一次函数的动点问题
一次函数动点问题
一次函数是指函数的最高次幂为1的多项式函数,其一般形式为y = mx + b,其中m 和b 是常数。
针对一次函数的动点问题,我们可以考虑一个点在直线上的运动情况。
假设有一条直线,用一次函数的方程y = mx + b 来表示,其中m 是斜率,b 是截距。
给定一点的初始位置(x₀, y₀),我们可以根据一次函数的方程计算点在直线上的位置。
假设时间t 经过后,点的位置为(x, y)。
根据直线上任意一点的坐标计算公式,我们可以得到:
x = x₀+ vt,
y = y₀+ mt,
其中v 是点在x 轴上的速度,m 是斜率。
这样,我们可以通过给定初始位置、速度和斜率来描述一次函数的动点问题。
根据给定的条件和问题要求,我们可以进一步计算点的运动轨迹、到达特定位置的时间等。
需要注意的是,一次函数的动点问题通常与直线运动或直线关系有关,其中斜率和截距是重要的参数。
具体问题的解决方法和计算步骤可能会因问题的具体条件而有所不同,所以在解决具体问题时,需要根据问题的要求和给定条件来进行适当的数学建模和计算。
初二数学 一次函数动点问题含解析
一次函数动点问题1、如图,正方形ABCD 的边长为6cm,动点P 从A 点出发,在正方形的边上由A→B→C→D 运动,设运动的时间为t(s),△ APD的面积为S(cm2),S与t 的函数图象如图所示,请回答下列问题:(1)点P 在AB 上运动时间为s,在CD 上运动的速度为cm/s,△APD 的面积S 的最大值为cm2;(2)求出点P 在CD 上运动时S 与t 的函数解析式;(3)当t 为s 时,△APD 的面积为10cm2.2、如图1,等边△ ABC 中,BC=6cm,现有两个动点P、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ,设动点运动时间为x 秒.(图2、图3 备用)(1)填空:B Q= ,P B= (用含x 的代数式表示);(2)当x 为何值时,PQ∥AC?(3)当x 为何值时,△ PBQ 为直角三角形?3、如图,矩形ABCD 中,AB=6,BC=8,点P 从A 出发沿A→B→C→D 的路线移动,设点P 移动的路线为x,△ PAD 的面积为y.(1)写出y 与x 之间的函数关系式,并在坐标系中画出这个函数的图象.(2)求当x=4 和x=18 时的函数值.(3)当x 取何值时,y=20,并说明此时点P 在矩形的哪条边上.4、如图1,在矩形ABCD 中,点P 从B 点出发沿着四边按B→C→D→A 方向运动,开始以每秒m 个单位匀速运动,a秒后变为每秒2 个单位匀速运动,b秒后又恢复为每秒m 个单位匀速运动.在运动过程中,△ ABP 的面积S 与运动时间t 的函数关系如图2 所示.(1)求矩形ABCD 的长和宽;(2)求m、a、b 的值5、如图1 所示,在直角梯形ABCD 中,AB∥DC,∠B=90°.动点P 从点B 出发,沿梯形的边由B→C→D→A 运动.设点P 运动的路程为x,△ ABP 的面积为y.把y 看作x 的函数,函数的图象如图2 所示,试求当0≤x≤9 时y 与x 的函数关系式.6、如图1,在矩形ABCD 中,AB=12cm,BC=6cm,点P 从A 点出发,沿A→ B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P、点Q 同时出发,点P 的速度为每秒1cm,点Q 的速度为每秒2cm,a 秒时点P、点Q 同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2 是点P出发x秒后△ APD 的面积S1(cm2)与x(秒)的函数关系图象;图3 是点Q 出发x 秒后△ AQD 的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c 的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2 与出发后的运动时间x(秒)的函数关系式,并求出P 与Q 相遇时x 的值.动点答案1、解:(1)点P在AB上运动的速度为6÷6=1cm/s,在CD上运动的速度为6÷3=2cm/s,当点P 运动到点B 时,△APD 的面积S 最大,最大值是×6×6=18cm2;(2)PD=6﹣2(t﹣12)=30﹣2t,S= AD•PD= ×6×(30﹣2t)=90﹣6t;(3)当0≤t≤6 时,S=3t,12≤t≤15 时,90﹣6t=10,t=,所以当t 为(s)、(s)时,△APD的面积为10c△ APD 的面积为10cm2,即S=10 时,3t=10,t= ,当m2.2、解:(1)根据题意,B Q=x,P B=6﹣2x;(2)若PQ∥AC,有,即,解之得:x=2;(3)当∠BPQ=90°时,根据三角函数关系,可知BQ=2BP,∴x=2(6﹣2x),解之得:x= ,当∠BQP=90°时,2BQ=BP,即6﹣2x=x,解之得:x= .3、解:(1)当点P在线段AB上时,此时AP=x,AD=8,根据三角形的面积公式可得:y= •AD•AP= ×8×x=4x,当点P 在线段BC 上运动时,面积不变;当点P 在线段CD 上,运动时,DP=6+8+6﹣x=20﹣x,AD=8根据三角形的面积公式可得:y= •AD•DP=×8×(20﹣x)=80﹣4x,∴y 与x 之间的函数关系式为y=(2)当x=4 时,y=4x=4×4=16,当x=18 时,y=80﹣4×18=8;(3)当y=4x=20,解得x=5,此时点P 在线段AB 上,当y=80﹣4x=20,解得x=15,此时点P 在线段CD 上.4、解:(1)从图象可知,当6≤t≤8 时,△ A B P面积不变即6≤t≤8 时,点P 从点C 运动到点D,且这时速度为每秒2 个单位∴CD=2(8﹣6)=4∴AB=CD=4(2 分)当t=6 时(点P运动到点C),S△ABP=16∴AB•BC=16∴×4×BC=16∴BC=8(4 分)∴长方形的长为8,宽为4.(2)当t=a 时,S△ABP=8=×16即点P 此时在BC 的中点处∴PC= BC= ×8=4∴2(6﹣a)=4∴a=4(6 分)∵BP=PC=4∴m=BP÷a=4÷4=1,当t=b 时,S△ABP=AB•AP=4∴ ×4×AP=4,AP=2∴b=13﹣2=11(9 分);5、解:由题意知:BC=4,DC=9﹣4=5,AD=5…(3 分)…(5 分)当0≤x≤4 时,…(8 分)当4<x≤9 时,…(9 分)6、解:(1)观察图象得,S△APQ=PA•AD=×(1×a)×6=24,解得a=8(秒)b= =2(厘米/秒)(22﹣8)c=(12×2+6)﹣2×8解得c=1(厘米/秒)(2)依题意得:y1=1×8+2(x﹣8),即:y1=2x﹣8(x>8),y2=(30﹣2×8)﹣1×(x﹣8)=22﹣x(x>8)又据题意,当y1=y2 时,P 与Q 相遇,即2x﹣8=22﹣x,解得x=10(秒)∴出发10 秒时,P 与Q 相遇.。
一次函数之动点问题
一次函数之动点问题(讲义)一、知识点睛动点问题的特征是速度已知,主要考查运动的过程. 1. 一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息; ②分析运动过程,注意状态转折,确定对应的时间范围; ③画出符合题意的图形,研究几何特征,设计解决方案. 2. 解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s =vt 直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.二、精讲精练1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为 t 秒.(1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.y xOBA2. 如图,直线=3+43y x 与x 轴、y 轴分别交于A ,B 两点,直线BC 与x 轴交于点C ,∠ABC =60°.(1)求直线BC 的解析式.(2)若动点P 从点A 出发沿AC 方向向点C 运动(点P 不与点A ,C 重合),同时动点Q 从点C 出发沿折线CB —BA 向点A 运动(点Q 不与点A ,C 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,运动时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围. (3)当t =4时,y 轴上是否存在一点M ,使得以A ,Q ,M 为顶点的三角形为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.C ABOxy CABOxy3. 如图,在直角梯形COAB 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A ,B ,C三点的坐标分别为A (8,0),B (8,11),C (0,5),点D 为线段BC 的中点.动点P 从点O 出发,以每秒1个单位的速度,沿折线OA —AB —BD 的路线运动,至点D 停止,设运动时间为t 秒.(1)求直线BC 的解析式.(2)若动点P 在线段OA 上运动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的14?(3)在动点P 的运动过程中,设△OPD 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.P DCxA OByyBO A xCD4. 如图,直线334y x =-+与x 轴交于点A ,与直线33y x =交于点P . (1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.PFE xA OB y5. 如图,直线l 的解析式为y =-x +4,它与x 轴、y 轴分别交于A ,B 两点,平行于直线l的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别交于M ,N 两点,设运动时间为t 秒(0< t <4). (1)求A ,B 两点的坐标;(2)用含t 的代数式表示△MON 的面积S 1;(3)以MN 为对角线作矩形OMPN ,记△MPN 和△OAB 重 叠部分的面积为S 2,试探究S 2与t 之间的函数关系式.xy OABm l PM N【参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)343y x =-+(2)223(04)2343(48)2t t S t t t ⎧<⎪⎪=⎨⎪-+<<⎪⎩≤(3)123(0438)(0438)(043)M M M -+-,或,或,443(0)3M 或,3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(33)P , (2)23(3)223(03)653163243(34)2tt S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤5.(1)(40)(04)A B ,,,(2)2112S t =(3)2221(02)2388(24)2t t S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤。
初二数学期末复习一次函数的应用—动点问题附练习及答案
课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .〔1〕求点D 的坐标;〔2〕求直线2l 的解析表达式;〔3〕求ADC △的面积;〔4〕在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. 例题2:如图,在平面直角坐标系,点A 〔0,6〕、点B 〔8,0〕,动点P 从点A 开场在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开场在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位.当堂稳固:如图,直线6y kx =+与*轴、y 轴分别交于点E 、F ,点E 的坐标为〔-8,0〕,点A 的坐标为〔-6,0〕。
〔1〕求k 的值;〔2〕假设点P 〔x ,y 〕是第二象限的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与*的函数关系式,并写出自变量*的取值围;〔3〕探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测:1、如果一次函数y=-*+1的图象与*轴、y 轴分别交于点A 点、B 点,点M 在*轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,则这样的点M 有〔〕。
(完整版)一次函数动点问题
一次函数动点问题1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去 A 营,再到河边饮马,之后再去 B 营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴ CB= ,C′B=∴ AC+CB=AC+CB′=.在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B 在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB 的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与 D 关于直线AC对称,连结ED 交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是如图⑥,一次函数y=﹣2x+4 的图象与x,y 轴分别交于A,B两点,点O 为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P 点坐标.2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求 a 的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△ POC的面积是S,试求S关于m 的函数关系式.3.已知函数y=kx+b 的图象经过点A(4,3)且与一次函数y=x+1 的图象平行,点B(2,m)在一次函数y=kx+b 的图象上(1)求此一次函数的表达式和m 的值?(2)若在x 轴上有一动点P(x,0),到定点A(4,3)、B(2,m)的距离分别为PA和PB,当点P 的横坐标为多少时,PA+PB的值最小.4.已知:一次函数图象如图:(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x 轴的交点,若S△OAP=2,求点P 的坐标.5.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线给出它们平行的定义:设一次函数y=k1x+b1(k1≠ 0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1 与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x 的图象为直线l1,求过点P(1,3)且与已知直线l1 平行的直线l2 的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为.(4)在x轴上找一点M,使△ BMP为等腰三角形,求M 的坐标.(直接写出答案)6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠ 0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1?k2=﹣1,我们就称直线l1 与直线l2 相互垂直,现请解答下面的问题:已知直线l 与直线y=﹣x﹣1 互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l 的函数表达式;(2)若点 C 是线段AB 上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△ BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.一次函数动点问题参考答案与试题解析一.解答题(共 6 小题)1.模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去 A 营,再到河边饮马,之后再去 B 营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙的解决了这问题如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.请你在下列的阅读、应用的过程中,完成解答.(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴CB= CB' ,C′B= C'B'∴ AC+CB=AC+CB′=AB' .在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小归纳小结:本问题实际是利用轴对称变换的思想,把A、B 在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.(2)模型应用如图④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.求EF+FB 的最小值分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与 D 关于直线AC 对称,连结ED交AC于F,则EF+FB 的最小值就是线段DE 的长度,EF+FB的最小值是.如图⑤,已知⊙ O的直径CD为4,∠ AOD的度数为60°,点B是的中点,在直径CD 上找一点P,使BP+AP 的值最小,则BP+AP 的最小值是 2 ;如图⑥,一次函数y=﹣2x+4 的图象与x,y 轴分别交于A,B两点,点O 为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD 的最小值,并写出取得最小值时P 点坐标.【解答】解:(1)理由:如图③,在直线L 上另取任一点C′,连接AC′,BC′,B′C,′ ∵直线l 是点B,B′的对称轴,点C,C′在l 上∴ CB=CB,' C′B=C'B'∴AC+CB=AC+CB′=A.B'在△ AC′B中′,∵ AB′<AC′+C′B,′∴AC+CB<AC′+C′B即′AC+CB 最小故答案为:CB',C'B',AB';(2)模型应用①解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D 关于直线AC对称,连结ED交AC于F则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是.在正方形ABCD中,AB=AD=2,∠BAD=9°0 ∵点E是AB 中点,∴AE=1,根据勾股定理得,DE= ,即:EF+FB的最小值,故答案为:DE,;②如图⑤,由圆的对称性可知,A与A'关于直径CD对称,连结A'B交CD于F,则AE+EB 的最小值就是线A'BE的长度,∴∠ AOD=∠A'OD=60°∵点 B 是的中点,∴∠ AOB=∠BOD= ∠AOD=3°0,∴∠ A'OB=90°∵⊙ O的直径为4,∴OA=OA'=OB=2,在Rt△A'OB中,A'B=2 ,∴ BP+AP的最小值是 2 .故答案为 2 ,③如图⑥,由平面坐标系中的对称性可知,C与C'关于直径y轴对称,连结C'D交y轴于P,则PC+PD的最小值就是线C'D 的长度,∵一次函数y=﹣2x+4的图象与x,y 轴分别交于A,B两点,∴A(2,0),B (0,4),∴C(1,0),D(1,2),∵C与C'关于直径y 轴对称,∴C'(﹣1,0),∴ C'D= =2 ,∴ PC+PD的最小值为 2 ,∵C'(﹣1,0),D(1,2),∴直线C'D 的解析式为y=x+1,∴P(0,1).2.已知一次函数图象经过点A(3,5)和点B(﹣4,﹣9)两点,①求此一次函数的解析式;②若点(a,2)在该函数的图象上,试求 a 的值.③若此一次函数的图象与x轴交点C,点P(m,n)是图象上一个动点(不与点C重合),设△ POC的面积是S,试求S关于m 的函数关系式.解答】解:①设一次函数解析式为y=kx+b,依题意,得解得,次函数解析式为y=2x﹣1;②将点(a,2)代入y=2x﹣1 中,得2a﹣1=2,③由 y=2x ﹣1,令 y=0得 x= , ∴C ( 又∵点 P(m ,n )在直线 y=2x ﹣1 上, ∴ n=2m ﹣1,3.已知函数 y=kx+b 的图象经过点A 43 y=x+1 的图象平行,点 B ( 2, m )在一次函数 y=kx+b 的图象上1)求此一次函数的表达式和 m 的值?2)若在 x 轴上有一动点 P (x ,0),到定点 A (4,3)、B (2,m )的距离分别 为 PA 和 PB ,当点 P 的横坐标为多少时, PA+PB 的值最小.解答】 解:(1)∵函数 y=kx+b 的图象经过点 A (4,3)且与一次函数 y=x+1 的图象平行,,解得:∴一次函数的表达式为 y=x ﹣1. 当 x=2 时, m=x ﹣1=2﹣ 1=1, ∴m 的值为1.(2)作点 B 关于x 轴的对称点 B ′,连接 AB ′交x 轴于点 P ,此时PA+PB 取最小值, 如图所示. ∵点 B 的坐标为( 2,1), ∴点 B ′的坐标为( 2,﹣ 1). 设直线 AB ′的表达式为 y=ax+c , 将( 2,﹣1)、(4,3)代入 y=ax+c ,,解得:∴直线 AB ′的表达式为 y=2x ﹣5. 当 y=0 时, 2x ﹣ 5=0,,0),∴S= × ×|n|= | (2m ﹣1)|=|m﹣4.已知:一次函数图象如图: 1)求一次函数的解析式;2)若点 P 为该一次函数图象上一动点,且点 A 为该函数图象与 x 轴的交点,若 S △OAP =2,求点 P 的坐标.解答】 解:(1)设一次函数解析式为 y=kx+b ,所以一次函数解析式为 y=﹣x+1;(2)当 y=0时,﹣ x+1=0,解得 x=1,则 A ( 1, 0), 设 P (t ,﹣ t+1), 因为 S △OAP =2,所以 ×1×|﹣t+1|=2,解得 t=﹣3或t=5, 所以 P 点坐标为(﹣ 3,4)或( 5,﹣ 4).5.阅读下面的材料:在平面几何中, 我们学过两条直线平行的定义. 下面就两个一次函数的图象所确 定的两条直线给出它们平行的定义:设一次函数 y=k 1x+b 1(k 1≠ 0)的图象为把(﹣ 2,3)、(2, 分别代入得,解得PA+PB 的值最小.P 的横坐标为 ﹣1)直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1 与直线l2互相平行.解答下面的问题:(1)已知正比例函数y=﹣x 的图象为直线l1,求过点P(1,3)且与已知直线l1 平行的直线l2 的函数表达式;(2)设直线l2分别与y轴、x轴交于点A、B,求l1和l2两平行线之间的距离;(3)若Q为OA上一动点,求QP+QB的最小值时Q点的坐标为Q(0,).(4)在x轴上找一点M,使△ BMP为等腰三角形,求M 的坐标.(直接写出答案)【解答】解:(1)根据正比例函数y=﹣x的图象为直线l1,设直线l2的函数表达式为y=﹣x+b,把P(1,3)代入得:3=﹣1+b,即b=4,则过点P(1,3)且与已知直线l1 平行的直线l2的函数表达式为y=﹣x+4;(2)过O作ON⊥AB,如图1所示,ON为l1和l2两平行线之间的距离,对于直线y=﹣x+4,令x=0,得到y=4;令y=0,得到x=4,∴ A(0,4),B(4,0),即OA=OB=4,∵△ ABC为等腰直角三角形,∴AB= =4 ,且ON 为斜边上的中线,∴ ON= AB=2 ,则l1 和l2 两平行线之间的距离为 2 ;(3)找出B关于y轴的对称点B′(﹣4,0),连接PB′,与y轴交于点Q,连接PQ,此时QP+QB 最小,设直线B′P的解析式为y=mx+n,把B′和P 坐标代入得:,解得:m= ,n= ,∴直线B′P的解析式为y= x+ ,令x=0,得到y= ,即Q(0,);故答案为:Q(0,);(4)如图 2 所示,分三种情况考虑:当PM1=PB时,由对称性得到M1(﹣2,0);当PM2=BM2时,M2 为线段PB垂直平分线与x轴的交点,∵直线PB的解析式为y=﹣x+4,且线段PB中点坐标为( 2.5, 1.5),∴线段PB垂直平分线解析式为y﹣1.5=x﹣2.5,即y=x﹣1,令y=0,得到x=1,即M 2(1,0);当PB=M3B= =3 时,OM3=OB+BM3=4+3 ,此时M 3(4﹣3 ,0),M 3(4+3 ,0).综上,M的坐标为(﹣2,0)或(1,0)或(4﹣ 3 ,0)或(4+3 ,0).6.阅读下面的材料:在平面几何中,我们学过两条直线互相垂直的定义,下面就两个一次函数的图象所确定的两条直线,给出它们相互垂直的定义:设一次函数y=k1x+b1(k1≠ 0)的直线为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2.若k1?k2=﹣1,我们就称直线l1 与直线l2 相互垂直,现请解答下面的问题:已知直线l 与直线y=﹣x﹣1 互相垂直,且直线l的图象过点P(﹣1,4),且直线l分别与y轴、x轴交于A、B两点.(1)求直线l 的函数表达式;(2)若点 C 是线段AB 上一动点,求线段OC长度的最小值;(3)若点Q是AO上的一动点,求△ BPQ周长的最小值,并求出此时点Q的坐标;(4)在(3)的条件下,若点P关于BQ的对称点为P′,请求出四边形ABOP′的面积.【解答】解:(1)设直线l 的解析式为y=kx+b,∵直线l 与直线y=﹣x﹣1 互相垂直,∴﹣k=﹣1,解得k=2,∵直线l 的图象过点P(﹣1,4),∴﹣k+b=4,即﹣2+b=4,解得b=6,∴直线l 的解析式为y=2x+6;(2)如图1,过O作OC⊥AB 于点C,在y=2x+6 中,令x=0 可得y=6,令y=0 可求得x=﹣3,∴A(0,6),B(﹣3,0),∴OA=6,OB=3∴ AB= =3 ,∵ AB?OC= OA?OB,∴ 3 OC=3×6,∴ OC= ,即线段OC长度的最小值为;(3)如图2,作点P关于y轴的对称点P″,连接BP″交y轴于点Q,过P″作P″G⊥x 轴于点G,则PQ=P″Q,∴PQ+BQ=BQ+QP″,∵点B、Q、P″三点在一条线上,∴ BQ+PQ最小,∵P(﹣1,4),∴P″(1,4),∴ P″G=,4 OG=1,∴BG=BO+OG=4=″P G,∴∠ OBQ=4°5,BP″=4 ,∴ OQ=BO=3,∴ Q点坐标为(0,3),又BP= =2 ,此时△ BPQ的周长=BP+BP″=4 +2 ;(4)由(3)可知∠ OBQ=∠OQB=4°5,∴∠PQA=∠P″QA=45°,∴PQ⊥BQ,如图3,延长PQ到点P′,使PQ=P′Q,则P′即为点P 关于BQ的对称点,过P′作由(3)可知PQ=Q′P = ,∴QH=H′P =1,∴OH=OQ﹣QH=3﹣1=2,∴ S四边形ABO′P=S△AOB+S△AOP′= ×6×3+ × 6× 1=12,四边形△ △即四边形ABOP′的面积为12.。
一次函数中的动点问题
一次函数中的动点问题一次函数是学生在初中阶段学习的第一个函数,它是最基础的函数,是初中数学中的重要内容之一.本文例析一次函数中的动点问题,供同学们学习时参考.一、动点与函数问题例1 正方形ABCD的边长为4,P为正方形边上一动点,点P自点D出发沿D→C→B的路径匀速移动(到点B后就停止).设P点经过的路径长为x,△APD的面积是y,求y与x的函数关系式.解析由于点P的位置有两种可能,可能在DC边上,也可能在边BC上,故应该分两种情况讨论:如图1,当点P在DC边上(0≤x≤4)时,y=12.AD.DP=12×4x=2x;如图2,当点P在BC边上(当4<x≤8)时,y=12.AD.PQ=14×4×4=8.所以y=() () 2,04 8,48 x xx⎧≤≤⎪⎨<≤⎪⎩二、动点与距离问题例2 如图3,在平面直角坐标系中,点A为直线y=2x+3上的一个动点.问当点A运动到何处时,点A到y轴的距离为1,求出点A的坐标.解析根据点A到y轴的距离为1,可以得到点A的横坐标的绝对值等于1.故点A的横坐标等于1或者-1,即x A=±1.当x A=1时,代入y=2x+3,得到y=2x1+3=5,故点A的坐标为(1,5);当x A=-1时,代入y=2x+3,得到y=2×(-1)+-3=1,故点A的坐标为(-1,1).所以点A的坐标为(1,5)或者(-1,1).三、动点与最值问题例3 如图4,在平面直角坐标系中,A(-3,2),B(2,3),点M为x轴上的一个动点,当点M运动到x轴上何处时,MA与MB的和最短.解析点A和点B在x轴的同侧,在x轴上的确定点M的位置,根据最短路径问题的思路,想到利用轴对称知识解决问题,作点A(-3,2)关于x轴的对称点A'(-3,-2),连结A'B交x轴于点M,则有MA+MB=MA'+MB=A'B,根据两点之间线段最短,可以得到此时的MA与MB的和最短.设经过点A'(-3,-2)、B(2,3)的一次函数的关系式为y=kx+b.根据题意,得方程组32 23k bk b-+=-⎧⎨+=⎩解得11kb=⎧⎨=⎩,∴y=x+1.把y=0代入y=x+1,得x=-1,所以点M的坐标为(-1,0).所以,当点M运动到(-1,0)时,MA与MB的和最短.四、动点与面积问题例4 如图5,在平面直角坐标系中,一次函数y=-2x+4的图象交y轴于点A,交x轴于点B,点N是直线y=-2x+4上的一动点.若AON的面积等于△AOB面积的二分之一,求点N的坐标.所以点N的坐标为(1,2),(-1,6).五、动点与不等式问题例5(2013年河北中考题)如图6,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.t=2时,落在x轴上.六、动点与等腰三角形问题例6(2013龙岩中考题)如图7,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,求符合条件的点C的个数.解析如图8,AB的垂直平分线与直线y=x相交于点C1.∵A(0,2),B(0,6),∴AB=6-2=4.以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3.∵OB=6.∴点B到直线y=x的距离为6=∵,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.。
一次函数与动点问题
一次函数与动点问题一、典型例题:例1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例2、如图,在平面直角坐标系xoy 中,点A (1,0),点B (3,0),点,直线l 经过点C ,(1)若在x 轴上方直线l 上存在点E 使△ABE 为等边三角形,求直线l 所表达的函数关系式;(2)若在x 轴上方直线l 上有且只有三个点能和A 、B 构成直角三角形,求直线l 所表达的函数关系式.例3、如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P 的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围)例4、在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围.例5、如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.二、巩固提高:1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m 的值是多少?2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。
一次函数之动点问题(作业及答案)
一次函数之动点问题(作业)例1:如图,直线y =x +4与x 轴、y 轴分别交于点A ,B ,直线y =-x +b 过点B ,且与x 轴交于点C . (1)求直线BC 的表达式.(2)动点P 从点C 出发,沿CA 方向以每秒1个单位长度的速度向点A 运动(点P 不与点A ,C 重合),动点Q 从点A 同时出发,沿折线AB -BC 以每秒2个单位长度的速度向点C 运动(点Q 不与点A ,C 重合),当其中一点到达终点时,另一点也随之停止.设△CPQ 的面积为S ,运动的时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.【思路分析】1.研究背景图形,如图 (把函数信息转为几何信息)2.分析运动过程0 < t < 8CA 4s4s8s B (2/s ) Q :A(1/s ) P :C3.画图,设计方案计算当04t <≤时,21122S t t t =⋅⋅= 当48t <<时,211(8)422S t t t t =-=-+221(04)214(48)2t t S t t t ⎧<≤⎪⎪=⎨⎪-+<<⎪⎩8-t t82-2t E P Q xy A BCOt Q P E 2tt 445°42424445°y=-x+4y=x+4xyAB C Oxy A BC O1. 如图,在平面直角坐标系xOy 中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是OD 的中点,连接CD .动点P 从点O 出发,以每秒1个单位长度的速度沿O →A →C →B 的方向匀速运动,动点Q 从点O 同时出发,以相同的速度沿O →B →D →B 的方向匀速运动.过点P 作PE ⊥x 轴于点E ,设△PEQ 的面积为S ,点P 运动的时间为t 秒(06t <<).求S 与t 之间的函数关系式.Q PxO y A CD B (E )xO y ACD BxO y ACD B2. 如图,直线y =-x +42与x 轴交于点A ,与直线y =x 交于点B . (1)求点B 的坐标.(2)判断△AOB 的形状,并说明理由.(3)动点D 从原点O 出发,以每秒2个单位长度的速度沿OA 向终点A 运动(不与点O ,A 重合),过点D 作DC ⊥x 轴,交线段OB 或线段AB 于点C ,过点C 作CE ⊥y 轴于点E .设运动的时间为t 秒,矩形ODCE 与△AOB 重叠部分的面积为S ,求S 与t 之间的函数关系式.EDAO C x ByyBx O AyBxO A3. 如图,直线33334y x =-+与x 轴、y 轴分别交于点A ,B ,与直线3y x =交于点C .动点E 从点A 出发,以每秒1个单位长度的速度沿AO 向终点O 运动,动点F 从原点O 同时出发,以相同的速度沿折线OC -CA 向终点A 运动,设点F 运动时间为t 秒.(1)设△EOF 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.(这里规定线段是面积为0的三角形) (2)当24t ≤≤时,是否存在某一时刻,使得△AEF 是等腰三角形?若存在,求出相应的t 值;若不存在,请说明理由.xO yA CBxO yA CBx O yA CB【参考答案】1.2210222241618 462tt S t t t t ⎧<⎪⎪=<⎨⎪⎪-+<<⎩≤≤()()()2.(1)(2222)B ,(2)△OAB 是等腰直角三角形,理由略(3)22023161624tt S t t t ⎧<⎪=⎨-+-<<⎪⎩≤()()3.(1)2233024133232 24420 42+23t t t S t t t t ⎧-+⎪⎪⎪+⎪=-++<⎨⎪⎪<⎪⎪⎩≤≤≤≤()()()(2)存在,t 的值为2,31+或23(资料素材和资料部分来自网络,供参考。
一次函数中的动点问题
一次函数中的动点问题一次函数是最基础的函数,也是初中数学中的重要内容之一,是中考中必考内容之一,下面以一次函数动点问题为例进行分析,希望对同学们学习这部分知识有所帮助.一. 动点与最值问题例1 如图1,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A .(0,0)B .(12,-12) C .(2,-2) D .(-12,12) 解析:如图2,过点A 向直线y=-x 作垂线段,垂足为点M ,则当点B运动到点M 的位置时,线段AB 最短.再作MN ⊥OA 于点N,正比例函数y=-x 的图象是二、四象限的角平分线,∴△OAM 和△OMN 均为等腰直角三角形.∵OA=1, ∴ON=12,即M 点的横坐标为12,代入y=-x 中,∴y=-12,∴点M 的坐标为(12,-12),∴故选B. 评注:解答本题涉及四个知识点;(1)正比例函数y=-x 的图象是二、四象限夹角平分线;(2)根据“垂线段最短”确定动点B 的位置;(3)利用等腰三角形“三线合一”的性质求得M 点的横坐标;(4)把求得的横坐标代入y=-x 中,求得纵坐标.二. 动点与图形面积例2 如图2,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) A 、10 B 、16 C 、18 D 、20 解析:动点从点出发,沿边运动到点的过程中,的值逐渐增大,到达点时,面积最大,当动点在边上由点运动到点时,的值不变,的面积为故选评注:解决本题的关键是找出图象与题中运动过程相对应的阶段,分析对应部分的变化情况,找到解题突破口.同学们在解决此类题中,应培养自己通过特殊点分析函数图象与题中情境的关系的能力.三. 动点与函数图象例3在平面直角坐标系中,一动点P (x ,y )从M (1,0)出发,沿由A (-1,1),B (-1,-1),C (1,-1),D (1,1)四点组成的正方形边线(如图①)按一定方向运动。
一次函数有关的动点问题
一次函数中有关的动点问题例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.:例题2:如图,在平面直角坐标系中,两个一次函数y=x ,y=-2x+12的图象相交于点A ,动点E 从O 点出发,沿OA 方向以每秒1个单位的速度运动,作EF ∥y 轴与直线BC 交于点F ,以EF 为一边向x 轴负方向作正方形EFMN ,设正方形EFMN 与△AOC 的重叠部分的面积为S .(1)求点A 的坐标;(2)当点E 在线段OA 上运动时,求出S 与运动时间t (秒)的函数表达式;例题3:(湖南邵阳)如图(十二),直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S , ①当2t <≤4时,试探究2S 与t 之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516?模仿练习:(衡阳市)如图,直线4+-=x y 与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D . (1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图(1)图(2)图(3)例题4:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?例题5:(济宁市)在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).(1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.x。
一次函数之动点问题(作业及答案)
一次函数之动点问题(作业)例1:如图,直线y =x +4与x 轴、y 轴分别交于点A ,B ,直线y =-x +b 过点B ,且与x 轴交于点C . (1)求直线BC 的表达式.(2)动点P 从点C 出发,沿CA 方向以每秒1个单位长度的速度向点A 运动(点P 不与点A ,C 重合),动点Q 从点A 同时出发,沿折线AB -BC 以每秒2个单位长度的速度向点C 运动(点Q 不与点A ,C 重合),当其中一点到达终点时,另一点也随之停止.设△CPQ 的面积为S ,运动的时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.【思路分析】1.研究背景图形,如图 (把函数信息转为几何信息)2.分析运动过程0 < t < 8CA 4s4s8s B (2/s ) Q :A(1/s ) P :C3.画图,设计方案计算当04t <≤时,21122S t t t =⋅⋅= 当48t <<时,211(8)422S t t t t =-=-+221(04)214(48)2t t S t t t ⎧<≤⎪⎪=⎨⎪-+<<⎪⎩8-t t82-2t E P Q xy A BCOt Q P E 2tt 445°42424445°y=-x+4y=x+4xyAB C Oxy A BC O1. 如图,在平面直角坐标系xOy 中,四边形AOBC 是正方形,已知点A 的坐标为(0,2),点D 在x 轴正半轴上,B 是OD 的中点,连接CD .动点P 从点O 出发,以每秒1个单位长度的速度沿O →A →C →B 的方向匀速运动,动点Q 从点O 同时出发,以相同的速度沿O →B →D →B 的方向匀速运动.过点P 作PE ⊥x 轴于点E ,设△PEQ 的面积为S ,点P 运动的时间为t 秒(06t <<).求S 与t 之间的函数关系式.Q PxO y A CD B (E )xO y ACD BxO y ACD B2. 如图,直线y =-x +42与x 轴交于点A ,与直线y =x 交于点B . (1)求点B 的坐标.(2)判断△AOB 的形状,并说明理由.(3)动点D 从原点O 出发,以每秒2个单位长度的速度沿OA 向终点A 运动(不与点O ,A 重合),过点D 作DC ⊥x 轴,交线段OB 或线段AB 于点C ,过点C 作CE ⊥y 轴于点E .设运动的时间为t 秒,矩形ODCE 与△AOB 重叠部分的面积为S ,求S 与t 之间的函数关系式.EDAO C x ByyBx O AyBxO A3. 如图,直线33334y x =-+与x 轴、y 轴分别交于点A ,B ,与直线3y x =交于点C .动点E 从点A 出发,以每秒1个单位长度的速度沿AO 向终点O 运动,动点F 从原点O 同时出发,以相同的速度沿折线OC -CA 向终点A 运动,设点F 运动时间为t 秒.(1)设△EOF 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.(这里规定线段是面积为0的三角形) (2)当24t ≤≤时,是否存在某一时刻,使得△AEF 是等腰三角形?若存在,求出相应的t 值;若不存在,请说明理由.xO yA CBxO yA CBx O yA CB【参考答案】1.2210222241618 462tt S t t t t ⎧<⎪⎪=<⎨⎪⎪-+<<⎩≤≤()()()2.(1)(2222)B ,(2)△OAB 是等腰直角三角形,理由略(3)22023161624tt S t t t ⎧<⎪=⎨-+-<<⎪⎩≤()()3.(1)2233024133232 24420 42+23t t t S t t t t ⎧-+⎪⎪⎪+⎪=-++<⎨⎪⎪<⎪⎪⎩≤≤≤≤()()()(2)存在,t 的值为2,31+或23(资料素材和资料部分来自网络,供参考。
一次函数中的动点运动问题
一次函数中的动点运动问题一次函数中的动点问题一直是难点。
其难度在于:①直线或点的旋转、平移、翻折运动;②因动直线或动点产生的面积问题;③因动点产生的三角形存在性问题。
解法分析:本题的第1问是点的平移,点的平移运动遵循“上加下减,左减右加”;本题的第2问是直线的左右平移,尽管是新的背景,但是直线的平移就是直线上点的平移运动,只要找准直线上的一个点进行平移运动,代入即可;本题的第3问是点的旋转运动,经过的路径长就是以O为圆心,AO为半径,圆心角为90°的弧长;本题的第4问是直线的旋转运动,只要求出直线上的任意两点(一般选与坐标轴的两交点)绕旋转中心旋转后的对应点,即可求出型的直线表达式。
(旋转后构造“一线三直角模型”,即可求出旋转后对应点的坐标)对于直线的左右平移按照以下方法进行:①从直线上任意取一点进行左右平移,得到平移后的点的坐标;②设出平移后的直线表达式;③将平移后的点代入平移后的表达式中,即可求出b,得到新的表达式。
对于平面直角坐标系中点的旋转运动,往往可以通过构造一线三直角模型,借助全等三角形找到对应的等边。
解法分析:本题的第1问和第2问是手拉手旋转型模型,难度不大,围绕旋转角相等,证明▲AOE'≌▲BOF',即可得到AE'=BF',AE'⊥BF'。
本题的第3问是求P纵坐标的最大值,这是本题的难点,从动态的角度来看,当P与D'重合时,可以求得点P的纵坐标的最大值。
通过画出图形,进行分析,可以得到此时∠A为30°,以此通过30°-60°-90°直角三角形的性质得到点P的纵坐标。
因动点产生的三角形存在性问题有以下几类:①等腰三角形的存在性问题(设点、利用距离公式,线段相等即可求出点的坐标);②直角三角形的存在性问题(设点,利用距离公式和勾股定理求出点的坐标);③等腰直角三角形的存在性问题(根据题意画出图形,利用等腰直角三角形的性质求出点的坐标)。
一次函数之动点问题(含解析)
一次函数之动点问题一、 框架套路和标准动作动点问题的特征是速度已知,主要考查运动的过程. 1. 一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为背景图形的信息; ②分析运动过程,注意状态转折,确定对应的时间范围; ③画出符合题意的图形,研究几何特征,设计解决方案. 2. 解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt 直接表达已走路程或未走路程;②根据研究几何特征的需求进行表达,既要利用动点的运动情况,又要结合背景图形信息.二、 例题解析(1)读题标注,整合信息(即研究背景图形)由直线AB 的表达式y +()(400A B -,,, 即4OA OB ==,8AB =,∠BAC =60°.又由∠ABC =60°, 可得△ABC 是等边三角形,且AB =BC =AC =8,OA =OC =4. 如图:(2)分析特征,有序思考,设计方案(分析运动过程): 分析运动过程,核心是运动过程的四要素:①起点、终点、速度;②时间范围;③状态转折点;④目标.具体操作:①起点、终点、速度;动点P 从点A 沿AC 向点C 运动,可以确定点P 的起点(点A )、终点(点C ),速度为1/s ;动点Q 从点C 沿CB —BA 向点A 运动,可以确定点Q 的起点(点C )、终点(点A ),速度为2/s ,图示如下:AQ :BC (2/s)(1/s)A P :②时间范围根据路程、时间和速度的公式s =vt ,已知动点的速度,结合基本图形中线段长的研究,可以确定动点的运动时间.例如:动点P 的速度是1/s ,AC =8,故动点P 由A 到C 共经过8s ;动点Q 的速度是2/s ,CB =BA =8,故每段各走4s ,共8s ,综上0≤t ≤8.图示如下:AQ :B C4s(2/s)(1/s)(0≤t ≤8)A P :③状态转折点状态转折点即点的运动发生变化的点,常常为动点的运动方向发生改变、或者是动点的速度发生改变.例如:动点P 从点A 到点C ,速度和方向均未变化,故点P 没有状态转折点;动点Q 从点C 沿CB —BA 向点A 运动,在点B 处运动方向发生了变化,故点B 为状态转折点,由状态转折点可对运动过程进行分段.图示如下:4 < t ≤ 80 ≤ t ≤ 4①②Q :C(2/s)(1/s)(0≤t ≤8)A P :④确定目标确定目标是正确高效解题的保证,是有序操作的重要一环.本题求S 与t 之间的函数关系式,即用t 来表示△APQ 的面积S .图示如下:△APQ S (t )4 < t ≤ 80 ≤ t ≤ 4①②Q :C(2/s)(1/s)(0≤t ≤8)A P : (3)根据方案作出图形、有序操作(分段作图,求解)作图需要充分借助动点的运动路线图,利用运动路线图可以确定每段时间范围内点的位置. 例如:①当04t ≤≤时,点P 在AO 上,点Q 在CB 上,连接AQ ,PQ ;要求△APQ 的面积,先从表达开始,可以表达动点的已走路程,得到AP =t ,CQ =2t 。
初二函数专题17一次函数之动点问题
大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1.如图,在平面直角坐标系中,O为坐标原点,直线334y x=-+与x轴、y轴分别交于A,B两点.点P从点A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA,OB的长.(2)过点P与直线AB垂直的直线与y轴交于点E,在点P的运动过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC 的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD 的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.4.如图,直线y=+与x轴交于点A,与直线y x=交于点P.(1)求点P的坐标.(2)求△OP A的面积.(3)动点E从原点O出发,以每秒1个单位的速度沿OA方向向终点A运动,过点E作EF⊥x轴交线段OP或线段P A于点F,FB⊥y轴于点B.设运动时间为t秒,矩形OEFB与△OP A重叠部分的面积为S,求S与t之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)2(48)2t t S t <⎪=⎨⎪-+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)6(34)2tt S t t <⎪=⎨⎪-+-<<⎪⎩≤5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t t S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……
The End
Thanks For Your Attention
4、如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿
A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到 AQ的速度为每秒2cm ,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为 每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数 关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图 象.根据图象: (1)求a、b、c的值; (2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm) ,请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并 求出P与Q相遇时x的值.
(1)点P在AB上运动的时间为 s,速度为___cm/s, 点P在CD上运动的时间为 s,速度为 cm/s, △APD的面积S的最大值为 cm2; (2)求出点P在运动过程中,S与t的函数解析式; (3)当t为 s时,△APD的面积为10cm2.
3、如图1所示,在直角梯形ABCD中,AB∥DC,∠B=90°. 动点P从点B出发,沿梯形的边由B→C→D→A运动.设点P运 动的路程为x,△ABP的面积为y.把y看作x的函数,函数的图 象如图2所示,试求当0≤x≤9时y与x的函数关系式.
一次函数的动点问题
1、如图,矩形ABCD中,AB=6,BC=8,点P从A出发沿 A→B→C→D的路线移动,设点P移动的路线为x,△PAD的 面积为y.
(1)写出y与x之间的函数关系式. (2)求当x=4和x=18时的函数值. (3)当x取何值时,y=20,并说明此时点P在矩形的哪条边上.
2、如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方 形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的 面积为S(cm2),S与t的函数图象如图所示,请回答下列问题: