2020届三维设计一轮复习第二章 函数的概念与基本初等函数第八节 指数式、对数式的运算

合集下载

【三维设计】高考数学一轮复习 第2节 函数的定义域和值域 课件

【三维设计】高考数学一轮复习 第2节 函数的定义域和值域 课件

[正确解答] 由函数f(x)的值域为(-∞,0]可知,函数f(x)的最大 值为0,可求得a=-2. [答案] C
点击此图进入
解析:由题意知f(x)=xx- 3-22,,xx∈∈[-1,2,2]1,], 当x∈[-2,1]时,f(x)∈[-4;-1]; 当x∈(1,2]时,f(x)∈(-1,6], ∴当x∈[-2,2]时,f(x)∈[-4,6].
答案:[-4,6]
[冲关锦囊] 函数的值域是由其对应关系和定义域共同决定 的.常用的求解方法有 (1)基本不等式法,此时要注意其应用的条件; (2)配方法,主要适用于可化为二次函数的函数,此时要 特别注意自变量的范围;








数、














抓基础 明考向 提能力
教你一招 我来演练
[备考方向要明了] 考什么
1.了解定义域、值域是构成函数的要素. 2.会求一些简单函数的定义域和值域.
怎么考
函数的定义域与值域是每年高考必考的知识点之一, 考查重点是求函数的定义域和值域,近几年加强了求 已知函数的定义域与值域的考查,多与指数函数、对 数函数相关.
确定的,因此,在研究函数值域时,既要重视对应关系的 作用,又要特别注意定义域对值域的制约作用.
2.基本初等函数的值域 (1)y=kx+b(k≠0)的值域是 R . (2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为
{y|y≥4ac4-a b2} ;当a<0时,值域为 {y|y≥4ac4-a b2} .
(3)法一:(换元法)令 1-2x=t,则t≥0且x=1-2 t2, 于是y=1-2 t2-t=-12(t+1)2+1, 由于t≥0,所以y≤12,故函数的值域是-∞,12. 法二:(单调性法)容易判断f(x)为增函数,而其定义域应满足1 -2x≥0,即x≤12,所以y≤f12=12,即函数的值域是-∞,12.

高2020届高2017级高三文科数学三维设计一轮复习教师用书第二章 函数的概念与基本初等函数Ⅰ

高2020届高2017级高三文科数学三维设计一轮复习教师用书第二章  函数的概念与基本初等函数Ⅰ

第二章|函数的概念与基本初等函数Ⅰ全国卷5年考情图解高考命题规律把握1.本章在高考中一般为2~3个客观题.2.高考中基础题主要考查对基础知识和基本方法的掌握.主要涉及函数奇偶性的判断,函数的图象,函数的奇偶性、单调性及周期性综合,指、对运算以及指、对函数的图象与性质,分段函数求函数值等. 3.本章一般不单独涉及解答题,大多与导数、不等式结合命题,试题难度较大.第一节函数及其表示一、基础知识批注——理解深一点1.函数与映射的概念2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发. (2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (3)各段函数的定义域不可以相交.二、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”) (1)对于函数f :A →B ,其值域是集合B .( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (3)函数是一种特殊的映射.( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (二)选一选1.函数y =log 2(2x -4)+1x -3的定义域是( )A .(2,3)B .(2,+∞)C .(3,+∞)D .(2,3)∪(3,+∞)解析:选D 由题意,得⎩⎪⎨⎪⎧2x -4>0,x -3≠0,解得x >2且x ≠3,所以函数y =log 2(2x -4)+1x -3的定义域为(2,3)∪(3,+∞).2.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x +1D .y =x 2+1解析:选B 对于A,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,定义域和对应关系都相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D,定义域相同,但对应关系不同,不是相等函数,故选B.3.函数y =x -1+1的值域为( ) A .(0,+∞) B .(1,+∞) C .[0,+∞)D .[1,+∞)解析:选D 函数y =x -1+1的定义域为[1,+∞),且在[1,+∞)上为增函数,所以当x =1时,y 取得最小值1.故函数的值域为[1,+∞).(三)填一填4.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.解析:若a ≥0,则a +1=2,得a =1; 若a <0,则-a +1=2,得a =-1. 故a =±1. 答案:±15.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,则x =1t (t ≠0),即f (t )=1t 2+5t ,∴f (x )=5x +1x 2(x ≠0). 答案:5x +1x 2(x ≠0)考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1)B.⎝⎛⎭⎫-1,-12C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.定义域,是何意,自变量,有意义; 分式分母不为零,对数真数只取正; 偶次根式要非负,三者结合生万物; 和差积商定义域,不等式组求交集; 抽象函数定义域,对应法则内相同.[题组训练]1.[口诀第2、3、4句]函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.[口诀第5句]若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1} 考点二 求函数的解析式求函数的解析式常用方法有待定系数法、换元法、配凑法、解方程组法. [典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12, 所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).解析式,如何定,待定换元解方程; 已知函数有特征,待定系数来确定; 复合函数问根源,内函数,先换元; 两个函数有关系,方程组中破玄机.[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg 2x -1(x >1)3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x .②联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1) [课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x-1D .y =x +1x -1解析:选D 对于A,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B,定义域为(0,+∞),值域为R,不满足题意;对于C,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516 B .3 C .-6364或3 D .-1516或3 解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x+x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识批注——理解深一点1.增函数、减函数定义:设函数f (x )的定义域为I :(1)增函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数.(2)减函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数.增(减)函数定义中的x 1,x 2的三个特征一是任意性;二是有大小,即x 1<x 2(x 1>x 2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y =f (x )的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f (x )≤M 或f (x )≥M . (2)存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论汇总——规律多一点在公共定义域内:(1)函数f (x )单调递增,g (x )单调递增,则f (x )+g (x )是增函数; (2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( )(3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)×(二)选一选1.若函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12解析:选B 若函数y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.2.下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =-x 2+1 C .y =2x D .y =log 2|x |解析:选B 因为函数的图象是轴对称图形,所以排除A 、C,又y =-x 2+1在 (0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].(三)填一填4.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7] 5.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性(区间)[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1, 则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法 f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减;当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x -xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+ax 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值)[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[解题技法] 求函数最值的5种常用方法[口诀归纳]单调性,左边看,上坡递增下坡减; 函数值,若有界,上界下界值域外.[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________. 解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4, 当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用 考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减, 故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12. [课时跟踪检测]A 级——保大分专练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a . 因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=x x +2. 任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级——创高分自选1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( ) A .(-∞,0)∪(0,1] B .(-1,0)∪(0,1] C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )> -1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节函数的奇偶性与周期性一、基础知识批注——理解深一点1.函数的奇偶性❶么函数f(x)是偶函数函数f(x)是奇函数图象特征关于y轴对称关于原点对称❶函数的定义域关于原点对称是函数具有奇偶性的前提条件.❷若f(x)≠0,则奇(偶)函数定义的等价形式如下:(1)f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(-x)f(x)=1⇔f(x)为偶函数;(2)f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(-x)f(x)=-1⇔f(x)为奇函数.2.函数的周期性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.周期函数定义的实质存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.二、常用结论汇总——规律多一点1.函数奇偶性常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,则一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”) (1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( ) (5)若T 是函数的一个周期,则nT (n ∈Z,n ≠0)也是函数的周期.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(二)选一选1.已知f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=2x ,则f ⎝⎛⎭⎫92等于( ) A.12 B. 2 C.22D .1解析:选B 由f (x +2)=f (x ),知函数f (x )的周期T =2,则f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=212= 2. 2.函数f (x )=3x -2x 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称D .直线y =x 对称解析:选C 因为f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=3-x-(-2x )=-3x +2x =-⎝⎛⎭⎫3x -2x =-f (x ),所以f (x )=3x-2x 是奇函数,所以其图象关于坐标原点对称.3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.(三)填一填4.(2019·武汉调研)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )= 2-x+x 2,则f (2)=________.解析:法一:∵函数f (x )是定义在R 上的奇函数,∴f (2)=-f (-2)=-[2-(-2)+(-2)2]=-(4+4)=-8.法二:当x >0时,-x <0,∴f (-x )=2-(-x )+(-x )2=2x +x 2,又函数f (x )是定义在R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2x -x 2,∴f (2)=-22-22=-8.答案:-85.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.解析:由函数f (x )为奇函数,作出函数在[-5,0)上的图象,由图象知,不等式f (x )<0的解集为(-2,0)∪(2,5].答案:(-2,0)∪(2,5]考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1;。

【三维设计】2020届高考数学 第二章第八节幂函数与二

【三维设计】2020届高考数学 第二章第八节幂函数与二

[精析考题] [例2] (2010·安徽高考)设abc>0,二次函数f(x)=ax2+ bx+c的图象可能是 ()
[自主解答] 若a>0,b<0,c<0,则对称轴x=-2ba>0, 图象与y轴的交点(0,c)在负半轴上.
[答案] D
若将本例中“abc>0”改为“abc<0”二次函数f(x)=ax2+ bx+c的图象不可能是哪一个?
A.1,3
B.-1,1
C.-1,3
D.-1,1,3
1
解析:在函数 y=x-1,y=x,y= x 2 ,y=x3 中,只有函数 y=x 和 y=x3 的定义域是 R,且是奇函数,故 a=1,3.
答案: A
4.(2012·蚌埠二中模拟)函数y=3- 2-2x+x2的值域 是________. 解析:∵2-2x+x2=(x-1)2+1≥1,∴ 2-2x+x2≥1.∴y≤2.
则f(x)的表达式为( )
A.f(x)=x2
B.f(x)=x-2
1
C.f(x)=x x 2
1
D.f(x)= x 2
解析:设幂函数的解析式为y=xα,则3= 33α,∴α=-2.
∴y=x-2.
答案:B
3.(教材习题改编)设α∈-1,1,12,3,则使函数y=xα的
定义域为R且为奇函数的所有α值为
()
1.(2012·义乌质检)函数 f(x)=(m2-m-1) xm22m3是幂函数,
且在 x∈(0,+∞)上是减函数,则实数 m 的值为 ( )
A.2
B.3
C.4
D.5
解析:由题意知m2-m-1=1,得m=-1或m=2, 再验证m2-2m-3<0,得m=2. 答案: A

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.1函数的概念及其表示教师用书(PDF,含解析)

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.1函数的概念及其表示教师用书(PDF,含解析)

1-2
函数 f(x) 的定义域为(0ꎬ1]ꎬ则函数 f
lg x2 +x 2
的定
义域为
( )
A.[ -5ꎬ4]
B.[ -5ꎬ-2)
C.[ -5ꎬ-2] ∪[1ꎬ4]
D.[ -5ꎬ-2) ∪(1ꎬ4]Leabharlann 1-2 答案 D解析

函数
f( x) 的定义域为(0ꎬ1] ꎬ∴
0<lg
x2 +x≤1ꎬ即 2
对应学生用书起始页码 P14
一、函数定义域的求解方法
������������������������������������������������������������������������������������������������������������������������������������������������������������������
2.( 1) 函数的定义域、值域 在函数 y =f(x)ꎬx∈A 中ꎬx 叫做自变量ꎬx 的取值范围 A 叫做函 数的定义域ꎻ与 x 的值相对应的 y 值叫做函数值ꎬ函数值的集合
������������������������������������������������������
对应学生用书起始页码 P13
������������������������
1 8 5 年高考 3 年模拟 B 版( 教师用书)
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.7函数模型和函数的综合应用教师用书(PDF,含解析

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.7函数模型和函数的综合应用教师用书(PDF,含解析

特点是随着自变量的增大ꎬ函数值增大的速度越来越快( b>1ꎬ且
a> 0) .常形象地称之为“ 指数爆炸” .
(4) 对数函数模型:y = mloga x+n( a>0ꎬa≠1ꎬ且 m≠0) ꎬ增长 特点是随着自变量的增大ꎬ函数值增大的速度越来越慢( a>1ꎬ且
m> 0) .常形象地称之为“ 蜗牛式增长” .
在此基础上ꎬ每年投入的研发资金比上一年增长 12%ꎬ则该公司
全年投入的研发资金开始超过 200 万元的年份是
( )
( 参考数据:lg 1.12≈0.05ꎬlg 1.3≈0.11ꎬlg 2≈0.30)
A.2018 年 B.2019 年 C.2020 年 D.2021 年
1-1 答案 B
解析 设第 n(n∈N∗ ) 年该公司全年投入的研发资金开 始超过 200 万元.根据题意得 130(1+12%) n-1 >200ꎬ
(12 分)
综合①② 知ꎬ 当 x = 32 时ꎬ W 取 得 最 大 值ꎬ 故 最 大 利 润 为
6 104万美元.
(13 分)
1-1 (2016 四川ꎬ7ꎬ5 分) 某公司为激励创新ꎬ计划逐年加
3 4 5 年高考 3 年模拟 B 版( 教师用书)
大研发资金投入.若该公司 2015 年全年投入研发资金 130 万元ꎬ
§ 2.7 函数模型和函数的综合应用
1.三种函数模型性质的比较
函数 性质
y = ax(a>1)
y = loga x( a>1)
在(0ꎬ+∞ ) 上的增减性
单调递增
单调递增
y = xn(n>0) 单调递增
增长速度
越来越快
越来越慢

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)函数与方程教学案

【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)函数与方程教学案

第九节函数与方程[知识能否忆起]1.函数的零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理):如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.[小题能否全取]1.(教材习题改编)下列图象表示的函数中能用二分法求零点的是( )答案:C2.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12解析:选C ∵2a +b =0,∴g (x )=-2ax 2-ax =-ax (2x +1). ∴零点为0和-12.3.(教材习题改编)根据表格中的数据,可以判定方程e x-x -2=0的一个根所在的区间为( )A.(-1,0) C .(1,2)D .(2,3)解析:选C 设函数f (x )=e x-x -2,从表中可以看出f (1)·f (2)<0,因此方程e x-x -2=0的一个根所在的区间为(1,2).4.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析:由f (2)·f (3)<0可知x 0∈(2,3). 答案:(2,3)5.已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=x 2+x +a 在(0,1)上有零点. ∴f (0)f (1)<0.即a (a +2)<0,解得-2<a <0. 答案:(-2,0)1.函数的零点不是点:函数y =f (x )的零点就是方程f (x )=0的实数根,也就是函数y =f (x )的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.2.对函数零点存在的判断中,必须强调: (1)f (x )在[a ,b ]上连续; (2)f (a )·f (b )<0;(3)在(a ,b )内存在零点.这是零点存在的一个充分条件,但不必要.3.对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.典题导入[例1] (2012·唐山统考)设f (x )=e x+x -4,则函数f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)[自主解答] ∵f (x )=e x+x -4,∴f ′(x )=e x+1>0.∴函数f (x )在R 上单调递增.f (-1)=e -1+(-1)-4=-5+e -1<0,f (0)=-3<0,f (1)=e +1-4=e -3<0,f (2)=e 2+2-4=e 2-2>0,f (1)f (2)<0,故零点x 0∈(1,2).[答案] C由题悟法利用函数零点的存在性定理判断零点所在的区间时,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续不断,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.以题试法1.(2013·衡水模拟)设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B 设函数f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2,f (1)·f (2)<0,且f (x )为单调函数,则x 0∈(1,2).典题导入[例2] (1)(2012·北京高考)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点的个数为( )A .0B .1C .2D .3(2)(2012·北京东城区模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1[自主解答] (1)在同一平面直角坐标系内作出y 1=x 12与y 2=⎝ ⎛⎭⎪⎫12x的图象如图所示,易知,两函数图象只有一个交点,因此函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x只有1个零点.(2)由f (f (x ))+1=0可得f (f (x ))=-1,又由f (-2)=f ⎝ ⎛⎭⎪⎫12=-1. 可得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x =2,综上可得函数y =f (f (x ))+1有4个零点. [答案] (1)B (2)A由题悟法判断函数零点个数的常用方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要判断函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数.以题试法2.(2012·湖北高考)函数f (x )=x cos x 2在区间[0,4]上的零点个数为( )A .4B .5C .6D .7解析:选C 令x cos x 2=0,则x =0,或x 2=k π+π2,又x ∈[0,4],因此x k =k π+π2(k =0,1,2,3,4),共有6个零点.典题导入[例3] (2011·辽宁高考改编)已知函数f (x )=e x-x +a 有零点,则a 的取值范围是________.[自主解答] ∵f (x )=e x-x +a , ∴f ′(x )=e x-1.令f ′(x )=0,得x =0.当x <0时,f ′(x )<0,函数f (x )在(-∞,0)上是减函数; 当x >0时,f ′(x )>0,函数f (x )在(0,+∞)上是增函数. 故f (x )min =f (0)=1+a .若函数f (x )有零点,则f (x )min ≤0, 即1+a ≤0,得a ≤-1. [答案] (-∞,-1]若函数变为f (x )=ln x -2x +a ,其他条件不变,求a 的取值范围. 解:∵f (x )=ln x -2x +a ,∴f ′(x )=1x-2.令f ′(x )=0,得x =12.当0<x ≤12时f ′(x )≥0,∴f (x )为增函数;当x >12时,f ′(x )<0,∴f (x )为减函数.∴f (x )max =f ⎝ ⎛⎭⎪⎫12=ln 12-1+a . 若f (x )有零点,则f (x )max ≥0,即ln 12-1+a ≥0.解得a ≥1-ln 12,a 的取值范围为[)1+ln 2,+∞.由题悟法已知函数有零点(方程有根)求参数取值常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.以题试法3.已知函数f (x )满足f (x +1)=f (x -1),且f (x )是偶函数,当x ∈[0,1]时,f (x )=x ,若在区间[-1,3]上函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围是______.解析:由f (x +1)=f (x -1)得,f (x +2)=f (x ),则f (x )是周期为2的函数.∵f (x )是偶函数,当x ∈[0,1]时,f (x )=x ,∴当x ∈[-1,0]时,f (x )=-x ,易得当x ∈[1,2]时,f (x )=-x +2,当x ∈[2,3]时,f (x )=x -2.在区间[-1,3]上函数g (x )=f (x )-kx -k 有4个零点,即函数y =f (x )与y =kx +k 的图象在区间[-1,3]上有4个不同的交点.作出函数y =f (x )与y =kx +k 的图象如图所示,结合图形易知,k ∈⎝ ⎛⎦⎥⎤0,14.答案:⎝ ⎛⎦⎥⎤0,141.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .0解析:选D 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x=0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0.2.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f ⎝ ⎛⎭⎪⎫-12·f ⎝ ⎛⎭⎪⎫12<0,则方程f (x )=0在[-1,1]内( )A .可能有3个实数根B .可能有2个实数根C .有唯一的实数根D .没有实数根解析:选C 由f (x )在[-1,1]上是增函数,且f ⎝ ⎛⎭⎪⎫-12·f ⎝ ⎛⎭⎪⎫12<0,知f (x )在⎣⎢⎡⎦⎥⎤-12,12上有唯一零点,所以方程f (x )=0在[-1,1]上有唯一实数根.3.(2012·长沙模拟)已知函数f (x )的图象是连续不断的,x 、f (x )的对应关系如下表:A .区间[1,2]和[2,3]B .区间[2,3]和[3,4]C .区间[2,3]、[3,4]和[4,5]D .区间[3,4]、[4,5]和[5,6]解析:选C 因为f (2)>0,f (3)<0,f (4)>0,f (5)<0,所以在区间[2,3],[3,4],[4,5]内有零点.4.(2013·北京西城二模)执行如图所示的程序框图,若输入如下四个函数: ①y =2x; ②y =-2x; ③f (x )=x +x -1;④f (x )=x -x -1. 则输出函数的序号为( )A .①B .②C .③D .④解析:选D 由图可知输出结果为存在零点的函数,因2x>0,所以y =2x没有零点,同样y =-2x 也没有零点;f (x )=x +x -1,当x >0时,f (x )≥2,当x <0时,f (x )≤-2,故f (x )没有零点;令f (x )=x -x -1=0得x =±1,故选D.5.(2012·北京朝阳统考)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 由条件可知f (1)f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解之得0<a <3.6.(2013·哈师大模拟)若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧lg x ,x >0,0,x =0,-1x,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]内的零点个数是( )A .5B .7C .8D .10解析:选C 依题意得,函数f (x )是以2为周期的函数,在同一坐标系下画出函数y =f (x )与函数y =g (x )的图象,结合图象得,当x ∈[-5,5]时,它们的图象的公共点共有8个,即函数h (x )=f (x )-g (x )在区间[-5,5]内的零点个数是8.7.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈______,第二次应计算________.解析:因为f (x )=x 3+3x -1是R 上的连续函数,且f (0)<0,f (0.5)>0,则f (x )在x ∈(0,0.5)上存在零点,且第二次验证时需验证f (0.25)的符号.答案:(0,0.5) f (0.25)8.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. 解析:函数f (x )的零点个数就是函数y =a x与函数y =x +a 的图象交点的个数,易知当a >1时,两图象有两个交点;当0<a <1时,两图象有一个交点.答案:(1,+∞)9.(2013·南通质检)已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.解析:因为Δ=(1-k )2+4k =(1+k )2≥0对一切k ∈R 恒成立,又k =-1时,f (x )的零点x =-1∉(2,3),故要使函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则必有f (2)·f (3)<0,即2<k <3.答案:(2,3)10.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0. 证明:令g (x )=f (x )-x .∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0,即f (x 0)=x 0. 11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解:设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,则应有f (2)<0, 又∵f (2)=22+(m -1)×2+1,∴m <-32.②若f (x )=0在区间[0,2]上有两解,则 ⎩⎪⎨⎪⎧ Δ≥0,0<-m -12<2,f 2 ≥0,∴⎩⎪⎨⎪⎧m -1 2-4≥0,-3<m <1,4+ m -1 ×2+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知m 的取值范围(-∞,-1].12.若函数f (x )=ax 2-x -1有且仅有一个零点,求实数a 的取值范围.解:(1)当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点.(2)当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根.则Δ=1+4a =0,解得a =-14.综上,当a =0或a =-14时,函数仅有一个零点.1.(2012·“江南十校”联考)已知关于x 的方程|x 2-6x |=a (a >0)的解集为P ,则P 中所有元素的和可能是( )A .3,6,9B .6,9,12C .9,12,15D .6,12,15解析:选B 如图,函数y =|x 2-6x |的图象关于直线x =3对称,将直线y =a 从下往上移动可知:P 中所有元素的和可能是6,9,12.2.已知函数f (x )=⎩⎪⎨⎪⎧x -2,x >0,-x 2+bx +c ,x ≤0满足f (0)=1,且f (0)+2f (-1)=0,那么函数g (x )=f (x )+x 的零点个数为________.解析:∵f (0)=1,∴c =1.又∵f (0)+2f (-1)=0,∴f (-1)=-1-b +1=-12,得b=12.∴当x >0时,g (x )=2x -2=0有唯一解x =1;当x ≤0时,g (x )=-x 2+32x +1,令g (x )=0,得x =2(舍去)或x =-12,即g (x )=0有唯一解.综上可知,g (x )=f (x )+x 有2个零点.答案:23.已知二次函数f (x )=ax 2+bx +c .(1)若a >b >c ,且f (1)=0,试证明f (x )必有两个零点;(2)若对x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有两个不等实根,证明必有一个实根属于(x 1,x 2).证明:(1)∵f (1)=0,∴a +b +c =0,又∵a >b >c ,∴a >0,c <0,即ac <0.又∵Δ=b 2-4ac ≥-4ac >0,∴方程ax 2+bx +c =0有两个不等实根,∴函数f (x )有两个零点.(2)令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f x 1 -f x 22,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f x 2 -f x 12,∴g (x 1)·g (x 2)=f x 1 -f x 2 2·f x 2 -f x 1 2=-14[f (x 1)-f (x 2)]2. ∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0.∴g (x )=0在(x 1,x 2)内必有一实根.即f (x )=12[f (x 1)+f (x 2)]在(x 1,x 2)内必有一实根.1.对于定义域为D 的函数f (x ),若存在区间M =[a ,b ]⊆D (a <b ),使得{y |y =f (x ),x ∈M }=M ,则称区间M 为函数f (x )的“等值区间”.给出下列四个函数:①f (x )=2x ;②f (x )=x 3;③f (x )=sin x ;④f (x )=log 2x +1.则存在“等值区间”的函数是________.(把正确的序号都填上)解析:问题等价于方程f (x )=x 在函数的定义域内是否存在至少两个不相等的实根,由于2x >x ,故函数f (x )=2x 不存在等值区间;由于x 3=x 有三个不相等的实根x 1=-1,x 2=0,x 3=1,故函数f (x )=x 3存在三个等值区间[-1,0],[0,1],[-1,1];由于sin x =x 只有唯一的实根x =0,结合函数图象,可知函数f (x )=sin x 不存在等值区间;由于log 2x +1=x 有实根x 1=1,x 2=2,故函数f (x )=log 2x +1存在等值区间[1,2].答案:②④2.m 为何值时,f (x )=x 2+2mx +3m +4.(1)有且仅有一个零点;(2)有两个零点且均比-1大.解:(1)若函数f (x )=x 2+2mx +3m +4有且仅有一个零点,则等价于Δ=4m 2-4(3m +4)=0,即m 2-3m -4=0,解得m =4或m =-1.(2)设两零点分别为x 1,x 2,且x 1>-1,x 2>-1,x 1≠x 2.则x 1+x 2=-2m ,x 1·x 2=3m +4,故只需⎩⎪⎨⎪⎧ Δ=4m 2-4 3m +4 >0, x 1+1 + x 2+1 >0,x 1+1 x 2+1 >0⇔⎩⎪⎨⎪⎧ m 2-3m -4>0,-2m +2>0,3m +4+ -2m +1>0⇔⎩⎪⎨⎪⎧ m <-1或m >4,m <1,m >-5.故m的取值范围是{m|-5<m<-1}.。

2020版高考数学一轮复习第2章函数概念与基本初等函数8第8讲函数与方程教案理

2020版高考数学一轮复习第2章函数概念与基本初等函数8第8讲函数与方程教案理

第8讲函数与方程1.函数的零点函数零点的概念对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,若f(a)·f(b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个条件(1)函数y=f(x)在区间[a,b]上连续不断;(2)在区间端点的函数值满足f(a)·f(b)<0方法不断地把函数y=f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.( )(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( )(3)只要函数有零点,我们就可以用二分法求出零点的近似值.( )(4)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.( )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( )答案:(1)× (2)× (3)× (4)√ (5)√已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.433-7424.5-36.7-123.6则函数y =f (x )在区间[1,6]上的零点至少有( ) A .2个 B .3个 C .4个D .5个解析:选B .依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x 的零点有________个. 解析:函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x 的零点个数是方程x 12-⎝ ⎛⎭⎪⎫12x =0的解的个数,即方程x 12=⎝ ⎛⎭⎪⎫12x 的解的个数,也就是函数y =x 12与y =⎝ ⎛⎭⎪⎫12x 的图象的交点个数.在同一坐标系中作出两个函数的图象,可得交点个数为1. 答案:1已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是________.解析:依题意可得f (-1)·f (1)<0,即(-2a -a +3)(2a -a +3)<0,解得a <-3或a >1. 答案:(-∞,-3)∪(1,+∞)函数零点所在区间的判断[典例引领]函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e )和(3,4)D .(e ,+∞)【解析】 因为f ′(x )=1x +2x2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f(2)=ln 2-1<0,所以f(2)·f(3)<0,所以f(x)唯一的零点在区间(2,3)内.故选B.【答案】 B判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象1.在下列区间中,函数f(x)=3x-x2有零点的区间是( )A.[0,1] B.[1,2]C.[-2,-1] D.[-1,0]解析:选D.因为f(0)=1,f(1)=2,所以f(0)f(1)>0,因为f(2)=5,f(1)=2,所以f(2)f(1)>0,因为f(-2)=19-4=-359,f(-1)=13-1=-23,所以f(-2)f(-1)>0,因为f(0)=1,f(-1)=13-1=-23,所以f(0)f(-1)<0,易知[-1,0]符合条件,故选D.2.若x0是方程⎝⎛⎭⎪⎫12x=x13的解,则x0属于区间( )A.⎝⎛⎭⎪⎫23,1 B.⎝⎛⎭⎪⎫12,23C.⎝⎛⎭⎪⎫13,12D.⎝⎛⎭⎪⎫0,13解析:选C.令g(x)=⎝⎛⎭⎪⎫12x,f(x)=x13,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212<f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1213, g ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1213>f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313, 所以由图象关系可得13<x 0<12.函数零点个数的判断[典例引领](1)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0 B .-2,0 C .12D .0(2)设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=2x+x -3,则f (x )的零点个数为( ) A .1 B .2 C .3D .4【解析】 (1)当x ≤1时,由f (x )=2x-1=0,解得x =0; 当x >1时,由f (x )=1+log 2x =0, 解得x =12,又因为x >1, 所以此时方程无解. 综上函数f (x )的零点只有0.(2)因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,所以0是函数f (x )的一个零点.当x >0时,令f (x )=2x +x -3=0,则2x =-x +3.分别作出函数y =2x 和y =-x +3的图象如图所示,可得这两个函数的图象有一个交点,所以函数f (x )在(0,+∞)内有一个零点.又根据图象的对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3.故选C .【答案】 (1)D (2)C函数零点个数的判断方法(1)直接求零点,令f (x )=0,有几个解就有几个零点;(2)零点存在性定理,要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,再结合函数的图象与性质确定函数零点个数;(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.[通关练习]1.函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0解析:选B.法一:由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e . 因此函数f (x )共有2个零点. 法二:函数f (x )的图象如图所示, 由图象知函数f (x )共有2个零点.2.函数f (x )=⎩⎪⎨⎪⎧e x-x -2,x ≥0x 2+2x ,x <0的零点个数是( )A .0B .1C .2D .3解析:选C .当x <0时,令f (x )=0,即x 2+2x =0,解得x =-2,或x =0(舍去).所以当x <0时,只有一个零点;当x ≥0时,f (x )=e x-x -2,而f ′(x )=e x-1,显然f ′(x )≥0,所以f (x )在[0,+∞)上单调递增,又f (0)=e 0-0-2=-1<0,f (2)=e 2-4>0,所以当x ≥0时,函数f (x )有且只有一个零点.综上,函数f (x )只有2个零点,故选C .函数零点的应用[学生用书P 33][典例引领](1)(分离参数法)若函数f (x )=4x-2x-a ,x ∈[-1,1]有零点,则实数a 的取值范围是________.(2)(数形结合思想)已知函数f (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.【解析】 (1)因为函数f (x )=4x-2x-a ,x ∈[-1,1]有零点, 所以方程4x-2x-a =0在[-1,1]上有解, 即方程a =4x-2x在[-1,1]上有解. 方程a =4x -2x 可变形为a =(2x-12)2-14,因为x ∈[-1,1],所以2x∈⎣⎢⎡⎦⎥⎤12,2,所以⎝ ⎛⎭⎪⎫2x -122-14∈⎣⎢⎡⎦⎥⎤-14,2.所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,2.(2)函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转化为y =f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其有3个公共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).【答案】 (1)⎣⎢⎡⎦⎥⎤-14,2 (2)(0,1)已知函数有零点(方程有根)求参数值常用的方法[通关练习]1.(2018·河南新乡模拟)若函数f (x )=log 2(x +a )与g (x )=x 2-(a +1)x -4(a +5)存在相同的零点,则a 的值为( ) A .4或-52B .4或-2C .5或-2D .6或-52解析:选C.g (x )=x 2-(a +1)x -4(a +5)=(x +4)[x -(a +5)],令g (x )=0,得x =-4或x =a +5,则f (-4)=log 2(-4+a )=0或f (a +5)=log 2(2a +5)=0,解得a =5或a =-2.2.(2018·四川绵阳模拟)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3)D .(0,2)解析:选C.由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0, 解得0<a <3,故选C.3.(2018·福建漳州八校联考)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,x 2+x ,x ≤0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是________.解析:令g (x )=f (x )-m =0,得f (x )=m ,则函数g (x )=f (x )-m 有三个零点等价于函数f (x )与y =m 的图象有三个不同的交点,作出函数f (x )的图象如图:当x ≤0时,f (x )=x 2+x =⎝ ⎛⎭⎪⎫x +122-14≥-14,若函数f (x )与y =m 的图象有三个不同的交点,则-14<m ≤0,即实数m 的取值范围是⎝ ⎛⎦⎥⎤-14,0.答案:⎝ ⎛⎦⎥⎤-14,0明确三个等价关系(三者相互转化)函数的零点、方程的根、函数图象与x 轴的交点的横坐标,实质是同一个问题的三种不同表达形式,方程根的个数就是相应函数的零点的个数,亦即该函数的图象与x 轴交点的个数.如:二次函数零点问题常转化为二次方程根的分布问题来解决,结合二次函数的图象从根的判别式、对称轴、端点函数值、开口方向等方面去考虑使结论成立的所有条件. 函数的对称性与函数零点之和 已知x 0为函数f (x )的零点.(1)若函数f (x )为奇函数,则-x 0也为函数f (x )的零点,故奇函数的所有零点之和为0. (2)若函数f (x )为偶函数,则-x 0也为函数f (x )的零点,故偶函数的所有零点之和为0. (3)若函数f (x )的图象关于直线x =b 对称,则2b -x 0也为函数f (x )的零点,若该函数有2n 个零点,则该函数所有零点之和为2nb . 易误防范(1)函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.(2)函数零点存在性定理是零点存在的一个充分条件,而不是必要条件.1.(2018·湖北襄阳四校联考)函数f (x )=3x+x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2D .3解析:选B .由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.2.已知实数a >1,0<b <1,则函数f (x )=a x+x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选B.因为a >1,0<b <1,f (x )=a x+x -b ,所以f (-1)=1a-1-b <0,f (0)=1-b >0,由零点存在性定理可知f (x )在区间(-1,0)上存在零点.3.(2018·辽宁大连模拟)已知偶函数y =f (x )(x ∈R )满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( )A .1B .3C .2D .4解析:选B.作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f (x )-g (x )有3个零点,故选B.4.(2018·云南省第一次统一检测)已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( ) A .a >c >b >d B .a >b >c >d C .c >d >a >b D .c >a >b >d解析:选D.f (x )=2 017-(x -a )(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D .5.(2018·河北承德模拟)若函数f (x )=⎩⎪⎨⎪⎧2x-2a ,x ≤0,x 2-4ax +a ,x >0有三个不同的零点,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,+∞B .⎝ ⎛⎦⎥⎤14,12 C .(-∞,0)∪⎝ ⎛⎦⎥⎤14,12 D .(-∞,0)∪⎝ ⎛⎭⎪⎫14,+∞ 解析:选B.由题意知,当x ≤0时,函数f (x )有1个零点,即2x-2a =0在x ≤0上有根,所以0<2a ≤1解得0<a ≤12;当x >0时函数f (x )有2个零点,只需⎩⎪⎨⎪⎧16a 2-4a >0,2a >0,a >0,解得a >14,综上可得实数a 的取值范围是14<a ≤12.6.(2018·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x的零点是-2,则实数m =________.解析:依题意有f (-2)=m +⎝ ⎛⎭⎪⎫13-2=0,解得m =-9.答案:-97.设函数y =x 3与y =⎝ ⎛⎭⎪⎫12x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是________.解析:设f (x )=x 3-⎝ ⎛⎭⎪⎫12x -2,则x 0是函数f (x )的零点,在同一坐标系下画出函数y =x 3与y=⎝ ⎛⎭⎪⎫12x -2的图象如图所示.因为f (1)=1-⎝ ⎛⎭⎪⎫12-1=-1<0,f (2)=8-⎝ ⎛⎭⎪⎫120=7>0,所以f (1)f (2)<0,所以x 0∈(1,2).答案:(1,2)8.已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≥1,ln (1-x ),x <1有两个零点,则实数a 的取值范围是________.解析:当x <1时,显然函数f (x )存在唯一零点x =0,所以当x ≥1时,函数f (x )存在唯一零点,又因为y =2x 在[1,+∞)上单调递增且值域为[2,+∞),所以a 的取值范围为[2,+∞).答案:[2,+∞)9.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解:(1)如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,所以1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.1.已知a 是函数f (x )=2x-log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定解析:选C.在同一坐标系中作出函数y =2x,y =log 12x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log 12x 0,即f (x 0)<0.2.(2018·贵州省适应性考试)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2(x -2)2,x >2,函数g (x )=f (2-x )-14b ,其中b ∈R .若函数y =f (x )+g (x )恰有4个零点,则b 的取值范围是( )A .(7,8)B .(8,+∞)C .(-7,0)D .(-∞,8)解析:选A.由已知可得f (x )=⎩⎪⎨⎪⎧(x -2)2,x >22-x ,0≤x ≤2,f (2-x )2+x ,x <0=⎩⎪⎨⎪⎧4-x ,x >2x ,0≤x ≤2,x 2,x <0将f (x )+g (x )=0转化为f (x )+f (2-x )=14b ,令函数F (x )=f (x )+f (2-x ),则F (x )=⎩⎪⎨⎪⎧x 2-5x +8,x >22,0≤x ≤2x 2+x +2,x <0,作出函数F (x )的图象,如图,要使F (x )的图象与直线y =14b 有四个交点,则有74<14b <2,解得7<b <8.3.(2018·江苏镇江模拟)函数f (x )=⎩⎪⎨⎪⎧|x 2+2x -1|,x ≤0,2x -1+a ,x >0有两个不同的零点,则实数a的取值范围为________.解析:当x ≤0时,令|x 2+2x -1|=0,解得x =-1-2(x =-1+2舍去),所以函数f (x )在(-∞,0]上有一个零点,因此f (x )在(0,+∞)上有一个零点.又因为y =2x -1+a 在x ∈(0,+∞)上单调递增,所以只需2-1+a <0,解得a <-12.答案:⎝⎛⎭⎪⎫-∞,-124.函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:原问题可转化为求y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 的图象在[-4,6]内的交点的横坐标的和,因为上述两个函数图象均关于x =1对称,所以x =1两侧的交点关于x =1对称,那么两对应交点的横坐标的和为2,分别画出两个函数在[-4,6]上的图象(图略),可知在x =1两侧分别有5个交点,所以所求和为5×2=10. 答案:105.已知函数f (x )=-x 2-2x , g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g [f (1)]=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.6.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x-4ln x 的零点个数. 解:(1)因为f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, 所以f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. 所以f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)因为g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2(x >0),所以g ′(x )=1+3x 2-4x =(x -1)(x -3)x2. 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:x (0,1) 1 (1,3) 3 (3,+∞)g ′(x ) +0 -0 + g (x )极大值极小值又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点. 故g (x )在(0,+∞)上只有1个零点.第9讲 函数模型及其应用1.几种常见的函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0) 对数函数模型f (x )=b log a x +c(a ,b ,c 为常数,a >0且a ≠1,b ≠0)幂函数模型 f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠0)2.三种函数模型性质比较y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞) 上的单调性 增函数 增函数 增函数 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 值增大,图象与y 轴接近平行 随x 值增大,图象与x 轴接近平行随n 值变化而不同判断正误(正确的打“√”,错误的打“×”) (1)幂函数增长比一次函数增长更快.( )(2)在(0,+∞)内,随着x 的增大,y =a x(a >1)的增长速度会超过并远远大于y =x α(α>0)的增长速度.( )(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.( ) (4)不存在x 0,使ax 0<x n0<log a x 0.( ) 答案:(1)× (2)√ (3)√ (4)×(教材习题改编)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( )答案:B生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为( ) A .36万件 B .18万件 C .22万件D .9万件解析:选B.设利润为L (x ),则利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18 时,L (x )有最大值.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是________. 解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100. 答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x 为8万元时,奖励1万元.销售额x 为64万元时,奖励4万元.若公司拟定的奖励模型为y =a log 4x +b .某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得⎩⎪⎨⎪⎧a log 48+b =1a log 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4.解得a =2,b =-2. 所以y =2log 4x -2,当y =8时,即2log 4x -2=8.x =1 024(万元).答案:1 024一次函数与二次函数模型(高频考点)高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现.高考对一次函数、二次函数模型的考查主要有以下两个命题角度: (1)单一考查一次函数或二次函数模型的建立及最值问题; (2)以分段函数的形式考查一次函数和二次函数.[典例引领]角度一 单一考查一次函数或二次函数模型的 建立及最值问题某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元【解析】 该公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元,故选C . 【答案】 C角度二 以分段函数的形式考查一次函数和二 次函数(2018·山西孝义二轮模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?【解】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x ≥2.3,因为x 为整数,所以3≤x ≤6.当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20.故y =⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z )-3x 2+68x -115(6<x ≤20,x ∈Z ). (2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185,对于y =-3x 2+68x -115=-3⎝⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.一次函数、二次函数及分段函数模型的选取与应用策略(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点: ①构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏; ②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值. [提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)对构建的较复杂的函数模型,要适时地用换元法转化为熟悉的函数问题求解.[通关练习]1.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00解析:选C.当x ∈[0,4]时,设y =k 1x , 把(4,320)代入,得k 1=80,所以y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入 可得⎩⎪⎨⎪⎧k 2=-20,b =400.所以y =400-20x .所以y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20.由y ≥240,得⎩⎪⎨⎪⎧0≤x ≤4,80x ≥240或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240. 解得3≤x ≤4或4<x ≤8,所以3≤x ≤8. 故第二次服药最迟应在当日下午4:00.2.某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段.已知跳水板AB 的长为2 m ,跳水板距水面CD 的高BC 为3 m .为安全和空中姿态优美,训练时跳水曲线应在离起跳点A 处水平距离h m(h ≥1)时达到距水面最大高度4 m .规定:以CD 为横轴,BC 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在抛物线的方程;(2)若跳水运动员在区域EF 内入水时才能达到比较好的训练效果,求此时h 的取值范围. 解:由题意知抛物线的最高点为(2+h ,4),h ≥1,故设抛物线的方程为y =a [x -(2+h )]2+4.(1)当h =1时,最高点为(3,4),方程为y =a (x -3)2+4.将A (2,3)代入,得3=a (2-3)2+4,解得a =-1.所以当h =1时,跳水曲线所在抛物线的方程为y =-(x -3)2+4.(2)将A (2,3)代入y =a [x -(2+h )]2+4,整理得ah 2=-1.① 由题意,方程a [x -(2+h )]2+4=0在区间[5,6]内有一解. 由①得,y =f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎪⎨⎪⎧f (5)=-1h 2(3-h )2+4≥0,f (6)=-1h 2(4-h )2+4≤0,解得1≤h ≤43.故达到较好的训练效果时h 的取值范围是[1,43].函数y =x +a x(a >0)模型[典例引领]小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝⎛⎭⎪⎫6x +100x-38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元,当x ≥8时,L (x )=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,此时,当且仅当x =100x,即x =10时,L (x )取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.应用函数y =x +a x(a >0)模型的关键点(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的.(2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数解析式转化为f (x )=ax +b x的形式.[提醒] (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f (x )=ax +b x求解最值时,注意取得最值时等号成立的条件.某村计划建造一个室内面积为800 m 2的矩形蔬菜温室,在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少? 解:设矩形温室的左侧边长为x m ,则后侧边长为800xm ,所以蔬菜种植面积y =(x -4)⎝⎛⎭⎪⎫800x -2=808-2⎝ ⎛⎭⎪⎫x +1 600x (4<x <400).因为x +1 600x≥2x ·1 600x=80,所以y ≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648 m 2.即当矩形温室的边长各为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.指数、对数函数模型[典例引领](1)(2016·高考四川卷)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元.在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】 (1)设经过x 年后该公司全年投入的研发资金开始超过200万元,则130(1+12%)x >200,即1.12x>21.3⇒x >lg21.3lg 1.12=lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,所以该公司全年投入的研发资金开始超过200万元的年份是2019年. (2)M =lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A 1,A 2,则9=lg A 1-lg A 0=lg A 1A 0,则A 1A 0=109, 5=lg A 2-lg A 0=lg A 2A 0,则A 2A 0=105,所以A 1A 2=104. 即9级地震的最大振幅是5级地震最大振幅的10 000倍. 【答案】 (1)B (2)6 10 000指数型、对数型函数模型(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x(其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.(2018·湛江模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 解析:当t =0时,y =a ; 当t =8时,y =ae-8b=12a ,故e -8b=12. 当容器中的沙子只有开始时的八分之一时,即y =ae-bt=18a ,e -bt =18=(e -8b )3=e -24b,则t =24,所以再经过16 min 容器中的沙子只有开始时的八分之一. 答案:16解决实际应用问题的四大步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:“对勾”函数的性质 函数f (x )=x +ax(a >0).(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.(2)当x >0时,x =a 时取最小值2a ; 当x <0时,x =-a 时取最大值-2a . 易错防范(1)易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.(2)注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.1.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把图形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )解析:选D.因为左侧部分面积为y ,随x 的变化而变化,最初面积增加得快,后来均匀增加,最后缓慢增加,只有D 选项适合.2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表:x 0.50 0.99 2.01 3.98 y-0.99-0.010.982.00A .y =2xB .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B.依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x10·4 000x-30=10, 当且仅当x 10=4 000x, 即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.(2018·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8 B .9 C .10D .11解析:选C.设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n<11 000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.5.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油 解析:选D .根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 6.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形的最大面积为________.(围墙厚度不计) 解析:设矩形的长为x m ,宽为200-x 4m ,则S =x ·200-x 4=14(-x 2+200x ).当x =100时,S max =2 500 m 2. 答案:2 500 m 27.(2018·上海宝山区模拟)王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地话费以分为计费单位,长途话费以秒为计费单位)。

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件

2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件

解法二:(图象法)函数 f(x)的图象如图所示,
由图象知函数 f(x)共有 2 个零点.
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)
=2|x|-1,则函数g(x)=f(x)-|lg x|的零点个数是( B )
A.9
B.10
C.11
D.18
[解析] 由函数y=f(x)的性质,画出函数y=f(x)的图象,如图,再
考向 2 函数零点个数的确定——师生共研
x2+x-2,x≤0, 1.函数 f(x)=-1+ln x,x>0 的零点个数为( B )
A.3
B.2
C.7
D.0
[解析] 解法一:(直接法)由 f(x)=0 得
x≤0,
x>0,
x2+x-2=0 或-1+ln x=0,
解得 x=-2 或 x=e.
因此函数 f(x)共有 2 个零点.
2.几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与__x_轴__有交点⇔函数y= f(x)有__零__点____.
3.函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有___f_(_a_)f_(_b_)<__0_____,那么函数y=f(x)在区间(a,b)内有零点,即存 在c∈(a,b),使得___f_(c_)_=__0__,这个c也就是方程f(x)=0的根.
点所在的大致区间是( C )
1
A.e,1
C.(2,e)
B.(1,2) D.(e,+∞)
2 [解析] y=f(x)=ln x-x的定义域为(0,+∞),因为 y=ln x 与 y=
2
2
-x在(0,+∞)上单调递增,所以 f(x)=ln x-x在(0,+∞)上单调递增,

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.3二次函数与幂函数教师用书(PDF,含解析)

2020届高考数学一轮复习第二章函数的概念与基本初等函数2.3二次函数与幂函数教师用书(PDF,含解析)

-∞
ꎬ-
b 2a
上单调递增ꎬ
单调性
( ] [ ) 在 x∈
-∞
ꎬ-
b 2a
上单调递减 在 x∈

b 2a
ꎬ+∞
上单调递减
奇偶性
当 b = 0 时为偶函数ꎬ当 b≠0 时为非奇非偶函数
顶点 坐标
( ) - b ꎬ4ac-b2 2a 4a
对称性
图象关于直线



b 2a
对称
2.实系数一元二次方程 ax2 +bx +c = 0( a≠0) 的实根的符号
与系数之间的关系
( 1) 方程有两个不相等的正实数根⇔
ìïΔ = b2 -4ac>0ꎬ
íïïx1 +x2
=-
b a
>0ꎬ
ï îïx1 ������x2 =
c a
>0ꎻ
( 2) 方程有两个不相等的负实数根⇔
ìïΔ = b2 -4ac>0ꎬ
íïïx1 +x2
=-
b a
<0ꎬ
ï îïx1 ������x2 =
2 4 5 年高考 3 年模拟 B 版( 教师用书)
1.在(0ꎬ1) 上ꎬ幂函数的指数越大ꎬ函数图象越靠近 x 轴ꎻ 在(1ꎬ+∞ )上ꎬ幂函数的指数越大ꎬ函数图象越远离 x 轴.
2.幂函数的图象一定会出现在第一象限内ꎬ一定不会出
������������������������������
奇偶性 奇
R [0ꎬ+∞ )

R [0ꎬ+∞ ) { x | x∈R 且 x≠0}
R [0ꎬ+∞ ) { y | y∈R 且 y≠0}
奇 非奇非偶

x∈[0ꎬ+∞ ) 时ꎬ增

高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ8 指数与指数函数课时训练 文(含解析)-人教版高

高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ8 指数与指数函数课时训练 文(含解析)-人教版高

【课时训练】指数与指数函数一、选择题1.(2019某某某某调研)函数f (x )=2|x -1|的大致图象是( )A B C D 【答案】B【解析】由f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,可知f (x )在[1,+∞)上单调递增,在(-∞,1)上单调递减.故选B.2.(2018某某某某一中月考)已知函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定【答案】A【解析】由题意可知a >1, f (-4)=a 3,f (1)=a 2,由y =a t(a >1)的单调性知a 3>a 2,所以 f (-4)>f (1).3.(2018某某某某调研)若函数f (x )=a |2x -4|(a >0,且a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【答案】B【解析】由f (1)=19得a 2=19,又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞).4.(2018某某某某一模)已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.如果f (x )=a x(a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A .⎝ ⎛⎭⎪⎫12-x B .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x【答案】D【解析】由题图可知f (1)=12,∴a =12,f (x )=⎝ ⎛⎭⎪⎫12x .由题意得g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x=-2x.故选D.5.(2018某某省实验中学分校月考)函数y =16-2x的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)【答案】C【解析】函数y =16-2x中,因为16-2x≥0,所以2x≤16.因此2x∈(0,16],所以16-2x∈[0,16).故y =∈[0,4).故选C.6.(2018某某某某第一中学月考)已知集合A ={x |(2-x )·(2+x )>0},则函数f (x )=4x-2x +1-3(x ∈A )的最小值为( )A .4B .2C .-2D .-4【答案】D【解析】由题知集合A ={x |-2<x <2}.又f (x )=(2x )2-2×2x -3,设2x=t ,则14<t <4,所以f (x )=g (t )=t 2-2t -3=(t -1)2-4,且函数g (t )的对称轴为直线t =1,所以最小值为g (1)=-4.故选D.7.(2018某某某某联考)已知函数f (x )=e x,如果x 1,x 2∈R ,且x 1≠x 2,则下列关于f (x )的性质:①(x 1-x 2)[f (x 1)-f (x 2)]>0;②y =f (x )不存在反函数;③f (x 1)+f (x 2)<2f ⎝ ⎛⎭⎪⎫x 1+x 22;④方程f (x )=x 2在(0,+∞)上没有实数根.其中正确的是( )A .①②B .①④C .①③D .③④【答案】B8.(2018某某某某联考)若函数f (x )=2x -a +1+x -a -a 的定义域与值域相同,则a =( )A .-1B .1C .0D .±1【答案】B【解析】∵函数f (x )=2x -a +1+x -a -a ,∴函数f (x )的定义域为[a ,+∞). ∵函数f (x )的定义域与值域相同, ∴函数f (x )的值域为[a ,+∞).又∵函数f (x )在[a ,+∞)上是单调递增函数,∴当x =a 时,f (a )=2a -a +1-a =a ,解得a =1.故选B.二、填空题9.(2018某某某某一模)已知函数f (x )=e x -e -xe x +e -x ,若f (a )=-12,则f (-a )=________. 【答案】12【解析】∵f (x )=e x-e -xe x +e -x ,f (a )=-12,∴e a -e -a e a +e -a =-12.∴f (-a )=e -a -e a e -a +e a =-e a -e -ae a +e -a =-⎝ ⎛⎭⎪⎫-12=12. 10.(2018某某一中月考)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.【答案】 3【解析】当a >1时,f (x )=a x -1在[0,2]上为增函数,则a 2-1=2,∴a =± 3.又a >1,∴a = 3.当0<a <1时,f (x )=a x-1在[0,2]上为减函数,又f (0)=0≠2,∴0<a <1不成立.综上可知,a = 3.11.(2018某某十校联考)已知max (a ,b )表示a ,b 两数中的最大值.若f (x )=max {e |x |,e|x -2|},则f (x )的最小值为________.【答案】e【解析】由于f (x )=max {e |x |,e |x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x,x <1.当x ≥1时,f (x )≥e,且当x =1时,取得最小值e ;当x <1时,f (x )>e.故f (x )的最小值为f (1)=e.12.(2018某某某某海阳一中期中)已知函数f (x )=2|x -2|-1在区间[0,m ]上的值域为[0,3],则实数m 的取值X 围为________.【答案】[2,4] 【解析】函数f (x )=2|x -2|-1的对称轴为直线x =2,且在(-∞,2]上单调递减,在(2,+∞)上单调递增.由于函数f (x )=2|x -2|-1在区间[0,m ]上的值域为[0,3]且函数关于直线x =2对称,f (0)=f (4)=3,f (2)=0,所以结合图象可知m ∈[2,4].三、解答题13.(2018某某余姚中学月考)已知定义在R 上的函数 f (x )=2x-12|x |.(1)若f (x )=32,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,某某数m 的取值X 围. 【解】(1)当x <0时,f (x )=0,无解; 当x ≥0时,f (x )=2x-12x ,由2x -12x =32,得2·22x -3·2x-2=0,将上式看成关于2x的一元二次方程, 解得2x =2或2x=-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t-1)≥-(24t-1),∵22t-1>0, ∴m ≥-(22t+1),∵t ∈[1,2],∴-(22t+1)∈[-17,-5], 故实数m 的取值X 围是[-5,+∞).。

2020高考数学一轮总复习第2章函数的概念与基本初等函数第8节函数的模型及其综合应用高考AB卷理

2020高考数学一轮总复习第2章函数的概念与基本初等函数第8节函数的模型及其综合应用高考AB卷理

【2019最新】精选高考数学一轮总复习第2章函数的概念与基本初等函数第8节函数的模型及其综合应用高考AB卷理函数的综合应用1.(2012·全国,12)设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为( )A.1-ln 2B.(1-ln 2)C.1+ln 2D.(1+ln 2)解析由题意知函数y=ex与y=ln(2x)互为反函数,其图象关于直线y=x对称,两曲线上点之间的最小距离就是y=x与y=ex最小距离的2倍,设y=ex上点(x0,y0)处的切线与y=x平行,有ex0=1,x0=ln 2,y0=1,∴切点到直线y=x的距离d =,所以|PQ|的最小值为(1-ln 2)×2=(1-ln 2).答案B2.(2013·全国Ⅰ,21)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.解(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=ex(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a =4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2ex(x+1).设函数F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2,则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0,得x1=-ln k,x2=-2.(ⅰ)若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)上单调递减,在(x1,+∞)上单调递增.故F(x)在[-2,+∞)上的最小值为F(x1).而F(x1)=2x1+2-x-4x1-2=-x1(x1+2)≥0.故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ⅱ)若k=e2,则F′(x)=2e2(x+2)(ex-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)上单调递增.而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ⅲ)若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].函数的实际应用1.(2016·四川,5)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A.2018年B.2019年C.2020年D.2021年解析设x年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x=log1.12=≈3.80,因资金需超过200万,则x取4,即2019年.选B.答案B2.(2015·北京,8)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时.相同条件下,在该市用丙车比用乙车更省油解析汽车每消耗1升汽油行驶的里程为“燃油效率”,由此理解A显然不对;B应是甲车耗油最少;C甲车以80千米/小时的速度行驶10 km,消耗1升汽油.故D正确.答案D3.(2014·湖南,8)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为( )A. B.(p+1)(q+1)-12C. D.-1解析设年平均增长率为x,原生产总值为a,则(1+p)(1+q)a=a(1+x)2,解得x =-1,故选D.答案D4.(2013·陕西,9)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是( )A.[15,20]B.[12,25]C.[10,30]D.[20,30]解析设矩形另一边长为y,=,则x=40-y,y=40-x.由xy≥300,即x(40-x)≥300,解得10≤x≤30,故选C.答案C5.(2015·四川,13)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.解析 由题意∴e22k==,∴e11k=,∴x =33时,y =e33k +b =(e11k)3·eb =·eb =×192=24.答案 246.(2015·江苏,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l1,l2的距离分别为5千米和40千米,点N 到l1,l2的距离分别为20千米和2.5千米,以l2,l1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t.①请写出公路l 长度的函数解析式f(t),并写出其定义域;②当t 为何值时,公路l 的长度最短?求出最短长度.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =,得解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =(5≤x≤20),则点P 的坐标为,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y′=-,则l 的方程为y -=-(x -t),由此得A ,B.故f(t)=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t22=,t∈[5,20].②设g(t)=t2+,则g′(t)=2t-.令g′(t)=0,解得t=10.当t∈(5,10)时,g′(t)<0,g(t)是减函数;当t∈(10,20)时,g′(t)>0,g(t)是增函数.从而,当t=10时,函数g(t)有极小值,也是最小值,所以g(t)min=300,此时f(t)min=15.答:当t=10时,公路l的长度最短,最短长度为15千米.函数的综合应用7.(2016·山东,10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是( )A.y=sin xB.y=ln xC.y=exD.y=x3解析对函数y=sin x求导,得y′=cos x,当x=0时,该点处切线l1的斜率k1=1,当x=π时,该点处切线l2的斜率k2=-1,∴k1·k2=-1,∴l1⊥l2;对函数y=ln x求导,得y′=恒大于0,斜率之积不可能为-1;对函数y=ex求导,得y′=ex恒大于0,斜率之积不可能为-1;对函数y=x3,得y′=2x2恒大于等于0,斜率之积不可能为-1.故选A.答案A8.(2014·辽宁,12)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为( )A. B. C. D.18解析不妨令0≤y<x≤1,当0<x-y≤时,|f(x)-f(y)|<|x-y|≤;当<x-y≤1时,|f(x)-f(y)|=|[f(x)-f(1)]-[f(y)-f(0)]|≤|f(x)-f(1)|+|f(y)-f(0)|<|x -1|+|y-0|=(1-x)+y=+(y-x)<.综上,|f(x)-f(y)|<,所以k≥.答案 B9.(2013·天津,8)已知函数f(x)=x(1+a|x|).设关于x 的不等式f(x +a)<f(x)的解集为A.若⊆A ,则实数a 的取值范围是( )A.B.⎝ ⎛⎭⎪⎫1-32,0 C.∪D.⎝ ⎛⎭⎪⎫-∞,1-52 解析 a =0时,A =∅,不满足条件.a>0时,易知f(0)=0,x>0时,f(x)=x(1+a|x|)>0,于是f(0+a)>0=f(0),而由已知⊆A 可得0∈A,即f(0+a)<f(0),所以a>0也不满足条件,故a<0.易知f(x)=⎩⎪⎨⎪⎧ax ⎝ ⎛⎭⎪⎫x +1a (x≥0),-ax ⎝ ⎛⎭⎪⎫x -1a (x<0), 在坐标系中画出y =f(x)与y =f(x +a)的图象如图所示,由图可知满足不等式f(x +a)<f(x)的解集A =(xA ,xB).由x(1-ax)=(x +a)[1-a(x +a)]可得xA =;由x(1+ax)=(x +a)[1+a(x +a)],可得xB =-.∴A =(a<0).由⊆A 得⎩⎪⎨⎪⎧1-a22a <-12,-1+a22a >12,a<0,解得<a<0.故选A.答案 A10.(2014·湖北,14)设f(x)是定义在(0,+∞)上的函数,且f(x)>0,对任意a>0,b>0,若经过点(a ,f(a)),(b ,-f(b))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f(x)的平均数,记为Mf(a ,b).例如,当f(x)=1(x>0)时,可得Mf(a ,b)=c=,即Mf(a,b)为a,b的算术平均数.(1)当f(x)=________(x>0)时,Mf(a,b)为a,b的几何平均数.(2)当f(x)=________(x>0)时,Mf(a,b)为a,b的调和平均数.(以上两空各只需写出一个符合要求的函数即可)解析过点(a,f(a)),(b,-f(b))的直线的方程为y-f(a)=(x-a),令y=0得c=.(1)令几何平均数=⇒f(a)+f(b)=bf(a)+af(b),可取f(x)=(x>0);(2)令调和平均数=⇒=,可取f(x)=x(x>0).答案(1) (2)x。

《三维设计》高三数学 第二单元 基本初等函数(i)和导数8.函数的图象课时限时检测.doc

《三维设计》高三数学 第二单元 基本初等函数(i)和导数8.函数的图象课时限时检测.doc

(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分) 1.函数y =5x与函数y =-15x 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称解析:因y =-15x =-5-x,所以关于原点对称.答案:C2.把函数y =f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .y =(x -3)2+3 B .y =(x -3)2+1 C .y =(x -1)2+3D .y =(x -1)2+1解析:把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1,于是得y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位,即得到y =(x -1)2+2+1=(x -1)2+3.答案:C3.已知f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0]x 2+1,x ∈,1],则如图中函数的图象错误的是( )解析:因f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],x 2+1,x ∈,1],其图象如图,验证知f (x -1),f (-x ),f (|x |)的图象均正确,只有|f (x )|的图象错误.答案:D4.函数y =ln 1|2x -3|的图象为( )解析:易知2x -3≠0,即x ≠32,排除C ,D 项.当x >32时,函数为减函数,当x <32时,函数为增函数.答案:A5.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )解析:由图可知,只有D 中y =f (x )图象与y =2图象在x <0时有交点. 答案:D6.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是( )解析:由图象知⎩⎪⎨⎪⎧b =4,-4≤a ≤0,故b =g (a ),即为b =4(-4≤a ≤0). 答案:B二、填空题(共3小题,每小题5分,满分15分)7.为了得到函数f (x )=log 2x 的图象,只需将函数g (x )=log 2x8的图象__________________.解析:g (x )=log 2x8=log 2x -3=f (x )-3,因此只需将函数g (x )的图象向上平移3个单位即可得到函数f (x )=log 2x 的图象.答案:向上平移3个单位8.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f)的值等于________.解析:由图象知f (3)=1,[来源:学.科.网Z.X.X.K] ∴1f=1,∴f (1f)=f (1)=2.答案:9.已知定义在[0,+∞)上的函数y =f (x )和y =g (x )的图象如图所示,则不等式f (x )·g (x )>0的解集是____________.解析:由题图可知,当0<x <12时,f (x )>0,g (x )>0;当12<x <1时,f (x )>0,g (x )<0; 当1<x <2时,f (x )<0,g (x )<0, 当x >2时,f (x )>0,g (x )>0, 因此f (x )·g (x )>0的解集是 {x |0<x <12,或1<x <2或x >2}.答案:{x |0<x <12,或1<x <2或x >2}三、解答题(共3小题,满分35分)10.已知函数f (x )=log 2(x +1),将函数y =f (x )的图象向左平移一个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )的图象.求函数y =g (x )的解析式.解:由已知,将函数f (x )=log 2(x +1)的图象向左平移一个单位,得到y =log 2(x +1+1)的图象,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y =g (x )=2log 2(x +2)的图象.故g (x )=2log 2(x +2).11.若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有两个公共点,求a 的取值范围.解:当0<a <1时,y =|a x-1|的图象如图(1)所示,由已知得0<2a <1,∴0<a <12.当a >1时,y =|a x-1|的图象如图(2)所示,由已知可得0<2a <1,∴0<a <12,但a >1,故a ∈∅.综上可知,0<a <12.12.为了预防甲型H1N1流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=⎝ ⎛⎭⎪⎫116t -a(a 为常数),如图所示,根据图中提供的信息, (1)求从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式;(2)据测定:当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过几小时后,学生才能回到教室?解:(1)图中直线的斜率为10.1=10,方程为y =10t ,点(0.1,1)在曲线y =(116)t -a上,所以1=(116)0.1-a,所以a =0.1,因此,y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1116t -0.1,t >0.1.(2)因为药物释放过程中室内药量一直在增加,即使药量小于0.25毫克,学生也不能进入教室,所以,只能当药物释放完毕后,室内药量减少到0.25毫克以下时学生方可进入教室,即(116)t -0.1≤0.25,解得t ≥0.6. 即学生至少要过0.6小时后,才能回到教室.。

【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)指数与指数函数教学案

【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)指数与指数函数教学案

第七节指数与指数函数[知识能否忆起]一、根式 1.根式的概念2.两个重要公式(1)na n=⎩⎨⎧a , n 为奇数,|a |=⎩⎪⎨⎪⎧a a ,-a a <, n 为偶数;(2)(na )n=a (注意a 必须使na 有意义). 二、有理数指数幂 1.幂的有关概念(1)正分数指数幂:a m n=na m (a >0,m ,n ∈N *,且n >1); (2)负分数指数幂:a -m n=1a m n=1na m(a >0,m ,n ∈N *,且n >1);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质 (1)a r a s=ar +s(a >0,r ,s ∈Q);(2)(a r )s =a rs(a >0,r ,s ∈Q); (3)(ab )r=a r b r(a >0,b >0,r ∈Q). 三、指数函数的图象和性质[小题能否全取]1.(教材习题改编)化简[(-2)6]12-(-1)0的结果为( )A .-9B .7C .-10D .9解析:选B 原式=(26)12-1=7.2.(教材习题改编)函数f (x )=1-2x的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选A ∵1-2x≥0,∴2x≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4)D .(4,0)解析:选A 当x =1时,f (x )=5.4.若函数y =(a 2-3a +3)·a x是指数函数,则实数a 的值为________. 解析:∵a 2-3a +3=1,∴a =2或a =1(舍). 答案:25.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 解析:由题意知0<a 2-1<1,即1<a 2<2,得-2<a <-1或1<a < 2. 答案:(-2,-1)∪(1,2)1.分数指数幂与根式的关系:分数指数幂与根式可以相互转化,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而简化计算过程.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.典题导入[例1] 化简下列各式(其中各字母均为正数).(1)a 23·b -1-12·a -12·b136a ·b 5;(2)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23-3π0+3748.[自主解答] (1)原式=a -13b 12·a -12b13a 16b56=a -13-12-16·b 12+13-56=1a.(2)原式=⎝ ⎛⎭⎪⎫25912+10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.由题悟法指数式的化简求值问题,要注意与其他代数式的化简规则相结合,遇到同底数幂相乘或相除,可依据同底数幂的运算规则进行,一般情况下,宜化负指数为正指数,化根式为分数指数幂.对于化简结果,形式力求统一.以题试法1.计算:(1)(0.027)-13-⎝ ⎛⎭⎪⎫-17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫14-12·4ab-130.1-2a 3b-312. 解:(1)原式=⎝⎛⎭⎪⎫271 000-13-(-1)-2⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=412·432100·a 32·a -32·b 32·b -32=425a 0·b 0=425.典题导入[例2] (2012·四川高考)函数y =a x-a (a >0,且a ≠1)的图象可能是( )[自主解答] 法一:令y =a x-a =0,得x =1,即函数图象必过定点(1,0),符合条件的只有选项C.法二:当a >1时,y =a x-a 是由y =a x向下平移a 个单位,且过(1,0),排除选项A 、B ; 当0<a <1时,y =ax-a 是由y =a x向下平移a 个单位,因为0<a <1,故排除选项D. [答案] C由题悟法1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.以题试法2.(1)(2012·北京模拟)在同一坐标系中,函数y =2x与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称(2)方程2x=2-x 的解的个数是________.解析:(1)∵y =⎝ ⎛⎭⎪⎫12x =2-x ,∴它与函数y =2x的图象关于y 轴对称.(2)方程的解可看作函数y =2x和y =2-x 的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解. 答案:(1)A (2)1典题导入[例3] 已知函数f (x )=⎝ ⎛⎭⎪⎫23|x |-a .则函数f (x )的单调递增区间为________,单调递减区间为________.[自主解答] 令t =|x |-a ,则f (x )=⎝ ⎛⎭⎪⎫23t,不论a 取何值,t 在(-∞,0]上单调递减,在[0,+∞)上单调递增,又y =⎝ ⎛⎭⎪⎫23t是单调递减的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞). [答案] (-∞,0] [0,+∞)在本例条件下,若f (x )的最大值等于94,则a =______.解析:由于f (x )的最大值是94,且94=⎝ ⎛⎭⎪⎫23-2,所以g (x )=|x |-a 应该有最小值-2, 从而a =2.答案:2由题悟法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.以题试法3.(1)(2012·福州质检)已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a(2)(2012·上海高考)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.解析:(1)由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .(2)结合函数图象求解.因为y =e u是R 上的增函数,所以f (x )在[1,+∞)上单调递增,只需u =|x -a |在[1,+∞)上单调递增,由函数图象可知a ≤1.答案:(1)A (2)(-∞,1][典例] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈[-3,2]上的值域是________.[常规解法] y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x +1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x+1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x -122+34,因为x ∈[-3,2],所以14≤⎝ ⎛⎭⎪⎫12x≤8.当⎝ ⎛⎭⎪⎫12x =12时,y min =34;当⎝ ⎛⎭⎪⎫12x=8时,y max =57.所以函数y 的值域为⎣⎢⎡⎦⎥⎤34,57. [答案] ⎣⎢⎡⎦⎥⎤34,57——————[高手支招]——————————————————————————1.解答本题可利用换元法,即令t =⎝ ⎛⎭⎪⎫12x ,把函数化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,然后求在这个闭区间上的二次函数的最大值和最小值即可确定函数的值域.2.对于含a x、a 2x的表达式,通常可以令t =a x进行换元,但换元过程中一定要注意新元的范围,换元后转化为我们熟悉的一元二次关系.——————————————————————————————————————[巧思妙解] 因为x ∈[-3,2],若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.则y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34. 当t =12时y min =34;当t =8时,y max =57.答案为⎣⎢⎡⎦⎥⎤34,57. 针对训练若0<a <1,函数y =a 2x+2a x-1在[-1,1]上的最大值是14,则a 的值为________. 解析:令t =a x(0<a <1),则原函数化为y =(t +1)2-2(t >0).因为0<a <1,x ∈[-1,1],所以t =a x∈⎣⎢⎡⎦⎥⎤a ,1a ,此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a+12-2=14.所以⎝ ⎛⎭⎪⎫1a+12=16,所以a =-15或a =13.又因为a >0,所以a =13.答案:131.下列函数中值域为正实数集的是( ) A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x -1D .y =1-2x解析:选B ∵1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数集,∴y =⎝ ⎛⎭⎪⎫131-x的值域是正实数集.2.已知f (x )=2x+2-x,若f (a )=3,则f (2a )等于( ) A .5 B .7 C .9D .11解析:选B 由f (a )=3得2a+2-a=3, 两边平方得22a+2-2a+2=9,即22a+2-2a=7,故f (2a )=7.3.函数f (x )=2|x -1|的图象是( )解析:选B ∵f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,∴根据分段函数即可画出函数图象. 4.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:选C 由f (x )过定点(2,1)可知b =2,因f (x )=3x -2在[2,4]上是增函数,可知C正确.5.(2012·深圳诊断)设函数f (x )=a -|x |(a >0,且a ≠1),f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)解析:选A ∵f (2)=4,∴a-|2|=4,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12-|x |=2|x |,∴f (x )是偶函数,当x ≥0时,f (x )=2x是增函数,∴x <0时,f (x )是减函数,∴f (-2)>f (-1).6.若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,2解析:选D 因为函数y =x 12的定义域为[0,+∞),且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12;解2m +1>m 2+m -1,即m 2-m -2<0,得-1<m <2. 综上所述,m 的取值范围是5-12≤m <2. 7.⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________.解析:原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案:28.已知正数a 满足a 2-2a -3=0,函数f (x )=a x,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.解析:∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x在R 上递增,由f (m )>f (n ),得m >n . 答案:m >n 9.若函数f (x )=a|2x -4|(a >0,a ≠1)且f (1)=9.则f (x )的单调递减区间是________.解析:由f (1)=9得a 2=9,∴a =3.因此f (x )=3|2x -4|,又∵g (x )=|2x -4|的递减区间为(-∞,2],∴f (x )的单调递减区间是(-∞,2]. 答案:(-∞,2]10.求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y =32x -1-19. 解:(1)显然定义域为R.∵2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x为减函数.∴⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, ∵y =3x为增函数,∴2x -1≥-2, 即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,∴y ≥0. 即函数的值域为[0,+∞).11.函数f (x )=a x(a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.解:当a >1时,f (x )=a x为增函数,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x为减函数,在x ∈[1,2]上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.12.函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x的最值.解:由3-4x +x 2>0,得x >3或x <1, ∴M ={x |x >3,或x <1},f (x )=-3×(2x )2+2x +2=-3⎝⎛⎭⎪⎫2x-162+2512.∵x >3或x <1,∴2x >8或0<2x<2, ∴当2x=16,即x =log 216时,f (x )最大,最大值为2512,f (x )没有最小值.1.(2013·绍兴一中模拟)函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是( )A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定解析:选A 由题意知a >1,又f (-4)=a 3,f (1)=a 2,由单调性知a 3>a 2,∴f (-4)>f (1). 2.(2012·衡水模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0;②a <0,b ≥0,c >0; ③2-a<2c ;④2a +2c<2.解析:画出函数f (x )=|2x-1|的图象(如图), 由图象可知,a <0,b 的符号不确定,c >0.故①②错;∵f (a )=|2a-1|,f (c )=|2c -1|, ∴|2a-1|>|2c-1|,即1-2a>2c-1, 故2a+2c <2,④成立; 又2a+2c>22a +c,∴2a +c<1,∴a +c <0,∴-a >c ,∴2-a>2c,③不成立. 答案:④3.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3,由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个解析:选B 函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x的图象如图,由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得a <b <0或0<b <a 或a =b =0. 2.求函数y =a 2x-2a x-1(a >0,a ≠1)的单调区间和值域. 解:y =(a x -1)2-2(a >0,a ≠1),设u =a x.∵y =(u -1)2-2在u ∈[1,+∞)时是关于u 的增函数,在u ∈(-∞,1)时是关于u 的减函数,∴当a x≥1时,原函数的单调性与u =a x的单调性相同;当a x<1时,原函数的单调性与u =a x 的单调性相反.若a >1,a x ≥1⇔x ≥0;a x<1⇔x <0,∴在[0,+∞)上,函数y =a 2x-2a x-1是增函数; 在(-∞,0)上,函数y =a 2x-2a x-1是减函数. 若0<a <1,a x ≥1⇔x ≤0;a x<1⇔x >0,∴在(0,+∞)上,函数y =a 2x -2a x-1是增函数; 在(-∞,0]上,函数y =a 2x-2a x-1是减函数.∵a x>0,∴函数值域是[-2,+∞).第八节对数与对数函数[知识能否忆起]1.对数的概念 (1)对数的定义:如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N .(2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1.③对数恒等式:a log a N =N . ④换底公式:log a b =log c blog c a.推广log a b =1log b a ,log a b ·log b c ·log c d =log a d .(3)对数的运算法则:如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log am M n =n mlog a M . 2.对数函数的概念(1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x的反函数,函数y =a x与y =log a x (a >0,a ≠1)的图象关于y =x 对称.3.对数函数的图象与性质[小题能否全取]1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y |y =⎝ ⎛⎭⎪⎫12x ,0<x <1,则A ∩B 为( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,1D .(0,2)解析:选C ∵A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y |12<y <1,∴A ∩B =⎩⎨⎧⎭⎬⎫y |12<y <1. 2.函数y =log a (3x -2)(a >0,a ≠1)的图象经过定点A ,则A 点坐标是( )A.⎝ ⎛⎭⎪⎫0,23 B.⎝ ⎛⎭⎪⎫23,0 C .(1,0)D .(0,1)解析:选C 当x =1时y =0. 3.函数y =lg |x |( )A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递减D .是奇函数,在区间(0,+∞)上单调递增解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增.4.(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________.解析:由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ]5.(2012·北京高考)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________. 解析:由f (ab )=1得ab =10,于是f (a 2)+f (b 2)=lg a 2+lg b 2=2(lg a +lg b )=2lg(ab )=2lg 10=2.答案:21.在运用性质log a M n =n log a M 时,要特别注意条件,在无M >0的条件下应为log a M n=n log a |M |(n ∈N *,且n 为偶数).2.对数值取正、负值的规律:当a >1且b >1,或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1,或0<a <1且b >1时,log a b <0. 3.对数函数的定义域及单调性:在对数式中,真数必须大于0,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.典题导入[例1] 求解下列各题.(1)12lg 3249-43lg 8+lg 245=________; (2)若2a =5b=m ,且1a +1b=2,则m =________.[自主解答] (1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg(2×5)=12. (2)由2a=5b=m 得a =log 2m ,b =log 5m , ∴1a +1b =log m 2+log m 5=log m 10.∵1a +1b=2,∴log m 10=2,即m 2=10. 解得m =10(∵m >0). [答案] (1)12 (2)10由题悟法对数式的化简与求值的常用思路(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.以题试法1.化简:(1)lg 37+lg 70-lg 3-lg 23-lg 9+1;(2)⎝⎛⎭⎪⎫lg 4-lg 60lg 3+lg 53-45×2-11.解:(1)原式=lg 37×703-lg 23-2lg 3+1=lg 10--2=1-|lg 3-1|=lg 3. (2)原式=⎝⎛⎭⎪⎫lg 4-+lg 153-210×2-11=⎝⎛⎭⎪⎫-lg 15lg 153-2-1=-32.典题导入[例2] (1)(2012·烟台调研)函数y =ln(1-x )的图象大致为( )(2)(2012·新课标全国卷)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)[自主解答] (1)由1-x >0,知x <1,排除选项A 、B ;设t =1-x (x <1),因为t =1-x 为减函数,而y =ln t 为增函数,所以y =ln(1-x )为减函数,可排除D 选C.(2)法一:构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知,f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.法二:∵0<x ≤12,∴1<4x ≤2,∴log a x >4x>1,∴0<a <1,排除选项C ,D ;取a =12 ,x =12,则有412=2,log 1212=1,显然4x<log a x 不成立,排除选项A. [答案] (1)C (2)B若本例(2)变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,实数a 的取值范围为________.解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立; 当a >1时,如图,要使x ∈(1,2)时f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,又即log a 2≥1.所以1<a ≤2,即实数a 的取值范围是(1,2]. 答案:(1,2]由题悟法1.对一些可通过平移、对称变换能作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合求解.2.一些对数型方程、不等式问题的求解,常转化为相应函数图象问题,利用数形结合法求解.以题试法2.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (1-x )的大致图象是( )解析:选C 由题意可得f (1-x )=⎩⎪⎨⎪⎧31-x,x ≥0,log 13-x ,x <0,因此当x ≥0时,y =f (1-x )为减函数,且y >0;当x <0时,y =f (1-x )为增函数,且y <0.典题导入[例3] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (x )定义域为R ,求a 的取值范围; (2)若f (1)=1,求f (x )的单调区间;(3)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[自主解答] (1)因为f (x )的定义域为R , 所以ax 2+2x +3>0对任意x ∈R 恒成立. 显然a =0时不合题意,从而必有⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,4-12a <0,解得a >13.即a 的取值范围是⎝ ⎛⎭⎪⎫13,+∞. (2)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,即函数定义域为(-1,3). 令g (x )=-x 2+2x +3.则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (3)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.由题悟法研究复合函数y =log a f (x )的单调性(最值)时,应先研究其定义域,分析复合的特点,结合函数u =f (x )及y =log a u 的单调性(最值)情况确定函数y =log a f (x )的单调性(最值)(其中a >0,且a ≠1).以题试法3.已知f (x )=log a (a x-1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.解:(1)由a x-1>0得a x >1,当a >1时,x >0; 当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0). (2)当a >1时,设0<x 1<x 2,则1<ax 1<ax 2, 故0<ax 1-1<ax 2-1,∴log a (ax 1-1)<log a (ax 2-1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数.类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.1.函数y =1-x +的定义域为( )A .(0,8]B .(2,8]C .(-2,8]D .[8,+∞)解析:选C 由题意可知,1-lg(x +2)≥0,整理得lg(x +2)≤lg 10,则⎩⎪⎨⎪⎧x +2≤10,x +2>0,解得-2<x ≤8,故函数y =1-x +的定义域为(-2,8].2.(2012·安徽高考)(log 29)·(log 34)=( ) A.14 B.12 C .2D .4解析:选D (log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.3.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ) A .log 2x B.12x C .log 12xD .2x -2解析:选A f (x )=log a x ,∵f (2)=1,∴log a 2=1.∴a =2. ∴f (x )=log 2x .4.(2011·天津高考)已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >cD .c >a >b解析:选B a =log 23.6=log 43.62=log 412.96,y =log 4x (x >0)是单调增函数,而3.2<3.6<12.96,∴a >c >b .5.(2013·安徽名校模拟)函数y =log 2|x |x的大致图象是( )解析:选C 由于log 2|-x |-x =-log 2|x |x ,所以函数y =log 2|x |x 是奇函数,其图象关于原点对称.当x >0时,对函数求导可知函数图象先增后减,结合选项可知选C.6.已知函数f (x )=log 12|x -1|,则下列结论正确的是( )A .f ⎝ ⎛⎭⎪⎫-12<f (0)<f (3)B .f (0)<f ⎝ ⎛⎭⎪⎫-12<f (3)C .f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0)D .f (3)<f (0)<f ⎝ ⎛⎭⎪⎫-12 解析:选C 依题意得f (3)=log 122=-1<0,log 122<f ⎝ ⎛⎭⎪⎫-12=log 1232<log 121,即-1<f ⎝ ⎛⎭⎪⎫-12<0,又f (0)=log 121=0,因此有f (3)<f ⎝ ⎛⎭⎪⎫-12<f (0).7.(2012·长安一中质检)对任意的非零实数a ,b ,若a ⊗b =⎩⎪⎨⎪⎧b -1a ,a <b ,a +1b ,a ≥b ,则lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=________.解析:∵lg 10 000=lg 104=4,⎝ ⎛⎭⎪⎫12-2=4,∴lg 10 000⊗⎝ ⎛⎭⎪⎫12-2=4+14=54.答案:548.函数y =log 12(x 2-6x +17)的值域是________.解析:令t =x 2-6x +17=(x -3)2+8≥8,y =log 12t 为减函数,所以有log 12t ≤log 128=-3.答案:(-∞,-3]9.函数f (x )=log a x (a >1)在区间[a,2a ]上的最大值与最小值之差为12,则a 等于________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上为增函数. ∴log a 2a -log a a =12,解得a =4.答案:410.计算下列各式.(1)lg 25+lg 2·lg 50+(lg 2)2;(2)2-lg 9+127+lg 8-lg 1 000lg 0.3·lg 1.2.解:(1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.(2)原式=2-2lg 3+1·⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32-+2lg 2-=-32+2lg 2--+2lg 2-=-32.11.说明函数y =log 2|x +1|的图象,可由函数y =log 2x 的图象经过怎样的变换而得到.并由图象指出函数的单调区间.解:作出函数y =log 2x 的图象,再作其关于y 轴对称的图形得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的递减区间为(-∞,-1),递增区间为(-1,+∞).12.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1). 解:(1)∵f (x )=x 2-x +b , ∴f (log 2a )=(log 2a )2-log 2a +b .由已知得(log 2a )2-log 2a +b =b ,∴log 2a (log 2a -1)=0. ∵a ≠1,∴log 2a =1,即a =2. 又log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4.∴b =4-a 2+a =2.故f (x )=x 2-x +2.从而f (log 2x )=(log 2x )2-log 2x +2 =⎝⎛⎭⎪⎫log 2x -122+74. ∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意⎩⎪⎨⎪⎧2x2-log 2x +2>2,log 2x 2-x +<2⇒⎩⎪⎨⎪⎧x >2或0<x <1,-1<x <2⇒0<x <1.1.(2012·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2-x ,x ≤0,f x --f x -,x >0,则f (3)的值为( ) A .1 B .2 C .-2D .-3解析:选D 依题意得f (3)=f (2)-f (1)=[f (1)-f (0)]-f (1)=-f (0)=-log 28=-3.2.已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x .设a =f ⎝ ⎛⎭⎪⎫65,b =f ⎝ ⎛⎭⎪⎫32,c =f ⎝ ⎛⎭⎪⎫52,则( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b解析:选D 已知f (x )是周期为2的奇函数,当0<x <1时,f (x )=lg x ,则a =f ⎝ ⎛⎭⎪⎫65=f ⎝ ⎛⎭⎪⎫-45=-f ⎝ ⎛⎭⎪⎫45=-lg 45>0,b =f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-lg 12>0,c =f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=lg 12<0. 又因为lg 45>lg 12,所以0<-lg 45<-lg 12.所以c <a <b .3.若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1),满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,求实数a 的取值范围.解:因为对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 1)-f (x 2)>0,所以函数f (x )在⎝⎛⎦⎥⎤-∞,a 2上单调递减.令t =x 2-ax +3,则二次函数t =x 2-ax +3的对称轴为x =a2,其在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减.由复合函数的单调性,可知y =log a x 为单调增函数,故a >1.由对数函数的定义域,可知在区间⎝⎛⎦⎥⎤-∞,a 2上,t >0恒成立,即x 2-ax +3>0在区间⎝⎛⎦⎥⎤-∞,a 2上恒成立.而函数t =x 2-ax +3在区间⎝ ⎛⎦⎥⎤-∞,a 2上的最小值为⎝ ⎛⎭⎪⎫a 22-a ×a 2+3=3-a 24.故3-a 24>0,解得|a |<2 3.综上可得a 的取值范围是(1,23).1.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2-x ,x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞).2.已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是( ) A .(22,+∞) B .[22,+∞) C .(3,+∞)D .[3,+∞)解析:选B 由于函数f (x )在区间(0,1]上单调递减,在区间[1,+∞)上单调递增,当0<a <b ,且f (a )=f (b )时,只能0<a <1,b >1,故f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b .由f (a )=f (b ),得-lg a =log b ,即lg(ab )=0,故ab =1.则2a +b ≥22ab =22,当且仅当2a =b ,即a =22,b =2时取等号. 3.化简:log 34273·log 5[412log 210-(33)23-7log 72]. 解:原式=log 33343·log 5[2log 210-(332)23-7log 72]=⎝ ⎛⎭⎪⎫34log 33-log 33·log 5(10-3-2)=⎝ ⎛⎭⎪⎫34-1·log 55=-14.4.(2012·上海徐汇二模)已知函数f (x )=3-2log 2x ,g (x )=log 2x . (1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,求实数k 的取值范围.解:(1)h (x )=(4-2log 2x )·l og 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2]. 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x )得 (3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ; ②当t ∈(0,2]时,k <-4t-tt恒成立,即k <4t +9t-15恒成立,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3,即k ∈(-∞,-3).。

高考数学一轮总复习 第2章 函数的概念与基本初等函数

高考数学一轮总复习 第2章 函数的概念与基本初等函数
第八节 函数的模型及其综合应用
高考AB卷
学法大视野
高考AB卷
学法大视野
知识点一 常见函数模型 1.几种常见的函数模型
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a、b为常数,a≠0)
二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0)
高考AB卷
学法大视野
f(x)=bax+c(a,b,c为常数,a>0且a≠1, 指数函数模型
增长速度 越来越 快 越来越 慢
相对平稳
随x值增大,图象 随x值增大,图象 随n值变化而不
图象的变化 与 y 轴接近平行 与x轴接近 平行

高考AB卷
学法大视野
►一个易错点:函数定义域. (1)[要特别关注实际问题的自变量的取值范围,合理确定函数 的定义域]若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则 燃烧剩下 的高度 h(cm) 与 燃烧 时间 t( 小时 ) 的函数关 系式为 ________. 解析 由题意得关系式为h=20-5t(0≤t≤4). 答案 h=20-5t(0≤t≤4)
b≠0) 对数函数模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,
b≠0) 幂函数模型 f(x)=axn+b(a,b,n为常数,a≠0,n≠0)
高考AB卷
学法大视野
2.三种函数模型的性质比较
y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞) 单调 递增 函数 单调 递增 函数 单调 递增函数 上的单调性
高考AB卷
学法大视野
2.函数的综合应用问题 函数可与方程、不等式、数列、三角函数、解析几何等数学 知识相结合,根据不同知识板块的特点和特殊的对应法则建 立不同变量之间的关系,利用函数的单调性、最值等性质, 结合函数思想及方法,达到解决其他问题的目的,这也正体 现了函数的工具性作用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简合并 将对数式化为同底数的和、差、倍数运算,然后逆用对 合 数的运算性质,转化为同底对数真数的积、商、幂的运 算
返回
返回
返回
“课时跟踪检测”见“课时跟踪检测(十一)” (单击进入电子文档)
第八 节 指数式、对数式的运算
课前自修区
基础相对薄弱,一轮复习更需重视
基础知识的强化和落实
课堂讲练区
考点不宜整合太大,挖掘过深
否则会挫伤学习的积极性
课时跟踪检测
返回
课 前自 修区
返回
一、基础知识批注——理解深一点
返回
返回
返回
返回
二化——功底牢一点
返回
一判一判对的打“√”,错的打“×”
返回
(二)选一选
返回
返回
(三)填一填
返回
课 堂讲 练区
返回
考点一 指数幂的化简与求值
返回
返回
返回
返回
返回
返回
考点二 对数式的化简与求值
返回
返回
首先利用幂的运算把底数或真数进行变形,化成分数指 拆 数幂的形式,使幂的底数最简,然后利用对数运算性质化
相关文档
最新文档