新课标届高考数学二轮复习专题一集合逻辑用语不等式向量复数算法推理12不等式线性规划课件理1204228

合集下载

2020高考数学二轮复习专题一集合、逻辑用语、不等关系、向量、复数1.2不等关系课件

2020高考数学二轮复习专题一集合、逻辑用语、不等关系、向量、复数1.2不等关系课件

C.{x|-2≤x≤1}
D.⌀
(3)设函数
f(x)=
2-������ ,������ ≤ 0,则满足 1,������ > 0,
f(x+1)<f(2x)的
x
的取值范围
是( D )
A.(-∞,-1] B.(0,+∞)
C.(-1,0) D.(-∞,0)
高频考点•探究突破
-3-
突破点一
突破点二
突破点三
(4)函数 y= 3-2������-������2的定义域是 [-3,1] .
-4-
突破点一
突破点二
突破点三
解析:(1)由x2+2x-3≥0,得(x+3)(x-1)≥0,解得x≤-3或x≥1,故选C.
(2)原不等式可化为x2+x-2≤0,即(x+2)(x-1)≤0,解得-2≤x≤1.故
选C.
(3)(方法一)①当
������ + 1 ≤ 2������ ≤ 0,
0,
即x≤-1时,f(x+1)<f(2x)即为2-(x+1)<2-2x,
因此不等式的解集为(-1,0).
④当
������ + 1 > 2������ > 0,
0,即
x>0
时,f(x+1)=1,f(2x)=1,不符合题意.
综上,不等式f(x+1)<f(2x)的解集为(-∞,0).故选D.
高频考点•探究突破
-6-
突破点一
突破点二
突破点三
(方法二)∵f(x)= 2-������ ,������ ≤ 0, 1,������ > 0,

新高考数学二轮复习知识点总结与题型归纳 第1讲 集合与常用逻辑用语(解析版)

新高考数学二轮复习知识点总结与题型归纳 第1讲  集合与常用逻辑用语(解析版)

专题01集合与常用逻辑用语集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【教材回归】1.集合(1)集合间的关系与运算A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.(2)子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.【易错点】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如{x |y=lg x}——函数的定义域;{y |y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.3.空集是任何集合的子集.解题时勿漏A=∅的情况.【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【例题分析】例1下列元素与集合的关系表示不正确的是()A.0N∈B.0Z∈C.32Q∈D.Qπ∈【答案】D【考点】元素与集合关系的判断【专题】集合思想;定义法;集合;数学运算【分析】根据元素与集合的关系,结合数集的表示方法,判断选项中的命题真假性即可.【解答】解:根据元素与集合的关系知,0N∈,选项A正确;0Z∈,选项B正确;3 2Q∈,选项C正确;Qπ∉,选项D错误.故选:D.【点评】本题考查了元素与集合的关系应用问题,也考查了常用数集的应用问题,是基础题.【知识要点】子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集为U,集合{2A=-,0,1,2},{|20}B x x=-,集合A和集合B的韦恩图如图所示,则图中阴影部分可表示为()A .(2,0)-B .[1-,0]C .{1-,0}D .{2-,1,2}【答案】A【考点】Venn 图表达集合的关系及运算 【专题】集合思想;定义法;集合;数学运算 【分析】图中阴影部分表示的集合是()U BA ,由此能求出结果.【解答】解:全集为U ,集合{2A =-,0,1,2},{|20}B x x =-, 图中阴影部分表示的集合是:()(2UB A =-⋂,0).∴由韦恩图得图中阴影部分可表示为(2,0)-.故选:A .【点评】本题考查补集、交集的求法,考查补集、交集定义、韦恩图的性质等基础知识,考查运算求解能力,是基础题.例3对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合{2S =,3,4,5},定义集合{T f =(A )|A S ⊆,}A ≠∅,则集合T 的元素的个数为( ) A .11 B .12 C .13 D .14【答案】B【考点】元素与集合关系的判断【专题】集合思想;分析法;集合;逻辑推理【分析】因为A ≠∅,所以f (A )的最小值为2,最大值是S 中所有元素之和为14,再将不可能的取值剔除即可【解答】解:因为A ≠∅,所以f (A )的最小值为2,f (A )的最大值是S 中所有元素之和为14,但是34512++=,234514+++=,也就是f (A )无法取到13,所以T 中的元素有2,3,4,5,6,7,8,9,10,11,12,14,共12个 故选:B .【点评】本题不要去抓集合A 的所有情况,只需要判断其元素之和的最小值与最大值,再剔除掉其中不可能的取值即可,属于简单题 例4已知集合{1A =,3,2}a ,{1B =,2}a +,若A B A =,则实数a = 2 .【答案】2.【考点】并集及其运算【专题】集合思想;定义法;集合;数学运算【分析】推导出B A ⊆,从而21a +=,或23a +=,或22a a +=,再利用集合是元素的互异性能求出实数a .【解答】解:集合{1A =,3,2}a ,{1B =,2}a +,A B A =,B A ∴⊆,21a ∴+=,或23a +=,或22a a +=,解得1a =-或1a =,或2a =, 当1a =-时,{1A =,3,1},不成立; 当1a =时,{1A =,3,1},不成立;当2a =时,{1A =,3,4},{1B =,4},成立. 故实数2a =. 故答案为:2.【点评】本题考查实数值的求法,考查并集、子集定义、集合中元素的互异性等基础知识,考查运算求解能力,是基础题.例5已知集合2{|430A x x x =-+<,}x R ∈,{|||2B x x =>,}x R ∈,则()(RA B = )A .[2-,1)B .[2-,1]C .[2-,3]D .(1,2]【答案】B【考点】交、并、补集的混合运算【专题】计算题;集合思想;综合法;集合;数学运算【分析】可求出集合A ,B ,然后进行并集和补集的运算即可. 【解答】解:{|13}A x x =<<,{|2B x x =<-或2}x >,{|2AB x x ∴=<-或1}x >,()[2RA B =-,1].故选:B .【点评】本题考查了描述法和区间的定义,一元二次不等式和绝对值不等式的解法,并集和补集的定义及运算,考查了计算能力,属于基础题. 例6设集合{1A =,2,3},集合{|}B x x a =,若A B 有两个元素,则a 的取值范围是[2,3) .【答案】[2,3). 【考点】交集及其运算【专题】集合思想;定义法;集合;数学运算【分析】利用集合交集的定义结合数轴进行分析求解即可/ 【解答】解:{1A =,2,3},集合{|}B x x a =,A B 有两个元素,如图,可得a 的取值范围是[2,3). 故答案为:[2,3).【点评】本题考查了集合的运算,解题的关键是掌握交集的定义,属于基础题.例7已知集合2{|20}M x x x =-+>,{|N y y ==,则(M N = )A .(0,2)B .[0,2)C .(2,)+∞D .[1,2)【答案】A【考点】交集及其运算【专题】集合思想;定义法;集合;数学运算 【分析】求出集合M ,N ,由此能求出MN .【解答】解:集合2{|20}{|02}M x x x x x =-+>=<<, {|{|0}N y y y ===,{|12}(0,2)M N x x ∴=<=.故选:A .【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题. 例8已知M ,N 均为R 的子集,且R M N ⊆,则()(RM N =⋃ )A .∅B .MC .ND .R【答案】B【考点】并集及其运算【专题】集合思想;定义法;集合;逻辑推理;数学运算【分析】根据M ,N 均为R 的子集,且R M N ⊆,画出韦恩图,结合图形可求出()R M N .【解答】解:如图所示易知()R MN M =.故选:B .【点评】本题主要考查了集合的并集与补集,解题的关键是作出符合题意的韦恩图,同时考查了学生推理的能力.常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【教材回归】1.四种命题及其相互关系(1)(2)互为逆否命题的两个命题同真同假.3.含有逻辑联结词的命题的真值表 命题p 且q 、p 或q 、非p 的真假判断4.全称命题、特称命题及其否定(1)全称命题p :∀x ∈M ,p (x ),其否定为特称命题:p :∃x 0∈M ,┐p (x 0). (2)特称命题p :∃x 0∈M ,p (x 0),其否定为全称命题:p :∀x ∈M ,┐p (x ). 5.充分条件与必要条件的三种判定方法(1)定义法:若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,命题p :x ∈A ,命题q :x ∈B ,若A ⊆B ,则p 是q 的充分条件(q 是p 的必要条件);若A B ,则p 是q 的充分不必要条件(q 是p 的必要不充分条件);若A =B ,则p 是q 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题. 【易错点】判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以从集合的角度来思考,将问题转化为集合间的运算. 【例题分析】例1命题“对于任意a ,b R ∈,如果2a ab =,则a b =”的否命题为 “对于任意a ,b R ∈,如果2a ab ≠,则a b ≠” .【答案】“对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”. 【考点】四种命题;四种命题间的逆否关系 【专题】转化思想;定义法;简易逻辑;逻辑推理 【分析】把原命题的条件和结论均否定即可.【解答】解:根据原命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝”, 写出命题“对于任意a ,b R ∈,如果2a ab =,则a b =”的否命题为: “对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”.故答案为:“对于任意a ,b R ∈,如果2a ab ≠,则a b ≠”.【点评】本题考查了命题与它的否命题之间的关系应用问题,是基础题.例2写出命题p“若a是正数,则a的平方不等于0”的原命题,逆命题,否命题,逆否命题,并判断它们的真假【考点】四种命题的真假关系【专题】对应思想;简易逻辑;定义法【分析】根据四种命题的定义分别进行求解判断即可.【解答】解:原命题:“若a是正数,则a的平方不等于0”,为真命题,逆命题:“若a的平方不等于0,则a是正数”,为假命题,当a为负数时也成立,否命题:“若a不是正数,则a的平方等于0”,为假命题,与逆命题等价性相同,逆否命题:若a的平方等于0,则a不是正数”,为真命题,与原命题为等价命题.【点评】本题主要考查四种命题的求解,结合逆否命题的等价性是解决本题的关键.例3能够说明“设a,b是任意非零实数,若“a b>,则11a b<”是假命题的一组整数a,b的值依次为2,1-.【考点】26:四种命题的真假关系【专题】11:计算题;35:转化思想;49:综合法;5L:简易逻辑;62:逻辑推理【分析】可看出,取2a=,1b=-时,可说明”a b>,则11a b<”是假命题.【解答】解:取2a=,1b=-时,可得出“a b>,则11a b<“不成立,即该命题为假命题.故答案为:2,1-.【点评】本题考查了真假命题的定义,举反例说明一个命题是假命题的方法,考查了推理能力,属于基础题.例4已知a,b都是实数,则“log3a>log3b”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件.【专题】函数思想;定义法;简易逻辑;逻辑推理.【答案】A【分析】根据对数函数的单调性可化简log3a>log3b,根据幂函数的单调性可化简,最后根据充分条件、必要条件的定义进行判定即可.【解答】解:因为log3a>log3b,所以a>b>0,,所以“log 3a >log 3b ”是“”的充分不必要条件.故选:A .【点评】本题主要考查了对数函数和幂函数的单调性,以及充分条件、必要条件的判定,同时考查了逻辑推理能力和运算求解能力,属于基础题. 例5110a+>是1a <-成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【考点】充分条件、必要条件、充要条件 【专题】转化法;简易逻辑;对应思想 【分析】解不等式11a>-,根据集合的包含关系判断即可. 【解答】解:由11a>-,得:10a a +>, 解得:0a >或1a <-, 故11a>-是1a <-成立的必要不充分条件, 故选:B .【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.例6已知条件:211p x --,:33q x -<,且p 是q 的必要条件,则实数的取值范围为 (-∞,2]- . 【答案】(-∞,2]-.【考点】充分条件、必要条件、充要条件【专题】转化思想;综合法;不等式的解法及应用;简易逻辑;数学运算【分析】条件:211p x --,:33q x -<,根据p 是q 的必要条件,可得21331-⎧⎨-⎩,解得实数的取值范围.【解答】解:条件:211p x --,:33q x -<,且p 是q 的必要条件,∴21331-⎧⎨-⎩,解得2-.则实数的取值范围是(-∞,2]-.故答案为:(-∞,2]-.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.例7命题:“0x R ∃∈,00sin x x <”的否定为( ) A .0x R ∃∈,00sin x x > B .0x R ∃∈,00sin x x C .x R ∀∈,sin x x > D .x R ∀∈,sin x x【答案】D 【考点】命题的否定【专题】转化思想;定义法;简易逻辑;逻辑推理【分析】根据存在量词命题的否定是全称量词命题,写出对应的命题即可. 【解答】解:根据存在量词命题的否定是全称量词命题知, 命题:“0x R ∃∈,00sin x x <”的否定是: “x R ∀∈,sin x x ”. 故选:D .【点评】本题考查了存在量词命题的否定是全称量词命题的应用问题,是基础题. 例8已知命题:(1,)p x ∃∈+∞,24x >,则命题p ⌝为 (1,)x ∀∈+∞,24x . 【答案】(1,)x ∀∈+∞,24x . 【考点】命题的否定【专题】转化思想;定义法;简易逻辑;逻辑推理【分析】根据特称命题的否定是全称命题,写出命题p 的否定命题p ⌝即可. 【解答】解:根据特称命题的否定是全称命题知, 命题:(1,)p x ∃∈+∞,24x >, 则命题p ⌝为:(1,)x ∀∈+∞,24x . 故答案为:(1,)x ∀∈+∞,24x .【点评】本题考查了特称命题的否定是全称命题应用问题,是基础题. 例9有以下说法:①一年按365天计算,两名学生的生日相同的概率是1365; ②买彩票中奖的概率为0.001,那么买1000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比数大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是①③.【考点】2C:概率及其性质;2K:命题的真假判断与应用【专题】38:对应思想;49:综合法;5I:概率与统计;62:逻辑推理【分析】根据概率的意义和计算方法逐一判断每个选项即可得解.【解答】解:①两名学生的生日相同,是365天里的任意一天,因此两名学生的生日相同的概率是1365,即①正确;②买彩票中奖的概率为0.001,并不意味着买1000张彩票就一定能中奖,只有当买彩票的数量非常大时,才可以看成中奖的频率接近中奖的概率0.001,即②错误;③这种抽取方法抽到每个签的概率均为110,所以公平,即③正确;④昨天气象局的天气预报降水概率是90%,是指可能性非常大,并不一定会发生,即④错误.故答案为:①③.【点评】本题考查概率的意义,考查学生的推理论证能力和理解能力,属于基础题.例10一个口袋中有3个红球4个白球,从中取出2个球.下面几个命题:(1)如果是不放回地抽取,那么取出1个红球,1个白球的概率是27;(2)如果是不放回地抽取,那么在至少取出一个红球的条件下,第2次取出红球的概率是35;(3)如果是有放回地抽取,那么取出1个红球1个白球的概率是12 49;(4)如果是有放回地抽取,那么第2次取到红球的概率和第1次取到红球的概率相同.其中正确的命题是(2)(4).【答案】(2)(4).【考点】命题的真假判断与应用【专题】计算题;转化思想;综合法;概率与统计;数学运算【分析】根据题意,依次分析4个命题中概率的计算是否正确,即可得答案.【解答】解:根据题意,依次分析4个命题:(1)如果是不放回地抽取,那么取出1个红球,1个白球的概率11342747C CPC⨯==,因此不正确;(2)如果是不放回地抽取,至少取出一个红球的概率24127517CPC=-=,第2次取出红球的概率243323 76767P⨯⨯=+=⨯⨯,则在至少取出一个红球的条件下,第2次取出红球的概率是2135P P P ==,因此正确; (3)如果是有放回地抽取,那么取出1个红球1个白球的概率11341177241224949C C P C C =⨯⨯=≠,因此不正确;(4)如果是有放回地抽取,那么第2次取到红球的概率和第1次取到红球的概率相同,正确,其概率131737C P C ==. 其中正确的命题是(2)(4),故答案为:(2)(4).【点评】本题考查古典概型的计算,涉及条件概率的计算,属于基础题.例11已知(1,0)A ,(4,0)B ,圆22:4C x y +=,则以下选项正确的有( )A .圆C 上到B 的距离为2的点有两个B .圆C 上任意一点P 都满足||2||PB PA =C .若过A 的直线被圆C 所截得的弦为MN ,则||MN的最小值为D .若点D 满足过D 作圆C 的两条切线互相垂直,则||BD的最小值为4-【答案】BCD【考点】命题的真假判断与应用【专题】方程思想;转化法;直线与圆;数学运算【分析】由题意画出图形,数形结合可得A 错误;设出P 的坐标,由||2||PB PA =成立判定B 正确;直接求出||MN 的最小值判断C ;由题意求得点D 的轨迹,即可判断选项D 正确. 【解答】解:如图,圆C 的圆心坐标为(0,0),半径2r =,则圆C 上到B 的距离为2的点1个,为(2,0),故A 错误;设圆C 上任意一点(,)P x y ,则224x y +=,||PB2||PA =,若||2||PB PA =,则2222(4)4(1)4x y x y -+=-+,即224x y +=,此式显然成立,故B 正确; 若过A 的直线被圆C 所截得的弦为MN ,则当MN x ⊥轴时,||MN 的最小值为=C 正确;若点D 满足过D 作圆C 的两条切线互相垂直,则||OD =可得D 的轨迹是以O 为圆心,以而B 在圆外,则||BD 的最小值为4-故D 正确.故选:BCD .【点评】本题考查命题的真假判断与应用,考查点与圆、直线与圆位置关系的判定及应用,是中档题.。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

高考数学大二轮复习 专题一 集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明 1.1 集

高考数学大二轮复习 专题一 集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明 1.1 集

1.1 集合与常用逻辑用语【课时作业】1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}解析: ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={}x |-1≤x ≤2. 故选B. 答案: B2.(2018·某某卷)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3}, ∴A ∪B ={-1,0,1,2,3,4}. 又C ={x ∈R |-1≤x <2}, ∴(A ∪B )∩C ={-1,0,1}. 答案: C3.(2018·某某皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧x 2=4y ,y =x得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0C .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)≥0.答案: C5.(2018·卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B. 答案: B6.(2018·某某市第一统考)设全集U =R ,集合A ={x |log 2x ≤1},B ={x |x 2+x -2≥0},则A ∩∁U B =( )A .(0,1]B .(-2,2]C .(0,1)D .[-2,2]解析: 不等式log 2x ≤1即log 2x ≤log 22,由y =log 2x 在(0,+∞)上单调递增,得不等式的解集为(0,2],即A =(0,2].由x 2+x -2≥0,得(x +2)(x -1)≥0,得B ={x |x ≤-2或x ≥1},所以∁U B =(-2,1),从而A ∩∁U B =(0,1).故选C.答案: C7.设全集U 是自然数集N ,集合A ={x |x 2>9,x ∈N },B ={0,2,4},则图中阴影部分所表示的集合是( )A .{x |x >2,x ∈N }B .{x |x ≤2,x ∈N }C .{0,2}D .{1,2}解析: 由题图可知,图中阴影部分所表示的集合是B ∩(∁U A ),∁U A ={x |x 2≤9,x ∈N }={x |-3≤x ≤3,x ∈N }={0,1,2,3},因为B ={0,2,4},所以B ∩(∁U A )={0,2}.答案: C8.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .命题“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.答案: C9.(2018·某某省质量检测(一))已知命题p :对任意的x ∈R ,总有2x>0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·某某省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值X 围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.答案: D11.(2018·某某某某3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0” B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题 C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·某某某某一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x-a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值X 围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x-a >0等价于a <2x在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值X 围是(1,2),故选C.答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x-x -a 有零点,则綈p :____________________.解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________.解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 017+b2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案: {(2,3)}16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析: 显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案: c ,a ,b。

高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)

高考数学(理科)二轮复习【专题1】集合与常用逻辑用语(含答案)

第1讲集合与常用逻辑用语考情解读(1)集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年也出现一些集合的新定义问题.(2)高考中考查命题的真假判断或命题的否定或充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.集合的基本运算(1)交集:A∩B={x|x∈A,且x∈B}.(2)并集:A∪B={x|x∈A,或x∈B}.(3)补集:∁U A={x|x∈U,且x∉A}.重要结论:A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理.4.充分条件与必要条件若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇔q,则p,q互为充要条件.5.基本逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).6.全称量词与存在量词“∀x∈M,p(x)”的否定为“∃x0∈M,綈p(x0)”;“∃x0∈M,p(x0)”的否定为“∀x∈M,綈p(x)”.热点一集合的关系及运算例1(1)(2014·四川改编)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=________.(2)(2013·广东改编)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列命题正确的是________.①(y,z,w)∈S,(x,y,w)∉S;②(y,z,w)∈S,(x,y,w)∈S;③(y,z,w)∉S,(x,y,w)∈S;④(y,z,w)∉S,(x,y,w)∉S.思维启迪明确集合的意义,理解集合中元素的性质特征.答案(1){-1,0,1,2}(2)②解析(1)因为A={x|x2-x-2≤0}={x|-1≤x≤2},又因为集合B为整数集,所以集合A∩B ={-1,0,1,2}.(2)因为(x,y,z)和(z,w,x)都在S中,不妨令x=2,y=3,z=4,w=1,则(y,z,w)=(3,4,1)∈S,(x,y,w)=(2,3,1)∈S,故(y,z,w)∉S,(x,y,w)∉S的说法均错误,可以排除①③④,故②正确.思维升华(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M={1,2,3},N={x∈Z|1<x<4},则M∩N=________.(2)(2013·山东改编)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案(1){2,3}(2)5解析(1)集合N是要求在(1,4)范围内取整数,所以N={x∈Z|1<x<4}={2,3},所以M∩N={2,3}.-2,-1,0,1,2.(2)x-y∈{}热点二四种命题与充要条件例2(1)(2014·天津改编)设a,b∈R,则“a>b”是“a|a|>b|b|”的________条件.(2)(2014·江西改编)下列叙述中正确的是________.①若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”;②若a,b,c∈R,则“ab2≥cb2”的充要条件是“a>c”;③命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”;④l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.思维启迪要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义.答案(1)充要(2)④解析(1)当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|.(2)由于“若b2-4ac≤0,则ax2+bx+c≥0”是假命题,所以“ax2+bx+c≥0”的充分条件不是“b2-4ac≤0”,①错;因为ab2>cb2,且b2>0,所以a>c.而a>c时,若b2=0,则ab2>cb2不成立,由此知“ab2>cb2”是“a>c”的充分不必要条件,②错;“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2<0”,③错;由l⊥α,l⊥β,可得α∥β,理由:垂直于同一条直线的两个平面平行,④正确.思维升华(1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a,b都是偶数,则a+b是偶数”的逆否命题是________.(2)“log3M>log3N”是“M>N成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)答案(1)若a+b不是偶数,则a,b不都是偶数(2)充分不必要解析(1)判断词“都是”的否定是“不都是”.(2)由log3M>log3N,又因为对数函数y=log3x在定义域(0,+∞)单调递增,所以M>N;当M>N 时,由于不知道M、N是否为正数,所以log3M、log3N不一定有意义.故不能推出log3M>log3N,所以“log3M>log3N”是“M>N成立”的充分不必要条件.热点三逻辑联结词、量词例3(1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,sin x<x,则下列命题正确的是________.①命题p∨q是假命题②命题p∧q是真命题③命题p ∧(綈q )是真命题 ④命题p ∨(綈q )是假命题(2)已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是_________________________________________________________________.思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题要理解量词含义,确定参数范围.答案 (1)③ (2)[1,+∞)解析 (1)对于命题p ,取x =10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,取x =-π2,则sin x =sin(-π2)=-1,此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题,命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题,故③正确.(2)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题,得綈p :∀x ∈R ,mx 2+2>0为真命题,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题,得綈q :∃x ∈R ,x 2-2mx +1≤0为真命题,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②,得m ≥1.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列命题中正确的是________.①p 真q 假 ②p 假q 真③“p ∧q ”为假 ④“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是________.答案 (1)③ (2)(1,+∞)解析 (1)△ABC 中,C >B ⇔c >b ⇔2R sin C >2R sin B (R 为△ABC 外接圆半径),所以C >B ⇔sin C >sin B .故“C >B ”是“sin C >sin B ”的充要条件,命题p 是假命题.若c =0,当a >b 时,则ac 2=0=bc 2,故a >b ac 2>bc 2,若ac 2>bc 2,则必有c ≠0,则c 2>0,则有a >b ,所以ac 2>bc 2⇒a >b ,故“a >b ”是“ac 2>bc 2”的必要不充分条件,故命题q 也是假命题.(2)命题p为真时a≤1;“∃x0∈R,x20+2ax0+2-a=0”为真,即方程x2+2ax+2-a=0有实根,故Δ=4a2-4(2-a)≥0,解得a≥1或a≤-2.(綈p)∧q为真命题,即綈p真且q真,即a>1.1.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江改编)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=________.答案{2}解析因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.2.(2014·重庆改编)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②綈p∧綈q③綈p∧q④p∧綈q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、綈p为假命题,綈q为真命题,綈p∧綈q、綈p∧q为假命题,p∧綈q为真命题,故④为真命题.押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如图所示,得c ≥1.2.已知下列命题:①命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题;③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题.其中正确的命题是________.答案 ②解析 命题“∃x ∈R ,x 2+1>3x ”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错.3.已知p :x +210-x≥0,q :x 2-2x +1-m 2≤0(m <0),且p 是q 的必要不充分条件,求实数m 的取值范围.解 由x +210-x≥0,得-2≤x <10,即p :-2≤x <10; 由x 2-2x +1-m 2≤0(m <0),得[x -(1+m )]·[x -(1-m )]≤0,所以1+m ≤x ≤1-m ,即q :1+m ≤x ≤1-m .又因为p 是q 的必要条件,所以⎩⎪⎨⎪⎧m +1≥-2,1-m <10,解得m ≥-3, 又m <0,所以实数m 的取值范围是-3≤m <0.(推荐时间:40分钟)1.(2014·陕西改编)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =________. 答案 [0,1)解析 N ={x |-1<x <1},M ∩N =[0,1).2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为_______________________________________________________________. 答案 13解析 若x =5∈A ,y =1∈A ,则x +y =5+1=6∈B ,即点(5,1)∈C ;同理,(5,2)∈C ,(4,1)∈C ,(4,2)∈C ,(4,3)∈C ,(3,2)∈C ,(3,3)∈C ,(3,4)∈C ,(2,3)∈C ,(2,4)∈C ,(2,5)∈C ,(1,4)∈C ,(1,5)∈C .所以C 中所含元素的个数为13.3.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为________.答案 7解析 因为A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意,知题图中阴影部分表示的集合为A ∩B ={1,2,3},所以其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.4.“(m -1)(a -1)>0”是“log a m >0”的________条件.答案 必要不充分解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧ m <1,a <1.log a m >0等价于⎩⎪⎨⎪⎧ m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以前者是后者的必要不充分条件.5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是________. 答案 ∀x ∈(0,π2),使得cos x >x 解析 原命题是一个特称命题,其否定是一个全称命题.而“cos x ≤x ”的否定是“cos x >x ”.6.在△ABC 中,“A =60°”是“cos A =12”的________条件. 答案 充要解析 在A =60°时,有cos A =12,因为角A 是△ABC 的内角,所以,当cos A =12时,也只有A =60°,因此,是充要条件.7.(2013·湖北改编)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B =________.答案 {x |0≤x <2或x >4}解析 ∵A ={x |x ≥0},B ={x |2≤x ≤4},∴A ∩∁R B ={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是_________________________________________________________________.答案 2解析 集合A 表示直线l :x +y -1=0上的点的集合,集合B 表示抛物线C :y =x 2+1上的点的集合.由⎩⎪⎨⎪⎧x +y -1=0,y =x 2+1消去y 得x 2+x =0, 由于Δ>0,所以直线l 与抛物线C 有两个交点.即A ∩B 有2个元素.9.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是________.①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真.答案 ③解析 p 是假命题,q 是假命题,因此只有③正确.10.已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.答案 (1,+∞)解析 由x (x -1)≥0可得x ≤0或x ≥1,则P =(-∞,0]∪[1,+∞);又由x -1>0可得x >1,则Q =(1,+∞),所以P ∩Q =(1,+∞).12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则b a=________.答案 -4解析 由A ={x |x >2或x <-1},A ∪B =R ,A ∩B ={x |2<x ≤4},可得B ={x |-1≤x ≤4},则a=-1,b =4,故b a=-4. 13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a =________.答案 1解析 根据题意可得:∀x ∈R ,x 2+2x +m >0是真命题,则Δ<0,即22-4m <0,m >1,故a =1.14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得x 20-x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题.其中真命题的序号是________.(填写所有真命题的序号)答案 ①④解析 对①,因命题“若α=β,则cos α=cos β”为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“∃x 0∈R ,使得x 20-x 0>0”的否定应是:“∀x ∈R ,均有x 2-x ≤0”,故②错;对③,因由“x 2=4”得x =±2,所以“x 2=4”是“x =-2”的必要不充分条件,故③错;对④,p ,q 均为真命题,由真值表判定p 且q 为真命题,故④正确.15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.答案 ②④解析 对于①:取k =12,点(1,1)∈{(x ,y )|x 2≥y },但(12,12)∉{(x ,y )|x 2≥y },故①是不具有性质P 的点集.对于②:∀(x ,y )∈{(x ,y )|2x 2+y 2<1},则点(x ,y )在椭圆2x 2+y 2=1内部,所以对0<k <1,点(kx ,ky )也在椭圆2x 2+y 2=1的内部,即(kx ,ky )∈{(x ,y )|2x 2+y 2<1},故②是具有性质P 的点集.对于③:(x +12)2+(y +1)2=54,点(12,-12)在此圆上,但点(14,-14)不在此圆上,故③是不具有性质P 的点集.对于④:∀(x,y)∈{(x,y)|x3+y3-x2y=0},对于k∈(0,1),因为(kx)3+(ky)3-(kx)2·(ky)=0⇒x3+y3-x2y=0,所以(kx,ky)∈{(x,y)|x3+y3-x2y=0},故④是具有性质P的点集.综上,具有性质P的点集是②④.。

高考数学二轮复习 专题一 集合、常用逻辑用语等 2.1.2 算法、复数、推理与证明课件 理

高考数学二轮复习 专题一 集合、常用逻辑用语等 2.1.2 算法、复数、推理与证明课件 理
[答案] B
2021/12/11
第三十一页,共四十五页。
3.(2018·安徽合肥模拟)《聊斋志异》中有这样一首诗:“挑 水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终 不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:
2 23=
223,3 38=
338,4 145=
4145,5 254=
[感悟体验] 已知数列{an}中,a1=1,an+1=1-an+4 3,数列{bn}满足 bn =an+1 1(n∈N*). (1)求数列{bn}的通项公式; (2)证明:b121+b122+…+b12n<7.
2021/12/11
第四十一页,共四十五页。
[解] (1)由 a1=1,得 b1=12; 由 a1=1,得 a2=0,b2=1; 由 a2=0,得 a3=-13,b3=32; 由 a3=-13,得 a4=-12,b4=2, 由此猜想 bn=n2. 下面用数学归纳法加以证明: ①当 n=1 时,b1=12符合通项公式 bn=n2;
2021/12/11
第三十六页,共四十五页。
高考真题体验G
2021/12/11
第三十七页,共四十五页。
名师微课导学 M
技巧点拨 升华素养
2021/12/11
第三十八页,共四十五页。
热点课题 2 数学归纳法的应用
2021/12/11
第三十九页,共四十五页。
2021/12/11
第四十页,共四十五页。
2021/12/11
第六页,共四十五页。
3.复数运算中常见的结论 (1)(1±i)2=±2i,11+ -ii=i,11- +ii=-i; (2)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i; (3)i4n+i4n+1+i4n+2+i4n+3=0.

高考数学(理)二轮复习专题一集合逻辑用语不等式向量复数算法推

高考数学(理)二轮复习专题一集合逻辑用语不等式向量复数算法推

专题能力训练1 力与物体的平衡(时间:45分钟满分:100分)一、选择题(本题共7小题,每小题8分,共56分。

在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~7题有多个选项符合题目要求。

全部选对的得8分,选对但不全的得4分,有选错的得0分)1.(·全国Ⅱ卷)如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。

若保持F 的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。

物块与桌面间的动摩擦因数为()A.2-√3B.√36C.√33D.√322.如图所示,一物体M放在粗糙的斜面体上保持静止,斜面体静止在粗糙的水平面上。

现用水平力F推物体时,M和斜面仍然保持静止状态,则下列说法正确的是()A.斜面体受到地面的支持力增大B.斜面体受到地面的摩擦力一定增大C.物体M受到斜面的静摩擦力一定增大D.物体M受到斜面的支持力可能减小3.如图所示,质量均可忽略的轻绳与轻杆承受弹力的最大值一定,轻杆A端用铰链固定,滑轮在A 点正上方(滑轮大小及摩擦均可不计),轻杆B端吊一重物G,现将绳的一端拴在杆的B端,用拉力F将B端缓慢上拉(均未断),在AB杆达到竖直前,以下分析正确的是()A.绳子越来越容易断B.绳子越来越不容易断C.AB杆越来越容易断D.AB杆越来越不容易断4.一带电金属小球A用绝缘细线拴着悬挂于O点,另一带电金属小球B用绝缘支架固定于O点的正下方,OA=OB,金属小球A、B静止时位置如图所示。

由于空气潮湿,金属小球A、B缓慢放电。

此过程中,小球A所受的细线的拉力F1和小球B对A的库仑力F2的变化情况是()A.F1减小,F2减小B.F1减小,F2不变C.F1增大,F2增大D.F1不变,F2减小5.如图所示,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑。

已知A与B间的动摩擦因数为μ1,A与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力。

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式4不等式及线性规划文

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式4不等式及线性规划文

作 y1=f(x)及 y2=x 的图象, 则 A(5,5),由于 y1=f(x)及 y2=x 都是奇函数,作它们关于(0,0)的 对称图象,则 B(-5,-5),由图象可看出当 f(x)>x 时,x∈(5,+ ∞)及(-5,0). 答案:(-5,0)∪(5,+∞)
类型二 基本不等式及应用
[例 2] (1)若直线ax+by=1(a>0,b>0)过点(1,1),则 a+b 的最小
类型一 类型二 类型三 类型四 限时速解训练 综合提升训练
必考点四 不等式及线性规划
[高考预测]——运筹帷幄 1.根据不等式性质判断不等式成立,求解不等式. 2.利用基本不等式求解最值问题. 3.根据简单的线性规划求目标函数最值和字母参数.
[速解必备]——决胜千里 1.(1)若 ax2+bx+c=0 有两个不等实根 x1 和 x2(x1<x2) ax2+bx+c>0(a>0)的解为{x|x>x2,或 x<x1} ax2+bx+c<0(a>0)的解为{x|x1<x<x2} (2)ax2+bx+c>0(a≠0)恒成立的条件是aΔ><00,. (3)ax2+bx+c<0(a≠0)恒成立的条件是. 当 x<1 时,x-1<0,ex-1<e0=1≤2, ∴当 x<1 时满足 f(x)≤2. 当 x≥1 时, ≤2,x≤23=8, ∴1≤x≤8.综上可知 x∈(-∞,8].
答案:(-∞,8]
2.已知 f(x)是定义在 R 上的奇函数,当 x>0 时,f(x)=x2-4x, 则不等式 f(x)>x 的解集用区间表示为________.
[速解方略]——不拘一格 类型一 不等式性质及解不等式
[例 1] (1)不等式组x|x|x<+12>0, 的解集为( C )

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

高考数学二轮复习专题一集合、常用逻辑用语、不等式、函数与导数第一讲集合、常用逻辑用语教案理

第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解

高考数学二轮复习第1部分专题一集合常用逻辑用语平面向量复数算法合情推理不等式1集合常用逻辑用语限时速解训练文1(建议用时40分钟)一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=( )A.{1,3,5,6}B.{2,3,7}D.{2,5,7}C.{2,4,7} 解析:选C.由补集的定义,得∁UA={2,4,7}.故选C. 2.已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )A.-3∈AB.3∉BD.A∪B=BC.A∩B=B 解析:选 C.由题知A={y|y≥-1},因此A∩B={x|x≥2}=B,故选C.3.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]D.(-∞,1]C.[0,1) 解析:选A.M={x|x2=x}={0,1},N={x|lgx≤0}={x|0<x≤1},M∪N=[0,1],故选A.4.(2016·山东聊城模拟)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )B.1A.0D.4C.2解析:选D.因为A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},所以则a=4. 5.(2016·湖北八校模拟)已知a∈R,则“a>2”是“a2>2a”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.因为a>2,则a2>2a成立,反之不成立,所以“a>2”是“a2>2a”成立的充分不必要条件.6.已知集合A={z∈C|z=1-2ai,a∈R},B={z∈C||z|=2},则A∩B等于( )B.{-i}A.{1+i,1-i}D.{1-i}C.{1+2i,1-2i} 解析:选A.问题等价于|1-2ai|=2,a∈R,解得a=±.故选A.7.已知命题p:对任意x>0,总有ex≥1,则綈p为( )A.存在x0≤0,使得ex0<1B.存在x0>0,使得ex0<1C.对任意x>0,总有ex<1D.对任意x≤0,总有ex<1解析:选B.因为全称命题的否定是特称命题,所以,命题p:对任意x >0,总有ex≥1的否定綈p为:存在x0>0,使得ex0<1.故选B. 8.已知命题p:∃x0∈R,tan x0=1,命题q:∀x∈R,x2>0.下面结论正确的是( )A.命题“p∧q”是真命题B.命题“p∧(綈q)”是假命题C.命题“(綈p)∨q”是真命题D.命题“(綈p)∧(綈q)”是假命题解析:选D.取x0=,有tan=1,故命题p是真命题;当x=0时,x2=0,故命题q是假命题.再根据复合命题的真值表,知选项D是正确的.9.给出下列命题:①∀x∈R,不等式x2+2x>4x-3均成立;②若log2x+logx2≥2,则x>1;③“若a>b>0且c<0,则>”的逆否命题;④若p且q为假命题,则p,q均为假命题.其中真命题是( )B.①②④A.①②③D.②③④C.①③④ 解析:选A.①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+≥2,得x>1;③中由a>b>0,得<,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.10.(2016·山东济南模拟)设A,B是两个非空集合,定义运算A×B={x|x∈A∪B,且x∉A∩B}.已知A={x|y=},B={y|y=2x,x>0},则A×B=( )B.[0,1)∪[2,+∞)A.[0,1]∪(2,+∞)D.[0,2]C.[0,1] 解析:选 A.由题意得A={x|2x-x2≥0}={x|0≤x≤2},B={y|y>1},所以A∪B=[0,+∞),A∩B=(1,2],所以A×B=[0,1]或(2,+∞).11.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.若“直线y=x+b与圆x2+y2=1相交”,则圆心到直线的距离为d=<1,即|b|<,不能得到0<b<1;反过来,若0<b<1,则圆心到直线的距离为d=<<1,所以直线y=x+b与圆x2+y2=1相交,故选B.12.(2016·陕西五校二模)下列命题正确的个数是( )①命题“∃x0∈R,x+1>3x0”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.B.2A.1D.4C.3 解析:选 B.易知①正确;因为f(x)=cos 2ax,所以=π,即a=±1,因此②正确;因为x2+2x≥ax在x∈[1,2]上恒成立⇒a≤x+2在x∈[1,2]上恒成立⇒a≤(x+2)min,x∈[1,2],因此③不正确;因为钝角不包含180°,而由a·b<0得向量夹角包含180°,因此“平面向量a与b的夹角是钝角”的充要条件是“a·b<0且a与b不反向”,故④不正确.二、填空题(把答案填在题中横线上) 13.若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是________.解析:由|x-m|<2得-2<x-m<2,即m-2<x<m+2.依题意有集合{x|2≤x≤3}是{x|m-2<x<m+2}的真子集,于是有,由此解得1<m<4,即实数m的取值范围是(1,4).答案:(1,4) 14.若命题“∃x0∈R,x-2x0+m≤0”是假命题,则m的取值范围是________.解析:由题意,命题“∀x∈R,x2-2x+m>0”是真命题,故Δ=(-2)2-4m<0,即m>1.答案:(1,+∞) 15.已知p:∃x0∈R,mx+2≤0,q:∀x∈R,x2-2mx+1>0,若p∨q为假命题,则实数m的取值范围是________.解析:因为p∨q是假命题,所以p和q都是假命题.由p:∃x0∈R,mx+2≤0为假命题知,綈p:∀x∈R,mx2+2>0为真命题,所以m≥0.①由q:∀x∈R,x2-2mx+1>0为假命题知,綈q:∃x0∈R,x-2mx0+1≤0为真命题,所以Δ=(-2m)2-4≥0⇒m2≥1⇒m≤-1或m≥1.②由①和②得m≥1.答案:[1,+∞) 16.下列四个命题中,真命题有________.(写出所有真命题的序号)①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;②命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”;③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;④函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点.解析:①若c=0,则不论a,b的大小关系如何,都有ac2=bc2,而若ac2>bc2,则有a>b,故“ac2>bc2”是“a>b”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x0∈R,x+x0+1<0”的否定是“∀x∈R,x2+x+1≥0”,故②为真命题;③命题“若p,则q”形式的命题的否命题是“若綈p,则綈q”,故命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”,故③为真命题;④由于f(1)f(2)==×<0,则函数f(x)=ln x+x-在区间(1,2)上存在零点,又函数f(x)=ln x+x-在区间(1,2)上为增函数,所以函数f(x)=ln x+x-在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④。

高考数学二轮复习专题一集合、常用逻辑用语、不等式1.

高考数学二轮复习专题一集合、常用逻辑用语、不等式1.

·2������=2,当且仅当2������
=
2������,即
x=2
时,取等号,
-7-
热点考题诠释 高考方向解读
∴当 x>1 时,p(x)min=2.
∵设31q96(>x2)=,∴-f(px()x-)���2���m, in=2.
则 q(x)=
-������2
+
������ 2
-3,������
≥4×2
900=240,当且仅当 x=90������0,即 x=30 时等号成立.
关闭
30
解析 答答案案
热点考题诠释 高考方向解读
-10-
在近几年的高考试卷中对不等式的考查,主要热点是线性规划知 识、基本不等式、解不等式及绝对值不等式.解不等式主要涉及一 元二次不等式、简单的对数和指数不等式等,并且以一元二次不等 式为主,重在考查等价转化能力和基本的解不等式的方法;基本不 等式的考查重在对代数式的转化过程及适用条件、等号成立条件 的检验,常用来求最值或求恒成立问题中参数的取值范围;线性规 划问题是高考的一个必考内容,主要还是强调用数形结合的方法来 寻求最优解的过程,在参数设置上有较大的灵活性,体现了数学知 识的实际综合应用,绝对值不等式的考查往往立足于能力立意,具 有较强的综合性.不等式知识的考查以选择题、填空题为主,有时 也蕴含在解答题中.
热点考题诠释 高考方向解读
第2讲 不等式
-2-
热点考题诠释 高考方向解读
������ ≥ 0,
1.(2017 浙江,4)若 x,y 满足约束条件 ������ + ������-3 ≥ 0,则 z=x+2y 的取值
������ ≥ 0,
������-2������ ≤ 0,

高考数学新课标全国二轮复习课件1.集合与常用逻辑用语、不等式2

高考数学新课标全国二轮复习课件1.集合与常用逻辑用语、不等式2

������(������) ②变形⇒ ������(������) ≥0(≤0)⇔f(x)g(x)≥0(≤0),且g(x)≠0.
(2)简单指数不等式的解法
①当a>1时,af(x)>ag(x)⇔f(x)>g(x);
②当0<a<1时,af(x)>ag(x)⇔f(x)<g(x).
(3)简单对数不等式的解法
第二讲
不等式
不等式
(1)不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. (2)一元二次不等式
①会从实际情境中抽象出一元二次不等式模型.
②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联
系.
③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题 ①会从实际情境中抽象出二元一次不等式组. ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等 式组. ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解 决. (4)基本不等式:
①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题.
①列出约束条件,将约束条件中的每一个不等式当作等式作出相应的直线,确定
原不等式表示的平面区域,然后找出所有平面区域的交集即可行域.在此过程中特 别要注意不等式所表示的直线的虚实.
②作出目标函数对应的直线. ③在可行域内平行移动目标函数对应的直线,求出最优解.
(3)最优解的确定方法:
将目标函数对应的直线在可行域内平行移动时,最先通过或最后通过的点是最 优解.
,
>0,
即������ − ������ >0.故①正确.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的解集为( )
≤ 0,即-1<x≤1,不等式 ������-1 ≤0
2
2������ +1
关闭
的解
集 (2)为将BC..不---1212等12,,1,11式. 变形得3-������2+8>3-2x,则-x2+8>-2x,从而 x2-2x-8<0,
即 (3)(∵D(x2+.)不不2-)∞等(等x,--式4式12)(<∪x130-1[,解1)������2,2+<得-8∞3>x-)2-37<-2可xx <的化4解,故为集不x是2等-5x式+的8<解0,即集是���.���-{x52|-22<+x74<<40},.∴A=⌀ ,
-3-
试题统计
(2015 全国Ⅰ,理 15) (2015 全国Ⅱ,理 14) (2016 全国Ⅰ,理 1) (2016 全国Ⅰ,理 16) (2016 全国Ⅱ,理 2) (2016 全国Ⅲ,理 1) (2016 全国Ⅲ,理 13) (2017 全国Ⅰ,理 14) (2017 全国Ⅱ,理 5) (2017 全国Ⅲ,理 13)
1.2 不等式、线性规划
-2-
试题统计
(2013 全国Ⅰ,理 1) (2013 全国Ⅱ,理 1) (2013 全国Ⅱ,理 9) (2014 全国Ⅰ,理 1) (2014 全国Ⅰ,理 9) (2014 全国Ⅱ,理 1) (2014 全国Ⅱ,理 9)
题型 命题规律
高考对不等式
的性质及不等
式解法的考查
一般不会单独
(5)不等式2���1���-1<1 可化为2���1���-1-1<0,即22-������2-���1���<0,因此(x-1)
������- 1
2
>0,
解得 x>1 或 x<1,即不等式的解集为 ������ ������ > 1 或������ < 1 .
关闭
(3)C
2
(4)[-3,1]
(5)
对数不等式的基本思想是什么?
例1(1)不等式x2+2x-3≥0的解集为( )
A.{x|x≤-1或x≥3}
B.{x|-1≤x≤3}
C.{x|x≤-3或x≥1}
D.{x|-3≤x≤1}
(2)不等式-x2≥x-2的解集为( )
关闭
(1)由Ax.2{+x2|xx-≤3≥-02,得或(xx≥+3)1(}x-1)≥0,解得x≤-3或x≥1,故选C.
2.解指数不等式、对数不等式的基本思想是利用函数的单调性, 把不等式转化为整式不等式求解.
-7-
命题热点一 命题热点二 命题热点三 命题热点四
(1)2对 A������������-.+1点1-≤∞训,0-练12等∪1价(1[于1)不,+(2等∞������������-)1式+)(212���������������-≠+���1+10≤,10)
命题,经常与集
选择题 填空题
合知识相结合 来命题,难度较 小,也经常作为
工具性知识渗
透在函数、三
角、数列、解
析几何等题目
中;
复习策略
抓住考查的主要 题目类型进行训 练,重点是一元 二次不等式、简 单的分式不等 式、对数和指数 不等式的解法; 求目标函数的最 值或范围;已知 目标函数的最值 求参数值或范 围.
������-������ ≤ 0 z由=3zx=-23yx-的2y最,得小y值=32为x-2������.求 z 的最小. 值,即求 直线 y=32x-2������的纵截距的最大值. 数形结合知当直线 y=32x-2������过图中点 A 时, 纵截距最大.
������-������ ≤ 0,

2������ + ������ ������ + 2������
= =
-1,解得 1,
(2)原B不.{等x|-式2<可x<化1为} x2+x-2≤0,即(x+2)(x-1)≤0,解得-2≤x≤1.故选C. (1)CC.{(2x)|C-2≤x≤1}
D.⌀
解析
关闭
答案
-5-
命题热点一 命题热点二 命题热点三 命题热点四
(3)若 log1(1-x)<log1x,则( )
2
2
AC..(003<<)由xx<<已1213 知可BD得..x12<<1������12x-<>������1>0,
解析 答案
-8-
命题热点一 命题热点二 命题热点三 命题热点四
求线性目标函数的最值
【思考】 求线性目标函数最值的一般方法是什么?
关闭
������ + 2������ ≤ 1,
������ + 2������ ≤ 1,
不等例式组2(2021������7+全������国≥Ⅰ-1,理,表1示4)的设平x,面y 满区足域约如束图条所件示. 2������ + ������ ≥ -1,则
������
������ > 1 或������ < 1
2
2
解析 答案
-6-
命题热点一 命题热点二 命题热点三 命题热点四
题后反思1.解一元二次不等式先化为一般形式ax2+bx+c>0(a≠0), 再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次 函数图象与x轴的位置关系,确定一元二次不等式的解集;解分式不 等式首先要移项、通分、化简,然后转化为整式不等式求解.
故素(A.3∩)设Z集中合没A有={元x|素(x-.1)2<3x-7},则集合A∩Z中有
ห้องสมุดไป่ตู้
个元
(4)由(4)题若意关得于xΔ的=(不-4等)2-式4ax2<2-04,x+a2≤0的解集是空集,则实数a的取值范关闭
解(围1)得是C a>(22){或x|-a2<<. -x2<. 4} (3)0 (4)(-∞,-2)∪(2,+∞)
题型
命题规律
复习策略
高考对线性规划考 查的频率非常高, 几乎每年都有题 目,重点是确定二 元一次不等式(组) 表示的平面区域, 求目标函数的最值 或范围,已知目标 函数的最值求参数 值或范围等.
-4-
命题热点一 命题热点二 命题热点三 命题热点四
简单不等式的解法
【思考】 如何解一元二次不等式、分式不等式?解指数不等式、
0, 解得
0<x<1,故选
C.
关闭
2
(4)函数 y= 3-2������-1������-2������的>定������义, 域是
.
-3≤(5x()≤4不)要1等.所使式以函2���1函���数-1数<有1意y的=义解3,必集-2须是������-���3���2-2的x-定x2义≥0域,即是x[.-23+,12]x.-3≤0,所以
相关文档
最新文档