2018暑假导学:人教版九年级上册第21章 《一元二次方程》导学案 21.1一元二次方程(第一课时)
人教版九年级数学上册(RJ)第21章 一元二次方程 导学案 一元二次方程的根与系数的关系
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x xx x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相1232课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a ,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+-= 22ba-=.b a =- 1222b b x x a a•-+-⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1. ;-3.2. 1 ; -2.1161.3c x a 116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
2018人教版九年级数学上册全册(第二十一章)教案
2018人教版九年级数学上册(第二十一章)教案二十一章一元二次方程第1课时 21.1 一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,根据题意,得________.整理、化简,得:__________.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2)2(5)ax2+bx+c=0四、应用拓展例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0x2+7x列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值练习:关于x的一元二次方程(a-1) x2+x+a2-1=0的一个根为0,则求a的值点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.例3.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:略三、巩固练习教材思考题练习1、2.四、归纳小结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义)六、布置作业1.教材复习巩固3、4 综合运用5、6、7 拓广探索8、9.2.选用课时作业设计.第3课时 21.2.1配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点关键1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+____)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1)2=5 (2)x2+6x+9=2 (3)x2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3=,x+3=-所以,方程的两根x1=-3+,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56x+=±1.6,即x+=1.6,x+=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解六、布置作业1.教材复习巩固1、2.第4课时 22.2.1配方法(1)教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±或mx+n=±(p≥0).如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→ x2+6x+32=16+9左边写成平方形式→(x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5解一次方程→x1=2,x2= -8可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略三、巩固练习教材P38讨论改为课堂练习,并说明理由.教材P39练习1 2.(1)、(2).四、应用拓展例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B 两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ 的面积为Rt△ACB面积的一半.分析:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知列出等式.解:设x秒后△PCQ的面积为Rt△ACB面积的一半.根据题意,得:(8-x)(6-x)=××8×6整理,得:x2-14x+24=0(x-7)2=25即x1=12,x2=2x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.所以2秒后△PCQ的面积为Rt△ACB面积的一半.五、归纳小结本节课应掌握:左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.六、布置作业1.教材复习巩固2.3(1)(2)第5课时 21.2.1配方法(2)教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联?二、探索新知讨论:配方法届一元二次方程的一般步骤:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.例1.解下列方程(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:略三、巩固练习教材P 练习 2.(3)、(4)、(5)、(6).四、归纳小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
人教版数学九年级上册第二十一章一元二次方程导学案
21.1一元二次方程学习目标、重点、难点【学习目标】1、了解什么是一元二次方程及其一般形式;2、理解一元二次方程的定义.3、方程的解的定义 【重点难点】1、一元二次方程的概念及其一般形式;2、方程的解知识概览图新课导引某学校为了美化校园,准备在东西长50m 、南北宽38m 的矩形场地上铺设东西与南北方向两条宽度相等的矩形水泥路面,余下的部分作为花坛、绿地,且花坛、绿地的总面积为160m 2.求所铺设路面的宽为多少.【解析】为了便于理解,我们可以利用平移的知识将小路假设平移至场地一边,如右图所示,设路面宽为x m ,由矩形面积公式可得(50-x )(38-x )=160,解这个方程即可.这个方程便是我们即将学习的一元二次方程.教材精华知识点1 一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.概念:只含有1个未知数,并且未知数的最高次数是2的整式方程一般形式:ax 2+bx +c =0(a ≠0),其中a ,b ,c 分别为二次项系数、一次项系数和常数项解:使方程左右两边相等的未知数的值一元二次方程例如:4x2=19,x2+3x=0,3y2-5y=7等都是一元二次方程.判定一个方程是一元二次方程需同时满足以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.只有同时满足以上三个条件的方程才是一元二次方程.知识点2 一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理都能化成如下形式:ax2+bx+c=0(a≠0). 这种形式叫做一元二次方程的一般形式. 其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项.拓展(1)一元二次方程的一般形式的特点为方程的右边为0,方程的左边是关于x的二次整式.(2)a≠0是一元二次方程定义的一部分,不可丢掉. 否则,方程中没有了二次项,就不是一元二次方程了. b,c是否为零不限制.(3)一元二次方程的项及系数是针对一元二次方程的一般形式而言的,写项或项的系数时都包括它前面的符号. 比如4x2-3x-2=0的二次项、一次项、常数项分别为42x,-3x,-2、二次项系数、一次项系数、常数项分别为4,-3,-2.知识点3 方程的解的定义使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根. 例如:x=3,x=2都是一元二次方程x2-5x+6=0的根.规律方法小结判断未知数的值是否为所给一元二次方程的解的方法是将这个数代入原方程,判断方程左右两边的值是否相等.探究交流(1)判断方程x(x+10)=x2-3是否是一元二次方程;(2)方程3x2+2x=1的常数项是1,方程3x2-2x+6=0的一次项系数是2,这种说法对吗?点拨(1)判断一元二次方程一般应先化简,再判断,因为方程x(x+10)=x2-3化简后为10x +3=0,所以它是一元一次方程,不是一元二次方程.(2)要想正确确定方程的系数,首先要将一元二次方程化为一般形式ax2+bx+c=0(a≠0),然后再确定a,b,c. 方程3x2+2x=1化为一般形式为3x2+2x-1=0,因此常数项为-1.方程3x2-2x +6=0的一次项是-2x,一次项系数是-2. 所以这种说法不对,注意:项及项的系数包括它们前面的性质符号.课堂检测基本概念题1、下列关于x的方程中,哪些是一元二次方程?(1)x3-2x2+5=0 (2)x2=1;(3)2160 5x x +=-;(4)2x2-x(2x+1)=0;(5)x3-x+x2=x3-1;(6)ax2+bx+c=0.基础知识应用题2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数、常数项.综合应用题3、若关于x的方程(k-3)x|k|-1-x-2=0是一元二次方程,则k的值为.4、判断下列关于x的方程是否是一元二次方程.(1)(a2+1)x2+3x-6=0;(2)(a+1)22x2+3x-6=0.探索创新题5、m取何值时,关于x的一元二次方程mx2+m2x-1=x2+x没有一次项?体验中考1、已知整式x2-52x的值为6,则2x2-5x+6的值为A. 9B. 12C. 18D.242、近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米3600元,比2008年同期房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A. (1+x2)=2000B. 2000(1+x)2=3600C.(3600-2000)(1+x)=3600D.(3600-2000)(1+x)2=3600学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查的是一元二次方程的概念. 方程(3)不是整式方程,因此排除. 方程(1)中未知数的最高次数是3,也被排除. 化简后可知方程(4)是一元一次方程,故也排除. 方程(6)中a的取值范围未定,因此排除.解:(2)(5)是一元二次方程.【解题策略】判定一个方程是否为一元二次方程必须将其进行化简.2、分析本题考查的是一元二次方程的一般形式. 一元二次方程的一般形式是等号左边为关于未知数的降幂排列,右边为0.解:去括号得9x2+12x+4=4x2-24x+36,移项,合并同类项,得5x2+36x-32=0,∴这个一元二次方程的二次项系数是5,一次项系数是36,常数项是-32.3、分析本题综合考查一元二次方程的概念、绝对值不等式的解法以及解不等式. 由题意可知||1230kk-=⎧⎨-⎩,≠,即±3kk=⎧⎨⎩,≠3.所以k=-3. 故填-3.【解题策略】一元二次方程强调两点:①x的最高指数是2;②指数为2的项的系数不为零.4、分析判断是否是一元二次方程,关键是看含有字母的二次项系数是否为0.解:(1)∵a2+1≠0,∴方程(a2+1)x2+3x-6=0是一元二次方程.(2)当a+1≠0,即a≠-1时,原方程为一元二次方程;当a+1=0,即a=-1时,原方程为一元一次方程.规律·方法当一元二次方程的二次项系数是字母时,我们经常要讨论二次项系数是否为0.5、分析本题主要考查的是通过某些字母的取值探索一元二次方程成立的条件.解:将方程化为一般形式为(m-1)x2+(m2-1)x-1=0.根据题意得2101mm⎧-=⎨-⎩,≠0,解得m=-1,∴当m=-1时,原方程没有一次项.规律·方法研究一元二次方程各项系数时,应先将该方程化为一般形式,另外,必须保证二次项系数不为0.体验中考1、分析 由条件知x 2-52x =6,这是关于x 的一元二次方程. 但是本题不是求x 的值,而是求2x 2-5x +6的值,所以只需对 x 2-52x =6进行变形即可,x 2-52x =6,2x 2-5x =12. 所以2x 2-5x +6=12+6=18。
九年级数学上册第21章第7课时一元二次方程根与系数的关系(2)导学案(新版)新人教版
第7课时一元二次方程根与系数的关系(2)总结:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,则有1212,b cx x x xa a+=-⋅=.这是著名的韦达定理.已知一元二次方程两根x1,x2的不等关系求原方程中的字母参数时,一般考虑韦达定理和根的判别式,尤其是根的判别式不要忘记,这是保证方程有根的基本条件.练1.已知x1,x2是关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0的两个实数根,且x1,x2满足x1•x2﹣x12﹣x22≥0,求k的取值范围.【例2】(2015•丹江口市一模)已知关于x的方程x2﹣2(m+1)x+m2﹣3=0(1)当m取何值时,方程有两个实数根?(2)设x1、x2是方程的两根,且(x1﹣x2)2﹣x1x2=26,求m的值.总结:1. 一元二次方程ax2+bx+c=0(a≠0)根的情况与判别式△的关系如下:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2. 一元二次方程ax2+bx+c=0(a≠0)两实数根x1,x2又有如下关系:1212,b cx x x xa a+=-⋅=,所以已知关于x1,x2的关系等式可以求原方程中的字母参数.3. 注意使用1212,b cx x x xa a+=-⋅=的前提是原方程有根,所以必须保证判别式△≥0.练2(2015•广水市模拟)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实数根.(1)求实数m的取值范围;(2)如果x1、x2满足不等式7+4x1x2>x12+x22,且m为负整数,求出m的值,并解出方程的根.3.根据一元二次方程求含两根的代数式的值【例3】(2015•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.总结:在应用一元二次方程的根与系数的关系解题时,先要把一元二次方程化为它的一般形式,以便确定各项的系数和常数的值.注意1212,b cx x x x a a +=-⋅=中两根之和、两根之积的符号,即和是﹣,积是,不要记混. 如果待求式中没有出现两根之和或两根之积的形式,注意适当变形.常见变形如下:(1)222121212(x x )2x x x x +=+- (2)22121212()(x x )4x x x x -=+-(3)12121211x x x x x x ++=(4)22221121212121212(x x )2x x x x x x x x x x x x ++-+==(5)1(x 1)+21212(x +1)=x x +(x +x )+1(6)2212121212(x x )(x x )4x x x x -=-=+-练3(2015•合肥校级自主招生)已知:关于x 的方程x 2+2x ﹣k=0有两个不相等的实数根. (1)求k 的取值范围;(2)若α,β是这个方程的两个实数根,求的值.五、课后小测 一、选择题1.(2011江苏南通,7,3分)已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是-2 B. 2 C. 5 D. 62. (2011湖北荆州,9,3分)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是A .1B .-1C .1或-1D . 23.(2013四川泸州)设12,x x 是方程2330x x +-=的两个实数根,则2112x x x x +的值为( ) A .5 B .-5 C .1 D .-1 二、填空题4.(2015•泸州)设x 1、x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根,则x 12+x 22的值为________.5.(2013贵州省黔西南州)已知x=1是一元二次方程x 2+ax+b=0的一个根,则代数式a 2+b 2+2ab 的值是 .6.(2015•日照)如果m ,n 是两个不相等的实数,且满足m 2﹣m=3,n 2﹣n=3,那么代数式2n 2﹣mn+2m+2015=___________. 三、解答题7.(2015•梅州)已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.8. 已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值.9.(2015•南充)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数. (1)求证:方程有两个不相等的实数根; (2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由)10.(2015•华师一附中自主招生)已知m ,n 是方程x 2+3x+1=0的两根 (1)求(m+5﹣)﹣的值(2)求+的值.11.(2015•孝感校级模拟)已知x 1,x 2是一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,是否存在实数a ,使﹣x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由.12.(2014•广东模拟)已知关于x 的方程x 2﹣2(k ﹣1)x+k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围; (2)求证:x 1+x 2=2(k ﹣1),;(3)求(x 1﹣1)•(x 2﹣1)的最小值.13.(2010•黄州区校级自主招生)已知方程x2﹣2x+m+2=0的两实根x1,x2满足|x1|+|x2|≤3,试求m 的取值范围.14.(2015•黄冈中学自主招生)已知关于x 的方程(m 2﹣1)x 2﹣3(3m ﹣1)x+18=0有两个正整数根(m 是正整数).△ABC 的三边a 、b 、c 满足,m 2+a 2m ﹣8a=0,m 2+b 2m ﹣8b=0. 求:(1)m 的值;(2)△ABC 的面积.典例探究答案:【例1】分析:先考虑判别式>0,根据题意得2803k ∆=+>,这说明k 取任意实数,方程都有两个不相等的实数根,再利用根与系数的关系得x 1+x 2=3k ,x 1x 2=-6,代入12122()x x x x +>即可求得k 的取值范围.解:根据题意,得22184(2)033k k ∆=-⨯⨯-=+>, 所以k 为任意实数,方程都有两个不相等的实数根. ∵x 1+x 2=3k ,x 1x 2=-6,且12122()x x x x +>,∴236k ⨯>-,解得k>-1. 综上,k 的取值范围是 k>-1.点评:本题考查了一元二次方程根与系数的关系.注意:对于含参数的一元二次方程,已知两根关系求参数的范围时,除了用到韦达定理之外,还要考虑根的判别式.练1.【解析】根据根与系数的关系得出x 1+x 2=2k+1,x 1•x 2=k 2+2k ,变形后代入即可得出关于k 的不等式,求出不等式的解集即可.解:∵关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2,∴x 1+x 2=2k+1,x 1•x 2=k 2+2k ,∵x 1•x 2﹣x 12﹣x 22≥0成立,∴x 1•x 2﹣(x 12+x 22)≥0,即x 1•x 2﹣[(x 1+x 2)2﹣2x 1•x 2]≥0, ∴k 2+2k ﹣[(2k+1)2﹣2(2k+1)]≥0, ∴k≤﹣或k≥1.点评:本题考查了根与系数的关系的应用,解此题的关键是能得出关于k 的不等式.【例2】【解析】(1)根据一元二次方程根的判别式的意义得到4(m+1)2﹣4(m 2﹣3)≥0,然后解不等式即可;(2)根据根与系数的关系得x 1+x 2=2(m+1),x 1x 2=m 2﹣3,代入(x 1﹣x 2)2﹣x 1x 2=26,计算即可求解.解:(1)根据题意,得△=4(m+1)2﹣4(m 2﹣3)≥0, 解得m≥﹣2;(2)当m≥﹣2时,x 1+x 2=2(m+1),x 1x 2=m 2﹣3.则(x 1﹣x 2)2﹣x 1x 2=(x 1+x 2)2﹣5x 1x 2=[2(m+1)]2﹣5(m 2﹣3)=26,即m 2﹣8m+7=0,解得m 1=1>﹣2,m 2=7>﹣2, 所以m 1=1,m 2=7.点评:本题主要考查了一元二次方程根与系数的关系,一元二次方程根的判别式.练2.【解析】(1)根据判别式的意义得到△=(﹣2)2﹣4×2×(m ﹣1)≥0,然后解不等式; (2)先根据根与系数的关系得x 1+x 2=1,x 1•x 2=,把7+4x 1x 2>x 12+x 22变形得7+6x 1•x 2>(x 1+x 2)2,所以7+6×>1,解得m >﹣3,于是得到m 的取值范围﹣3<m≤﹣,由于m 为负整数,所以m=﹣2或m=﹣1,然后把m 的值分别代入原方程,再解方程.解:(1)根据题意得△=(﹣2)2﹣4×2×(m﹣1)≥0,解得m≤﹣;(2)根据题意得x1+x2=1,x1•x2=,∵7+4x1x2>x12+x22,∴7+6x1•x2>(x1+x2)2,∴7+6×>1,解得m>﹣3,∴﹣3<m≤﹣,∵m为负整数,∴m=﹣2或m=﹣1,当m=﹣2时,方程变形为2x2﹣2x﹣1=0,解得x1=,x2=;当m=﹣1时,方程变形为x2﹣x=0,解得x1=1,x2=0.点评:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.【例3】【解析】根据根与系数的关系得到a+b=1,ab=﹣1,再利用完全平方公式变形得到+==,然后利用整体代入的方法进行计算.解:∵实数a,b是方程x2﹣x﹣1=0的两根,∴a+b=1,ab=﹣1,∴+===﹣3.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.练3.【解析】(1)由方程x2+2x﹣k=0有两个不相等的实数根,可以求出△>0,由此可求出k的取值范围;(2)欲求的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解:(1)△=4+4k,∵方程有两个不等实根,∴△>0,即4+4k>0∴k>﹣1(2)由根与系数关系可知α+β=﹣2,αβ=﹣k,∴=,点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 课后小测答案: 一、选择题 1. B 2. B3.【解析】由已知得x 1+x 2=-3,x 1×x 2=-3,则原式=21212212)(x x x x x x -+=3)3(2)3(2--⨯--=-5.故选B .点评:本题着重考查一元二次方程根与系数关系的应用,同时也考查了代数式变形、求值的方法. 二、填空题4.【解析】首先根据根与系数的关系求出x 1+x 2=5,x 1x 2=﹣1,然后把x 12+x 22转化为x 12+x 22=(x 1+x 2)2﹣2x 1x 2,最后整体代值计算.解:∵x 1、x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根, ∴x 1+x 2=5,x 1x 2=﹣1,∴x 12+x 22=(x 1+x 2)2﹣2x 1x 2=25+2=27, 故答案为:27. 点评:本题主要考查了根与系数的关系的知识,解答本题的关键是掌握一元二次方程两根之和与两根之积与系数的关系,此题难度不大.5. 【解析】将x=1代入到x 2+ax+b=0中求得a+b 的值,然后求代数式的值即可.解:∵x=1是一元二次方程x 2+ax+b=0的一个根, ∴12+a+b=0, ∴a+b=﹣1, ∴a 2+b 2+2ab=(a+b )2=(﹣1)2=1. 故答案为:1. 点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值.6.【解析】由于m ,n 是两个不相等的实数,且满足m 2﹣m=3,n 2﹣n=3,可知m ,n 是x 2﹣x﹣3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=﹣3,又n 2=n+3,利用它们可以化简2n 2﹣mn+2m+2015=2(n+3)﹣mn+2m+2015=2n+6﹣mn+2m+2015=2(m+n )﹣mn+2021,然后就可以求出所求的代数式的值.解:由题意可知:m ,n 是两个不相等的实数,且满足m 2﹣m=3,n 2﹣n=3,所以m ,n 是x 2﹣x ﹣3=0的两个不相等的实数根, 则根据根与系数的关系可知:m+n=1,mn=﹣3,又n 2=n+3,则2n 2﹣mn+2m+2015 =2(n+3)﹣mn+2m+2015 =2n+6﹣mn+2m+2015 =2(m+n )﹣mn+2021 =2×1﹣(﹣3)+2021 =2+3+2021 =2026.故答案为:2026.点评:本题考查一元二次方程根与系数的关系,解题关键是把所求代数式化成两根之和、两根之积的系数,然后利用根与系数的关系式求值. 三、解答题7.【解析】(1)关于x 的方程x 2﹣2x+a ﹣2=0有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根.解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.点评:本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根. 8.【解析】:先把原方程变形,得到一个一元二次方程的形式,利用已知条件,两根或是相等,或是互为相反的数,从而找到关于m 的方程,从而得到m 的值,但前提条件是方程得有实数根.解:原方程可变形为:0)1(222=++-m x m x . ∵1x 、2x 是方程的两个根,∴△≥0,即:4(m +1)2-4m 2≥0, ∴ 8m+4≥0, m≥21-. 又1x 、2x 满足12x x =,∴1x =2x 或1x =-2x , 即△=0或1x +2x =0, 由△=0,即8m+4=0,得m=21-. 由1x +2x =0,即:2(m+1)=0,得m=-1,(不合题意,舍去) 所以,当12x x =时,m 的值为21-. 点评:本题是考查一元二次方程有根的情况求字母的值.首先在保证方程有实数的前提下,再利用两根之间的关系找到含有字母的方程,从而得到字母的值. 9.【解析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可;(2)要是方程有整数解,那么x 1•x 2=4﹣p 2为整数即可,于是求得当p=0,±1时,方程有整数解.解;(1)原方程可化为x 2﹣5x+4﹣p 2=0,∵△=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∴不论m 为任何实数,方程总有两个不相等的实数根;(2)∵方程有整数解,∴x1•x2=4﹣p2为整数即可,∴当p=0,±1时,方程有整数解.点评:本题考查了一元二次方程的根的情况,判别式△的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.10.【解析】(1)首先求出m和n的值,进而判断出m和n均小于0,然后进行分式的化简,最后整体代入求值;(2)根据m和n小于0化简+为(),然后根据m+n=﹣3,mn=1整体代值计算.解:(1)∵m,n是方程x2+3x+1=0的两根,∴m=,n=,∴m<n<0,原式=•﹣=﹣=﹣6﹣2m﹣=∵m,n是方程x2+3x+1=0的两根,∴m2+3m+1=0,∴原式=0;(2)∵m<0,n<0,∴+=﹣m﹣n=+=(),∵m+n=﹣3,mn=1,∴原式=9﹣2=7.点评:本题主要考查了根与系数的关系、分式的化简求值以及代数求值等知识,解答本题的关键是能求出m和n的判断出m和n均小于0,此题难度一般.11.【解析】由x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,可得x1+x2=﹣,x1•x2=,△=(2a)2﹣4a(a﹣6)=24a>0,又由﹣x1+x1x2=4+x2,即可求得a的值.解:存在.∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1•x2=,△=(2a)2﹣4a(a﹣6)=24a>0,∴a>0,∵﹣x1+x1x2=4+x2,∴x1x2=4+x2+x1,即=4﹣,解得:a=24.点评:此题考查了根与系数的关系以及根的判别式.此题难度适中,注意掌握若二次项系数不为1,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.【解析】(1)根据判别式的意义得到△=[﹣2(k﹣1)]2﹣4×1×k2≥0,然后解不等式即可;(2)利用求根公式得到x1=k﹣1+,x2=k﹣1﹣,然后分别计算x1+x2,x1x2的值即可;(3)利用(2)中的结论得到(x1﹣1)•(x2﹣1)=x1•x2﹣(x1+x2)+1=k2﹣2(k﹣1)+1,然后利用配方法确定代数式的最小值.(1)解:依题意得△=[﹣2(k﹣1)]2﹣4×1×k2≥0,解得k≤;(2)证明:∵△=4﹣8k,∴x=,∴x1=k﹣1+,x2=k﹣1﹣∴x1+x2=k﹣1++k﹣1﹣=2(k﹣1);x1•x2=(k﹣1+)(k﹣1﹣)=(k﹣1)2﹣()2=k2;(3)解:(x1﹣1)•(x2﹣1)=x1•x2﹣(x1+x2)+1=k2﹣2(k﹣1)+1=(k﹣1)2+2,∵(k﹣1)2≥0,∴(k﹣1)2+2≥2,∴(x1﹣1)•(x2﹣1)的最小值为2.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了根的判别式.13.【解析】由于方程x2﹣2x+m+2=0的有实根,由此利用判别式可以得到m的一个取值范围,然后利用根与系数的关系讨论|x1|+|x2|≤3就又可以得到m的取值范围,最后取它们的公共部分即可求出m的取值范围.解:根据题意可得△=b2﹣4ac=4﹣4×1×(m+2)≥0,解得m≤﹣1,而x1+x2=2,x1x2=m+2,①当m≤﹣2时,x1、x2异号,设x1为正,x2为负时,x1x2=m+2≤0,|x1|+|x2|=x1﹣x2==≤3,∴m≥﹣,而m≤﹣2,∴﹣≤m≤﹣2;②当﹣2<m≤﹣1时,x1、x2同号,而x1+x2=2,∴x1、x2都为正,那么|x1|+|x2|=x1+x2=2<3,符合题意,m的取值范围为﹣2<m≤﹣1.故m的取值范围为:﹣≤m≤﹣1.【点评】此题主要考查了一元二次方程的判别式及根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.同时也利用分类讨论的思想方法.14.【解析】(1)本题可先求出方程(m2﹣1)x2﹣3(3m﹣1)x+18=0的两个根,然后根据这两个根都是正整数求出m的值.(2)由(1)得出的m的值,然后将m2+a2m﹣8a=0,m2+b2m﹣8b=0.进行化简,得出a,b的值.然后再根据三角形三边的关系来确定符合条件的a,b的值,进而得出三角形的面积.解:(1)∵关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是整数).∵a=m2﹣1,b=﹣9m+3,c=18,∴b2﹣4ac=(9m﹣3)2﹣72(m2﹣1)=9(m﹣3)2≥0,设x1,x2是此方程的两个根,∴x1•x2==,∴也是正整数,即m2﹣1=1或2或3或6或9或18,又m为正整数,∴m=2;(2)把m=2代入两等式,化简得a2﹣4a+2=0,b2﹣4b+2=0当a=b时,当a≠b时,a、b是方程x2﹣4x+2=0的两根,而△>0,由韦达定理得a+b=4>0,ab=2>0,则a>0、b>0.①a≠b,时,由于a2+b2=(a+b)2﹣2ab=16﹣4=12=c2故△ABC为直角三角形,且∠C=90°,S△ABC=.②a=b=2﹣,c=2时,因<,故不能构成三角形,不合题意,舍去.③a=b=2+,c=2时,因>,故能构成三角形.S△ABC=×(2)×=综上,△ABC的面积为1或.点评:本题考查了一元二次方程根与系数的关系以及勾股定理等知识点,本题中分类对a,b的值进行讨论,并通过计算得出三角形的形状是解题的关键.。
人教版数学九年级第一学期第二十一章《一元二次方程》全章导学案
第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系.难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y=ax2+bx+c(a,b,c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a,b,c.现在我们已学过的函数有一次函数、二次函数,其表达式分别是y=ax+b(a,b为常数,且a≠0)、y=ax2+bx+c(a,b,c为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列函数中,是二次函数的有__A,B,C__.A.y=(x-3)2-1B.y=1-2x2C.y=13(x+2)(x-2)D.y=(x-1)2-x22.二次函数y=-x2+2x中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R的圆,半径增加x,圆的面积增加y,则y与x之间的函数关系式为y=πx2+2πRx(x≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 若y=(b-2)x2+4是二次函数,则__b≠2__.探究2 某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x元(x>50),每月销售这种篮球获利y元.(1)求y与x之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y=-10x2+1400x-40000(50<x<100).(2)由题意得:-10x2+1400x-40000=8000,化简得x2-140x+4800=0,∴x1=60,x2=80.∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y=(k+1)xk2+1是y关于x的二次函数,则k的值为多少?2.设y=y1-y2,若y1与x2成正比例,y2与1x成反比例,则y与x的函数关系是( A )A.二次函数B.一次函数C.正比例函数D.反比例函数3.已知,函数y=(m-4)xm2-m+2x2-3x-1是关于x的函数.(1)m为何值时,它是y关于x的一次函数?(2)m为何值时,它是y关于x的二次函数?点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD中,AB=2 cm,BC=4 cm,P是BC上的一动点,动点Q仅在PC或其延长线上,且BP=PQ,以PQ为一边作正方形PQRS,点P从B点开始沿射线BC方向运动,设BP=x cm,正方形PQRS与矩形ABCD重叠部分面积为y cm2,试分别写出0≤x≤2和2≤x≤4时,y与x之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a≠0.2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2二次函数y=ax2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象.难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y=x2,y=12x2和y=2x2的图象;点拨精讲:根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:______.(5)在同一坐标系中画出函数y =-x 2,y =-12x 2和y =-2x 2的图象,找出图象的异同. 点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式. 解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2. 点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数. (2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大.(3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2,∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0),∴m =-3时,函数有最大值为0.∴x>0时,y 随x 的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y=ax2与y=-ax2的图象之间有何关系?2.已知函数y=ax2经过点(-1,3).(1)求a的值;(2)当x<0时,y的值随x值的增大而变化的情况.3.二次函数y=-2x2,当x1>x2>0,则y1与y2的关系是__y1<y2__.4.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是( B )点拨精讲:1.二次函数y=ax2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y=ax2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是( C)A.(4,4) B.(1,-4)C.(2,2) D.(0,4)2.抛物线y =x 2-16与x 轴交于B ,C 两点,顶点为A ,则△ABC 的面积为__64__. 点拨精讲:与x 轴的交点的横坐标即当y 等于0时x 的值,即可求出两个交点的坐标.3.画出二次函数y =x 2-1,y =x 2,y =x 2+1的图象,观察图象有哪些异同?点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 抛物线y =ax 2与y =ax 2±c 有什么关系?解:(1)抛物线y =ax 2±c 的形状与y =ax 2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎨⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟)1.函数y =ax 2-a 与y =ax -a(a ≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B )A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2) 3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y =ax 2+c 的图象与函数y =5x 2+1的图象关于x 轴对称,则a =__-5__,c=__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y=a(x-h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y=a(x-h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y=a(x-h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P33~34“探究”与“思考”,掌握y=a(x-h)2与y=ax2之间的关系,理解并掌握y=a(x-h)2的相关性质,完成填空.画函数y=-12x2、y=-12(x+1)2和y=-12(x-1)2的图象,观察后两个函数图象与抛物线y=-12x2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y=a(x-h)2的顶点坐标为(h,0),对称轴为直线x=h.当a>0时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大,抛物线有最低点,函数y有最小值;当a<0时,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小,抛物线有最高点,函数y有最大值.抛物线y=ax2向左平移h个单位,即为抛物线y=a(x+h)2(h>0);抛物线y=ax2向右平移h个单位,即为抛物线y=a(x-h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.教材P35练习题;2.抛物线y=-12(x-1)2的开口向下,顶点坐标是(1,0),对称轴是x=1,通过向左平移1个单位后,得到抛物线y=-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象. (1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象? 解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象. 点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y =x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.不画图象,回答下列问题:(1)函数y =3(x -1)2的图象可以看成是由函数y =3x 2的图象作怎样的平移得到的?(2)说出函数y =3(x -1)2的图象的开口方向、对称轴和顶点坐标.(3)函数有哪些性质?(4)若将函数y =3(x -1)2的图象向左平移3个单位得到哪个函数图象?点拨精讲:性质从增减性、最值来说.2.与抛物线y =-2(x +5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y =2(x +5)2.3.对于函数y =-3(x +1)2,当x>-1时,函数y 随x 的增大而减小,当x =-1时,函数取得最大值,最大值y =0.4.二次函数y =ax 2+bx +c 的图象向左平移2个单位长度得到y =x 2-2x +1的图象,则b =-6,c =9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.2.能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y =a(x -h)2+k 的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.难点:能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标,掌握抛物线y =a(x -h)2+k 的平移规律.一、自学指导.(10分钟)自学:自学课本P 35~36“例3、例4”,掌握y =a(x -h)2+k 与y =ax 2之间的关系,理解并掌握y =a(x -h)2+k 的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1,便于解答.探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y =-12(x -1)2+2,∴a =-12,h =1,k =2; (2)函数y =-12(x -1)2+2与y =-12x 2的图象如图; (3)观察y =-12(x -1)2+2的图象可知,当x<1时,y 随x 的增大而增大;x>1时,y 随x 的增大而减小;(4)由y =-12(x -1)2+2的图象可知,对于一切x 的值,y ≤2. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y =-2x 2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y =-2(x -3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y =2x +m 经过第一、三、四象限,则抛物线y =(x -m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y =2x 2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y =2(x -1)2-3.4.已知A(1,y 1),B(-2,y 2),C(-2,y 3)在函数y =a(x +1)2+k(a>0)的图象上,则y 1,y 2,y 3的大小关系是y 2<y 3<y 1.点拨精讲:本节所学的知识是:二次函数y =a(x -h)2+k 的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空. 总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c 化成y =a(x -h)2+k 的形式,则h =-b 2a ,k =4ac -b 24a ;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b 2a时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象.点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y =14x 2-3x +21;(2)y =-3x 2-18x -22. 解:(1)y =14x 2-3x +21 =14(x 2-12x)+21 =14(x 2-12x +36-36)+21 =14(x -6)2+12 ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x =6.(2)y =-3x 2-18x -22=-3(x 2+6x)-22=-3(x 2+6x +9-9)-22=-3(x +3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x =-3.点拨精讲:第(2)小题注意h 值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2 用总长为60 m 的篱笆围成的矩形场地,矩形面积S 随矩形一边长l 的变化而变化,l 是多少时,场地的面积S 最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.y=-2x2+8x-7的开口方向是向下,对称轴是x=2,顶点坐标是(2,1);当x=2时,函数y有最大值,其值为y=1.2.已知二次函数y=ax2+2x+c(a≠0)有最大值,且ac=4,则二次函数的顶点在第四象限.3.抛物线y=ax2+bx+c,与y轴交点的坐标是(0,c),当b2-4ac=0时,抛物线与x轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a,0);当b2-4ac>0时,抛物线与x轴有两个交点,交点坐标是2a,0);当b2-4ac<0时,抛物线与x轴没有交点,若抛物线与x轴的两个交点坐标为(x1,0),(x2,0),则y=ax2+bx+c=a(x-x1)(x-x2).点拨精讲:与y轴的交点坐标即当x=0时求y的值;与x轴交点即当y=0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x轴的两个交点坐标时,可先用交点式:y=a(x-x1)(x-x2),x1,x2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4二次函数y=ax2+bx+c的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P 39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y =ax 2+bx +c ,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y =a(x -h)2+k ,把另一点坐标代入式中,可求出解析式;若知道抛物线与x 轴的两个交点(x 1,0),(x 2,0),可设函数的关系式为y =a(x -x 1)(x -x 2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y =4x 2-mx +2,当x<-2时,y 随x 的增大而减小;当x>-2时,y 随x 的增大而增大,则当x =1时,y 的值为22.点拨精讲:可根据顶点公式用含m 的代数式表示对称轴,从而求出m 的值.2.抛物线y =-x 2+6x +2的顶点坐标是(3,11).3.二次函数y =ax 2+bx +c 的图象大致如图所示,下列判断错误的是( D )A .a<0B .b>0C .c>0D .ac>0第3题图 第4题图 第5题图4.如图,抛物线y =ax 2+bx +c(a>0)的对称轴是直线x =1,且经过点P(3,0),则a -b +c 的值为( A )A .0B .-1C .1D .2点拨精讲:根据二次函数图象的对称性得知图象与x 轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a -b +c 的值.5.如图是二次函数y =ax 2+3x +a 2-1的图象,a 的值是-1.点拨精讲:可根据图象经过原点求出a 的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有a(2-3)(2+1)=9,∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y =ax 2+bx +c ;2.顶点式y =a(x -h)2+k ;3.交点式y =a(x -x 1)(x -x 2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2 二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系.2.会判断抛物线与x 轴的交点个数.3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x 轴的交点个数.难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P 43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x 轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y =ax 2+bx +c 与x 轴有公共点,公共点的横坐标是x 0,那么当x =x 0时,函数的值是0,因此x =x 0就是方程ax 2+bx +c =0的一个根.二次函数的图象与x 轴的位置关系有三种:当b 2-4ac>0时,抛物线与x 轴有两个交点;当b 2-4ac =0时,抛物线与x 轴有一个交点;当b 2-4ac<0时,抛物线与x 轴有0个交点.这对应着一元二次方程ax 2+bx +c =0根的三种情况:有两个不等的实数根,有两个相等实数根,没有实数根.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.观察图中的抛物线与x 轴的交点情况,你能得出相应方程的根吗?方程x 2+x -2=0的根是:x 1=-2,x 2=1;方程x 2-6x +9=0的根是:x 1=x 2=3;方程x 2-x +1=0的根是:无实根.2.如图所示,你能直观看出哪些方程的根?点拨精讲:此题充分利用二次函数与一元二次方程之间的关系,即函数y =-x 2+2x +3中,y 为某一确定值m(如4,3,0)时,相应x 值是方程-x 2+2x +3=m(m =4,3,0)的根.错误! 错误!,第3题图) 3.已知抛物线y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c -3=0的根是x 1=x 2=1.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)探究 已知二次函数y =2x 2-(4k +1)x +2k 2-1的图象与x 轴交于两点.求k 的取值范围.解:根据题意知b 2-4ac>0,即[-(4k +1)]2-4×2×(2k 2-1)>0,解得k>-98. 点拨精讲:根据交点的个数来确定判别式的范围是解题关键,要熟悉它们之间的对应关系.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.抛物线y =ax 2+bx +c 与x 轴的公共点是(-2,0),(4,0),抛物线的对称轴是x =1.。
最新人教版九年级数学上册导学案:第二十一章 一元二次方程
第二十一章一元二次方程21.1一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.(2)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的平方的长方形?解:设长方形的长为x m,则宽为(0.5-x)m.根据题意,得x(0.5-x)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2-4=0.解得x=±2.即方程的另一个根为-2.21.2解一元二次方程21.2.1配方法第1课时直接开平方法一、导学1.导入课题:情景:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,求盒子的棱长.问题1:本题的等量关系是什么?问题2:设正方体的棱长为x dm,请列出方程并化简.问题3:根据平方根的意义解方程x2=25.由此导入并板书课题直接开平方法.2.学习目标:(1)能根据平方根的意义解形如x2=p及a x2+c=0的一元二次方程.(2)能运用开平方法解形如(m x+n)2=p(p≥0)的方程.(3)体会“降次”的数学思想.3.学习重、难点:重点:运用开平方法解形如(m x+n)2=p(p≥0)的方程.难点:降次的数学思想.4.自学指导:(1)自学内容:教材第5页到第6页“练习”之前的内容.(2)自学时间:10分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①根据平方根的意义,解方程:x2=36;2x2-4=0;3x2-4=8.x=±6,x2=2,x2=4,x1=6,x2= -6. x=±2,x2=±2,x1=,x2= -. x1=2,x2= -2.②当p>0时,方程x2=p有两个不等的实数根x1= -x2=.当p=0时,方程x2=p有两个相等的实数根x1=x2=0.当p<0时,方程x2=p无实数根.③探究方程(x+3)2=5的根:因为(x+3)2=5,所以x+3是5的平方根,所以x+3等于5或-5.即x+3=,或x+3= -.解x+3=,得x1=-3;解x+3=-,得x2= --3.于是,方程(x+3)2=5的根为x1=-3, x2= --3.解方程(x+3)2=5的过程实质上是把一个一元二次方程降次,转化为两个一元一次方程,再解两个一元一次方程即得原方程的解.二、自学学生可参考自学指导进行自学.三、助学1.师助生:(1)明了学情:看学生能否顺利解决所给问题,注意书写格式方面存在的问题.(2)差异指导:注意帮助学困生复习平方根等知识,紧扣平方根讨论p的符号与方程的解的个数的关系.2.生助生:同桌之间互相批改,相互讨论改正错误.四、强化1.教师示范:解方程x2+4x+4=1.分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1或x+2=-1所以,方程的两根为x1= -1,x2= -3.2.练习:解下列方程:3.上面的方程都能化成x2=p或(m x+n)2=p(p≥0)的形式,那么可由“降次”得到x=±或m x+n=±p≥0)求解.4.以师生对话的形式讨论(m x+n)2=p的解的个数问题.五、评价1.学生的自我评价(围绕三维目标):你会解哪些形式的一元二次方程?怎样解?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、积极性及存在的不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时通过创设问题情景,激发学生探究新知的欲望.(2)本课时还通过回忆旧知识为新知学习作好铺垫.(3)教师引导学生自主、合作、探究、验证,培养学生分析问题、解决问题的能力.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A. x-6= -4B. x-6=4C. x+6=4D. x+6= -42.(10分)方程3x2+9=0的根为(D)A. 3B. -3C. ±3D. 无实数根3.(10分)若8x2-16=0,则x的值是±2.4.(10分)已知方程2(x-3)2=72,那么这个一元二次方程的两根是x1=9,x2= -3.5.(40分)解下列方程:(1) 4x2=81;(2) (x+6)2-9=0;解:由已知,得:x2=,解:由已知,得:(x+6)2=9,直接开平方,得x=±,直接开平方,得x+6=±3,所以方程的两根为x1=,x2= -. 所以方程的两根为x1= -3, x2= -9.(3) x2+2x+1=4;(4) 9x2+6x+1=4.解:由已知,得:(x+1)2=4,解:由已知,得:(3x+1)2=4,直接开平方,得x+1=±2,直接开平方,得3x+1=±2,所以方程的两根为x1=1, x2= -3. 所以方程的两根为x1= -1, x2=.二、综合应用(10分)6.(10分)如果x=3是一元二次方程a x2=c的一个根,则方程的另一根是(B)A. 3B. -3C. 0D. 1三、拓展延伸(10分)7.(10分)解关于x的方程(x+m)2=n.解:①当n>0时,此时方程两边直接开方.得x+m=±,方程的两根为x1=-m,x2= --m.②当n=0时,此时(x+m)2=0,直接开方得x+m=0,方程的两根为x1=x2= -m.③当n<0时,因为对任意实数x,都有(x+m)2≥0,所以方程无实数根.21.2.1配方法第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究”到第7页例1上面的部分.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对下列各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,则x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,则(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,则方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否规范.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.4.强化:(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及不足等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改进,加强了核心知识的理解与巩固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的基本方法,后面的求根公式是在配方法的基础上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的巩固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种基本的数学解题方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解下列方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值. 解:对原式进行配方,则原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.21.2.2公式法——根的判别式及求根公式一、新课导入1.导入课题:(1)用配方法解一元二次方程的步骤是什么?(2)你能用配方法解一般形式的一元二次方程a x2+b x+c=0(a≠0)吗?我们继续学习另一种解一元二次方程的方法——公式法.2.学习目标:(1)知道一元二次方程根的判别式,能运用根的判别式直接判断一元二次方程的根的情况.(2)会用公式法解一元二次方程.3.学习重、难点:重点:用求根公式解一元二次方程.难点:计算时的符号处理.二、分层学习1.自学指导:(1)自学内容:教材第9页到11页例2之前的内容.(2)自学时间:15分钟.(3)自学方法:认真阅读书上的内容,并动手推导出求根公式.(4)自学参考提纲:②Δ=b2-4ac叫做一元二次方程a x2+b x+c=0(a≠0)的根的判别式.当b2-4ac>0时,方程a x2+b x+c=0(a≠0)有两个不等的实数根;当b2-4ac=0时,方程a x2+b x+c=0(a≠0)有两个相等的实数根;当b2-4ac<0时,方程a x2+b x+c=0(a≠0)无实数根.注意:上述的叙述,反过来也成立.③当Δ≥0时,一元二次方程a x2+b x+c=0(a≠0)的实数根可写为的形式,这个式子叫做一元二次方程a x2+b x+c=0(a≠0)的求根公式.④不解方程,利用判别式判断下列方程的根的情况.x2+5x+6=0;9x2+12x+4=0;Δ=b2-4ac=52-4×1×6=1>0 Δ=b2-4ac=122-4×9×4=0方程有两个不等的实数根. 方程有两个相等的实数根.2x2+4x-3=2x-4;x(x+4)=8x+12.方程化为2x2+2x+1=0 方程化为x2-4x-12=0Δ=b2-4ac=22-4×2×1=-4<0 Δ=b2-4ac=(-4)2-4×(-12)=64>0方程无实数根. 方程有两个不等的实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生配方的过程以及配方后是否讨论.②差异指导:指导学生配方变形;指导学生对b2-4ac的符号进行讨论.(2)生助生:小组内相互交流、研讨.4.强化:(1)公式的推导,判别式定义解读;(2)练习:不解方程,利用判别式判断下列方程的根的情况.1.自学指导:(1)自学内容:教材第11页到第12页的例2.(2)自学时间:8分钟.(3)自学方法:阅读解答过程,注意解题步骤和格式.(4)自学参考提纲:①先独立运用公式法解所给方程,然后对照课本找错误、分析错因.x2-4x-7=0;2x2-22x+1=0;5x2-3x=x+1;x2+17=8x.x1=2+x1=x2=x1=1 无实数根x2=2-x2= -②说说运用公式法解一元二次方程的一般步骤,有哪些易错点?先将方程化为一般形式,确定a,b,c的值;计算判别式Δ=b2-4ac的值,判断方程是否有解;若Δ≥0,利用求根公式计算方程的根,若Δ<0,方程无实数根.计算Δ时,注意a,b,c符号的问题.③解答本章引言中的问题.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否从例2的学习中总结出用公式法解方程的一般步骤及注意事项.②差异指导:注意强调运用公式法解方程的前提条件.(2)生助生:同桌之间互相找错,分析错因.4.强化:(1)用公式法解一元二次方程的一般解题步骤及注意事项.(2)解下列方程:三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?你知道一元二次方程a x2+b x+c=0(a≠0)的根的判别式与其根的个数有什么关系吗?2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、积极性、学习效果、方法及不足之处等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本课时容量较大,难度较大,计算的要求较高,因此教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计、课堂学习有利于学生强化运算能力、掌握基本技能,也有利于教师发现教学中存在的问题.(2)在教学设计中,引导学生自主探究一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式法解一元二次方程.(3)整个课堂都以学生动手训练为主,让学生积极介入探究活动,体验到成功的喜悦.(4)公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)一元二次方程a x2+b x+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是(B)A. b2-4ac=0B. b2-4ac>0C. b2-4ac<0D. b2-4ac≥02.(10分)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是(B)A. ①②都有实数解B. ①无实数解,②有实数解C. ①有实数解,②无实数解D. ①②都无实数解3.(10分)利用求根公式求5x2+=6x的根时,a,b,c的值分别是(C)A. 5,,6B. 5,6,C. 5,-6,D. 5,-6,-4.(20分)不解方程,利用判别式判断下列方程的根的情况:(1)x2-3x-32=0;(2) 16x2-24x+9=0;方程有两个不等的实数根. 方程有两个相等的实数根.(3)x2-42x+9=0;(4)3x2+10=2x2+8x.解:Δ=b2-4ac=(-4)2-4×1×9= -4<0, 解:方程化为x2-8x+10=0方程无实数根. Δ=b2-4ac=(-8)2-4×1×10=24>0方程有两个不等的实数根.5.(30分)用公式法解下列方程:二、综合应用(10分)6.(10分)解方程x2=3x+2时,有一位同学解答如下:请你分析以上解答有无错误,如有错误,请指出错误的地方,并写出正确的解题过程.解:有错误,方程化为标准形式x2-3x-2=0, ∴a=1,b= -3,c= -2, b2-4ac=17.三、拓展延伸(10分)7.(10分)无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根吗?给出你的答案并说明理由.解:方程化简为x2-5x+6-p2=0.∴b2-4ac=(-5)2-4×1×(6-p2)=4p2+1≥1,∴Δ>0.∴无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等的实数根.21.2.3 因式分解法一、新课导入1.导入课题:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s后物体离地面的高度(单位:m)为:10x-4.9x2.问题1:你能根据上述规律求出物体经过多少秒落回地面吗?问题2:设物体经过x s落回地面,请说说你列出的方程.问题3:你能用配方法或公式法解这个方程吗?是否还有更简单的方法呢?(板书课题)2.学习目标:(1)会用因式分解法解一元二次方程.(2)能选用合适的方法解一元二次方程.3.学习重、难点:重点:用因式分解法解一元二次方程.难点:选择合适的方法解一元二次方程.二、分层学习1.自学指导:(1)自学内容:教材第12页到第13页的内容.(2)自学时间:5分钟.(3)自学方法:可先解答②,再解答①.(4)自学参考提纲:①解方程10x-4.9x2=0.分解因式:左边提公因式,得x(10-4.9x)=0,降次:把方程化为两个一次方程,得x=0或10-4.9x=0,求解:解这两个一次方程,得x1=0, x2=.②将一个多项式进行因式分解,通常有哪几种方法?提公因式法,公式法,十字相乘法用因式分解法解一元二次方程的依据是:如果ab=0,则a=0或u.③请小结因式分解法解一元二次方程的步骤:移项,合并同类项,因式分解,写出一元二次方程的根.④解下列方程:(x-2)·(x-3)=0;4x2-11x=0.x1=2, x2=3 x1=0, x2=2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:是否理解用因式分解法解一元二次方程的依据,是否掌握用因式分解法解方程的步骤.②差异指导:根据学情进行个别或分类指导.(2)生助生:小组内互相交流、研讨.4.强化:(1)用因式分解法解方程的一般步骤:第一步,把方程变形为x2+p x+q=0的形式;第二步,把方程变形为(x-x1)(x-x2)=0的形式;第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式;第四步,解两个一次方程,求出方程的根.(2)点两名学生板演第④题,并点评.1.自学指导:(1)自学内容:教材第14页例3及“归纳”.(2)自学时间:5分钟.(3)自学方法:先独立作业,然后小组互相改正.(4)自学参考提纲:①方程x(x-2)+x-2=0左边可用提公因式法进行因式分解,分解为(x+1)(x-2).②方程5x2-2x-=x2-2x+左右两边都有含未知数的项,无法因式分解,因此,可先将其化为一般形式4x2-1=0,再用平方差公式法对左边进行因式分解.③说说运用因式分解法解一元二次方程要注意哪些问题.④解下列方程:2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对运用因式分解法解一元二次方程的方法是否掌握.②差异指导:指导学生观察题目特点,选用适当的方法分解因式.(2)生助生:同桌之间互相改错、分析错因.4.强化:(1)点6名学生板演自学参考提纲第④题,并点评.(2)说说运用因式分解法解一元二次方程要注意的问题.1.自学指导:(1)自学内容:选择合适的方法解一元二次方程.(2)自学时间:15分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①直接开平方法适用于哪种形式的方程?x2=p;配方法适用于哪种形式的方程?(m x+n)2=p;公式法适用于哪种形式的方程?a x2+b x+c=0(a≠0);因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0.②前面这些解法各有什么优缺点?③解一元二次方程的基本思想是什么?④选择适当的方法解下列方程:。
九年级上册(人教版)第二十一章 一元二次方程导学案
x 21.1 一元二次方程(1)年级:初三 学科:数学 课型:新授 备课时间:执笔: 审核: 上课时间:学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点(关键):通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.【预习内容】(阅读教材,并完成预习内容。
)问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________整理得_____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
初中数学人教版九年级上册:第21章《一元二次方程》全章导学案
初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索. 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx +c =0(a ≠0).这种形式叫做一元二次方程的一般形式.其中__ax 2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a ≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程?(1)x 3-2x 2+5=0; (2)x 2=1; (3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1; (6)ax 2+bx +c =0. 解:(2)(3)(4). 点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程. 2.将方程3x(x -1)=5(x +2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x 2-3x =5x +10.移项,合并同类项,得3x 2-8x -10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程. 点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程.(1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x=0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根,∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程. 2.一元二次方程的一般形式ax 2+bx +c =0(a ≠0),特别强调a ≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2 解一元二次方程 21.2.1 配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x +m)2=n(n ≥0)的方程;领会降次——转化的数学思想. 难点:通过根据平方根的意义解形如x 2=n(n ≥0)的方程,知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm 2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm ,则一个正方体的表面积为__6x 2__dm 2,根据一桶油漆可刷的面积列出方程:__10×6x 2=1500__, 由此可得__x 2=25__,根据平方根的意义,得x =__±5__, 即x 1=__5__,x 2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm . 探究:对照问题1解方程的过程,你认为应该怎样解方程(2x -1)2=5及方程x 2+6x +9=4?方程(2x -1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x -1=±5__,即将方程变为__2x -1=5和__2x -1=-5__两个一元一次方程,从而得到方程(2x -1)2=5的两个解为x 1=__1+52,x 2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x 2+6x +9=4的左边是完全平方式,这个方程可以化成(x +__3__)2=4,进行降次,得到 __x +3=±2__ ,方程的根为x 1= __-1__,x 2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,那么可得x =±p 或mx +n =±p. 二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y 2=8; (2)2(x -8)2=50; (3)(2x -1)2+4=0; (4)4x 2-4x +1=0.解:(1)2y 2=8, (2)2(x -8)2=50, y 2=4, (x -8)2=25, y =±2, x -8=±5,∴y 1=2,y 2=-2; x -8=5或x -8=-5, ∴x 1=13,x 2=3;(3)(2x -1)2+4=0, (4)4x 2-4x +1=0, (2x -1)2=-4<0, (2x -1)2=0, ∴原方程无解; 2x -1=0, ∴x 1=x 2=12.点拨精讲:观察以上各个方程能否化成x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程: (1)(3x +1)2=7; (2)y 2+2y +1=24; (3)9n 2-24n +16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值.解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10;(7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2.2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x 2=-52-32. (3)去括号,整理得x 2+4x -1=0, 移项得x 2+4x =1, 配方得(x +2)2=5,x +2=±5,即x 1=5-2,x 2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x 的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt △ABC 中,∠C =90°,AC =8 m ,CB =6 m ,点P ,Q 同时由A ,B 两点出发分别沿AC ,BC 方向向点C 匀速移动,它们的速度都是1 m /s ,几秒后△PCQ 的面积为Rt △ABC 面积的一半?解:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6, 即x 2-14x +24=0, (x -7)2=25, x -7=±5,∴x 1=12,x 2=2,x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去.答:2秒后△PCQ 的面积为Rt △ABC 面积的一半. 点拨精讲:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x 的方程:(1)2x 2-4x -8=0; (2)x 2-4x +2=0; (3)x 2-12x -1=0 ; (4)2x 2+2=5.解:(1)x 1=1+5,x 2=1-5; (2)x 1=2+2,x 2=2-2; (3)x 1=14+174,x 2=14-174;(4)x 1=62,x 2=-62. 2.如果x 2-4x +y 2+6y +z +2+13=0,求(xy)z 的值.解:由已知方程得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0,∴x =2,y =-3,z =-2.∴(xy)z =[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2 公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x 2+3x +2=0; (2)2x 2-3x +5=0. 解:(1)x 1=-2,x 2=-1; (2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0, (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?解:(1)m <14; (2)m =14; (3)m >14.3. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.证明:∵x 2+2x -m +1=0没有实数根, ∴4-4(1-m)<0,∴m <0.对于方程x 2+mx =1-2m ,即x 2+mx +2m -1=0, Δ=m 2-8m +4,∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x 2-3x -32=0; (2)16x 2-24x +9=0;(3)x 2-42x +9=0 ; (4)3x 2+10x =2x 2+8x. 解:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x 2+x -12=0 ; (2)x 2-2x -14=0;(3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ; (5)x 2+2x =0 ; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6;(5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__; (3)a 2±2ab +b 2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m /s 的速度竖直上抛,那么经过x s 物体离地的高度(单位:m )为10x -4.9x 2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s )设物体经过x s 落回地面,这时它离地面的高度为0,即10x -4.9x 2=0, ① 思考:除配方法或公式法以外,能否找到更简单的方法解方程①? 分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x =0或10-4.9x =0, ② ∴x 1=__0__,x 2≈2.04.上述解中,x 2≈2.04表示物体约在2.04 s 时落回地面,而x 1=0表示物体被上抛离开地面的时刻,即0 s 时物体被抛出,此刻物体的高度是0 m .点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b =0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么__x +1=0或__x -1=0__,即__x =-1__或__x =1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0. 解:(1)x 1=0,x 2=8; (2)x 1=-13,x 2=52.2.用因式分解法解下列方程: (1)x 2-4x =0; (2)4x 2-49=0;(3)5x 2-20x +20=0.解:(1)x 1=0,x 2=4; (2)x 1=72,x 2=-72;(3)x 1=x 2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x(2x +1)=4x +2; (3)(x +5)2=3x +15. 解:(1)x 1=0,x 2=45;(2)x 1=23,x 2=-12;(3)x 1=-5,x 2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x 2-144=0;(2)(2x -1)2=(3-x)2; (3)5x 2-2x -14=x 2-2x +34;(4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6; (2)x 1=43,x 2=-2;(3)x 1=12,x 2=-12;(4)x 1=x 2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程: (1)x 2+x =0; (2)x 2-23x =0; (3)3x 2-6x =-3; (4)4x 2-121=0; (5)(x -4)2=(5-2x)2. 解:(1)x 1=0,x 2=-1; (2)x 1=0,x 2=23; (3)x 1=x 2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 方程 x 1 x 2 x 1+x 2 x 1x 2 x 2-5x +6=0 2 3 5 6 x 2+3x -10=02-5-3-10问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表: 方程 x 1 x 2 x 1+x 2 x 1x 2 2x 2-3x -2=02-1232-13x 2-4x +1=013143 13问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律; 答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律.答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=__-b +b 2-4ac 2a __,x 2=__-b -b 2-4ac 2a__.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)1α+1β; (2)α2+β2; (3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积:(1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C ) A .7x 2-12x +5=0 B .6x 2-13x -5=0 C .4x 2+21x +5=0 D .x 2+15x -8=0 点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值. 1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2. 若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1. 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2. 列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际。
人教版九年级数学上册(RJ)第21章 一元二次方程 一元二次方程 导学案 一元二次方程
第二十一章一元二次方程21.1 一元二次方程学习目标:1.理解一元二次方程的概念及其一般形式,确定各项系数;2.根据实际问题,建立一元二次方程的数学模型;3.理解并灵活运用一元二次方程概念解决有关问题.重点:理解并能灵活运用一元二次方程的概念解决有关问题.难点:根据实际问题,建立一元二次方程的数学模型.自主学习一、知识链接1.什么叫做一元一次方程,它有什么特点?2.下面式子哪些是方程?2+6=8; 2x+3; 5x+6=22;. x+3y=8; x-5<18;429x3. 在设计人体雕像时,使雕像的上部AC(腰以上)与下部BC(腰以下)的高度比,等于下部BC与全部AB(全身)的高度比,可以增加视觉美感,假设如图所示的雕像高AB为2 m,下部BC=x m,请列出方程.课堂探究二、要点探究探究点1:一元二次方程的概念问题1 有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?观察与思考:上述方程有什么共同点?知识要点:一元二次方程的概念等号两边都是整式,只含有未知数(一元),并且未知数的最高次数是(二次)的方程,叫做一元二次方程.一元二次方程的一般形式是 ax2 + bx + c = 0 ( a ≠ 0).ax2是,a是;bx是,b是;c是 .想一想:为什么一般形式中ax2 + bx + c = 0要限制a ≠ 0?b、c 可以为0吗?方法总结:只要满足a ≠0即可,b 、c 可以为 .例1 下列选项中,关于x 的一元二次方程的是( )2222221A.0B.350C.(1)(2)0D.41(23)x x xy y xx x x x方法总结:判断一个方程是不是一元二次方程,首先看是不是整式方程;如是则进一步化简整理再做判断.判断下列方程是否为一元二次方程?(1) x 2 + x = 36; (2) x 3 + x 2 = 36;(3)x + 3y = 36; 21240()xx;(5) x + 1 = 0;2(6)63x ;=(7)ax 2 + bx + c = 0;260.--=例2 a 为何值时,下列方程为关于x 的一元二次方程?(1)ax 2-x =2x 2;(2) (a -1)x| a | +1 -2x -7=0.方法:根据一元二次方程的定义求参数的值时,按照未知数的最高次数等于2,列出关于参数的方程,再排除使二次项系数等于 0 的参数值即可得解.【变式题】方程(2a-4)x2-2bx+a=0,(1)在什么条件下此方程为一元二次方程?(2)在什么条件下此方程为一元一次方程?思考:一元一次方程与一元二次方程的区别与联系:1.相同点:;2.不同点: .例3 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并分别指出它的二次项、一次项和常数项及它们的系数.注意:系数和项均包含前面的符号.探究点2:一元二次方程的根一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.试一试:下面哪些数是方程 x2–x–6 = 0的解?-4,-3, -2,-1,0,1,2,3,4例4 已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a的值.方法:已知方程的根求字母的值,只需要把方程的根代入方程中,得到一个关于这个字母的一元一次方程,然后求解这个一元一次方程,就能得到字母的值.【变式题】已知a是方程 x2 + 2x-2=0 的一个实数根,求 2a2 + 4a + 的值.方法:求代数式的值,先把已知解代入,再注意观察,有时需用到整体思想——求解时,将所求代数式中的某一部分看作一个整体,再将这个整体代入求值.探究点3:建立一元二次方程模型问题在一块宽20m、长32m的矩形空地上,修筑三条宽相等的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空地分成大小一样的六块,建成小花坛.如图要使花坛的总面积为570m2,小路的宽应为多少呢?1.下列哪些是一元二次方程?3x+2=5x-2; x2=0; (x+3)(2x–4)=x2;3y2=(3y+1)(y–2); x2=x3+x2–1; 3x2=5x–1.3.关于x的方程(k2–1)x2+2(k–1)x+2k+2=0,当k 时,是一元二次方程;当k 时,是一元一次方程.5.4.(1)已知方程5.现在矩形中挖去一个圆,使剩余部分的面积为原矩形面积的四分之三.求挖去的圆的半径x cm应满足的方程(其中π取3);(2) 如图,据某市交通部门统计,前年该市汽车拥有量为75万辆,两年后增加到108万辆.求该市两年来汽车拥有量的年平均增长率x应满足的方程.拓广探索6.已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1,求a+b+c的值.思考:(1)若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0 (a≠0)的一个根吗?(2)若 a–b+c=0,4a+2b+c=0,你能通过观察,写出方程ax2+bx+c=0 (a≠0)的一个根吗?参考答案自主学习 一、知识链接1.等号两边都为整式,只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程;一元一次方程的特点是:①只含有一个未知数;②未知数的次数是1;③是整式方程.2. 5x+6=22,x+3y=8 ,429x.3.解:列方程得x 2= 2(2-x),整理,得x 2 + 2x -4 = 0. 课堂探究 二、要点探究探究点1:一元二次方程的概念问题1 解:设切去的正方形的边长为2,得:(100-2x)(50-2x)=3600.化简得x 2-75x +350 = 0.问题2 解:根据题意,列方程:1(1)28.2x x化简,得2560.x x观察与思考 共同点:①方程的两边都是整式; ②都只含一个未知数;③未知数的最高次数都是2.知识要点 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程. ax 2是二次项, a 是二次项系数;bx 是一次项, b 是一次项系数; c 是常数项.想一想当a = 0时,bx+c = 0,不符合定义;当a≠0,b = 0时,ax2+c = 0,符合定义;当a≠0,c=0时,ax2+bx= 0,符合定义;当a ≠ 0,b = c = 0时,ax2 = 0,符合定义.例1 C判断(1)对(2)错(3)错(4)错(5)错(6)对(7)错(8)错例2 解:(1)将方程整理,得(a-2)x2-x=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程; (2)由|a|+1 =2,且a-1 ≠0知,当a=-1时,原方程是一元二次方程.变式解:(1)当 2a-4≠0,即a ≠2 时,是一元二次方程;(2)当a=2且b ≠0时,是一元一次方程.思考:相同点:都是整式方程,且只含有一个未知数不同点:一元一次方程:未知数最高次数是 1一元二次方程:未知数最高次数是 2例3 解:去括号,得:3x2-3x=5x+10. 移项、合并同类项,得该方程的一般形式为3x2-8x-10=0.其中二次项是 3x2,系数是 3;一次项是-8x,系数是-8;常数项是-10.探究点2:一元二次方程的根问题1所以x=-2,x=3是方程 x 2–x –6 = 0的解.例4 解:由题意把x=3代入方程x 2+ax+a=0,得32+3a+a=0,9+4a=0,4a=-9,94a. 变式题 解:由题意得:a 2+2a -2=0即a 2+2a=2. ∴2a 2+4a+=2(a 2+2a )+=2×2+=.探究点3:建立一元二次方程模型建立问题 解:设小路的宽是2,纵向小路的面积是2×202.根据题意得32×20-(32x +2×20x)+2x 2=570.整理得x 2-36x +35=0. 想一想:(20-x)(32-2x) = 570.当堂检测1.是一元二次方程的有:x 2=0;(x+3)(2x -4)=x 2;3x 2=5x -1.3. 从左至右从上至下依次为 x 2+3x -2=0,1,3,-2;3y 2-,3,-1;4x 2-5=0,4,0,-5;3x 2-2x -5=0,3,-2,-5.4. k ≠±1 k =-1 4.(1)372;(2)解:将2-4=0,解得m =±2.∵ m +2 ≠0,∴ m ≠-2,综上所述,m =2. 5.(1)解:设由于圆的半径为2.根据题意,得2320015032001504x ,整理得225000x .(2)解:该市两年来汽车拥有量的年平均增长率为x ,根据题意,得2751108x ,整理得22550110x x .拓广探索6.解:由题意得2110a b c,即0a b c.思考:(1)解:由题意得0a b c.∴方程ax2+bx+c=0 (a≠0)a b c,即2110必有一个根是1.(2)x1=-1或x2=2.。
人教版九年级上册数学导学案:第21章一元二次方程探究
第21章一元二次方程一、知识梳理1.一元二次方程的概念只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数.2.一元二次方程的解法一元二次方程有四种解法:法、法、法和法.其基本思想是.[注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0.3.一元二次方程根的判别式Δ=b2-4ac(1)Δ>0⇔ax2+bx+c=0(a≠0)有的实数根;(2)Δ=0⇔ax2+bx+c=0(a≠0)有的实数根;(3)Δ<0⇔ax2+bx+c=0(a≠0) 实数根.[注意] (1)根的判别式是在一元二次方程的一般形式下得出的,因此使用根的判别式之前,必须把一元二次方程化成一般形式;(2)如果说一元二次方程有实根,应该包括有两个相等的实数根与两个不相等的实数根两种情况,此时b2-4ac≥0,不能丢掉等号;(3)在利用根的判别式确定方程中字母系数的取值范围时,如果二次项系数含有字母,要加上二次项系数不为零这个限制条件.4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=.[注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0.5.一元二次方程的主要应用类型:几何面积、增长率、商品销售等。
二、题型、技巧归纳考点一:一元二次方程及根的有关概念【主题训练1】若(a-3)2a7x- +4x+5=0是关于x的一元二次方程,则a的值为( )A.3B.-3C.±3D.无法确定【解答】归纳:考点二:一元二次方程的解法【训练2】解方程x2-2x-1=0.【解答】归纳:考点三:根的判别式及根与系数的关系【训练3】若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【解答】归纳:考点四:一元二次方程的应用【训练4】某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点A,B以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l(cm)与时间t(s)满足关系:l= t2+ t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【解答】归纳:考点五几何图形型应用题【训练5】如图所示,在长为10 cm,宽为8 cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.例5图【解答】归纳:【典例精讲】例题:某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?解:三、随堂检测1.下列方程中,一定是一元二次方程的是( )A.ax2+bx+c=0B. 12x2=0C.3x2+2y-12=0 D.x2+ 4x-5=02.若关于x的一元二次方程ax2+bx+5 =0(a≠0)的解是x=1,则2013-a-b的值是( )A.2 018B.2 008C.2 014D.2 0123.一元二次方程2x2-3x-2=0的二次项系数是,一次项系数是,常数项是.4.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是( )A.有两个不相等的实数根,B.有两个相等的实数根,C.没有实数根,D.有两个实数根5、若将方程x2+6x=7化为(x+m)2=16,则m= .6.解方程:(x-3)2-9=0.7.下列一元二次方程有两个相等实数根的是( )A.x2+3=0B.x2+2x=0C.(x+1)2=0D.(x+3)(x-1)=08. 8.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是( )A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解9.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为( )A.2B.3C.4D.810. 10.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是( )A.-2B.-3C.2D.311. 11.关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1,x2,且有x1-x1x2+x2=1-a,则a的值是( )A.1B.-1C.1或-1D.212.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是( )A.100 m2B.64 m2C.121 m2D.144 m213.我国政府为解决老百姓看病难问题,决定下调药品的价格.某种药经过两次降价,由每盒60元调至48.6元,则每次降价的百分率为().14.为响应“美丽广西清洁乡村”的号召,某校开展“美丽广西清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2,绿化150m2后,为了更快地完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.(1)该项绿化工作原计划每天完成多少m2?(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?答案:1.选B.A中的二次项系数缺少不等于0的条件,C中含有两个未知数,D中的方程不是整式方程.2. 【解析】选A.∵x=1是一元二次方程ax2+bx+5=0的一个根, ∴a·12+b·1+5=0,∴a+b=-5,∴2013-a-b=2013-(a+b)=2013-(-5)=2018.3. 答案:2 -3 -24. 选C.∵(x-1)2=b中b<0,∴没有实数根.5. 答案: 36. 【解析】移项得:(x-3)2=9,两边开平方得x-3=±3,所以x=3±3,解得:x1=6,x2=0.7. 【解析】选C.8. 【解析】选B.一元二次方程①的判别式的值为Δ= b2-4ac=4-12=-8<0,所以方程无实数根;一元二次方程②的判别式的值为Δ=b2-4ac=4+12=16>0,所以方程有两个不相等的实数根.9. 【解析】选C.由题意,把2代入原方程得:22-6×2+c=0,解得c=8,把c=8代入方程得x 2-6x+8=0,解得x 1=2,x 2=4.10. 【解析】选B. 11. 【解析】选B.12. 【解析】选B.设正方形原边长是x,根据题意可得:(x-2)x=48,解得x 1=8,x 2=-6(不合题意,舍去),所以原边长是8,面积是64m 2.13. 【解析】∵设每次降价的百分率为x,则根据题意,得60(1-x)2=48.6,解得x 1=1.9(不合题意,舍去),x 2=0.1=10%.答案:10%14.【解析】(1)设该项绿化工作原计划每天完成xm 2,则提高工作 量后每天完成1.2xm 2,根据题意,得150498150x1.2x-=20,解得x=22.经检验,x=22是原方程的根.答:该项绿化工作原计划每天完成22m 2. (2)设矩形宽为ym,则长为(2y-3)m, 根据题意,得y(2y-3)=170,解得y=10或y=-8.5(不合题意,舍去). 2y-3=17.答:这块矩形场地的长为17m,宽为10m.。
新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课导学案_2
22.1一元二次方程教学内容本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.教学目标知识与技能1.使学生理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程化成一般式,正确识别二次项系数、一次项系数和常数项.2.会判断一个数是否是一元二次方程的根.经历由实际问题中抽象出一元二次方程等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.情感态度进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.教学重点一元二次方程的概念及其一般表现形式.重难点、关键重点:一元二次方程的定义、各项系数的辨别,根的作用.难点:根的作用的理解.关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、情境引入【问题情境】问题1 要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高?问题2 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题3要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?【活动方略】教师演示课件,给出题目.学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.一、 探索新知 【活动方略】学生活动:请小组讨论交流.0422=-+x x , 0350752=+-x x ,562=-x x , 这三个方程都不是一元一次方程。
新人教版九年级数学第21章一元二次方程教案导学案(全章)
第21章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需18课时,具体分配如下:21.1 一元二次方程2课时21.2 降次──解一元二次方程9课时21.3 实际问题与一元二次方程3课时教学活动、习题课、小结 4课时第1课时一元二次方程(1)第2课时一元二次方程(2)第3课时解一元二次方程——配方法(1)第4课时解一元二次方程——配方法(2)第5课时解一元二次方程——配方法(3)第6课时解一元二次方程——公式法(1)第7课时解一元二次方程——公式法(2)第8课时解一元二次方程—因式分解法(1)第9课时解一元二次方程—因式分解法(2)第10课时一元二次方程的解法复习课的数学思想。
2018-2019学年人教版九年级上册第21章一元二次方程教案.2解一元二次方程
a.确定a、b、c的值;
b.计算判别式Δ=b^2-4ac的值;
c.根据判别式的值,判断方程的根的情况;
d.代入公式求解。
4.实际问题中一元二次方程的应用。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够理解和运用一元二次方程的公式法,通过严密的数学推导解决实际问题。
2018-2019学年人教版九年级上册第21章一元二次方程教案.2解一元二次方程
一、教学内容
2018-2019学年人教版九年级上册第21章《一元二次方程》教案.2解一元二次方程。本节课将围绕以下内容展开:
1.一元二次方程的一般形式:ax^2 + bx + c = 0(a≠0)。
2.解一元二次方程的公式法:x = [-b±√(b^2-4ac)] / (2a)。
举例:对于判别式Δ,学生需要知道当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程没有实数根。在解方程时,如果直接代入公式而不考虑判别式的值,可能会导致错误的解答。
另一个难点是,在解决实际问题如抛物线与坐标轴的交点问题时,学生需要能够将问题中的信息“抛物线与x轴的交点”转化为“一元二次方程的根”的概念,并正确设置方程的系数。
另外,小组讨论的环节,我发现有的小组在讨论时偏离了主题,这可能是因为我对讨论主题的引导不够明确。在未来的课堂中,我需要更清晰地设定讨论的框架,并提供一些具体的指导问题,以确保讨论的方向和深度。
我也观察到,在实践活动和小组讨论中,一些学生显得不太自信,可能是因为他们对公式的掌握还不够熟练。我考虑在课后提供一些额外的辅导机会,帮助学生巩固基础,增强他们的自信心。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
人教版九年级数学上册第21章一元二次方程导学案设计:21.2.3 因式分解法
依照上例解法,解方程 .
提示:让学生通过阅读教材后,独立完成所有知识点的内容,并要求做完了的小组长督促组员迅速完成。
提示:可以先安排小组内小展示(交流预展),再安排全班大展示(展示提升)。两组合作完成一个知识点:其中一组负责板书、讲解、总结方法,另一组负责补充、纠错、释疑。展示重点在于归纳解题方法。
2.方程(x-2)(x+3)=0的解是( )
A. B. C. D.
要点②因式分解法解一元二次方程的步骤
3.用因式分解法解一元二次方程时,先整理方程,使方程的右边为0;将方程的左边进行_____________;再令每一个因式分别为0,转化为两个__________;最后分别解这两个____________,得到原方程的解.
学习内容
21.2.3用因式分解法解一元二次方程
主 备
使用者
审 核
课 型
时 间
学习目标
1.会用因式分解法(提公因式法、公式法)法解某些简单的数字系数的一元二次方程。
2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。
教学重点
应用分解因式法解一元二次方程
教学难点
灵活应用各种分解因式的方法解一元二次方程.
(1)填空:在由原方得到方程①的过程中利用了________法达到了 ____的目的;
(2)利用材料中的方法解方程: .
2.阅读例题,解答问题: 例:解方程 .
解:(i)当 ,即 时, , ,解得 =0(不合题设,舍去), =1.
(ii)当 x-1 0,即 x 1 时, , , 解得 =1(不合题设,舍去), =-2.
学法导航
自主学习,小组交流,教师点拨
人教版九年级第21章一元二次方程及解法导学案
一元二次方程及解法知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注:一元二次方程必须同时满足以下四点:①方程是整式方程,分母中不含有未知数。
②它只含有一个未知数。
③未知数的最高次数是2。
④将方程化成一般形式02=++c bx ax 后,注意二次项系数不为0。
例 1、 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x 例2 已知关于x 的方程()()021112=-+--+x m x m m 是一元二次方程时,则=m解:m 2+1=2但m-1≠0,所以 m=1巩固练习:1、在下列方程中,是一元二次方程的有________个.①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-=02、当m 时,关于x 的方程(m+2)x |m|+3mx+1=0是一元二次方程. 3.若(a-3)+4x+5=0是关于x 的一元二次方程,则a 的值为( )A.3B.-3C.±3D.无法确定知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
5x(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
例1 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。
(1)x x 2752=; (2)()()832=+-x x ; (3)()()()22343+=+-x x x知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解 例 1 关于x 的一元二次方程01)1(22=-++-a x x a 有一个根为0,则=a 解:∵x=0是方程的解 ∴ a 2-1=0 ∴x=±1,但二次项系数a-1≠0 ∴x=1例2 已知关于x 的一元二次方程)0(02≠=++a c bx ax 有一个根为1,一个根为1-,则=++c b a ,=+-c b a 例3 已知c 为实数,并且关于x 的一元二次方程032=+-c x x 的一个根的相反数是方程032=-+c x x 的一个根,求方程032=-+c x x 的根及c 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册第21章《一元二次方程》导学案
21.1一元二次方程(第一课时)
一、学习目标
1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
二、学习重点、难点
重点:建立一元二次方程的概念,认识一元二次方程的一般形式。
难点:在一元二次方程化成一般形式后,如何确定一次项和常数项。
三、学习过程
(一)知识准备:
(1) 多项式3x 2y-2x-1是 次 项式,其中最高次项是 ,二次项系数为 ,一
次项系数为 ,常数项为 。
(2) 叫方程,我们学过的方程类型有 。
(3)解下列方程或方程组: ①1)1(2-=+x x ②⎩⎨⎧=+=-4
2y x y x ③211=-x
(二)感受新知:
(1)一元二次方程的定义:等号两边都是 ,只含有 个求知数(一元),并且求知数的最高次数是 (二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下
形式: (a ≠0),这种形式叫做一元二次方程的一般形式。
其
中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项。
【注意】
①方程ax 2+bx +c =0只有当a ≠0时才叫一元二次方程,如果a =0,b ≠0时就是 方
程了。
所以在一般形式中,必须包含a ≠0这个条件。
②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号。
2.应用新知:
1、下列方程是一元二次方程的是有 :(1)
,(2)(x+1)(x-1)=0,
(3),(4)01122=-+x x ,(5), (6)05322
=-+y x ① 一元二次方程15242+-=x x x 化为一般形式是: ;其二次项
是: ;一次项是: ;常数项是: .
②把方程()()11212=+-y y 化为一般形式为: ;其二次项系数是 ;一次项系数是 ;常数项是 .
3、若033)3(2=++--nx x m n 是关于x 的一元二次方程,则( ).
A m≠0,n=3
B m≠3,n=4
C m≠0,n=4
D m≠3,n≠0
4、已知:关于x 的方程()()021122=-++-x k x k .
(1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.
四、达标过关测试
1.下列方程中,是关于x 的一元二次方程的是( ).
A .()()12132+=+x x
B .02112=-+x x
C .02=++c bx ax
D .1222-=+x x x 2.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数
为: ___,一次项系数为: ____,常数项为: _____.
3.关于x 的方程023)1()1(2
=++++-m x m x m ,当m ________时为一元一次方程;当m ___________时为一元二次方程.
4.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .
5.如图所示,在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )
A .213014000x x +-=
B .2653500x x +-=
C .213014000x x --=
D .0350652=+-x x。