2015-2016学年上海市宝山区高一(上)期末数学试卷含参考答案
2015-2016学年度第一学期期末测试(数学)
2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2015-2016学年度第一学期期末考试高一数学试题及参考答案
2015-2016学年度第一学期期末考试高一数学试题一、选择题(该大题共12小题,每小题5分,共计60分) 1.下列图形中,表示⊆M N 的是 ( ▲ )2.120cos ︒= ( ▲ ) A.12-B.12C.32-D.223.下列命题正确的是 ( ▲ )A .向量AB 与BA 是两平行向量;B .若,a b 都是单位向量,则a b =;C .若AB =DC ,则A B CD 、、、四点构成平行四边形; D .两向量相等的充要条件是它们的始点、终点相同. 4.45154515cos cos sin sin ︒︒-︒︒= ( ▲ )A.22 B.32C.12D.12-5.如图,在ABC ∆中,D 是AC 的中点,向量AB a =,AC b =,那么向量BD 可表示为 ( ▲ ) A.b a 1122- B.a b 12-C.b a 12-D.a b 12-6.函数2212()()=+-+f x x a x 在区间(],4-∞上是递减的,则实数a 的取值范 ( ▲ ) A.3≤-a B.3≥-a C.5≤a D.5≥a 7.已知指数函数()xf x a =和函数2()g x ax =+,下列图象正确的是 ( ▲ )A. B. C. D.8.已知平面向量,a b ,8a =||,4||=b ,且,a b 的夹角是150︒,则a 在b 方向上的射影是 ( ▲ )A.4-B.43-C.4D.439.要得到函数2sin 2=y x 的图像,只需将2sin(2)6π=-y x 的图像 ( ▲ )A.向右平移6π个单位 B.向右平移12π个单位 C.向左平移6π个单位D.向左平移12π个单位10.若平面向量(3,4)b =与向量(4,3)a =,则向量,a b 夹角余弦值为 ( ▲ )A.1225 B. 1225- C. 2425- D.2425 11.设()338x f x x =+-,用二分法求方程(),338012xx x +-=∈在内近似解的过程中得()()(),.,.,101501250f f f <><则方程的根落在区间 ( ▲ )A .(,.)1125B .(.,.)12515C .(.,)152D .不能确定12.若函数tan ,0(2)lg(),0x x f x x x ≥⎧+=⎨-<⎩,则(2)(98)4f f π+⋅-= ( ▲ )A.12B.12- C.2 D.2-二、填空题(共4小题,每小题5分,共计20分) 13.函数212()log ()=-f x x 的定义域是 ▲ .14.有一半径为4的扇形,其圆心角是3π弧度,则该扇形的面积是 ▲ . 15.已知平面向量(4,3)a =-和单位向量b ,且b a ⊥,那么向量b 为 ▲ . 16.关于函数sin (()42)3f x x =+π,(R)x ∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为cos (6)42y x =-π; ③()y f x =的图象关于(0)6-,π对称; ④()y f x =的图象关于直线6x =-π对称; 其中正确的序号为 ▲ .M N D.N M C. M N B. MN A. o 2 1 y x2 1 oy x2 1 oyx2 1 oy xD C AB 第5小题三、解答题(共6小题,共计70分) 17.化简或求值:(1)log lg lg 223212732548--⨯++ (2)已知3sin ,054x x =<<π,求cos 2cos()4xx +π. 18.已知全集U R =,集合{}A x x =<<17,集合{}B x a x a 125=+<<+,若满足A B B =,求 (1)集合U C A ;(2)实数a 的取值范围.19.若平面向量(1,2)a =,(3,2)b =-, k 为何值时: (1)()(3)ka b a b +⊥-;(2)//()(3)ka b a b +-?20.设函数()2sin(2)(0)f x x =+<<ϕϕπ,()y f x =图象的一个对称中心是(,0)3π.(1)求ϕ;(2)在给定的平面直角坐标系中作出该函数在(0,)2x ∈π的图象;(3)求函数()1()f x x R ≥∈的解集21.已知函数2()3sin 22cos f x x x =+.(1)求函数()f x 的最小正周期和单调递增区间;(2)将()f x 的图象向右平移12π个单位长度,再将周期扩大一倍,得到函数()g x 的图象,求()g x 的解析式.22.已知定义域为R 的函数2()21x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.2015-2016学年度第一学期期末考试高一数学试题参考答案一、选择题(该大题共12小题,每小题5分,共计60分)CAACC ADBDD BC二、填空题(共4小题,每小题5分,共计20分) 13. 2{|>x x ,且3}≠x 或者填(2,3)(3,)+∞ .14.83π. 15.34(,)55和 34(,)55--.16. ② ③ .三、解答题(共6小题,共计70分) 17.(本小题满分8分) 解:(1)原式=()lg lg 2193549-⨯-++=()lg 1931009-⨯-+=()19329-⨯-+=1113(2)3sin ,054x x π=<<2cos 1sin xx ∴=-=45227cos 2cos sin cos sin 72552222cos()cos sin 42222x x x x x x x x π-+∴====+-18.(本小题满分10分)解;(1)(,][,)U C A =-∞+∞17(2)A B B =B A ∴⊆(i )当B φ=时,由a a 251+≤+得a 4≤-(ii )当B φ≠时,由a a a a 11257125+≥⎧⎪+≤⎨⎪+<+⎩解得a 01≤≤a ∴的取值范围是(,][,]401-∞-.19.(本小题满分12分) 解:(1)a b (1,2),(3,2)==- ka b k k (3,22)∴+=-+ a b 3(10,4)-=-()(3)ka b a b +⊥-(k 3)10(2k 2)(4)0∴-⨯++⨯-=解得 k 19=(2)由(1)及//()(3)ka b a b +-得(k 3)(4)(2k 2)100-⨯--+⨯=解得 1k 3=-20.(本小题满分14分) 解: (1)(,)π03是函数()y f x = 的图像的对称中心sin()πϕ∴⨯+=2203()k k Z πϕπ∴+=∈23()k k Z πϕπ∴=-∈23(,)πϕπϕ∈∴=03()sin()f x x π∴=+223(2)列表:(3)()f x ≥1即sin()x π+≥2213sin()x π+≥1232解得,k x k k Z πππππ+≤+≤+∈5222636亦即,k x k k Z ππππ-+≤≤+∈124所以,()f x ≥1的解集是[,],k k k Z ππππ-++∈12421.(本小题满分12分)解:(1)依题意,得f x x x =++()3sin 2cos 21x x =++312(sin 2cos 2)122x π=++2sin(2)16将()y f x =的图像向右平移12π个单位长度,得到函数f x x x ππ=-++=+1()2sin[2()]12sin 21126的图像,该函数的周期为π,若将其周期变为π2,则得g x x =+()2sin 1 (2)函数f x ()的最小正周期为T π=,(3)当,k x k k Z πππππ-≤+≤-∈222262时,函数单调递增,解得,k x k k Zππππ-≤≤+∈36∴函数的单调递增区间为 [,],k k k Z ππππ-+∈36. 22.(本小题满分14分) 解:(1)由题设,需(),,()xxa f a f x +-==∴=∴=+112001212经验证,()f x 为奇函数,a ∴=1xπ12π3 π712 π56πx π+23 π3π2 ππ32π2π73 ()f x32-23(2)减函数.证明:任意,,,x x R x x x x ∈<∴->1212210由(1)得()()()()()x x x x x x x x f x f x --⨯--=-=++++2112212121121222212121212 ,x x x x x x <∴<<∴-<121212022220,()()x x ++>2112120()()f x f x ∴-<210所以,该函数在定义域R 上是减函数(3)由22(2)(2)0f t t f t k -+-<得f t t f t k -<--22(2)(2)()f x 是奇函数∴f t t f k t -<-22(2)(2),由(2),()f x 是减函数. ∴原问题转化为t t k t ->-2222,即t t k -->2320对任意t R ∈恒成立.∴k ∆=+<4120,解得k <-13即为所求.。
2015-2016学年上海中学高一(上)数学期末试卷和解析
2015-2016学年上海中学高一(上)期末数学试卷一、选择题(每题4分)1.(4.00分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件2.(4.00分)已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)3.(4.00分)已知函数y=log2x的反函数是y=f﹣1(x),则函数y=f﹣1(1﹣x)的图象是()A.B.C.D.4.(4.00分)方程3x+4x=6x解的个数是()A.0个 B.1个 C.2个 D.3个5.(4.00分)设函数f(x)=﹣(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B.1个 C.2个 D.无数多个6.(4.00分)对于定义在D上的函数f(x),点A(m,n)是f(x)图象的一个对称中心的充要条件是:对任意x∈D都有f(x)+f(2m﹣x)=2n,现给出下列三个函数:(1)f(x)=x3+2x2+3x+4(2)(3)这三个函数中,图象存在对称中心的有()A.0个 B.1个 C.2个 D.3个二、填空题(每题3分)7.(3.00分)若函数y=a x(a>0,a≠1)在区间x∈[0,1]上的最大值与最小值之和为3,则实数a的值为.8.(3.00分)设g(x)=,则g(g())=.9.(3.00分)已知函数y=f(x+1)的定义域为[1,3],则f(x2)的定义域为.10.(3.00分)函数y=的值域是.11.(3.00分)幂函数f(x)=(t3﹣t+1)x3t+1是偶函数,且在(0,1)上单调递增,则f(2)=.12.(3.00分)设f(x)=log3(x+6)的反函数为f﹣1(x),若〔f﹣1(m)+6〕〔f﹣1(n)+6〕=27,则f(m+n)=.13.(3.00分)函数y=|x|﹣的值域是.14.(3.00分)已知函数,若?x1,x2∈R,x1≠x2,使得f (x1)=f(x2)成立,则实数a的取值范围是.15.(3.00分)函数的单调递增区间是.16.(3.00分)已知f(x)=在(﹣∞,+∞)上单调递增,则实数a的取值范围是.17.(3.00分)已知a,b∈R,函数f(x)=|x﹣a|+|a﹣|是偶函数,则2015﹣3ab2的取值范围是.18.(3.00分)若实数x0满足f(x0)=x0,称x0为函数f(x)的不动点.有下面三个命题:(1)若f(x)是二次函数,且没有不动点,则函数f(f(x))也没有不动点;(2)若f(x)是二次函数,则函数f(f(x))可能有4个不动点;(3)若f(x)的不动点的个数是2,则f(f(x))的不动点的个数不可能是3.它们中所有真命题的序号是.三、解答题(8+6+8+8+10):。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
2015-2016上海市高一数学期末考试卷含(答案)
2015—2016上海市高一数学期末试卷一、选择题:1. 集合{1,2,3}的真子集共有( )A .5个B .6个C .7个D .8个 2. 已知角α的终边过点P (-4,3) ,则2sin cos αα+ 的值是( ) A .-1 B .1 C .52-D . 253. 已知扇形OAB 的圆心角为rad 4,其面积是2cm 2则该扇形的周长是( )cm.A .8B .6C .4D .2 4. 已知集合{}2,0x M y y x ==>,{})2lg(2x x y x N -==,则MN 为( )A .(1,2)B .(1,)+∞C .[)+∞,2D .[)+∞,16. 函数 )252sin(π+=x y 是 ( ) A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数 D.周期为2π的偶函数 7. 右图是函数)sin(ϕω+=x A y 在一个周期内的图象,此函数的解析式为可为( )A .)32sin(2π+=x y B .)322sin(2π+=x yC .)32sin(2π-=x y ) D .)32sin(2π-=x y8.已知函数)3(log )(22a ax x x f +-=在区间[2,+∞)上是增函数, 则a 的取值范围是( )A .(]4,∞-B .(]2,∞-C .(]4,4-D .(]2,4-9. 已知函数()f x 对任意x R ∈都有(6)()2(3),(1)f x f x f y f x ++==-的图象关于点(1,0)对称,则(2013)f =( )A .10B .5-C .5D .010. 已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(,0]-∞B .(,1)-∞C .[0,1)D .[0,)+∞二、填空题:11.sin 600︒= __________.12. 函数()lg 21y x =+的定义域是__________.13. 若2510a b ==,则=+ba 11__________.14. 函数12()3sin log f x x x π=-的零点的个数是__________.15. 函数()f x 的定义域为D ,若存在闭区间[,]a b D ⊆,使得函数()f x 满足:①()f x 在[,]a b 内是单调函 数;②()f x 在[,]a b 上的值域为[2,2]a b ,则称区间[,]a b 为()y f x =的“倍值区间”.下列函数中存在 “倍值区间”的有________①)0()(2≥=x x x f ;②()()xf x e x =∈R ; ③)0(14)(2≥+=x x xx f ; ④()sin 2()f x x x R =∈三、解答题16. 已知31tan =α, (1)求:ααααsin cos 5cos 2sin -+的值(2)求:1cos sin -αα的值3讨论关于x 的方程m x f =)(解的个数。
上海市行知中学高一上学期期末考试数学试题(宝山区统考)参考答案
宝山区2014学年度第一学期期末高一数学质量监测试卷参考答案一、填空题(本大题共有12题,满分36分)二、选择题(本大题共有4题,满分12分)三、解答题(本大题共有5题,满分52分)17.(本题满分8分) 解:原不等式组可化为(5)(2)0110x x x x +-<⎧⎪+⎨->⎪⎩,……………………………………………………………………() 解得5210x x-<<⎧⎪⎨>⎪⎩,…………………………………………………………………………………………………()即,……………………………………………………………………………………………………() 从而有, …………………………………………………………………………………………………() 所以,原不等式的解集为. ………………………………………………………………………………()18.(本题满分8分)本题共有2个小题,第1题满分4分,第2题满分4分.解:(1)若每间客房日租金提高元,则将有间客房空出,……………………………………………() 故该中心客房的日租金总收入为(404)(20010)y x x =+-,…………………………………………………()即40(10)(20)y x x =+-(这里). …………………………………………………………()(2)40(10)(20)y x x =+-2(10)(20)402x x ++-⎡⎤≤⋅⎢⎥⎣⎦,……………………………() 当即时,, …………………………………………………………………()即每间客房日租金为(元)时,该中心客房的日租金总收入最高,其值为元.……()19.(本题满分10分)本题共有2个小题,第1题满分3分,第2题满分7分.解:(1)依题意得,………………………………………………………………………………………() 即, ………………………………………………………………………………………………………() ,,解得.……………………………………………………………………………()(2)由(1)可得,故1(1)1()1x f x y f x x -+-==-,即21(0)11(01)1(1)x x y x x ⎧+<⎪-⎪=-≤<⎨⎪>⎪⎩. …………()………………………………………………………………………………………………………………()定义域:,…………………………………………………………………………………………()值 域:,………………………………………………………………………………………………………()奇偶性:非奇非偶函数,…………………………………………………………………………………………………() 单调(递减)区间:.…………………………………………………………………………………………()20.(本题满分12分)本题共有3个小题,第1题满分3分,第2题满分3分,第3题满分6分. 解:(1)由已知条件可得函数的定义域为,关于原点对称;……………………………………() 又()(1)(1)()m m f x log mx log mx f x -=--+=-,即,…………………………………………() 故为定义域上的奇函数.……………………………………………………………………………()(2)当时,22()(12)(12)f x log x log x =+--,由得22(126)(126)1x x log log +⋅--⋅=,…()去对数得,…………………………………………………………………………………………………() 解得,从而.经检验,为原方程的解.…………………………………………………………()(3)方法一:注意到的定义域为. 若,则1111u u m m m-<<⇔<<,从而;…………………………………………………………() 若,则考虑函数.因在上递减,而在上递增,故在上递减,又在上递减,所以在上也递减,………………………………………………………………………………………………………………………() 注意到,1(1)(1)01m m F f log m+==<-,所以函数在上存在唯一零点,即满足的(且唯一),故.综上所述,.………………………………………………………() 于是()()()2222()()1110g x h x x ux ux x u u u -=---=-+-≥->,即,…………………() 也就是说,对于任一,均有,故函数的图象总在函数图象的上方.………………………………………………………………………………………………………………………()方法二:注意到的定义域为. 若,则1111u u m m m-<<⇔<<,从而;…………………………………………………………() 若,设函数1112()111x x mx G x m m mx mx --+=-=----,注意到在上递增,在上递减,故在上递增,………………………………………………………………()又,,所以函数在上存在唯一零点,又,于是,满足的(且唯一),故.综上所述,.………………………………()于是()()()2222()()1110g x h x x ux ux x u u u -=---=-+-≥->,即,…………………() 也就是说,对于任一,均有,故函数的图象总在函数图象的上方.………………………………………………………………………………………………………………………()21.(本题满分14分)本题共有3个小题,第1题满分3分,第2题满分5分,第3题满分6分. 解:(1),……………………………………………………………………………………………………() 的下位序对是.………………………………………………………………………………………()(2)是的“下位序对”,,……………………………………………………………() 注意到,故()0a c a bc ad b d b b d b+--=>++,即,所以;…………………() 同理.…………………………………………………………………………………………………………()综上所述,.……………………………………………………………………………………………()(3)依题意,得,……………………………………………………………………………………() 注意到,,均为正整数,故,……………………………………………………………()于是2014(1)201420152015(1)mn n k mn +-≥⨯≥+,可得,该式对集合的每个正整数都成立,故4029402920142013n ≥=-.……………………………………………………………………() 注意到,据(2)可得(1)12014201420152015m m m m +++<<+,…………………………………………() 即211201440292015m m m ++<<,于是对内的每个,总存在,使得是的“下位序对”,且是的“下位序对”,因此,正整数的最小值为.……()。
【解析】上海市宝山区2015届高三上期末质量监测 数学
2015学年上海市宝山区高三(上)期末数学一.(本大题满分36分)本大题共有12题,要求直接填写结果,每题填对3分,否则一律得0分.1.(3分)函数y=3tanx的周期是π.考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由条件根据y=Atan(ωx+φ)的周期等于T=,可得结论.解答:解:函数y=3tanx的周期为=π,故答案为:π.点评:本题主要考查三角函数的周期性及其求法,利用了y=Atan(ωx+φ)的周期等于T=,属于基础题.2.(3分)计算=2.考点:二阶矩阵.专题:计算题;矩阵和变换.分析:利用行列式的运算得,=2×3﹣1×4=2.解答:解:=2×3﹣1×4=2,故答案为:2.点评:本题考查了矩阵的运算,属于基础题.3.(3分)(2014•嘉定区三模)=.考点:极限及其运算.专题:导数的概念及应用;等差数列与等比数列.分析:利用等差数列的求和公式可得1+2+3+…+n=,然后即可求出其极限值.解答:解:==(+)=,故答案为:点评:本题主要考察极限及其运算.解题的关键是要掌握极限的实则运算法则和常用求极限的技巧!4.(3分)二项式(x+1)10展开式中,x8的系数为45.考点:二项式系数的性质.专题:二项式定理.分析:根据二项式(x+1)10展开式的通项公式,求出x8的系数是什么.解答:解:∵二项式(x+1)10展开式中,通项为T r+1=•x10﹣r•1r=•x10﹣r,令10﹣r=8,解得r=2,∴===45;即x8的系数是45.故答案为:45.点评:本题考查了二项式定理的应用问题,解题时应根据二项式展开式的通项公式进行计算,是基础题.5.(3分)设矩阵A=,B=,若BA=,则x=2.考点:矩阵与向量乘法的意义.专题:计算题;矩阵和变换.分析:由题意,根据矩阵运算求解.解答:解:∵A=,B=,BA=,∴4×2﹣2x=4;解得,x=2;故答案为:2.点评:本题考查了矩阵的运算,属于基础题.6.(3分)现有6位同学排成一排照相,其中甲、乙二人相邻的排法有240种.考点:计数原理的应用.专题:排列组合.分析:利用捆绑法,把甲乙二人捆绑在一起,看作一个复合元素,再和其他4人进行全排,问题得以解决解答:解:先把甲乙二人捆绑在一起,看作一个复合元素,再和其他4人进行全排,故有=240种,故答案为:240点评:本题主要考查了排列问题的中的相邻问题,利用捆绑法是关键,属于基础题7.(3分)若cos(π+α)=﹣,π<α<2π,则sinα=﹣.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用诱导公式可知cosα=,又π<α<2π,利用同角三角函数间的关系式(平方关系)即可求得sinα的值.解答:解:∵cos(π+α)=﹣cosα=﹣,∴cosα=,又π<α<2π,∴sinα=﹣=﹣.故答案为:﹣.点评:本题考查诱导公式与同角三角函数间的关系式的应用,属于中档题.8.(3分)(2008•天津)若一个球的体积为,则它的表面积为12π.考点:球的体积和表面积.专题:计算题.分析:有球的体积,就可以利用公式得到半径,再求解其面积即可.解答:解:由得,所以S=4πR2=12π.点评:本题考查学生对公式的利用,是基础题.9.(3分)函数y=sin(2x+φ)(0≤φ≤π)是R上的偶函数,则φ的值是.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:根据函数y=sin(2x+φ)的图象特征,若它是偶函数,只需要x=0时,函数能取得最值.解答:解:函数y=sin(2x+ϕ)是R上的偶函数,就是x=0时函数取得最值,所以f(0)=±1即sinϕ=±1所以ϕ=kπ+(k∈Z),当且仅当取k=0时,得φ=,符合0≤φ≤π故答案为:点评:本题考查了正弦型函数的奇偶性,正弦函数的最值,是基础题.10.(3分)正四棱锥P﹣ABCD的所有棱长均相等,E是PC的中点,那么异面直线BE与PA所成的角的余弦值等于.考点:异面直线及其所成的角.专题:空间角.分析:根据异面直线所成角的定义先找出对应的平面角即可得到结论.解答:解:连结AC,BD相交于O,则O为AC的中点,∵E是PC的中点,∴OE是△PAC的中位线,则OE∥,则OE与BE所成的角即可异面直线BE与PA所成的角,设四棱锥的棱长为1,则OE==,OB=,BE=,则cos==,故答案为:点评:本题考查异面直线所成的角,作出角并能由三角形的知识求解是解决问题的关键,属中档题11.(3分)(2004•福建)直线x+2y=0被曲线x2+y2﹣6x﹣2y﹣15=0所截得的弦长等于4.考点:直线与圆的位置关系.专题:综合题;数形结合.分析:根据圆的方程找出圆心坐标和半径,过点A作AC⊥弦BD,可得C为BD的中点,根据勾股定理求出BC,即可求出弦长BD的长.解答:解:过点A作AC⊥弦BD,垂足为C,连接AB,可得C为BD的中点.由x2+y2﹣6x﹣2y﹣15=0,得(x﹣3)2+(y﹣1)2=25.知圆心A为(3,1),r=5.由点A(3,1)到直线x+2y=0的距离AC==.在直角三角形ABC中,AB=5,AC=,根据勾股定理可得BC===2,则弦长BD=2BC=4.故答案为:4点评:本题考查学生灵活运用垂径定理解决实际问题的能力,灵活运用点到直线的距离公式及勾股定理化简求值,会利用数形结合的数学思想解决数学问题,是一道综合题.12.(3分)已知函数f(x)=Asin(ωx+ϕ),(A>0,ω>0,0≤ϕ≤π)的部分图象如图所示,则y=f(x)的解析式是f(x)=2sin(2x+).考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:首先,根据所给函数的部分图象,得到振幅A=2,然后,根据周期得到ω的值,再将图象上的一个点代人,从而确定其解析式.解答:解:根据图象,得A=2,又∵T==,∴T=π,∴ω=2,将点(﹣,0)代人,得2sin(2x+ϕ)=0,∵0≤ϕ≤π,∴ϕ=,∴f(x)=2sin(2x+),故答案为:2sin(2x+)点评:本题重点考查了三角函数的图象与性质、特殊角的三角函数等知识,属于中档题.解题关键是熟悉所给函数的部分图象进行分析和求解.二.选择题(本大题满分36分)本大题共有12题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把正确结论的代码写在题后的括号内,选对得3分,否则一律得0分.13.(3分)已知点P(tanα,cosα)在第三象限,则角α的终边在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:任意角的三角函数的定义.专题:计算题.分析:由题意,推导出,确定α的象限,然后取得结果.解答:解:∵P(tanα,cosα)在第三象限,∴,由tanα<0,得α在第二、四象限,由cosα<0,得α在第二、三象限∴α在第二象限.故选B点评:本题考查任意角的三角函数的定义,考查计算能力,是基础题.14.(3分)已知函数y=x a+b,x∈(0,+∞)是增函数,则()A.a>0,b是任意实数B.a<0,b是任意实数C.b>0,a是任意实数D.b <0,a是任意实数考点:指数函数的单调性与特殊点.专题:计算题;函数的性质及应用.分析:由幂函数的性质可知,a>0,b是任意实数.解答:解:∵函数y=x a+b,x∈(0,+∞)是增函数,∴a>0,b是任意实数,故选A.点评:本题考查了幂函数的单调性的判断,属于基础题.15.(3分)在△ABC中,若b=2asinB,则这个三角形中角A的值是()A.30°或60° B.45°或60° C.30°或120° D.30°或150°考点:正弦定理.专题:解三角形.分析:在△ABC中,利用正弦定理解得sinA=,从而求得A的值.解答:解:在△ABC中,若b=2asinB,则由正弦定理可得sinB=2sinAsinB,解得sinA=,∴A=30°或150°.故选D.点评:本题主要考查正弦定理的应用,根据三角函数的值求角,属于中档题.16.(3分)若log a3<log b3<0,则()A.0<a<b<1 B.0<b<a<1 C.a>b>1 D.b>a>1考点:对数函数的单调区间.专题:计算题;函数的性质及应用.分析:化log a3<log b3<0为log3b<log3a<0,利用函数的单调性求解.解答:解:∵log a3<log b3<0,∴<<0,即log3b<log3a<0,故0<b<a<1,故选B.点评:本题考查了对数的运算及对数函数单调性的利用,属于基础题.17.(3分)双曲线﹣=1的焦点到渐近线的距离为()A.2B.2 C.D.1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据双曲线方程求得焦点坐标和渐近线方程,进而利用点到直线的距离求得焦点到渐近线的距离.解答:解:双曲线﹣=1的焦点为(4,0)或(﹣4,0).渐近线方程为y=x或y=﹣x.由双曲线的对称性可知,任一焦点到任一渐近线的距离相等,d==2.故选A.点评:本题主要考查了双曲线的标准方程,双曲线的简单性质和点到直线的距离公式.考查了考生对双曲线标准方程的理解和灵活应用,属基础题.18.(3分)用数学归纳法证明等式1+3+5+…+(2n﹣1)=n2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到()A.1+3+5+…+(2k+1)=k2 B.1+3+5+…+(2k+1)=(k+1)2C.1+3+5+…+(2k+1)=(k+2)2 D.1+3+5+…+(2k+1)=(k+3)2考点:数学归纳法.专题:阅读型.分析:首先由题目假设n=k时等式成立,代入得到等式1+3+5+…+(2k﹣1)=k2.当n=k+1时等式左边=1+3+5++(2k﹣1)+(2k+1)由已知化简即可得到结果.解答:解:因为假设n=k时等式成立,即1+3+5+…+(2k﹣1)=k2当n=k+1时,等式左边=1+3+5+…+(2k﹣1)+(2k+1)=k2+(2k+1)=(k+1)2.故选B.点评:此题主要考查数学归纳法的概念问题,涵盖知识点少,属于基础性题目.需要同学们对概念理解记忆.19.(3分)设z=1+i(i是虚数单位),则复数+z2在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简求得对应点的坐标,则答案可求.解答:解:∵z=1+i,则复数+z2=,∴复数+z2在复平面上对应的点的坐标为(1,1),位于第一象限.故选:A.点评:本题考查了复数代数形式的乘除运算,考查了复数的等式表示法及其几何意义,是基础题.20.(3分)(2004•陕西)圆x2+y2﹣4x=0在点P(1,)处的切线方程为()A.x+y﹣2=0 B.x+y﹣4=0 C.x﹣y+4=0 D.x﹣y+2=0考点:圆的切线方程.专题:计算题.分析:本题考查的知识点为圆的切线方程.(1)我们可设出直线的点斜式方程,联立直线和圆的方程,根据一元二次方程根与图象交点间的关系,得到对应的方程有且只有一个实根,即△=0,求出k值后,进而求出直线方程.(2)由于点在圆上,我们也可以切线的性质定理,即此时切线与过切点的半径垂直,进行求出切线的方程.解答:解:法一:x2+y2﹣4x=0y=kx﹣k+⇒x2﹣4x+(kx﹣k+)2=0.该二次方程应有两相等实根,即△=0,解得k=.∴y﹣=(x﹣1),即x﹣y+2=0.法二:∵点(1,)在圆x2+y2﹣4x=0上,∴点P为切点,从而圆心与P的连线应与切线垂直.又∵圆心为(2,0),∴•k=﹣1.解得k=,∴切线方程为x﹣y+2=0.故选D点评:求过一定点的圆的切线方程,首先必须判断这点是否在圆上.若在圆上,则该点为切点,若点P(x0,y0)在圆(x﹣a)2+(y﹣b)2=r2(r>0)上,则过点P的切线方程为(x﹣a)(x0﹣a)+(y﹣b)(y0﹣b)=r2(r>0);若在圆外,切线应有两条.一般用“圆心到切线的距离等于半径长”来解较为简单.若求出的斜率只有一个,应找出过这一点与x轴垂直的另一条切线.21.(3分)“tanx=﹣1”是“x=﹣+2kπ(k∈Z)”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:函数奇偶性的性质.专题:简易逻辑.分析:得出tan(=﹣+2kπ)=﹣1,“x=﹣+2kπ”是“tanx=﹣1”成立的充分条件;举反例tan=﹣1,推出“x=﹣+2kπ(k∈Z)”是“tanx=﹣1”成立的不必要条件.解答:解:tan(﹣+2kπ)=tan (﹣)=﹣1,所以充分;但反之不成立,如tan =﹣1.故选:B点评:本题主要考查了必要条件、充分条件与充要条件的判断.充分条件与必要条件是中学数学最重要的数学概念之一,要理解好其中的概念.22.(3分)(2013•福建)在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的面积为()A.B.C.5 D.10考点:向量在几何中的应用;三角形的面积公式;数量积判断两个平面向量的垂直关系.专题:计算题;平面向量及应用.分析:通过向量的数量积判断四边形的形状,然后求解四边形的面积即可.解答:解:因为在四边形ABCD中,,,=0,所以四边形ABCD的对角线互相垂直,又,,该四边形的面积:==5.故选C.点评:本题考查向量在几何中的应用,向量的数量积判断四边形的形状是解题的关键,考查分析问题解决问题的能力.23.(3分)(2006•天津)函数的反函数是()A.B.C.D.考点:反函数.分析:本题需要解决两个问题:一是如何解出x,二是如何获取反函数的定义域,求解x时,要注意x<0的条件,因为涉及2个解.解答:解:由解得,又∵原函数的值域是:y>2∴原函数的反函数是,故选D.点评:该题的求解有2个难点,一是解出x有两个,要根据x<0确定负值的一个,二是反函数的定义域要用原函数的值域确定,不是根据反函数的解析式去求.24.(3分)曲线y2=|x|+1的部分图象是()A.B.C.D.考点:曲线与方程.专题:函数的性质及应用.分析:分类讨论,去掉绝对值,化简函数的解析式,可得它的图象特征,结合所给的选项,得出结论.解答:解:当x≥0时,y2=x+1表示以(﹣1,0)为顶点的开口向右的抛物线.当x<0时,y2=﹣(x﹣1)表示以(1,0)为顶点的开口向左的抛物线,故选:C.点评:本题主要考查函数的图象特征,属于基础题.三、解答题(本大题满分48分)本大题共有5题,解答下列各题必须写出必要的步骤.25.(8分)解不等式组:.考点:其他不等式的解法.专题:不等式的解法及应用.分析:根据不等式的解法即可得到结论.解答:解:由|x﹣1|<3解得﹣2<x<4,由>1得﹣1=>0,解得3<x<5,所以,不等式解集为(3,4).点评:本题主要考查不等式组的求解,比较基础.26.(8分)如图,正四棱柱ABCD﹣A1B1C1D1的底面边长AB=2,若异面直线A1A与B1C所成角的大小为arctan,求正四棱柱ABCD﹣A1B1C1D1的体积.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由已知得AA1∥BB1,从而tan∠CB1B==,进而BB1=4,由此能求出正四棱柱ABCD﹣A1B1C1D1的体积.解答:解:∵正四棱柱ABCD﹣A1B1C1D1的底面边长AB=2,异面直线A1A与B1C所成角的大小为arctan,∴AA1∥BB1,∴∠CB1B为AA1、B1C所成的角,且tan∠CB1B==,…(4分)∵BC=AB=2,∴BB1=4,…(6分)∴正四棱柱ABCD﹣A1B1C1D1的体积V=Sh=22×4=16.…(8分)点评:本题考查正四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.27.(10分)已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点.(Ⅰ)求直线PF的方程;(Ⅱ)求△DAB的面积S范围;(Ⅲ)设,,求证λ+μ为定值.考点:直线的一般式方程;抛物线的应用.专题:计算题.分析:(Ⅰ)由题知点P,F的坐标分别为(﹣1,m),(1,0),求出斜率用点斜式写出直线方程.(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),用弦长公式求出线段AB 的长,再由点到直线的距离公式求点D到直线AB的距离,用三角形面积公式表示出面积关于参数m的表达式,再根据m的取值范围求出面积的范围.(Ⅲ),,变化为坐标表示式,从中求出参数λ,μ用两点A,B 的坐标表示的表达式,即可证明出两者之和为定值.解答:解:(Ⅰ)由题知点P,F的坐标分别为(﹣1,m),(1,0),于是直线PF的斜率为,所以直线PF的方程为,即为mx+2y﹣m=0.(3分)(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),由得m2x2﹣(2m2+16)x+m2=0,所以,x1x2=1.于是.点D到直线mx+2y﹣m=0的距离,所以.因为m∈R且m≠0,于是S>4,所以△DAB的面积S范围是(4,+∞).(9分)(Ⅲ)由(Ⅱ)及,,得(1﹣x1,﹣y1)=λ(x2﹣1,y2),(﹣1﹣x1,m﹣y1)=μ(x2+1,y2﹣m),于是,(x2≠±1).所以.所以λ+μ为定值0.(14分)点评:考查求直线方程、抛物线在的焦点弦弦长公式、点到直线的距离公式及向量中数乘向量的意义,涉及知识较多,综合性较强.28.(10分)已知函数f(x)=(x∈R).(1)写出函数y=f(x)的奇偶性;(2)当x>0时,是否存实数a,使v=f(x)的图象在函数g(x)=图象的下方,若存在,求α的取值范围;若不存在,说明理由.考点:函数恒成立问题;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)当a=0时,f(x)=是奇函数;当a≠0时,函数f(x)=(x∈R),是非奇非偶函数.(2)若y=f(x)的图象在函数g(x)=图象的下方,则<,化简得a<+x恒成立,在求函数的最值.解答:解:(1)因为y=f(x)的定义域为R,所以:当a=0时,f(x)=是奇函数;当a≠0时,函数f(x)=(x∈R).是非奇非偶函数.(2)当x>0时,若y=f(x)的图象在函数g(x)=图象的下方,则<,化简得a<+x恒成立,因为x>0,∴即,所以,当a<4时,y=f(x)的图象都在函数g(x)=图象的下方.点评:本题主要考查函数的奇偶性,同时考查函数恒成立的问题,主要进行函数式子的恒等转化.29.(12分)已知抛物线x2=4y,过原点作斜率为1的直线交抛物线于第一象限内一点P1,又过点P1作斜率为的直线交抛物线于点P2,再过P2作斜率为的直线交抛物线于点P3,﹣2<x<4,如此继续.一般地,过点3<x<5作斜率为的直线交抛物线于点P n+1,设点P n(x n,y n).(1)求x3﹣x1的值;(2)令b n=x2n+1﹣x2n﹣1,求证:数列{b n}是等比数列;(3)记P奇(x奇,y奇)为点列P1,P3,…,P2n﹣1,…的极限点,求点P奇的坐标.考点:数列与解析几何的综合.专题:计算题;等差数列与等比数列;圆锥曲线的定义、性质与方程.分析:(1)求出直线方程,联立抛物线方程,求出交点,即可得到;(2)设出两点点P n(x n,).P n+1(x n+1,),由直线的斜率公式,再由条件,运用等比数列的定义,即可得证;(3)运用累加法,求得x2n+1=+,再由数列极限的概念,即可得到点P奇的坐标.解答:(1)解:直线OP1的方程为y=x,由解得P1(4,4),直线P2P1的方程为y﹣4=(x﹣4),即y=x+2,由得P2(﹣2,1),直线P2P3的方程为y﹣1=(x+2),即y=x+,由解得,P3(3,),所以x3﹣x1=3﹣4=﹣1.(2)证明:因为设点P n(x n,).P n+1(x n+1,),由抛物线的方程和斜率公式得到,,所以x n+x n﹣1=,两式相减得x n+1﹣x n﹣1=﹣,用2n代换n得b n=x2n+1﹣x2n﹣1=﹣,由(1)知,当n=1时,上式成立,所以{b n}是等比数列,通项公式为b n=﹣;(3)解:由得,,,…,,以上各式相加得x2n+1=+,所以x奇=,y奇=x奇2=,即点P奇的坐标为(,).点评:本题考查联立直线方程和抛物线方程求交点,考查等比数列的定义和通项公式的求法,考查累加法求数列通项,及数列极限的运算,属于中档题.四、附加题(本大题满分30分)本大题共有3题,解答下列各题必须写出必要的步骤.30.(8分)有根木料长为6米,要做一个如图的窗框,已知上框架与下框架的高的比为1:2,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计).专题:函数的性质及应用.分析:求出窗框的高为3x,宽为.推出窗框的面积,利用二次函数的最值,求解即可.解答:解:如图设x,则竖木料总长=3x+4x=7x,三根横木料总长=6﹣7x,∴窗框的高为3x,宽为.…(2分)即窗框的面积y=3x•=﹣7x2+6x.(0<x<)…(5分)配方:y=﹣7(x﹣)2+(0<x<2 )…(7分)∴当x=米时,即上框架高为米、下框架为米、宽为1米时,光线通过窗框面积最大.…(8分)点评:本题考查二次函数的解析式的应用,考查分析问题解决问题的能力.31.(10分)(2008•辽宁)在平面直角坐标系xOy中,点P到两点,的距离之和等于4,设点P的轨迹为C.(Ⅰ)写出C的方程;(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时⊥?此时的值是多少?.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题;转化思想.分析:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是椭圆.从而写出其方程即可;(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系及向量垂直的条件,求出k值即可,最后通牒利用弦长公式即可求得此时的值,从而解决问题.解答:解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.(4分)(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足消去y并整理得(k2+4)x2+2kx﹣3=0,故.(6分),即x1x2+y1y2=0.而y1y2=k2x1x2+k(x1+x2)+1,于是.所以时,x1x2+y1y2=0,故.(8分)当时,,.,而(x2﹣x1)2=(x2+x1)2﹣4x1x2=,所以.(12分)点评:本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.设数列{a n}的首项a1为常数,且a n+1=3n﹣2a n(n∈N+).(1)证明:{a n﹣}是等比数列;(2)若a1=,{a n}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.(3)若{a n}是递增数列,求a1的取值范围.考点:等比关系的确定;数列的函数特性;等差数列的通项公式.专题:计算题;证明题;等差数列与等比数列;不等式的解法及应用.分析:(1)根据等比数列的定义,结合条件,即可得证;(2)由(1)求出数列{a n}的通项公式,再由等差数列的性质,得到方程,求出n,即可判断;(3)运用数列{a n}的通项公式,作差,再由n为偶数和奇数,通过数列的单调性,即可得到范围.解答:(1)证明:因为==﹣2,所以数列{a n﹣}是等比数列;(2)解:{a n﹣}是公比为﹣2,首项为a1﹣=的等比数列.通项公式为a n=+(a1﹣)(﹣2)n﹣1=+若{a n}中存在连续三项成等差数列,则必有2a n+1=a n+a n+2,即解得n=4,即a4,a5,a6成等差数列.(3)解:如果a n+1>a n成立,即>+(a1﹣)(﹣2)n﹣1对任意自然数均成立.化简得,当n为偶数时,因为是递减数列,所以p(n)max=p(2)=0,即a1>0;当n为奇数时,,因为是递增数列,所以q(n)min=q(1)=1,即a1<1;故a1的取值范围为(0,1).点评:本题考查数列的通项公式及等比数列的证明,考查等差数列的性质和已知数列的单调性,求参数的范围,考查运算能力,属于中档题和易错题.。
上海市行知中学2015—2016学年第一学期期末考试高一数学试卷
上海市行知中学2015—2016学年第一学期期末考试高一年级 数学试卷一、填空题(本大题满分56分)本大题共有14题,每个空格4分。
1、已知全集U R =,集合()1,A =+∞,则U C A =________________________2、终边落在x 轴负半轴的角的全体组成的集合________________________3、函数2log y x =的零点是________________________4、方程2121x -=的解为________________________5、函数()()lg 1,2y x x =->的反函数是________________________6、已知{}2,1,3m ∈-,若函数()222m m f x x +-=是偶函数,则m =________________________7、函数()()2lg 2f x x x =-+的最大值是________________________8、设lg 2a =,lg3b =,则5log 12=________________________(用a 、b 表示)9、已知实数x 、y 满足21x y +=,则24x y +的最小值是________________________10、方程()()332log 3log 5x x -=-的解为________________________11、已知函数()214x f x x x +=++,则()f x 在区间()1,-+∞上的最大值为________________________ 12、已知()f x 是定义在R 上的奇函数,当0x >时,()2lg f x x x =+,则当0x <时,()f x =________________________13、已知集合[]0,M t =,若集合{}[]223,2,3y y x x x M =-+∈=,则实数t 的取值范围是________________________14、对于定义域为正整数集的函数()f x ,若存在一个函数()g x ,使得对于任意的x Z +∈ ,均有()()f x g x ≥,则称()g x 为()f x 的“弱正离散函数”。
上海市宝山区高一数学上学期期末试卷(含解析)
上海市宝山区2014-2015学年高一上学期期末数学试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.(3分)函数y=log2(x﹣1)的定义域是.2.(3分)设全集U=R,集合S={x|x≥﹣1},则∁U S=.3.(3分)设关于x的函数y=(k﹣2)x+1是R上的增函数,则实数k的取值范围是.4.(3分)已知x=log75,用含x的式子表示log7625,则log7625=.5.(3分)函数y=的最大值为.6.(3分)若函数f(x)=﹣a是奇函数,则实数a的值为.7.(3分)若不等式x2﹣mx+n<0(m,n∈R)的解集为(2,3),则m﹣n=.8.(3分)设α:0≤x≤1,β:m≤x≤2m+5,若α是β的充分条件,则实数m的取值范围是.9.(3分)设a,b均为正数,则函数f(x)=(a2+b2)x+ab的零点的最小值为.10.(3分)给出下列命题:①直线x=a与函数y=f(x)的图象至少有两个公共点;②函数y=x﹣2在(0,+∞)上是单调递减函数;③幂函数的图象一定经过坐标原点;④函数f(x)=a x﹣2(a>0,a≠1)的图象恒过定点(2,1).⑤设函数y=f(x)存在反函数,且y=f(x)的图象过点(1,2),则函数y=f﹣1(x)﹣1的图象一定过点(2,0).其中,真命题的序号为.11.(3分)设函数f(x)(x∈R)满足|f(x)+()2|≤,且|f(x)﹣()2|≤.则f(0)=.12.(3分)若F(x)=a•f(x)g(x)+b•+c(a,b,c均为常数),则称F(x)是由函数f (x)与函数g(x)所确定的“a→b→c”型函数.设函数f1(x)=x+1与函数f2(x)=x2﹣3x+6,若f(x)是由函数f1﹣1(x)+1与函数f2(x)所确定的“1→0→5”型函数,且实数m,n满足f(m)=f(n)=6,则m+n的值为.二、选择题(本大题共有4题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3分)“a>1”是“a>0”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(3分)函数y=x+(x>0)的递减区间为()A.(0,4] B.C.15.(3分)如图为函数f(x)=t+log a x的图象(a,t均为实常数),则下列结论正确的是()A.0<a<1,t<0 B.0<a<1,t>0 C.a>1,t<0 D.a>1,t>016.(3分)设g(x)=|f(x+2m)﹣x|,f(t)为不超过实数t的最大整数,若函数g(x)存在最大值,则正实数m的最小值为()A.B.C.D.三、解答题(本大题共有5题,满分52分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(8分)解不等式组:.18.(8分)某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金.如果每间客房日租金每增加4元,客房出租就会减少10间.(不考虑其他因素)(1)设每间客房日租金提高4x元(x∈N+,x<20),记该中心客房的日租金总收入为y,试用x表示y;(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?19.(10分)已知f(x)=|x+a|(a>﹣2)的图象过点(2,1).(1)求实数a的值;(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1.试在该坐标系中作出函数y=的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.20.(12分)设函数f(x)=log m(1+mx)﹣log m(1﹣mx)(m>0,且m≠1).(1)判断f(x)的奇偶性;(2)当m=2时,解方程f(6x)=1;(3)如果f(u)=u﹣1,那么,函数g(x)=x2﹣ux的图象是否总在函数h(x)=ux﹣1的图象的上方?请说明理由.21.(14分)对于四个正数x,y,z,w,如果xw<yz,那么称(x,y)是(z,w)的“下位序对”.(1)对于2,3,7,11,试求(2,7)的“下位序对”;(2)设a,b,c,d均为正数,且(a,b)是(c,d)的“下位序对”,试判断,,之间的大小关系;(3)设正整数n满足条件:对集合{t|0<t<2014}内的每个m∈N+,总存在k∈N+,使得(m,2014)是(k,n)的“下位序对”,且(k,n)是(m+1,2015)的“下位序对”.求正整数n的最小值.上海市宝山区2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.(3分)函数y=log2(x﹣1)的定义域是(1,+∞).考点:对数函数的定义域.专题:计算题.分析:由函数的解析式知,令真数x﹣1>0即可解出函数的定义域.解答:解:∵y=log2(x﹣1),∴x﹣1>0,x>1函数y=log2(x﹣1)的定义域是(1,+∞)故答案为(1,+∞)点评:本题考查求对数函数的定义域,熟练掌握对数函数的定义及性质是正确解答本题的关键.2.(3分)设全集U=R,集合S={x|x≥﹣1},则∁U S={x|x<1}.考点:补集及其运算.专题:集合.分析:由全集U=R,以及S,求出S的补集即可.解答:解:∵全集U=R,集合S={x|x≥﹣1},∴∁U S={x|x<1},故答案为:{x|x<1}.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.3.(3分)设关于x的函数y=(k﹣2)x+1是R上的增函数,则实数k的取值范围是(2,+∞).考点:函数单调性的性质.专题:函数的性质及应用.分析:直接利用一次函数时单调递增函数求出参数k的范围.解答:解:关于x的函数y=(k﹣2)x+1是R上的增函数所以:k﹣2>0解得:k>2所以实数k的取值范围为:(2,+∞)故答案为:(2,+∞)点评:本题考查的知识要点:一次函数单调性的应用.属于基础题型.4.(3分)已知x=log75,用含x的式子表示log7625,则log7625=4x.考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算性质即可得出.解答:解:∵x=log75,∴log7625==4x,故答案为:4x.点评:本题考查了对数的运算性质,属于基础题.5.(3分)函数y=的最大值为2.考点:函数的值域.专题:函数的性质及应用.分析:首先把二次函数转化成标准型,进一步利用定义域求出函数的最值.解答:解:函数=函数的定义域{x|0<x<4}所以:当x=2时,函数取最小值所以:y min=2故答案为:2点评:本题考查的知识要点:二次函数的性质的应用,属于基础题型.6.(3分)若函数f(x)=﹣a是奇函数,则实数a的值为1.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的结论:f(0)=0列出方程,求出a的值即可.解答:解:因为奇函数f(x)=﹣a的定义域是R,所以f(0)=﹣a=0,解得a=1,故答案为:1.点评:本题考查奇函数的性质的应用,属于基础题.7.(3分)若不等式x2﹣mx+n<0(m,n∈R)的解集为(2,3),则m﹣n=﹣1.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:根据一元二次不等式与对应方程的关系,利用根与系数的关系,求出m、n的值即可.解答:解:∵不等式x2﹣mx+n<0(m,n∈R)的解集为(2,3),∴对应方程x2﹣mx+n=0的两个实数根2和3,由根与系数的关系,得,∴m﹣n=5﹣6=﹣1.故答案为:﹣1.点评:本题考查了不等式的解法与应用问题,也考查了根与系数的应用问题,是基础题目.8.(3分)设α:0≤x≤1,β:m≤x≤2m+5,若α是β的充分条件,则实数m的取值范围是.考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的关系转化为不等式之间的关系,进行判断即可.解答:解:∵α:0≤x≤1,β:m≤x≤2m+5,∴α是β的充分条件,则,即,解得﹣2≤m≤0,故答案为:.点评:本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的关系转化为不等式之间的关系是解决本题的关键.9.(3分)设a,b均为正数,则函数f(x)=(a2+b2)x+ab的零点的最小值为﹣.考点:函数零点的判定定理.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:函数f(x)=(a2+b2)x+ab的零点即方程(a2+b2)x+ab=0的解,由基本不等式求最值.解答:解:函数f(x)=(a2+b2)x+ab的零点即方程(a2+b2)x+ab=0的解,x=﹣≥﹣;当且仅当a=b时,等号成立;故答案为:﹣.点评:本题考查了函数的零点与方程的根的关系应用及基本不等式的应用,属于基础题.10.(3分)给出下列命题:①直线x=a与函数y=f(x)的图象至少有两个公共点;②函数y=x﹣2在(0,+∞)上是单调递减函数;③幂函数的图象一定经过坐标原点;④函数f(x)=a x﹣2(a>0,a≠1)的图象恒过定点(2,1).⑤设函数y=f(x)存在反函数,且y=f(x)的图象过点(1,2),则函数y=f﹣1(x)﹣1的图象一定过点(2,0).其中,真命题的序号为②④⑤.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:①,利用函数的概念(自变量与函数值一一对应)可判断①;②,利用幂函数的性质可知y=x﹣2在(0,+∞)上是单调递减函数,可判断②;③,幂函数y=x﹣1的图象不经过坐标原点,可判断③;④,利用指数函数的图象与性质,可判断④;⑤,依题意,可知函数y=f﹣1(x)的图象过点(2,1),从而可判断⑤.解答:解:对于①,直线x=a与函数y=f(x)的图象至多有1个公共点;,故①错误;对于②,由于﹣2<0,由幂函数的性质可知,函数y=x﹣2在(0,+∞)上是单调递减函数,故②正确;对于③,幂函数y=x﹣1的图象不经过坐标原点,故③错误;对于④,函数f(x)=a x﹣2(a>0,a≠1)的图象恒过定点(2,1),故④正确;对于⑤,设函数y=f(x)存在反函数,且y=f(x)的图象过点(1,2),则函数y=f﹣1(x)的图象过点(2,1),y=f﹣1(x)﹣1的图象一定过点(2,0),故⑤正确.综上所述,真命题的序号为②④⑤.故答案为:②④⑤.点评:本题考查命题的真假判断及应用,综合考查函数的概念、幂函数的单调性质、指数函数的图象与性质及反函数的概念及应用,属于中档题.11.(3分)设函数f(x)(x∈R)满足|f(x)+()2|≤,且|f(x)﹣()2|≤.则f(0)=.考点:函数的值.专题:函数的性质及应用.分析:利用赋值法求解,最后用不等式的交集求出结果.解答:解:利用赋值法,令x=0,则|f(0)﹣1|解得:同理:令x=0,则|f(0)|解得:所以:即f(0)=故答案为:点评:本题考查的知识要点:赋值法在函数求值中的应用.属于基础题型.12.(3分)若F(x)=a•f(x)g(x)+b•+c(a,b,c均为常数),则称F(x)是由函数f (x)与函数g(x)所确定的“a→b→c”型函数.设函数f1(x)=x+1与函数f2(x)=x2﹣3x+6,若f(x)是由函数f1﹣1(x)+1与函数f2(x)所确定的“1→0→5”型函数,且实数m,n满足f(m)=f(n)=6,则m+n的值为2.考点:进行简单的合情推理.专题:综合题;推理和证明.分析:由新定义,确定f(x)=x(x2﹣3x+6)+5,利用f(m)=f(n)=6,可得m(m2﹣3m+6)=1,n(n2﹣3n+6)=7,设m+n=t,则m=t﹣n,代入m(m2﹣3m+6)=1,可得(t﹣n)=1,即n3﹣(3t﹣3)n2+(3t2﹣6t+6)n﹣t3+3t2﹣6t+1=0,对照n2的系数,可得3t﹣3=﹣3,即可得出结论.解答:解:∵f1(x)=x+1,∴f1﹣1(x)=x﹣1,即f1﹣1(x)+1=x﹣1+1=x,∵f(x)是由函数f1﹣1(x)+1与函数f2(x)所确定的“1→0→5”型函数,∴f(x)=x(x2﹣3x+6)+5,由f(m)=f(n)=6可得f(m)=6,f(n)=12,即m(m2﹣3m+6)=1,n(n2﹣3n+6)=7,设m+n=t,则m=t﹣n,代入m(m2﹣3m+6)=1,可得(t﹣n)=1,即n3﹣(3t﹣3)n2+(3t2﹣6t+6)n﹣t3+3t2﹣6t+1=0,对照n2的系数,可得3t﹣3=﹣3,∴t=2故答案为:2.点评:本题考查新定义,考查学生分析解决问题的能力,正确换元是关键.二、选择题(本大题共有4题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.(3分)“a>1”是“a>0”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若a>1,则a>0成立,若a=,满足a>0,但a>1不成立,故“a>1”是“a>0”的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,比较基础.14.(3分)函数y=x+(x>0)的递减区间为()A.(0,4] B.C.考点:函数的单调性及单调区间.专题:函数的性质及应用;导数的概念及应用.分析:首先根据函数的关系式求出函数的导数,进一步利用y′<0,求出函数的单调递减区间.解答:解:函数y=(x>0)则:解得:0<x<2所以函数的递减区间为:(0,2)故选:D点评:本题考查的知识要点:函数的导数的应用,利用函数的导数求函数的单调区间.属于基础题型.15.(3分)如图为函数f(x)=t+log a x的图象(a,t均为实常数),则下列结论正确的是()A.0<a<1,t<0 B.0<a<1,t>0 C.a>1,t<0 D.a>1,t>0考点:对数函数的图像与性质.专题:函数的性质及应用.分析:根据对数函数的图象和性质即可得到答案解答:解:因为对数函数y=t+log a x的图象在定义域内是增函数,可知其底数大于1,由图象可知当x=1时,y=t<0,故选:C点评:本题考查了对数函数的图象与性质,是基础的概念题.16.(3分)设g(x)=|f(x+2m)﹣x|,f(t)为不超过实数t的最大整数,若函数g(x)存在最大值,则正实数m的最小值为()A.B.C.D.考点:函数的最值及其几何意义.专题:计算题;函数的性质及应用.分析:由题意知,当n﹣1≤x+2m<n,(n∈Z)时,f(x+2m)=n﹣1;从而可化简得2m﹣1<f(x+2m)﹣x≤2m,再由最值可得2m≥|2m﹣1|;从而求得.解答:解:∵f(t)为不超过实数t的最大整数,∴当n﹣1≤x+2m<n,(n∈Z)时,f(x+2m)=n﹣1;故n﹣1﹣2m≤x<n﹣2m;故2m﹣1<f(x+2m)﹣x≤2m;又∵m>0;故若函数g(x)存在最大值,则2m≥|2m﹣1|;故m≥;故选D.点评:本题考查了绝对值函数与分段函数的应用,属于中档题.三、解答题(本大题共有5题,满分52分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(8分)解不等式组:.考点:其他不等式的解法.专题:计算题;不等式的解法及应用.分析:运用二次不等式和分式不等式的解法,分别求出它们,再求交集即可.解答:解:原不等式组可化为,解得,从而有0<x<2,所以,原不等式的解集为(0,2).点评:本题考查二次不等式和分式不等式的解法,考查运算能力,属于基础题.18.(8分)某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金.如果每间客房日租金每增加4元,客房出租就会减少10间.(不考虑其他因素)(1)设每间客房日租金提高4x元(x∈N+,x<20),记该中心客房的日租金总收入为y,试用x表示y;(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)设每间客房日租金提高4x元(x∈N+,x<20),记该中心客房的日租金总收入为y,根据条件即可求出y的表达式;(2)利用基本不等式或者一元二次函数的性质求最值即可.解答:解:(1)若每间客房日租金提高4x元,则将有10x间客房空出,故该中心客房的日租金总收入为y=(40+4x)=40(10+x),(这里x∈N•且x<20).(2)∵y=40(10+x)≤40(=40×225=9000,当且仅当10+x=20﹣x,即x=5时,y的最大值为9000,即每间客房日租金为40+4×5=60(元)时,该中心客房的日租金总收入最高,其值为9000元.点评:本题主要考查函数的应用问题,根据条件建立函数关系,利用基本不等式的性质求最值是解决本题的关键.本题也可以使用一元二次函数的最值性质解决.19.(10分)已知f(x)=|x+a|(a>﹣2)的图象过点(2,1).(1)求实数a的值;(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1.试在该坐标系中作出函数y=的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.考点:函数的图象.专题:函数的性质及应用.分析:(1)根据图象过点(2,1),代入求出a的值,(2)根据分段函数分段画的原则,根据函数的图象,我们可以分析出自变量,函数值的取值范围,从而得到定义域和值域,分析出从左到右函数图象上升和下降的区间,即可得到函数的单调区间解答:解:(1)依题意得f(2)=1,即|2+a|=1,∵a>﹣2,∴2+a=1,解得a=﹣1,(2)由(1)可得f(x)=|x﹣1|,故y==,即y=.定义域:(﹣∞,﹣1)∪(1,+∞),值域:,奇偶性:非奇非偶函数,单调(递减)区间:(﹣∞,0].点评:本题考查的知识点是分段函数的解析式求法及其图象的作法,函数的定义域及其求法,函数的值域,函数的图象,其中利用零点分段法求出函数的解析式是解答本题的关键.20.(12分)设函数f(x)=log m(1+mx)﹣log m(1﹣mx)(m>0,且m≠1).(1)判断f(x)的奇偶性;(2)当m=2时,解方程f(6x)=1;(3)如果f(u)=u﹣1,那么,函数g(x)=x2﹣ux的图象是否总在函数h(x)=ux﹣1的图象的上方?请说明理由.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题;函数的性质及应用.分析:(1)先求出函数f(x)的定义域为(﹣,),再确定f(﹣x)=log m(1﹣mx)﹣log m(1+mx)﹣f(x)即可;(2)当m=2时,f(x)=log2(1+2x)﹣log2(1﹣2x),由f(6x)=1得log2(1+2•6x)﹣log2(1﹣2•6x)=1,从而求解;(3)方法一:注意到f(x)的定义域为(﹣,).若m>1,则﹣<u<,即u2<1;若0<m<1,则考虑函数F(x)=f(x)﹣x+1,也可得到u2<1;则g(x)﹣h(x)=(x2﹣ux)﹣(ux﹣1)=(x﹣u)2+1﹣u2≥1﹣u2>0,从而证明;方法二:如同方法一讨论,也可构造函数G(x)==﹣m x﹣1﹣1,从而同方法一中的方法证明即可.解答:解:(1)函数f(x)的定义域为(﹣,),关于原点对称;又f(﹣x)=log m(1﹣mx)﹣log m(1+mx)﹣f(x),即f(﹣x)=﹣f(x),故f(x)为定义域(﹣,)上的奇函数.(2)当m=2时,f(x)=log2(1+2x)﹣log2(1﹣2x),由f(6x)=1得log2(1+2•6x)﹣log2(1﹣2•6x)=1,去对数得1+2•6x=2(1﹣2•6x),解得6x=,从而x=﹣1.经检验,x=﹣1为原方程的解.(3)方法一:注意到f(x)的定义域为(﹣,).若m>1,则﹣<u<,即u2<1;若0<m<1,则考虑函数F(x)=f(x)﹣x+1.因log m(1+mx)在(﹣,)上递减,而log m(1﹣mx)在(﹣,)上递增,故f(x)在(﹣,)上递减,又﹣x在(﹣,)上递减,所以F(x)在(﹣,)上也递减;注意到F(0)=1>0,F(1)=f(1)<0,所以函数F(x)在(0,1)上存在唯一零点,即满足f(u)=u﹣1的u∈(0,1)(且u唯一),故u2<1.综上所述,u2<1.于是g(x)﹣h(x)=(x2﹣ux)﹣(ux﹣1)=(x﹣u)2+1﹣u2≥1﹣u2>0,即g(x)﹣h(x)>0,即对于任一x∈R,均有g(x)>h(x),故函数g(x)=x2﹣ux的图象总在函数h(x)=ux﹣1图象的上方.方法二:注意到f(x)的定义域为(﹣,).若m>1,则﹣<u<,即u2<1;若0<m<1,设函数G(x)==﹣m x﹣1﹣1,注意到在(﹣,)上递增,m x﹣1在(﹣,)上递减,故G(x)在(﹣,)上递增,又G(0)=1﹣<0,G(1)=﹣1>0,所以函数G(x)在(0,1)上存在唯一零点,又G(x)=0,即f(x)=x﹣1,于是,满足f(u)=u﹣1的u∈(0,1)(且u唯一),故u2<1.综上所述,u2<1.于是g(x)﹣h(x)=(x2﹣ux)﹣(ux﹣1)=(x﹣u)2+1﹣u2≥1﹣u2>0,即g(x)﹣h(x)>0,即对于任一x∈R,均有g(x)>h(x),故函数g(x)=x2﹣ux的图象总在函数h(x)=ux﹣1图象的上方.点评:本题考查了函数的性质的应用及恒成立问题,同时考查了分类讨论的数学思想应用,属于中档题.21.(14分)对于四个正数x,y,z,w,如果xw<yz,那么称(x,y)是(z,w)的“下位序对”.(1)对于2,3,7,11,试求(2,7)的“下位序对”;(2)设a,b,c,d均为正数,且(a,b)是(c,d)的“下位序对”,试判断,,之间的大小关系;(3)设正整数n满足条件:对集合{t|0<t<2014}内的每个m∈N+,总存在k∈N+,使得(m,2014)是(k,n)的“下位序对”,且(k,n)是(m+1,2015)的“下位序对”.求正整数n的最小值.考点:不等式的基本性质.专题:不等式.分析:(1)据新定义,代入计算判断即可;(2)根据新定义得到ad<bc,再利用不等式的性质,即可判断;(3)由题意得到,继而求出n≥4029,再验证该式对集合{t|0<t<2014}内的每个m∈N+的每个正整数m都成立,继而求出最小值解答:解:(1)∵3×7<11×2,∴(2,7)的下位序对是(3,11).(2)∵(a,b)是(c,d)的“下位序对”,∴ad<bc,∵a,b,c,d均为正数,故﹣=>0,即﹣>0,所以>;同理<.综上所述,<<.(3)依题意,得,注意到m,n,l整数,故,于是2014(mn+n﹣1)≥2014×2015k≥2015(mn+1),∴n≥,该式对集合{t|0<t<2014}内的每个m∈N+的每个正整数m都成立∴n≥=4029,∵<<,∴<<,∴<<,∴对集合{t|0<t<2014}内的每个m∈N+,总存在k∈N+,使得(m,2014)是(k,n)的“下位序对”,且(k,n)是(m+1,2015)的“下位序对”.正整数n的最小值为4029点评:本题考查了新定义的学习和利用,关键掌握读懂新定义,属于难题。
上海中学2015学年第一学期期末考试高一数学试题(含答案)
上海中学2015学年第一学期期末考试高一数学试题(含答案)2016年1月命题人:李海峰 审卷人:马岚一、填空题(每小题3分,共36分) 1.函数()1f x =,则1(3)f -= 16 .2.已知集合{}1,A x =,{}21,B x =且A B =,则x = 0 .3.若集合{}2M x x =<,{}lg(1)N x y x ==-,则MN = )2,1( .4.已知实数,a b 满足222a b +=,则ab 的最大值为 1 .5.函数31()lg1xf x x x-=++的奇偶性为 奇函数 . 6.函数f (x )=22log (2)x x -+的单调递增区间是 ](0,1 .7.若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0 的x 的取值范围是 )2,2(- .8.已知关于x 的方程265x x a -+=有四个不相等的实数根,则a 的取值范围是 )4,0( .9.函数133,0()31,0x x x f x x ⎧⎪+≤=⎨⎪+>⎩,若()2f a >,则实数a 的取值范围是]),0(0,1(+∞⋃- .10.若函数2x by x -=+在(,4)(2)a b b +<-上的值域为(2,)+∞,则b a += 6- . 11.定义全集U 的子集A 的特征函数为1,()0,A U x Af x x A∈⎧=⎨∈⎩,这里U A 表示A 在全集U 中的补集,那么对于集合U B A ⊆、,下列所有正确说法的序号是 (1)(2)(3) .(1))()(x f x f B A B A ≤⇒⊆ (2)()1()U A Af x f x =-(3)()()()ABA B f x f x f x =⋅ (4)()()()A B A B f x f x f x =+12.对任意的120x x <<,若函数1()f x a x x =-的大致图像为如图所示的一条折线(两侧的 射线均平行于x 轴),试写出a 、b 应满足的 条件是 0,0=+>-b a b a . 二、选择题(每小题3分,共12分)13.条件甲:23log 2x =是条件乙:3log 1x =成立的( B )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.若函数)1,0()1()(≠>--=-a a aa k x f xx在R 上既是奇函数,又是减函数,则)(log )(k x x g a +=班级 姓 名 学 号的图像是( A )15.已知0x 是函数1()21x f x x=+-的一个零点.若()()10201,,,x x x x ∈∈+∞,则 (B ) A .()()120,0f x f x << B .()()120,0f x f x <>C .()()120,0f x f x ><D .()()120,0f x f x >>16.设)(x f 是定义在R 上的函数.①若存在R x x ∈21,,21x x <,使)()(21x f x f <成立,则函数)(x f 在R 上单调递增; ②若存在R x x ∈21,,21x x <,使)()(21x f x f ≤成立,则函数)(x f 在R 上不可能单调递减; ③若存在02>x 对于任意R x ∈1都有)()(211x x f x f +<成立,则函数)(x f 在R 上递增; ④对任意R x x ∈21,,21x x <,都有)()(21x f x f ≥成立,则函数)(x f 在R 上单调递减. 则以上真命题的个数为( B ) A.0 B.1 C.2 D.3 三、解答题(10+10+10+10+12=52分)17.设全集U R =,集合1{|||1},{|2}2x A x x a B x x +=-<=≤-. (1)求集合B ; (2)若U A B ⊆,求实数a的取值范围.[12025022(,2)5,)2x x x x B +-≤--∴≥-=-∞⋃+∞分分[){12152,52||1(1,1)2342U U a a Bx a A a a A Ba -≥+≤=-<∴=-+⊆∴≤≤分分分18.已知不等式230x x m -+<的解集为{}1,x x n n R <<∈,函数()24f x x ax =-++.(1)求,m n 的值;(2)若()y f x =在(,1]-∞上递增,解关于x 的不等式()2log 320a nx x m -++-<. 解:(1) 由条件得:131n n m +=⎧⎨⋅=⎩, 所以22m n =⎧⎨=⎩4分(2)因为()24f x x ax =-++在(),1-∞在(),1-∞上递增, 所以12a≥,2a ≥. 2分()()22log 32log 230a a nx x m x x -++-=-+<.所以2223022310x x x x ⎧-<⎪⎨-+>⎪⎩分, 所以⎪⎪⎩⎪⎪⎨⎧<><<211230x x x 或. 所以102x <<或312x <<. 2分 19.设幂函数()(1)(,)kf x a x a R k Q =-∈∈的图像过点2). (1)求,a k 的值;(2)若函数()()21h x f x b =-+-在[0,1]上的最大值为2,求实数b 的值.(1)1122(2)222k a a k -=∴==∴=分分(2)2()f x x =222()21()()1[0,1]h x x bx b h x x b b b x =-++-=--+-+∈max 1)1,(1)22bh h b ≥===分2max 2)01,()122b h h b b b b <<==-+=∴=舍)分max 3)0,(0)1212b h h b b ≤==-=∴=-分综上:212b b ∴==-或分20.有时可用函数0.115ln ,(6)() 4.4,(6)4a x a xf x x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩描述某人学习某学科知识的掌握程度,其中x 表示某学科知识的学习次数(*x N ∈),()f x 表示对该学科知识的掌握程度,正实数a 与学科知识有关. (1)证明:当7x ≥时,掌握程度的增加量(1)()f x f x +-总是单调递减的;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121]、(121,127]、 (127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.21.对于函数12(),(),()f x f x h x ,如0.050.0.42(3)(4)(3)(4)(3)(4)0.320.115ln0.85,2,66x x x x x x aae a a e a ≥--≥---->∴≥+==--=(1)当x 7时,f(x+1)-f(x)=分而当7时,函数y=单调递增,且 故f(x+1)-f(x)单调递减.当7,掌握程度的增长量f(x+1)-f(x)总是单调递减.分()由题意可知分 整理得解得(](]050.05620.506123.0,21123.0121,127123.0121,133.1e ⋅≈⨯=-∈∈分由此可知,该学科是乙和丙学科。
上海市宝山区高三数学上学期期末教学质量检测试题
宝山区2015学年度第一学期期末高三年级数学学科教学质量监测试卷(本试卷共有23道试题,满分150分,考试时间120分钟.)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程0624=--xx 的解集为 .2.已知:(1-2)5+10i z i =(i 是虚数单位 ),则z = .3.以)2,1(为圆心,且与直线03534=-+y x 相切的圆的方程是 .4.数列2,*3nn N ⎧⎫⎪⎪⎛⎫∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭所有项的和为 .5. 已知矩阵A =⎪⎪⎭⎫⎝⎛421y ,B =⎪⎪⎭⎫ ⎝⎛876x ,AB =⎪⎪⎭⎫⎝⎛50432219,则x+y = . 6. 等腰直角三角形的直角边长为1,则绕斜边旋转一周所形成的几何体的体积为 .7.若9a x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是-84,则a= .8. 抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于 .9. 已知,0,>t ω函数xx x f ωωcos 1sin 3)(=的最小正周期为π2,将)(x f 的图像向左平移t 个单位,所得图像对应的函数为偶函数,则t 的最小值为 .10.两个三口之家,共4个大人,2个小孩,约定星期日乘红色、白色两辆轿车结伴郊游,每辆车最多乘坐4人,其中两个小孩不能独坐一辆车,则不同的乘车方法种数是 .11. 向量a r ,b r 满足a 1=r ,3a b -=r r ,a r 与b r的夹角为60°,则b =r .12. 数列1212312341213214321⋅⋅⋅,,,,,,,,,,,则98是该数列的第 项. 13. 已知直线0)1(4)1()1(=+-++-a y a x a (其中a 为实数)过定点P ,点Q 在函数xx y 1+=的图像上,则PQ 连线的斜率的取值范围是 .14. 如图,已知抛物线2y x =及两点11(0,)A y 和22(0,)A y ,其中120y y >>.过1A ,2A 分别作y 轴的垂线,交抛物线于1B ,2B 两点,直线12B B 与y 轴交于点33(0,)A y ,此时就称1A ,2A 确定了3A .依此类推,可由2A ,3A 确定4A ,L .记(0,)n n A y ,1,2,3,n =L .给出下列三个结论: ① 数列{}n y 是递减数列;② 对任意*n ∈N ,0n y >;③ 若14y =,23y =,则523y =. 其中,所有正确结论的序号是_____.二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.15.如图,该程序运行后输出的结果为…… ( ) (A )1 (B )2 (C )4 (D )1616. P 是ABC ∆所在平面内一点,若PB PA CB +=λ,其中R ∈λ, 则P 点一定在……( )(A )ABC ∆内部 (B )AC 边所在直线上 (C )AB 边所在直线上 (D )BC 边所在直线上 17.若,a b 是异面直线,则下列命题中的假命题为------------------------------------------ ( )(A )过直线a 可以作一个平面并且只可以作一个平面α与直线b 平行; (B )过直线a 至多可以作一个平面α与直线b 垂直; (C )唯一存在一个平面α与直线a b 、等距; (D )可能存在平面α与直线a b 、都垂直。
宝山区期末高一数学试卷
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 2x + 1,则f(x)的对称轴为:A. x = 1B. x = 0C. x = -1D. x = 22. 若等差数列{an}的公差为d,首项为a1,则第10项an+1为:A. a1 + 9dB. a1 + 10dC. a1 + 11dD. a1 + 12d3. 已知等比数列{bn}的公比为q,首项为b1,则第5项b5为:A. b1 q^4B. b1 q^5C. b1 q^6D. b1 q^74. 函数y = 2x + 3的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像5. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为:A. (3,2)B. (2,3)C. (3,3)D. (2,2)6. 若不等式x - 2 > 0,则x的取值范围为:A. x > 2B. x < 2C. x ≤ 2D. x ≥ 27. 已知复数z = 3 + 4i,则|z|的值为:A. 5B. 7C. 9D. 118. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则a、b、c之间的关系为:A. a + b > cB. a + b < cC. a + c > bD. a + c < b9. 已知函数f(x) = x^3 - 3x^2 + 4x - 6,则f(x)的零点为:A. 1B. 2C. 3D. 410. 在直角坐标系中,直线y = 2x + 1与y轴的交点为:A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)二、填空题(每题5分,共50分)11. 已知等差数列{an}的公差为d,首项为a1,则第n项an = __________。
12. 已知等比数列{bn}的公比为q,首项为b1,则第n项bn = __________。
13. 函数y = 2^x的图像在x轴的右侧是__________函数。
上海市宝山区2015届高三上学期期末质量监测数学试题
2014学年度质量管理考试数学试卷(满分150分,其中学业水平考试卷120分,附加题30分,完卷时间130分钟)2014.12考试注意:1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚.2.本试卷共有 32道试题,满分 150 分.考试时间 130分钟.3.请考生用钢笔或圆珠笔按要求在试卷相应位置上作答.一.(本大题满分 36 分)本大题共有 12 题,要求直接填写结果,每题填对3分,否则一律得 0 分.1. 函数3tan y x =的周期是 . 【答案】π 【解析】 试题分析:由πωπ==T 考点:正切函数的性质 2.计算2413= . 【答案】2考点:行列式的计算 3.计算lim n →∞2123n n ++++= .【答案】21 【解析】试题分析:212)1(lim 321lim 22=+=++++∞→∞→n n n n n n n 考点:数列极限4.二项式10(x 1)+展开式中,8x 的系数为 . 【答案】45 【解析】试题分析:通项为rrr x C T -+=10101 ,令2=r ,88210345x x C T ==,故8x 的系数为45考点:二项式定理 5.设矩阵241A x ⎛⎫= ⎪⎝⎭,2211B -⎛⎫= ⎪-⎝⎭,若BA =2412⎛⎫ ⎪--⎝⎭,则x = . 【答案】2考点:矩阵的乘法6.现有6位同学排成一排照相,其中甲、乙二人相邻的排法有 种. 【答案】240考点:排列7.若1cos()2πα+=-,322παπ<<,则sin α= .【答案】23- 【解析】试题分析:由已知21cos )cos(-=-=+ααπ,所以21cos =α,又παπ223<<,故23co s 1sin 2-=--=αα 考点:三角函数、诱导公式8.若一个球的体积为π34,则它的表面积为__________. 【答案】π12【解析】 试题分析:因ππ34343==R V ,所以3=R ,故ππ1242==R S 考点:球的体积、表面积9.若函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 . 【答案】2π考点:三角函数的性质10.正四棱锥ABCD P -的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于 . 【答案】33 【解析】试题分析:连接AC 、BD 交于O ,异面直线BE 与PA 所成的角即为EO 与BE 所成的角,设棱长为1,则21=EO ,23=EB ,22=BO ,222EB BO EO =+,所以BO EO ⊥,33cos ==∠BE EO BEO 考点:异面直线所成的角11.直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于 . 【答案】54 【解析】试题分析:曲线为圆25)1()3(22=-+-y x ,圆心到直线的距离5523=+=d ,所以弦长为54222=-d r 考点:直线与圆的位置关系12.已知函数)0,0,0(),sin()(πϕωϕω≤≤>>+=A x A x f 的部分图像如图所示,则(x)y f =的解析式是(x)f = .【答案】)42sin(2)(π+=x x f【解析】试题分析:由图知振幅为2周期为π,所以ωππ2,2==A ,故2=ω由函数经过第二个零点⎪⎭⎫⎝⎛0,83π,所以0)832sin(2=+⨯ϕπ,πππϕ+=+k 243即ππϕ412+=k ,又πϕ≤≤0,故πϕ41=,所以)42sin(2)(π+=x x f考点:三角函数图象二.选择题(本大题满分 36 分)本大题共有 12 题,每题都给出四个结论,其中有且只有一个结论是正确的.考生必须把正确结论的代码写在题后的括号内,选对得 3分,否则一律得 0 分.13.已知点(tan ,cos )P αα在第三象限,则角α的终边在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B考点:三角函数值14.已知函数y x b α=+,(0,)x ∈+∞是增函数,则 ( ) (A )0α>,b 是任意实数(B )0α<,b 是任意实数(C )0b >,α是任意实数 (D )0b <,α是任意实数 【答案】A 【解析】试题分析:由幂函数的单调性知R b ∈>,0α 考点:幂函数单调性15.在ABC ∆中,若B a b sin 2=,则这个三角形中角A 的值是( )(A ) 30或 60 (B ) 45或 60 (C ) 60或 120 (D ) 30或 150 【答案】D考点:正弦定理16.若log 3log 30a b <<,则( )()01()01()1()1A a b B b a C a b D b a <<<<<<>>>> 【答案】B考点:对数函数的性质17.双曲线24x -212y =1的焦点到渐近线的距离为( )(A )(B )2 (C (D )1 【答案】A考点:双曲线的性质18.用数学归纳法证明等式2135(21)n n +++⋅⋅⋅+-=(n ∈N*)的过程中,第二步假设n=k 时等式成立,则当n=k+1时应得到( ) (A )2135(21)k k +++⋅⋅⋅++= (B )2135(21)(1)k k +++⋅⋅⋅++=+ (C )2135(21)(2)k k +++⋅⋅⋅++=+ (D )2135(21)(3)k k +++⋅⋅⋅++=+【答案】B考点:推理与证明19.设1z i =+(i 是虚数单位),则复数22+z z对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】A考点:复数的运算20.圆0422=-+x y x 在点)3,1(P 处的切线方程为 ( ) (A )023=-+y x (B )043=-+y x (C )043=+-y x (D )023=+-y x 【答案】D 【解析】试题分析:由已知圆的标准方程为4)2(2=+-y x ,记圆心为O ,由已知3-=PO k ,所以切线的斜率为331=-=POk k ,故切线方程为)1(333-=-x y 即023=+-y x考点:圆的切线方程 21.“1tan -=x ”是“)(24Z k k x ∈+-=ππ”的( )(A )充分非必要条件; (B )必要非充分条件; (C )充要条件; (D )既非充分又非必要条件. 【答案】B考点:充分条件、必要条件22. 在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )(A (B )(C )5 (D )10【答案】C 【解析】试题分析:因0=⋅,故BD AC ⊥,又525==,所以=S 5= 考点:向量的数量积、模23.函数1(0)y x =<的反函数是( )(A )0)y x =< (B )0)y x =<(C )2)y x =>(D )2)y x =>【答案】D考点:反函数24.曲线21||y x =+的部分图像是( )考点:函数的图象三、解答题(本大题满分 48 分)本大题共有 5 题,解答下列各题必须写出必要的步骤. 25.(本题满分 8 分)解不等式组|1|3213-<⎧⎪⎨>⎪-⎩x x【答案】(3,4)考点:解不等式 26.(本题满分 8 分)如图,正四棱柱1111D C B A ABCD -的底面边长2=AB , 若异面直线A A 1与C B 1所成角的大小为21arctan ,求正四棱 柱1111D C B A ABCD -的体积. 【答案】16第26题【解析】考点:空间几何体体积27.(本题满分 10 分)本题共有 2 个小题,第 1 小题满分 4 分,第 2 小题满分6分.已知点F 为抛物线2:4C y x =的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于,A B 两点,若点P 的纵坐标为(0)m m ≠,点D 为准线l 与x 轴的交点. (1)求直线PF 的方程;(2)求DAB ∆面积S 的取值范围.【答案】(1)20mx y m +-=;(2)(4,)+∞ 【解析】试题分析:(1)易得,P F 的坐标分别为(1,)m -,(1,0),所以斜率为2m -,由点斜式可得方程为20mx y m +-=;(2)联立直线与抛物线方程求得AB 的长度为2122416||2m AB x x m +=++=,再由点到直线AB 的距离算出高d =,故21||2S AB d ===S 的取值范围.考点:抛物线及其综合应用28.(本题满分 10 分)本题共有 2 个小题,第 1 小题满分 4 分,第 2 小题满分6分.已知函数2()()2x a f x x R x +=∈+.(1)写出函数()y f x =的奇偶性;(2)当0x >时,是否存实数a ,使()y f x =的图像在函数2()g x x=图像的下方,若存在,求a 的取值范围;若不存在,说明理由. 【答案】(1)见解析;(2)a <4 【解析】试题分析:(1)先求定义域,看是否关于原点对称,其次再用奇、偶函数定义验证即可;容易得到)(x f 的定义域为R ,当0a =时,2()2x f x x =+是奇函数;当0a ≠时,2()()2x af x x R x +=∈+是非奇非偶函数;(2)考点:函数的性质29.(本题满分 12 分)本题共有 3 个小题,第 1 小题满分 3 分,第 2 小题满分4分,第 3 小题满分5分.已知抛物线24x y =,过原点作斜率为1的直线交抛物线于第一象限内一点1P ,又过点1P 作斜率为12的直线交抛物线于点2P ,再过2P 作斜率为14的直线交抛物线于点3P ,,如此继续。
上海市宝山区2015届高三上学期期末质量监测数学试题
上海市宝山区2015届高三上学期期末质量监测数学试题一、填空题(本大题满分36分,每小题3分) 1.函数3tan y x =的周期是 . 2.计算2413= . 3.计算2123limn nn→∞+++⋅⋅⋅+= . 4.二项式()101x +展开式中,8x 的系数为 .5.设矩阵2422,111A B x -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,若2412BA ⎛⎫= ⎪--⎝⎭,则x = .6.现有6位同学排成一排照相,其中甲,乙二人相邻的排法有 种.7.若()13cos ,222ππααπ+=-<<,则sin α= .8.若一个球体的体积为,则它的表面积为__________.9.若函数()()sin 20y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是_________.10.正四棱锥P ABCD -的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于______.11.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于_________.12.已知函数()sin(),(0,0,0)f x A x A ωϕωϕπ=+>>≤≤的部分图像如图所示,则()y f x =的解析式是()f x =________.三、选择题(本大题满分36分,每小题3分)13.已知点()tan ,cos P αα在第三象限,则角α的终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限14.已知函数(),0,a y x b x =+∈+∞,是增函数,则( )A. 0a >,b 是任意实数B. 0a <,b 是任意实数C. 0b >,a 是任意实数CD. 0b <,a 是任意实数15.在ABC ∆中,若2sin b a B =,则这个三角形中角A 的值是( )A.30或60B. 45或60C. 60或120D. 30或15016若log 3log 30a b <<,则( )A. 01a b <<<B. 01b a <<<C. 1a b >>D. 1b a >>17.双曲线221412x y -=的焦点到渐近线的距离为( )A. B. 2 C. D. 118.用数学归纳法证明等式2*135...(21)()n n n N ++++-=∈的过程中,第二步假设n k =时等式成立,则当1n k =+时应得到( ) A. 2135...(21)k k +++++=B. 2135...(21)(1)k k +++++=+C. 2135...(21)(2)k k +++++=+D. 2135...(21)(3)k k +++++=+ 19.设1z i =+(i 是虚数单位),则复数22z z+对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限20.圆2240x y x +-=在点P 处的切线方程为( )A. 20x -=B. 40x -=C. 40x +=D. 20x +=21.“tan 1x =-”是“2()4x k k Z ππ=-+∈”的( )A.充分非必要条件B.必要非充分C.充要条件D.既不充分也不必要22.在四边形ABCD ,()()1,2,4,2AC BD ==-,则四边形的面积( )B.23.函数1(0)y x =<的反函数是( )A.0)y x =<B.0)y x =<C.2)y x =>D.2)y x => 24.曲线21y x =+的部分图像是( )A.B.C.D.三、解答题(本大题48分)25.(本题满分8分)解不等式组13213x x ⎧-<⎪⎨>⎪-⎩26.(本题满分8分)如图,正四棱柱1111ABCD A B C D -的底面边长2AB =,若异面直线1A A 与1B C 所成的角的大小为1arctan 2,求四棱柱1111ABCD A B C D -的体积.ABD 1A 1B 1C 1D27.(本题满分10分,本题共有2个小题,第1小题满分4分,第2小题满分6分) 已知点F 为抛物线2:4C y x =的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于,A B 两点,若点P 的纵坐标为()0m m ≠.点D 为准线l 与x 轴的交点.(1)求直线PF 的方程;(2)求DAB ∆面积S 的取值范围.28. (本题满分10分,本题共有2个小题,第1小题满分4分,第2小题满分6分) 已知函数()()22x af x x R x +=∈+. (1)写出函数()y f x =的奇偶性;(2)当0x >时,是否存在实数a ,使()y f x =的图像在函数()2g x x=图像的下方,若存在,求a 的取值范围;若不存在,说明理由.29. (本题满分12分,本题共有3个小题,第1小题满分3分,第2小题满分4分, 第3小题满分5分)已知抛物线24x y =,过原点作斜率为1的直线交抛物线于第一象限内一点1P ,又过点1P 作斜率为12的直线交抛物线于点2P ,再过点2P 作斜率为14的直线交抛物线于点3P ,,如此继续. 一般地,过点n P 作斜率为12n 的直线交抛物线于点1n P +,设点(),n n n P x y .(1)求31x x -的值;(2)令2121n n n b x x +-=-,求证:数列{}n b 是等比数列; (3)记(),P x y 奇奇奇为点列1P ,3P ,,21n P -,的极限点,求点P 奇的坐标.四、附加题(本大题满分30分)本大题共有3题,解答下列各题必须写出必要的步骤. 30.(本题满分8分)有根木料长为6米,要做一个如图的窗框,已知上框架与下框架的高的比为1:2,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计).x31.(本题满分10分,第1小题4分,第2小题6分)在平面直角坐标系中,点P 到两点(0,、(的距离之和等于4,设点P 的轨迹为C . (1)写出轨迹C 的方程;(2)设直线1y kx =+与C 交于,A B 两点,问k 为何值时OA OB ⊥?此时AB 的值是多少?32.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 设数列{}n a 的首项1a 为常数,且()*1=32N n n n a a n +-∈ (1)证明:35n n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)若132a =,{}n a 中是否存在连续三项成等差数列?若存在,写出这三项,若不存在,说明理由;(3)若{}n a 是递增数列,求1a 的取值范围.。
宝山区高一期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,无理数是()A. √2B. 0.333...C. πD. 2/32. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a与b的关系是()A. a > bB. a < bC. a = bD. a与b无关系3. 若等差数列{an}的前n项和为Sn,且S3 = 12,S6 = 36,则公差d为()A. 2B. 3C. 4D. 54. 在△ABC中,若a=3,b=4,c=5,则cosA的值为()A. 1/2B. 1/3C. 2/3D. 3/45. 下列函数中,在定义域内单调递增的是()A. y = -x^2 + 2xB. y = x^3 - 3xC. y = 2x + 1D. y = 1/x二、填空题(每题5分,共20分)6. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。
7. 在等比数列{an}中,若a1 = 2,公比q = 3,则第5项a5的值为______。
8. 在△ABC中,若角A、B、C的对边分别为a、b、c,则余弦定理为______。
9. 若直线l的斜率为2,则直线l的倾斜角为______。
10. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为______。
三、解答题(每题10分,共30分)11. (10分)已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,求:(1)数列{an}的通项公式;(2)数列{an}的前10项和。
12. (10分)已知函数f(x) = 2x^3 - 3x^2 + 1,求:(1)函数的极值点;(2)函数的增减区间。
13. (10分)在△ABC中,已知a=5,b=6,c=7,求:(1)角A的余弦值;(2)角B的正弦值。
四、应用题(20分)14. (10分)某工厂生产一批产品,已知生产成本为每件50元,每件产品的售价为100元。
上海市宝山区2015届高三上学期期末质量监测数学试题
上海市宝山区2015届高三上学期期末质量监测数学试题一、填空题(本大题满分36分,每小题3分) 1.函数3tan y x =的周期是 . 2.计算2413= . 3.计算2123limn nn→∞+++⋅⋅⋅+= . 4.二项式()101x +展开式中,8x 的系数为 .5.设矩阵2422,111A B x -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,若2412BA ⎛⎫= ⎪--⎝⎭,则x = .6.现有6位同学排成一排照相,其中甲,乙二人相邻的排法有 种.7.若()13cos ,222ππααπ+=-<<,则sin α= .8.若一个球体的体积为,则它的表面积为__________.9.若函数()()sin 20y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是_________.10.正四棱锥P ABCD -的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于______.11.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于_________.12.已知函数()sin(),(0,0,0)f x A x A ωϕωϕπ=+>>≤≤的部分图像如图所示,则()y f x =的解析式是()f x =________.三、选择题(本大题满分36分,每小题3分)13.已知点()tan ,cos P αα在第三象限,则角α的终边在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限14.已知函数(),0,a y x b x =+∈+∞,是增函数,则( ) A. 0a >,b 是任意实数 B. 0a <,b 是任意实数 C. 0b >,a 是任意实数CD. 0b <,a 是任意实数15.在ABC ∆中,若2sin b a B =,则这个三角形中角A 的值是( )A.30o 或60oB. 45o 或60oC. 60o 或120oD. 30o 或150o16若log 3log 30a b <<,则( )A. 01a b <<<B. 01b a <<<C. 1a b >>D. 1b a >>17.双曲线221412x y -=的焦点到渐近线的距离为( )A. B. 2 C.D. 118.用数学归纳法证明等式2*135...(21)()n n n N ++++-=∈的过程中,第二步假设n k =时等式成立,则当1n k =+时应得到( ) A. 2135...(21)k k +++++=B. 2135...(21)(1)k k +++++=+C. 2135...(21)(2)k k +++++=+D. 2135...(21)(3)k k +++++=+ 19.设1z i =+(i 是虚数单位),则复数22z z+对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限20.圆2240x y x +-=在点P 处的切线方程为( )A. 20x +-=B. 40x +-=C. 40x +=D. 20x +=21.“tan 1x =-”是“2()4x k k Z ππ=-+∈”的( )A.充分非必要条件B.必要非充分C.充要条件D.既不充分也不必要22.在四边形ABCD ,()()1,2,4,2AC BD ==-u u u r u u u r,则四边形的面积( )B. C.5 D.1023.函数1(0)y x =<的反函数是( )A.0)y x =<B.0)y x =<C.2)y x =>D.2)y x => 24.曲线21y x =+的部分图像是( )A.B.C.D.三、解答题(本大题48分)25.(本题满分8分)解不等式组13213x x ⎧-<⎪⎨>⎪-⎩26.(本题满分8分)如图,正四棱柱1111ABCD A B C D -的底面边长2AB =,若异面直线1A A 与1B C 所成的角的大小为1arctan 2,求四棱柱1111ABCD A B C D -的体积.ABD 1A 1B 1C 1D27.(本题满分10分,本题共有2个小题,第1小题满分4分,第2小题满分6分) 已知点F 为抛物线2:4C y x =的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于,A B 两点,若点P 的纵坐标为()0m m ≠.点D 为准线l 与x 轴的交点.(1)求直线PF 的方程;(2)求DAB ∆面积S 的取值范围.28. (本题满分10分,本题共有2个小题,第1小题满分4分,第2小题满分6分) 已知函数()()22x af x x R x +=∈+. (1)写出函数()y f x =的奇偶性;(2)当0x >时,是否存在实数a ,使()y f x =的图像在函数()2g x x=图像的下方,若存在,求a 的取值范围;若不存在,说明理由.29. (本题满分12分,本题共有3个小题,第1小题满分3分,第2小题满分4分, 第3小题满分5分)已知抛物线24x y =,过原点作斜率为1的直线交抛物线于第一象限内一点1P ,又过点1P 作斜率为12的直线交抛物线于点2P ,再过点2P 作斜率为14的直线交抛物线于点3P ,L L ,如此继续. 一般地,过点n P 作斜率为12n 的直线交抛物线于点1n P +,设点(),n n n P x y .(1)求31x x -的值;(2)令2121n n n b x x +-=-,求证:数列{}n b 是等比数列;(3)记(),P x y 奇奇奇为点列1P ,3P ,L L ,21n P -,L L 的极限点,求点P 奇的坐标.四、附加题(本大题满分30分)本大题共有3题,解答下列各题必须写出必要的步骤. 30.(本题满分8分)有根木料长为6米,要做一个如图的窗框,已知上框架与下框架的高的比为1:2,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计).x31.(本题满分10分,第1小题4分,第2小题6分)在平面直角坐标系中,点P 到两点(0,、(的距离之和等于4,设点P 的轨迹为C . (1)写出轨迹C 的方程;(2)设直线1y kx =+与C 交于,A B 两点,问k 为何值时OA OB ⊥u u u r u u u r?此时AB u u u r 的值是多少?32.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 设数列{}n a 的首项1a 为常数,且()*1=32N n n n a a n +-∈ (1)证明:35n n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)若132a =,{}n a 中是否存在连续三项成等差数列?若存在,写出这三项,若不存在,说明理由;(3)若{}n a 是递增数列,求1a 的取值范围.。
上海市宝山区2015届高三上学期期末质量监测数学试题 含解析
2014学年度质量管理考试数学试卷(满分150分,其中学业水平考试卷120分,附加题30分,完卷时间130分钟)2014。
12考试注意:1。
答卷前,考生务必将姓名、高考座位号、校验码等填写清楚. 2。
本试卷共有 32道试题,满分 150 分.考试时间 130分钟. 3。
请考生用钢笔或圆珠笔按要求在试卷相应位置上作答.一.(本大题满分 36 分)本大题共有 12 题,要求直接填写结果,每题填对3分,否则一律得 0 分. 1. 函数3tan y x =的周期是 . 【答案】π 【解析】试题分析:由πωπ==T 考点:正切函数的性质 2。
计算2413= .【答案】2考点:行列式的计算 3。
计算lim n →∞2123nn ++++= .【答案】21【解析】试题分析:212)1(lim 321lim 22=+=++++∞→∞→n n n n n n n考点:数列极限4。
二项式10(x 1)+展开式中,8x 的系数为 .【答案】45 【解析】试题分析:通项为rr r x C T -+=10101,令2=r ,88210345x x C T==,故8x 的系数为45考点:二项式定理5.设矩阵241A x ⎛⎫=⎪⎝⎭,2211B -⎛⎫= ⎪-⎝⎭,若BA =2412⎛⎫ ⎪--⎝⎭,则x = .【答案】2考点:矩阵的乘法 6.现有6位同学排成一排照相,其中甲、乙二人相邻的排法有种.【答案】240考点:排列7.若1cos()2πα+=-,322παπ<<,则sin α= .【答案】23- 【解析】试题分析:由已知21cos )cos(-=-=+ααπ,所以21cos =α,又παπ223<<,故23cos 1sin 2-=--=αα 考点:三角函数、诱导公式 8.若一个球的体积为π34,则它的表面积为__________.【答案】π12 【解析】试题分析:因ππ34343==RV ,所以3=R ,故ππ1242==R S考点:球的体积、表面积9.若函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 . 【答案】2π考点:三角函数的性质10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年上海市宝山区高一(上)期末数学试卷一、填空题(本大题共有12小题,每小题3分,共36分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3分)设集合P={﹣3,0,2,4],集合Q={x|﹣1<x<3},则P∩Q=.2.(3分)函数f(x)=log2(1﹣x)的定义域为.3.(3分)函数y=x﹣2的单调增区间是.4.(3分)已知正数x,y满足xy=1,则x2+y2的最小值为.5.(3分)设x1和x2是方程x2+7x+1=0的两个根,则+x=.6.(3分)设常数a>1,则f(x)=﹣x2﹣2ax+1在区间[﹣1,1]上的最大值为.7.(3分)若函数f(x)=x2﹣mx+3在R上存在零点,则实数m的取值范围是.8.(3分)设命题α:x>0,命题β:x>m,若α是β的充分条件,则实数m的取值范围是.9.(3分)已知f(x)=x2+1是定义在闭区间[﹣1,a]上的偶函数,则f(a)的值为.10.(3分)设log23=t,s=log672,若用含t的式子表示s,则s=.11.(3分)设常数a∈(0,1),已知f(x)=log a(x2﹣2x+6)是区间(m,m+)上的增函数,则最大负整数m的值为.12.(3分)记min{a,b,c}为实数a,b,c中最小的一个,已知函数f(x)=﹣x+1图象上的点(x1,x2+x3)满足:对一切实数t,不等式﹣t2﹣t﹣2+4≤0均成立,如果min{﹣x1,﹣x2,﹣x3}=﹣x1,那么x1的取值范围是.二、选择题(本大题共4题,每小题3分,共12分.每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对的3分,否则一律得零分)13.(3分)若f(x)=2x3+m为奇函数,则实数m的值为()A.﹣2 B.﹣1 C.1 D.014.(3分)函数f(x)=x2﹣1(2<x<3)的反函数为()A.f﹣1(x)=(3<x<8)B.f﹣1(x)=(3<x<8)C.f﹣1(x)=(4<x<9)D.f﹣1(x)=(4<x<9)15.(3分)“x>y>0,m<n<0“是“xm<ny”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(3分)给出以下命题:(1)函数f(x)=与函数g(x)=|x|是同一个函数;(2)函数f(x)=a x+1(a>0且a≠1)的图象恒过定点(0,1);(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=有负数根,则实数m的取值范围是(1,+∞);(4)若f(x)=为奇函数,则f(f(﹣2))=﹣7;(5)设集合M={m|函数f(x)=x2﹣mx+2m的零点为整数,m∈R},则M的所有元素之和为15.其中所有正确命题的序号为()A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(1)(3)(4)三、解答题(本大题共有5题,满分52分.解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤)17.(8分)解不等式组:.18.(8分)某公司欲制作容积为16米3,高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.(1)试用x表示y;(2)求y的最小值及此时该容器的底面边长.19.(10分)设函数f(x)=log2(x﹣a)(a∈R).(1)当a=2时,解方程f(x)﹣f(x+1)=﹣1;(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1,当a=1时,试在该坐标系中作出函数y=|f(x)|的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.20.(12分)设函数f(x)是2x与的平均值(x≠0.且x,a∈R).(1)当a=1时,求f(x)在[,2]上的值域;(2)若不等式f(2x)<﹣2x++1在[0,1]上恒成立,试求实数a的取值范围;(3)设g(x)=,是否存在正数a,使得对于区间[﹣,]上的任意三个实数m、n、p,都存在以f(g(m)、f(g(n))、f(g(p))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.21.(14分)设函数f(x)=|f1(x)﹣f2(x)|,其中幂函数f1(x)的图象过点(2,),且函数f2(x)=ax+b(a,b∈R).(1)当a=0,b=1时,写出函数f(x)的单调区间;(2)设μ为常数,a为关于x的偶函数y=log4[()x+μ•2x](x∈R)的最小值,函数f(x)在[0,4]上的最大值为u(b),求函数u(b)的最小值;(3)若对于任意x∈[0,1],均有|f2(x)|≤1,求代数式(a+1)(b+1)的取值范围.2015-2016学年上海市宝山区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题3分,共36分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分)1.(3分)设集合P={﹣3,0,2,4],集合Q={x|﹣1<x<3},则P∩Q={0,2} .【解答】解:∵P={﹣3,0,2,4],集合Q={x|﹣1<x<3},∴P∩Q={0,2},故答案为:{0,2}2.(3分)函数f(x)=log2(1﹣x)的定义域为{x|x<1} .【解答】解:要使函数f(x)=log2(1﹣x)有意义则1﹣x>0即x<1∴函数f(x)=log2(1﹣x)的定义域为{x|x<1}故答案为:{x|x<1}3.(3分)函数y=x﹣2的单调增区间是(﹣∞,0).【解答】解:函数y=x﹣2为偶函数,在(0,+∞)内为减函数,则在(﹣∞,0)内为增函数,故函数的增区间为(﹣∞,0),故答案为:(﹣∞,0)4.(3分)已知正数x,y满足xy=1,则x2+y2的最小值为2.【解答】解:正数x,y满足xy=1,则x2+y2≥2xy=2,当且仅当x=y=1时,取得最小值,且为2.故答案为:2.5.(3分)设x1和x2是方程x2+7x+1=0的两个根,则+x=47.【解答】解:∵x1和x2是方程x2+7x+1=0的两个根,∴x1+x2=﹣7,x1•x2=1,∴+x=(x1+x2)2﹣2x1•x2=49﹣2=47,故答案为:476.(3分)设常数a>1,则f(x)=﹣x2﹣2ax+1在区间[﹣1,1]上的最大值为2a.【解答】解:f(x)的图象开口向下,对称轴为x=﹣a<﹣1,∴f(x)在[﹣1,1]上是减函数,∴f(x)在区间[﹣1,1]上的最大值为f(﹣1)=2a.故答案为2a.7.(3分)若函数f(x)=x2﹣mx+3在R上存在零点,则实数m的取值范围是m ≥2或m≤﹣2.【解答】解:∵函数f(x)=x2﹣mx+3在R上存在零点,∴x2﹣mx+3=0有解,∴△=m2﹣4×3≥0,解得,m≥2或m≤﹣2,故答案为:m≥2或m≤﹣2.8.(3分)设命题α:x>0,命题β:x>m,若α是β的充分条件,则实数m的取值范围是(﹣∞,0] .【解答】解:若α是β的充分条件,则m≤0,故答案为:(﹣∞,0]9.(3分)已知f(x)=x2+1是定义在闭区间[﹣1,a]上的偶函数,则f(a)的值为2.【解答】解:∵f(x)=x2+1是定义在闭区间[﹣1,a]上的偶函数,∴a=1.∴f (a)=f(1)=2.故答案为:2.10.(3分)设log23=t,s=log672,若用含t的式子表示s,则s=.【解答】解:log23=t,s=log672===.故答案为:.11.(3分)设常数a∈(0,1),已知f(x)=log a(x2﹣2x+6)是区间(m,m+)上的增函数,则最大负整数m的值为﹣2.【解答】解:设t=x2﹣2x+6,则t=(x﹣1)2+5>0,则函数的定义域为(﹣∞,+∞),∵a∈(0,1),∴y=log a t为增函数,若f(x)=log a(x2﹣2x+6)是区间(m,m+)上的增函数,则等价为t=x2﹣2x+6是区间(m,m+)上的减函数,则m+≤1,即m≤1﹣=﹣,∵m是整数,∴最大的整数m=﹣2,故答案为:﹣212.(3分)记min{a,b,c}为实数a,b,c中最小的一个,已知函数f(x)=﹣x+1图象上的点(x1,x2+x3)满足:对一切实数t,不等式﹣t2﹣t﹣2+4≤0均成立,如果min{﹣x1,﹣x2,﹣x3}=﹣x1,那么x1的取值范围是.【解答】解:函数f(x)=﹣x+1图象上的点(x1,x2+x3),∴x2+x3=﹣x1+1.∵min{﹣x1,﹣x2,﹣x3}=﹣x1,∴﹣x2>﹣x1,﹣x3≥﹣x1,∴x2≤x1,x3≤x1,∴﹣x1+1≤2x1,解得x1.对一切实数t,不等式﹣t2﹣t﹣2+4≤0均成立,∴△=+4(4﹣2)≤0,化为:≤0,∴=﹣,∵x2+x3=﹣x1+1,∴2(3﹣)=2()≥=,∴﹣5≤0,及x1,解得≤x1≤.可得:x1的取值范围是.故答案为:.二、选择题(本大题共4题,每小题3分,共12分.每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对的3分,否则一律得零分)13.(3分)若f(x)=2x3+m为奇函数,则实数m的值为()A.﹣2 B.﹣1 C.1 D.0【解答】解:∵f(x)=2x3+m为奇函数,且定义域是R,∴f(0)=0+m=0,即m=0,故选:D.14.(3分)函数f(x)=x2﹣1(2<x<3)的反函数为()A.f﹣1(x)=(3<x<8)B.f﹣1(x)=(3<x<8)C.f﹣1(x)=(4<x<9)D.f﹣1(x)=(4<x<9)【解答】解:∵2<x<3,∴f(2)<f(x)<f(3),即3<f(x)<8.∴f﹣1(x)的定义域是(3,8).∵x>0,由y=x2﹣1得x=,∴f﹣1(x)=,故选:B.15.(3分)“x>y>0,m<n<0“是“xm<ny”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:若x>y>0,m<n<0,则x>y>0,﹣m>﹣n>0,则﹣mx>﹣ny>0,得xm<ny<0,则xm<ny成立,若x=3,y=2,m=n=﹣1,明显xm<ny,但m<n<0不成立,即必要性不成立,即“x>y>0,m<n<0“是“xm<ny”的充分不必要条件,故选:A.16.(3分)给出以下命题:(1)函数f(x)=与函数g(x)=|x|是同一个函数;(2)函数f(x)=a x+1(a>0且a≠1)的图象恒过定点(0,1);(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=有负数根,则实数m的取值范围是(1,+∞);(4)若f(x)=为奇函数,则f(f(﹣2))=﹣7;(5)设集合M={m|函数f(x)=x2﹣mx+2m的零点为整数,m∈R},则M的所有元素之和为15.其中所有正确命题的序号为()A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(1)(3)(4)【解答】解:(1)函数f(x)==|x|,函数g(x)=|x|,则两个函数是同一个函数;正确.(2)∵f(0)=a0+1=1+1=2,∴函数f(x)=a x+1(a>0且a≠1)的图象恒过定点(0,2);故(2)错误,(3)设指数函数f(x)的图象如图所示,则设f(x)=a x,由f(1)=4得a=4,即f(x)=4x,若关于x的方程f(x)=有负数根,则当x<0时,0<f(x)<1,由0<<1,即,即,得,即m>1,则实数m的取值范围(1,+∞);故(3)正确,(4)若f(x)=为奇函数,则f(0)=0,即1+t=0,即t=﹣1,即当x≥0时,f(x)=2x﹣1.则f(﹣2)=﹣f(2)=﹣(22﹣1)=﹣3,则f(f(﹣2))=f(﹣3)=﹣f(3)=﹣(23﹣1)=﹣7;故(4)正确,(5)∵函数f(x)=x2﹣mx+2m的零点为整数,∴判别式△=m2﹣8m≥0,解得m≥8或m≤0,x1+x2=m,x1x2=2m,则x1x2=2(x1+x2),即(x1﹣2)(x2﹣2)=4,不妨设x1≤x2,由整数的性质得①x1﹣2=2且x2﹣2=2,此时x1=4,x2=4,此时m=4+4=8,②x1﹣2=1且x2﹣2=4,此时x1=3,x2=6,此时m=3+6=9,③x1﹣2=﹣2且x2﹣2=﹣2,此时x1=0,x2=0,此时m=0+0=0,④x1﹣2=﹣4且x2﹣2=﹣1,此时x1=﹣2,x2=1,此时m=﹣2+1=﹣1,从而得到M={8,9,﹣1,0},所有元素之和为16,故(5)错误.故所有正确命题的序号为(1)(3)(4).故选:D.三、解答题(本大题共有5题,满分52分.解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤)17.(8分)解不等式组:.【解答】解:不等式组,即,即,求得1<x<2,即原不等式组的解集为(1,2).18.(8分)某公司欲制作容积为16米3,高为1米的无盖长方体容器,已知该容器的底面造价是每平方米1000元,侧面造价是每平方米500元,记该容器底面一边的长为x米,容器的总造价为y元.(1)试用x表示y;(2)求y的最小值及此时该容器的底面边长.【解答】解:(1)由容器底面一边的长为x米,设宽为zm,则x•z•1=16,即xz=16,即z=,则该容器的造价y=1000xz+500(x+x+z+z)=16000+1000(x+z)=16000+1000(x+),x>0;(2)由16000+1000(x+)≥16000+1000×2=16000+8000=24000.(当且仅当x=z=4时,等号成立)故该容器的最低总价是24000元,此时该容器的底面边长为4m.19.(10分)设函数f(x)=log2(x﹣a)(a∈R).(1)当a=2时,解方程f(x)﹣f(x+1)=﹣1;(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1,当a=1时,试在该坐标系中作出函数y=|f(x)|的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.【解答】解:(1)当a=2时,f(x)=log2(x﹣2),则方程f(x)﹣f(x+1)=﹣1等价为log2(x﹣2)﹣log2(x﹣1)=﹣1,即1+log2(x﹣2)=log2(x﹣1),即log22(x﹣2)=log2(x﹣1),则2(x﹣2)=x﹣1,即x=3,此时log2(3﹣2)﹣log2(3﹣1)=0﹣1=﹣1,方程成立.即方程的解集为{3}.(2)当a=1时,f(x)=log2(x﹣1),则y=|log2(x﹣1)|=,则对应的图形为,则函数的定义域为(1,+∞),函数的值域为[0,+∞),函数为非奇非偶函数,函数的单调递减区间为为(1,2),函数的单调递增区间为[2,+∞).20.(12分)设函数f(x)是2x与的平均值(x≠0.且x,a∈R).(1)当a=1时,求f(x)在[,2]上的值域;(2)若不等式f(2x)<﹣2x++1在[0,1]上恒成立,试求实数a的取值范围;(3)设g(x)=,是否存在正数a,使得对于区间[﹣,]上的任意三个实数m、n、p,都存在以f(g(m)、f(g(n))、f(g(p))为边长的三角形?若存在,试求出这样的a的取值范围;若不存在,请说明理由.【解答】解:(1)∵函数f(x)是2x与的平均值,∴f(x)=x+,当a=1时,f(x)=x+,在[,1]上为减函数,在[1,2]上为增函数,∴当x=,或x=2时,函数最最大值,当x=1时,函数取最小值2,故f(x)在[,2]上的值域为[2,];(2)若不等式f(2x)<﹣2x++1在[0,1]上恒成立,即2x+<﹣2x++1在[0,1]上恒成立,即a<﹣2(2x)2+1+2x在[0,1]上恒成立,令t=2x,则t∈[1,2],y=﹣2t2+t+1,由y=﹣2t2+t+1的图象是开口朝下,且以直线t=为对称轴的抛物线,故当t=2,即x=1时,函数取最小值﹣5,故a<﹣5;(3)设t=g(x)==,∵x∈[﹣,],∴t∈[,1],则y=t+;原问题转化为求实数a的取值范围,使得y在区间[,1]上,恒有2y min>y max.讨论:①当0<a≤时,y=t+在[,1]上递增,∴y min=3a+,y max=a+1,由2y min>y max得a>,∴<a≤;②当<a≤时,y=t+在[,]上单调递减,在[,1]上单调递增,∴y min=2,y max=max{3a+,a+1}=a+1,由2y min>y max得7﹣4<a<7+4,∴<a≤;③当<a<1时,y=t+在[,]上单调递减,在[,1]上单调递增,∴y min=2,y max=max{3a+,a+1}=3a+,由2y min>y max得<a<,∴<a<1;④当a≥1时,y=t+在[,1]上单调递减,∴y min=a+1,y max=3a+,由2y min>y max得a<,∴1≤a<;综上,a的取值范围是{a|<a<}.21.(14分)设函数f(x)=|f1(x)﹣f2(x)|,其中幂函数f1(x)的图象过点(2,),且函数f2(x)=ax+b(a,b∈R).(1)当a=0,b=1时,写出函数f(x)的单调区间;(2)设μ为常数,a为关于x的偶函数y=log4[()x+μ•2x](x∈R)的最小值,函数f(x)在[0,4]上的最大值为u(b),求函数u(b)的最小值;(3)若对于任意x∈[0,1],均有|f2(x)|≤1,求代数式(a+1)(b+1)的取值范围.【解答】解:(1)幂函数f1(x)的图象过点(2,),可得,a=.f1(x)=,函数f2(x)=1.函数f(x)=|﹣1|=,函数的单调增区间为:[1,+∞),单调减区间:[0,1).(2)y=log4[()x+μ•2x]是偶函数,可得log4[()x+μ•2x]=log4[()﹣x+μ•2﹣x],可得μ=1.∴y=log4[()x+2x],()x+2x≥2,当且仅当x=0,函数取得最小值a=.f1(x)=,函数f2(x)=+b.函数f(x)=|f1(x)﹣f2(x)|=|﹣b|,x∈[0,4],令h(x)=﹣b,x∈[0,4],h′(x)=,令=0,解得x=1,当x∈(0,1)时,h′(x)>0函数是增函数,当x∈(1,4)时,h′(x)<0,函数是减函数.h(x)的极大值为:h(1)=,最小值为h(0)=h(4)=﹣b,函数f(x)在[0,4]上的最大值为u(b)=,函数u(b)的最小值:.(3)对于任意x∈[0,1],均有|f2(x)|≤1,即对于任意x∈[0,1],均有|ax+b|≤1,当a>0时,显然b≥1不成立,①当1>b≥0时,对于任意x∈[0,1],均有|ax+b|≤1,0≤a≤1,可得0<a+b≤1,则(a+1)(b+1)≤≤,此时a=b=.(a+1)(b+1)∈[1,].②b∈[﹣,0),对于任意x∈[0,1],均有|ax+b|≤1,转化为:0≤a+b≤1,则(a+1)(b+1)∈[,2),a=1,b=0时(a+1)(b+1)取最大值2.a=,b=﹣,(a+1)(b+1)取得最小值.③b∈[﹣1,﹣),对于任意x∈[0,1],均有|ax+b|≤1,转化为:x=0,|b|≤1恒成立.﹣1<a+b≤1,(a+1)>0,(b+1)>0,则(a+1)(b+1)≤,≤≤,则(a+1)(b+1)∈[,],④当b<﹣1时,对于任意x∈[0,1],|ax+b|≤1,不恒成立.当a=0时,可得|b|≤1,(a+1)(b+1)∈[0,2].当a<0时,如果|b|>1,对于任意x∈[0,1],不恒有|ax+b|≤1,则|b|≤1,当0≤b≤1时,a∈[﹣1,0)对于任意x∈[0,1],均有|ax+b|≤1,a+1∈[0,1),b+1∈[1,2].(a+1)(b+1)∈[0,2).﹣1<b<0,可得|a+b|≤1.可得﹣1≤a+b≤1,a+1∈[0,1),b+1∈(0,1).(a+1)(b+1)∈(0,1).综上:代数式(a+1)(b+1)的取值范围:[0,].。