AB ′D =∠B =45°,∴∠AB ′D =∠ACD =45°,∴A 、B ′、C 、D 四点共圆,∴∠CB ′D =∠CAD ,过点D 作DE ⊥AC 于点E ,∵∠CAB =90°,∴DE ∥AB ,∵BD =3CD ,∴AE =3CE ,∵∠ACB =45°,∴△DEC 是等腰直角三角形,∴DE =CE ,设DE =CE =a ,则AE =3CE =3a ,在Rt △ADE 中,AD =,∴sin ∠CB ′D =sin ∠CAD =10DE AD =..【点睛】本题考查了圆内接四边形的知识,正弦函数,折叠的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.19【分析】根据特殊角的锐角三角函数值进行计算即可.【详解】解:sin 603tan 30cos6012cot 45cot 30︒+︒⋅︒-︒+︒1321=【点睛】本题考查了特殊角的三角函数值的混合运算,牢记特殊角的三角函数值是解题的关键.20.(1)()223f x x x =-++;顶点坐标()1,4(2)把抛物线()()21+4f x x =--向下平移3个单位长度,抛物线为:()()211f x x =--+,或把抛物线()()21+4f x x =--向右平移3个单位长度,抛物线为:()()244f x x =--+.【分析】(1)由二次函数()2f x ax bx c =++过()()1,0,3,0,-设抛物线的交点式为()()()13,f x a x x =+-再把()0,3代入抛物线的解析式求解a 的值,再配方,求解顶点坐标即可;(2)平移后二次函数图像的顶点落在直线y x =上,顶点的横坐标与纵坐标相等,由顶点坐标为:()1,4,再分两种情况讨论:当顶点坐标为:()1,1时,当顶点坐标为:()4,4时,再写出平移方式即可.(1)解: 二次函数()2f x ax bx c =++过()()1,0,3,0,-设()()()13,f x a x x =+-把()0,3代入抛物线的解析式可得:33,a -=解得:1,a =-所以抛物线为:()()()2132 3.f x x x x x =-+-=-++而()()2223211+3f x x x x x =-++=--+-()21+4,x =--所以顶点坐标为:()1,4.(2)解: 平移后二次函数图像的顶点落在直线y x =上,∴顶点的横坐标与纵坐标相等,而顶点坐标为:()1,4,当顶点坐标变为:()1,1时,把抛物线()()21+4f x x =--向下平移3个单位长度即可;此时抛物线为:()()21+1f x x =--当顶点坐标变为:()4,4时,把抛物线()()21+4f x x =--向右平移3个单位长度即可.此时抛物线为:()()244f x x =--+.【点睛】本题考查的是利用待定系数法求解抛物线的解析式,利用配方法求解抛物线的顶点坐标,抛物线的平移,正比例函数图象上点的坐标特点,熟练的掌握抛物线的性质是解本题的关键.21.(1)54(2)3255b a+【分析】(1)由ADE CBE ∆∆∽,得23AD DE AE BC BE CE ===,由//AF CD ,得23AE EF CE DE ==,从而解决问题;(2)求出AE 与AC 的关系,以及AD 与BC 的关系,通过AC BC BA =- 即可求解.(1)解:AD //BC ,ADE CBE ∴∆∆∽,∴23AD DE AE BC BE CE ===,//AF CD ,∴23AE EF CE DE ==,设4EF x =,则6DE x =,5BF x =,∴54BF EF =,(2)解:4AD = ,6BC =,//AD BC ,32BC AD ∴=,ADE CBE ∆∆∽,∴32BC b = ,23AE AD EC BC ==,25AE AC ∴=, AB a = ,∴BA a =- ,∴AC BC BA=- 32b a =+ ,∴25AE AC=23()52b a =+ 3255b a =+ .【点睛】本题主要考查了相似三角形的判定与性质,平面向量的加减运算法则,解题的关键是熟练掌握相似三角形的判定与性质.22.(1)4m(2)不会,理由见解析【分析】(1)过点,B C 作,BH AF CI AF ⊥⊥,垂足分别为,H I ,CI 交AB 于点L ,过点B 作BK CI⊥于点K ,根据cos sin CI CK KI BC BCK AB BCK =+=⨯∠+⨯∠即可解决问题;(2)过点G 作GM AF ⊥于点M ,同理求得CI ,进而勾股定理求得A I ,根据平行线分线段成比例求得AM ,进而判断AM 是否大于0.7即可判断该货车是否会发生车辆倾覆安全事故.(1)如图,过点,B C 作,BH AF CI AF ⊥⊥,垂足分别为,H I ,CI 交AB 于点L ,过点B 作BK CI ⊥于点K ,则四边形BHIK 是矩形,BH KI ∴=,CLB ALI CBL LIA ∠=∠∠=∠ BCK LAI ∴∠=∠ 斜坡AB 的坡角为37°,即37BAF ∠=︒37BCK ∴∠=︒cos ,sin CK BC BCK BH KI AB BCK∴=⨯∠==⨯∠4,2AB BC == ,sin 370.60︒≈,cos370.80︒≈,cos sin 20.840.64CI CK KI BC BCK AB BCK ∴=+=⨯∠+⨯∠=⨯+⨯=m(2)该货车不会发生车辆倾覆安全事故,理由如下,如图,过点G 作GM AF ⊥于点M ,同理求得cos sin CI CK KI BC BCK AB BCK =+=⨯∠+⨯∠2422=⨯⨯Rt CIA 中,CI AC ===AI四边形ABCD 是矩形CG AG ∴=GM CI ∥ ,AG AM GC MI ∴= CG AG =AM MI ∴=122AI ==0.7071≈0.7>∴该货车不会发生车辆倾覆安全事故.【点睛】本题考查了解直角三角形的应用,平行线分线段成比例,正确的作出辅助线是解题的关键.23.(1)见解析;(2)见解析【分析】(1)先根据相似三角形的判定证明△ADE∽△CDB,则可证得AD DECD DB=即AD CDDE DB=,再根据相似三角形的判定即可证得结论;(2)根据角平分线定义和相似三角形的性质证明∠DCB=∠EAB=∠EBA=45°,则△AEB为等腰直角三角形,根据勾股定理可得AB2=2BE2,再根据相似三角形的判定证明△EBD∽△ECB即可证得结论.(1)证明:∵AEC ABC∠=∠,∠ADE=∠CDB,∴△ADE∽△CDB,∴AD DECD DB=即AD CDDE DB=,又∠ADC=∠EDB,∴ACD EBD△△∽;(2)证明:∵CD平分ACB∠,∠ACB=90°,∴∠ACD=∠DCB=45°,∵△ADE∽△CDB,ACD EBD△△∽,∴∠DCB=∠EAD=∠EBD=45°,∴AE=BE,∠AEB=90°,∴△AEB为等腰直角三角形,∴AB2=AE2+BE2=2BE2,∵∠DCB=∠EBD,∠CEB=∠BED,∴△CEB∽△BED,∴BE ECED BE=即2BE ED EC=⋅,∴AB2=2BE2=2ED·EC.【点睛】本题主要考查相似三角形的判定与性质、角平分线的定义、三角形内角和定理、等腰直角三角形的判定、勾股定理,熟练掌握相似三角形的判定与性质是解答的关键.24.(1)223y x =-+,5(4M ,49)12(2)11(8,0)或5(2,0)(3)1225104【分析】(1)求出A 、B 点的坐标,用待定系数法求直线AB 的解析式即可;(2)由题意可知BED ∆是直角三角形,设(,0)C t ,分两种情况讨论①当90BED ∠=︒,时,//BE AC ,此时(,2)E t ,由此可求52t =;②当90EBD ∠=︒时,过点E 作EQ y ⊥轴交于点Q ,可证明ABO BEQ ∆∆∽,则AO BO BQ EQ =,可求3(,2)2E t t +,再由E 点在抛物线上,则可求118t =,进而求C 点坐标;(3)作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,则有BQO BED ∠=∠,在Rt BOQ △中,224(3)BQ BQ =+-,求出136BQ =,56QO =,则12tan tan 5BQO BEG ∠=∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++,则有212410533t t t =-+,求出3516t =,即可求2212253104BDE CDA S t S t ∆∆==-.(1)解:令0y =,则24102033x x -++=,12x ∴=-或3x =,(3,0)A ∴,令0x =,则2y =,(0,2)B ∴,设直线AB 的解析式为y kx b =+,∴230b k b =⎧⎨+=⎩,∴232k b ⎧=-⎪⎨⎪=⎩,223y x ∴=-+,2241045492()333412y x x x =-++=--+ ,5(4M ∴,49)12;(2)解:ADC BDE ∠=∠ ,=90ACD ∠︒,BED ∴∆是直角三角形,设(,0)C t ,①如图1,当90BED ∠=︒,时,//BE AC ,(,2)E t ∴,24102233t t ∴-++=,0t ∴=(舍)或52t =,5(2C ∴,0);②如图2,当90EBD ∠=︒时,过点E 作EQ y ⊥轴交于点Q ,90BAO ABO ∠+∠=︒ ,90ABO QBE ∠+∠=︒,QBE BAO ∴∠=∠,ABO BEQ ∴∆∆∽,∴AO BO BQ EQ =,即32BQ t=,32BQ t ∴=,3(,2)2E t ∴+,2341022233t t ∴+=-++,0t ∴=(舍)或118t =,11(8C ∴,0);综上所述:C 点的坐标为11(8,0)或5(2,0);(3)解:如图3,作BA 的垂直平分线交x 轴于点Q ,连接BQ ,过点B 作BG EC ⊥于点G ,BQ AQ ∴=,BQA QAB ∴∠=∠,2BED OAB ∠=∠ ,BQO BED ∴∠=∠,在Rt BOQ △中,222BQ BO OQ =+,224(3)BQ BQ ∴=+-,136BQ ∴=,56QO ∴=,12tan 5BQO ∴∠=,12tan 5BEG ∴∠=,设(,0)C t ,则2(,2)3D t t -+,2410(,2)33E t t t -++,BG t = ,2443DE t t =-+,3AC t =-,223DC t =-+,241033EG t t =-+,∴212410533t t t =-+,3516t ∴=,12BDE S ED BG ∆∴=⋅,12CDA S AC CD ∆=⋅,∴224(4)21225323104(3)(2)3BDE CDA t t t S t S t t t ∆∆-+===---+.【点睛】本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.25.(1)4;(2)见解析;(3)5:3【分析】(1)过D 作DH ⊥AB 于H,设AC =,BC x =,由勾股定理得=AB ,由中点定义和三角形的等面积法求得DH ,再根据勾股定理求得AH 、BH ,由tan DH ABD BH∠=求解即可;(2)根据相似三角形的判定证明△DEB ∽△ADB 、△DFB ∽△ACB ,根据相似三角形的性质即可证得结论;(3)设3DE k =,EF k =,则DF=4k ,根据余切定义和勾股定理可求得EB 、BF 、BD ,再根据相似三角形的性质求得AB 即可求解.(1)解:过D 作DH ⊥AB 于H ,在ABC 中,90C ∠=︒,cot AC A BC ==,设AC =,BC x =,∴AB ==,∵D 为AC 的中点,∴AD =12AC=2x ,∴1122ADB S AD BC AB DH =⋅= ,∴xAD BCDHAB⋅⋅==,在Rt△AHD中,AH=,∴BH=AB-AH=-3x=3x,在Rt△BHD中,tan4xDHABDBH∠==;(2)证明:∵∠BDE=∠A,∠DBE=∠ABD,∴△DEB∽△ADB,∴DE DBAD AB=,∵∠F=∠C=90°,∠BDE=∠A,∴△DFB∽△ACB,∴BF DBBC AB=,∴DE BFAD BC=即AD BF BC DE⋅=⋅;(3)解:由:3:1DE EF=可设3DE k=,EF k=,则DF=4k,∵BDE A∠=∠,∴cot∠BDE=cot∠A,∴4DF kBF BF==∴BF=,又∠F=90°,∴3EB k===,BD ===,∵△DEB ∽△ADB ,∴EB BDBD AB =AB =,∴AB =8k ,∴AE=AB -EB =5k ,∴AE :EB =5k :3k =5:3.【点睛】本题考查锐角三角函数、勾股定理、相似三角形的判定与性质,熟练掌握相关知识的联系与运用是解答的关键.。
(试卷)虹口区2023学年初三第一学期期末数学
虹口区2023学年度第一学期期终学生学习能力诊断测试初三数学试卷(满分150分,考试时间100分钟) 2024.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列函数中,y 是x 的二次函数的是 A .21y x =-; B .21y x=; C .221y x =-; D .321y x =-.2.将抛物线23y x =-向左平移4个单位长度,所得到抛物线的表达式是A .23(4)y x =-+;B .23(4)y x =--; C .23+4y x =-; D .234y x =--.3.如图1,在Rt △ABC 中,已知∠C =90°,cos A=34,AC =3,那么BC 的长为A; B. C .4; D .5.4.如图2,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在左、右两个最高位置时,细绳相应所成的角∠AOB 为40°,那么小球在最高位置和最低位置时的高度差为 A .(50-50sin40°)厘米; B .(50-50cos40°)厘米; C .(50-50sin20°)厘米; D .(50-50cos20°)厘米.5.如图3,点G 是△ABC 的重心,GE ∥AC 交BC 于点E .如果AC =12,那么GE 的长为 A .3; B .4; C .6; D .8.6.如图4,四边形的顶点在方格纸的格点上,下列方格纸中的四边形与已知四边形相似的是A . B. C . D .二、填空题(本大题共12题,每题4分,满分48分) 7.已知:3:2x y =,那么():x y x -的值为 ▲ .8.如果向量a 、b 和x 满足2()a x a b -=-,那么x = ▲ .图4图3图2 图19.已知抛物线2(1)3y a x =-+开口向下,那么a 的取值范围是 ▲ . 10.如果点A (2,1)在抛物线2(1)+y x m =-上,那么m 的值是 ▲ .11.如果将抛物线22y x =平移,使顶点移到点P (-3,1)的位置,那么所得抛物线的表达式是 ▲ .12.已知点A (-3,1y )和B (1,2y )都在抛物线22(1)2y x =--上,那么1y 和2y 的大小关系为1y ▲ 2y (填“>”或“<”或“=”) .13.已知抛物线2y x bx c =-++如图5所示,那么点P (b ,c )在第 ▲ 象限.14.一个三角形框架模型的边长分别为3分米、4分米和5分米,木工要以一根长6分米的木条为一边,做与模型相似的三角形,那么做出的三角形中,面积最大的是 ▲ 平方分米.15.如图6,已知AD ∥EF ∥BC , BC=2AD ,BE =2AE ,AD a =,那么用a 表示EF = ▲ . 16.如图7,在□ABCD 中,点F 在边AD 上,AF =2FD ,直线BF 与对角线AC 相交于点E ,交CD 的延长线于点G ,如果BE =2,那么EG 的长是 ▲ .17.定义:如果以一条线段为对角线作正方形,那么称该正方形为这条线段的“对角线正方形”.例如,图8①中正方形ABCD 即为线段AC 的“对角线正方形”.如图8②,在Rt △ABC 中,∠C =90°,AC =3,BC =4,点P 在边AB 上,如果线段PC 的“对角线正方形”有 两边同时落在△ABC 的边上,那么AP 的长是 ▲ .18.如图9,在△ABC 中, AB =AC =5,tan B =34.点M 在边BC 上,BM =3,点N 是射线BA 上一动点,联结MN ,将△BMN 沿直线MN 翻折,点B 落在点B'处,联结B'C ,如果B'C ∥AB ,那么BN 的长是 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:2tan 454sin 30cos30cos 60--.图9图6A CD BEF图8①ADBC 图8②图7C DBE FAG图10③B CAD E图10②图10①20.(本题满分10分)画二次函数2y ax bx =+的图像时,在“列表”的步骤中,小明列出如下表格(不完整).请补全表格,并求该二次函数的解析式.21.(本题满分10分)如图10①是某款智能磁吸键盘,如图10②是平板吸附在该款设备上的照片,图10③是图10②的示意图.已知BC =8cm ,CD =20cm ,∠BCD =63°.当AE 与BC 形成的∠ABC 为116°时,求DE 的长.(参考数据:sin63°≈0.90,cos63°≈0.45,cot63°≈0.50;sin53°≈0.80,cos53°≈0.60,cot53°≈0.75)22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图11①,已知线段a 、b 和∠MON .如图11②,小明在射线OM 上顺次截取OA=2a ,AB=3a ,在射线ON 上顺次截取OC=2b ,CD =3b .联结AC 、BC 和BD ,AC =4,BC =6.(1)求BD 的长;(2)小明继续作图,如图11③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,联结PQ ,分别交BD 、OD 于点E 、F .如果BC ⊥OD ,求EF 的长.x … -1 0 2 4 5 … y … -5 ▲ 4 ▲ -5 … 图11③ A B E F D C O N M P Q 图11① O N M ab 图11② A B D CO N M23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图12,在△ABC 中,已知点D 、E 分别在边BC 、AB 上,EC 和AD 相交于点F ,∠EDB =∠ADC ,2DE DF DA =⋅.(1)求证:△ABD ∽△ECD ;(2)如果∠ACB=90°,求证:12FC EC =.24.(本题满分12分,第(1)小题满分4分,第(2)①题满分4分,第(2)②题满分4分) 如图13,在平面直角坐标系xOy 中.已知抛物线22y x x m =++经过点A (-3,0),与轴交于点C ,联结AC 交该抛物线的对称轴于点E .(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线AC 的上方. ①联结AM 、CM ,如果∠AME =∠MCA ,求点M 的坐标;②点N 是抛物线上一点,联结MN ,当直线AC 垂直平分MN 时,求点N 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)①题满分5分,第(2)②题满分5分)如图14①,在Rt △ABC 中,∠ACB =90°,4tan 3ABC ∠=,点D 在边BC 的延长线上,联结AD ,点E 在线段AD 上,∠EBD =∠DAC . (1)求证:△DBA ∽△DEC ;(2)如图14②,点F 在边CA 的延长线上,DF 与BE 的延长线交于点M .① 如果AC=2AF ,且△DEC 是以DC 为腰的等腰三角形,求tan ∠FDC 的值;②如果DE =,EM =3,FM :DM =5: 3,求AF 的长.O 图13 x y图12 A B E FD C 图14②备用图图14①。
2019-2020学年度第一学期上海外国语大学附属大境初级中学沪教版七年级第一学期数学期中测试卷(Word版)
2019学年黄浦区大境初级中学七年级(上)数学期中试卷一、选择题:(本大题共6题,每题3分,共18分1.代数式21-χ的值为0时,χ的值是··········································( ) A.-1 B.1 C.0 D.22.下列从左到右的变形中,属于因式分解的是·······························() A.2x xy 62)3y (+=+χ B.3)4(342+-=+-x x x xC.)8(8223-=-x x x xD.22))((a x a x a x -=-+3.计算)()(53x x -∙-等于··········································( )A.8xB.8x -C.15xD.15x -4.多项式的值是是一个完全平方式,则k k x x +-102········( )A.4B.25C.5±D.25±5.多项式分别是的二次项系数与一次项1432--x x ·····················()A.3,-4B.34,2-xC.x 4,3-D.x x 4,32-6.多项式的值一定是82422+--+y x y x ···················( ) A.正数 B.非正数 C.负数 D.非负数二、填空题7、示:的差的平方用代数式表倍与的b 311a 8、单项式是32-323y x 次单项式 9、把多项式的降幂排列是按x x xy x 53125-322+-+ 10、若单项式=--n m 2a a 21-82412是同类项,则与m m n b b11、===+y x y x a a ,3,2a 则12、计算=-∙2232)3(21-xy y x )( 13、计算=-∙-+)43(13254-22xy xy y x )( 14、计算(4a-3b )(-4a-3b)=15、计算:2)c -b -2a (= 16、因式分解:=-+-)(918m 2a b m b a )(17、已知 ==∙-++x x x x 则,623321118、若=-==+y x xy y 2,25,125422则χ19、若=-+=-+)5(6a ,31a 2a a )则( 20、已知=++++∙∙∙++=++1,0123201820192x x x x x x x 则三、简答题(本大题共有6题,每题5分,满分30分)21、[]32236)2()3(2a -a a --+--)计算(22、)32)(2()2)(2m n m n m m n n +----计算:(23、计算:)423(423-++-y x y x )(24、简便计算:10.5×9.5×100.2525、因式分解:)2)(32()3(2x y y x y x y x -+-+-)(26、因式分解:2222)42(2y x x x +-+)(四、解答题(本大题共4题,共24分)27、2)1(4)43)(43()3(25---+≥+-x x x x x )(解不等式28、项和的计算结果中不含)已知(x x x x x n mx x 2323)23(+-++ (1)求m 、n 的值(2)当吗m 、n 取第(1)小题的值时,化简并求(m+n ))的值(22m n mn +-29、y x y x x B y x xy x A --+-=+--=324,232222(1)求B-2A(2)若的值求且a ,a 2,09622=-=+++-A B y y a x30、已知A 、B 两个边长不等的正方形纸片并排放置(如图所示)(1)若m =8,n =2,则甲、乙两个正方形纸片的面积之和为:(2)用m 、n 表示甲、乙两个正方形纸片的面积之和为:(3)若A 、B 两个正方形纸片的面积之和为:913 ,且右下图中阴影部分的面积为:32,则m= n=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪教版2019--2020学年度第一学期期末质量检测
九年级数学试卷
一、单选题 1.(4分)二次函数()621y x =-+,则下列说法正确的是( )
A .图象的开口向下
B .函数的最小值为1
C .图象的对称轴为直线2x =-
D .当2x <时,y 随x 的增大而增大 2.(4分)在
中,,,,那么的长是( ) A .; B .; C .; D .. 3.(4分)如图,在半径为5cm 的⊙O 中,AB 为一条弦,OC ⊥AB 于点C ,且OC=3cm ,则AB 的值为( )
A .3cm
B .4cm
C .6cm
D .8cm
4.(4分)如图,在△ABC 中,DE ∥BC ,BD =3AD ,BC =12,则DE 的长是( )
A .3
B .4
C .5
D .6
5.(4分)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )
A.4m B.C.
m D.8m
3
6.(4分)过O内一点M的最长的弦长为6cm,最短的弦长为4cm。
则OM的长为()
A B C.2cm D.3cm
7.(4分)为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()
A.1333条B.3000条C.300条D.1500条8.(4分)如图,将直角三角板45°角的顶点放在圆心O上,斜边和一直角边分别与⊙O 相交于A、B两点,C是优弧AB上任意一点(与A、B不重合),则∠ACB的度数是()
A.30o B.22.5o C.90o D.15o
9.(4分)抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c-2=0的根的情况是( )
A.有两个不相等的实数根B.有两个异号的实数根
C.有两个相等的实数根D.没有实数根
10.(4分)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x 轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x 轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为()
A .﹣16
B .16
C .﹣15
D .15
二、填空题
11.(5分)某班男、女生人数之比是3:2,制作扇形统计图是女生对应的扇形的圆心角是____________(度).
12.(5分)如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sinC=_____。
13.(5分)如图,四边形ABCD 是O 内接四边形,若3080BAC CBD ∠︒∠︒=,=,
则BCD ∠的度数为______.
14.(5分)如图,在ABC 中,AD 是BC 边上的高,且5BC =,3AD =,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,如果设边EF 的长为(03)x x <<,矩形EFGH 的面积为y ,那么y 关于x 的函数解析式是________.
三、解答题
15.(82cos45°+(13
)﹣1﹣(π﹣1)0
16.(8分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.
17.(8分)某校在一次大课间活动中,采用了四种活动形式:A:跑步;B:跳绳;C:做操;D:游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图(如图):
(1)本次共调查了多少名学生?
(2)跳绳B对应扇形的圆心角为多少度?
(3)学校在每班A、B、C、D四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.
18.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
19.(10分)如图,A、P、B、C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)求证:P A+PB=PC;
(2)若BC=P是劣弧AB上一动点(异于A、B),P A、PB是关于x的一元二次方程x2﹣mx+n=0的两根,求m的最大值.
20.(10分)如图,ABC 与'''A B C 相似,AD ,BE 是ABC 的高,''A D ,''B E 是'''A B C 的高,求证:''''
AD BE A D B E .
21.(12分)热气球的探测显示,从热气球A 处看一栋楼顶部的仰角为45,看这栋楼
底部的俯角为60,A 处与高楼的水平距离为60m ,这栋楼有多高?(结果保留根号).
22.(12分)如图,在Rt ABC 中,90ACB D ∠︒=,为AB 的中点,
以CD 为直径O
的分别交AC BC ,于点E F ,两点,过点F 作FG AB ⊥于点G . ()1试判断FG 与O 的位置关系,并说明理由.
()2若3 2.5AC CD =,=,
求FG 的长.
23.(14分)如图,在矩形ABCD 中,AB =6,AD =11.直角尺的直角顶点P 在AD 上滑动时(点P 与A ,D 不重合),一直角边始终经过点C ,另一直角边与AB 交于点E . (1)△CDP 与△P AE 相似吗?如果相似,请写出证明过程;
(2)当∠PCD =30°时,求AE 的长;
(3)是否存在这样的点P ,使△CDP 的周长等于△P AE 周长的2倍?若存在,求DP 的长;若不存在,请说明理由.
答案第1页,总1页 参考答案
1.B
2.B
3.D
4.A
5.B
6.B
7.A
8.B
9.C
10.A
11.144°
12
13.70°
14.2553
y x x =-+ 15
.2
16.4+4。
17.(1) 本次共调查了300名学生;(2) 36︒;(3)16
18.(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w 元最大,最大利润是2640元.
19.(1)详见解析;(2)m 的最大值为4.
20.证明见解析
21
.(60+米
22.(1)FG O 与相切,理由见解析;(2)6.5
FG = 23.(1) △CDP ∽△P AE,理由见解析;(2)AE =$\frac{11}{3} \sqrt{3}-2$;(3)存在,DP=8,理由见解析。