四边形培优题
特殊的四边形培优
特殊的四边形培优1.如图,已知在菱形ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,且AE=BE,则∠EDF=______度.1.如图,四边形ABCD是正方形,△BDE是等边三角形,EF⊥DF,则∠BEF=________3.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE 的长为_______FB CA DE4. 如图,在菱形ABCD 中,AB=4a ,E 在BC 上,BE=2a ,∠BAD=120°,P 点在BD 上,则PE+PC 的最小值为( )5.如图,矩形AEFG 与矩形APQK 的周长都等于120cm,求△ABC 的周长6.如图,在矩形ABCD 中,M ,N 分别是AD ,DC 边的中点,AN 与MC 交于P 点,若∠MCB=∠NBC+33°,那么∠MPA 的大小是( )1. 边长为25cm 的正方形纸片,AD 上有一点P ,且AP=66cm,将这纸片折叠使B 落在P 上,则折痕的长是________2. 已知直角三角形ABCD 中,∠C=90°,AC=3,BC=5,以AB 为边向外作正方形ABEF 求此正方形KGP E BC中心O到C点的距离OC的长________3.如图,已知在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点.(1)求证BF⊥DF(2)若AB=8,AD=6,求DF的长10.如图,已知三角形ABC中,AB=AC,点M为BC 的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点E,GF与DF相交于点F,(1)求证:四边形HGMD是菱形(2)若∠GMD=120°,求证:从M点向所对的HG 和HD边引出的两条垂线MK和MQ分别平分这两条线段.E FQKDG11.如图,将一矩形的每一内角三等分,连接靠近同一边上的两三等分线所交成4交点组成四边形EFGH,试判断四边形EFGH形状12.在正方形ABCD中,AK和AN是∠A内的两射线,BK⊥AK,BL⊥AN,DM⊥AK,DN⊥AN,试求KL=MN1.在锐角△ABC中,BE是高,CF是中线,若∠ACF=30°则BE:CF=________2.如图,D、E、F分别是△ABC三边的中点,G是AE的中点,BE与DF、DG分别交于P、Q两点,则PQ:BE=______.3.如图,△ABC中,∠BAC=120°,以AB,AC为边分别向形外作正三角形ABD和正三角形ACE,M为AD中点,N为AE中点,P为BC中点,求∠MPN的度数.4.凸五边形ABCDE中,∠ABC=∠AED=90°,∠CAD=30°,∠BAE=70°,F是CD中点,且FB=FE,则∠BAC=_________.5.已知:如图所示,在△ABC中,D、G分别为AB、AC上的点,且BD=CG,M、N分别是BG、CD的中点,过MN的直线交AB于点P,交AC于点Q,求证:AP=AQ。
【数学】数学平行四边形的专项培优练习题(含答案)含答案
【点睛】
本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.
5.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
4.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
【答案】见解析.
【解析】
【分析】
延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+ ,
∴CF=BE-EM=2+ -x,
∴BE+CF= -x+4= (x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.
3.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
∴BM=ME,BM⊥EM.
故答案为BM=ME,BM⊥EM.
(2)ME= MB.
证明如下:连接CM,如解图所示.
∵DC⊥AC,M是边AD的中点,
∴MC=MA=MD.
∵BA=BC,
∴BM垂直平分AC.
∵∠ABC=120°,BA=BC,
∴∠MBE= ∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.
2021年中考复习数学 几何专项:四边形 培优训练(含答案)
2021中考数学几何专项:四边形培优训练一、选择题1. 如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°2. 如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B为()A. 66°B. 104°C. 114°D. 124°3. 如图,菱形ABCD的周长为8 cm,高AE长为cm,则对角线AC和BD长之比为()A.1∶2B.1∶3C.1∶D.1∶4. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形5. 如图,在▱ABCD中,对角线AC与BD交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC6. 如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE7. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是( ) A . 3 B . 4 C . 5 D . 68. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G 、F ,H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( ) A . 1个 B . 2个 C . 3个 D . 4个9. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( ) A . 2 B . 3 C . 2 D . 110. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是( )A.3+318 B.3+118C.3+36 D.3+16二、填空题11. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.12. 如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.13. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.14. 如图,正方形ABCD的面积为3 cm2,E为BC边上一点,∠BAE=30°,F 为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________cm.15. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH的边长是.三、解答题16. 如图,在四边形ABCD 中,AB ∥CD ,AD ⊥CD ,∠B=45°,延长CD 到点E ,使DE=DA ,连接AE. (1)求证:AE=BC ;(2)若AB=3,CD=1,求四边形ABCE 的面积.17. ABC 的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF为平行四边形,求证:AD EH ∥.ABCDE FH18. 如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.19. 如图,在菱形ABCD 中,AB =5,sin ∠ABD=55,点P 是射线BC 上一点,连接AP 交菱形对角线BD 于点E ,连接EC . (1)求证:△ABE ≌△CBE ;(2)如图①,当点P 在线段BC 上时,且BP =2,求△PEC 的面积;(3)如图②,当点P 在线段BC 的延长线上时,若CE ⊥EP ,求线段BP 的长.20. 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A2021中考数学 几何专项:四边形 培优训练-答案一、选择题 1. 【答案】D2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】D[解析]由菱形ABCD 的周长为8 cm 得边长AB=2 cm .又高AE 长为cm ,所以∠ABC=60°,所以△ABC ,△ACD 均为正三角形,AC=2 cm ,BD=2AE=2 cm .故对角线AC 和BD 长之比为1∶,应选D .4. 【答案】A[解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.5. 【答案】C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.6. 【答案】D 【解析】∵四边形ABCD 为矩形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质可得∠BAC =∠EAC, ∴∠ACD =∠EAC ,∴AE =CE .7. 【答案】B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.序号 逐项分析 正误① 在正方形ABCD 中,AB =BC =CD =DA ,∠DAB =∠B =∠BCD =∠CDA =90°,∠ACB =∠ACD =45°,∵EF ∥AD ,∴四边形EFDA 、四边形EFCB 是矩形,∴∠EFC =∠ADC =90°,EF =DC ,在Rt △CGF 中,∠ACD =45°,∴GF =CF ,∴EF -GF =CD -CF ,即EG =DF√② ∵△GFC 是等腰直角三角形,H 是CG 的中点,∴GH =FH ,∠HGF =∠GFH =45°,∴∠EGH =∠DFH =135°,又由①知EG =DF ,∴△EGH ≌△DFH (SAS),∴∠HEF =∠FDH ,∵∠AEH =∠AEF +∠HEF =90°+∠HEF ,∠ADH =∠ADC-∠FDH =90°-∠FDH ,∴∠AEH +∠ADH =180° √③ 由②可知EH =DH ,FH =CH ,又∵EF =DC ,∴△EHF ≌△DHC (SSS)√④ ∵△EGH ≌△DFH ,∴EH =DH ,∠EHG =∠DHF ,∴∠EHG +∠AHD =∠DHF +∠AHD =90°,即∠EHD =∠AHF =90°,∴△EHD 为等腰直角三角形,∵AE AB =23,∴设AE =2x ,√9. 【答案】B【解析】∵AB =2,∴BF =2,又∵BM =12BC =1,由勾股定理得FM =FB 2-BM 2= 3.10. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12, ∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13. 则D 3C 3=13.根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36.则点A3到x轴的距离FQ=D3Q+FD3=16+36=3+16.二、填空题11. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.12. 【答案】110°【解析】∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠1=20°,∵BE ⊥AB交对角线AC于点E,∴∠ABE=90°,∴∠2=∠CAB+∠ABE=20°+90°=110°.13. 【答案】180 [解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.14. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NGAE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图15. 【答案】4[解析]如图,连接EG ,作GM ⊥EN 交EN 的延长线于M.在Rt △EMG 中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.三、解答题16. 【答案】解:(1)证明:∵AD ⊥CD ,AB ∥CD , ∴∠ADE=∠DAB=90°.∵AD=DE ,∴∠E=∠DAE=45°, ∴∠EAB=135°.∵∠B=45°,∴∠B +∠EAB=180°, ∴AE ∥BC ,∴四边形ABCE 是平行四边形, ∴AE=BC.(2)由(1)知AB=CE , ∵CD=1,AB=3, ∴DE=2. ∵AD=DE , ∴AD=2,∴S 四边形ABCE =3×2=6.17. 【答案】此题解法很多,仅供两种解法参考.方法一:连结DE 、DH .(如图1) ∵四边形BHCF 为平行四边形 ∴CH BF AF ==且CH AF ∥由中位线可得12DE AB AF == ∴CH DE =∴四边形DECH 为平行四边形 ∴DH CE ∥且DH CE AE == ∴四边形DHEA 为平行四边形 ∴AD EH ∥图1HFED CBA方法二:连结DE .(如图2)通过中位线和平行四边的性质可得 DE HC =,AB DE HC ∥∥∴AED ECH ∠=∠又∵AE EC =显然ADE EHC ∆∆≌∴DAE HEC ∠=∠∴AD EH ∥ A B C DE FH图218. 【答案】 8955(1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,解图∠EFA =∠DFA ,EG =GD.(1分)∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,(2分)∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(3分)(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系;解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE.(4分)∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF ,即EF 2=FH·AF ,∴EG 2=12GF·AF.(5分)(3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4,∴AF =10.(6分)∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8.(7分) ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,(8分)∴EC DF =DE AF ,即EC 25=810, ∴EC =855,∴BE =BC -EC =AD -EC =45-855=1255.(9分)19. 【答案】(1)证明:∵四边形ABCD 是菱形,∴AB =BC ,∠ABE =∠CBE .在△ABE 和△CBE 中,AB =BC ,∠ABE =∠CBE ,BE =BE ,∴△ABE ≌△CBE (SAS);(2)解:如解图①,连接AC 交BD 于点O ,分别过点A 、E 作BC 的垂线,垂足分别为点H 、F ,解图①∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AB =5,sin ∠ABD =55,∴AO =OC =5,∴BO =OD =25, ∴AC =25,BD =45, ∵12AC ·BD =BC ·AH ,即12×25×45=5AH ,∴AH =4,∵AD ∥BC ,∴△AED ∽△PEB , ∴AE PE =AD BP, ∴AE +PE PE =AD +BP BP ,即AP PE =5+22=72,∴AP =72PE ,又∵EF ∥AH ,∴△EFP ∽△AHP ,∴EF AH =PE AP ,∴EF =PE AP ·AH =PE 72PE×4=87,∴S △PEC =12PC ·EF =12×(5-2)×87=127;(3)解:如解图②,连接AC 交BD 于点O ,解图②∵△ABE ≌△CBE ,CE ⊥PE ,∴∠AEB =∠CEB =45°,∴AO =OE =5,∴DE =OD -OE =25-5=5,BE =3 5.∵AD ∥BP ,∴△ADE ∽△PBE ,∴AD BP =DE BE ,∴5BP =535, ∴BP =15.20. 【答案】方法一:设N H M L F E ,,,,,分别为AB BC CD DA AC BD ,,,,,的中点,要证明EF LH ,,及MN 三线共点.因为LF DC ∥且12LF DC =, 所以EF DC ∥且12EF DC =,LF EH ∥且LF EH =,从而四边形EHFL 为平行四边形,故LH 与EF 互相平分.设LH 与EF 的交点为O ,则LH 经过EF 中点O (当然也是LH 中点).同理,MN 也过EF 中点O .所以,EF ,LH ,MN 三线共点于O . 说明:本题证明的关键是平行四边形EHFL 的获得(它是通过三角形中位线定理来证明的).由此可见,在某些四边形的问题中,通过构造平行四边形去解题是一种常用的技巧.请看下例.方法二:应用中点公式法可设()11A x y ,,()()()223344B x y C x y D x y ,,,,, 那么AC 线段的中点坐标为131322x x y y F ++⎛⎫⎪⎝⎭,,BD 线段的中点坐标为242422x x y y E ++⎛⎫ ⎪⎝⎭, 那么EF 线段的中点坐标为1234123422x x x x y y y y ++++++⎛⎫⎪⎝⎭, 同理可得:MN LH ,的中点坐标也为1234123422x x x x y y y y ++++++⎛⎫ ⎪⎝⎭, 所以可知:EF ,LH ,MN 三线共点于O。
人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)
人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。
初中数学中考复习 2020年中考数学一轮复习培优训练:《四边形》
2020年中考数学一轮复习培优训练:《四边形》1.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.2.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.3.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为.4.如图,在梯形ABCD中,AD∥BC,∠C=90°,AD=2,BC=5,DC=3,点E在边BC 上,tan∠AEC=3,点M是射线DC上一个动点(不与点D、C重合),联结BM交射线AE于点N,设DM=x,AN=y.(1)求BE的长;(2)当动点M在线段DC上时,试求y与x之间的函数解析式,并写出函数的定义域;(3)当动点M运动时,直线BM与直线AE的夹角等于45°,请直接写出这时线段DM 的长.5.如图1,已知直角梯形ABCO中,∠AOC=90°,AB∥x轴,AB=6,若以O为原点,OA,OC所在直线为y轴和x轴建立如图所示直角坐标系,A(0,a),C(c,0)中a,c满足|a+c﹣10|+=0(1)求出点A、B、C的坐标;(2)如图2,若点M从点C出发,以2单位/秒的速度沿CO方向移动,点N从原点出发,以1单位/秒的速度沿OA方向移动,设M、N两点同时出发,且运动时间为t秒,当点N从点O运动到点A时,点M同时也停止运动,在它们的移动过程中,当2S△ABN ≤S△BCM时,求t的取值范围:(3)如图3,若点N是线段OA延长上的一动点,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求的值(结果用含k的式子表示).6.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?7.实践与探究在平面直角坐标系中,四边形AOBC是矩形,点O0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证:△ADB≌△AOB;②求点H的坐标.8.实践与探究在综合实践课上,老师让同学们以两个全等的三角形纸片为操作对象,进行相关问题的探究.如图1,△ABC≌△DEF,其中∠ACB=90°,∠A=30°,AB=4.(1)请直接写出EF=;(2)新星小组将这两张纸片按如图2所示的方式放置后,经过观察发现四边形ACBF是矩形,请你证明这个结论.(3)新星小组在图2的基础上,将△DEF纸片沿AB方向平移至如图3的位置,其中点E与AB的中点重合,连接CE,BF.请你判断四边形BCEF的形状,并证明你的结论.9.(1)如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD 上的点,且∠EAF=∠BAD,则BE,EF,DF之间的数量关系是.(2)如图2,若E,F分别是边BC,CD延长线上的点,其他条件不变,则BE,EF,DF之间的数量关系是什么?请说明理由.(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动命令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观察到舰艇甲、乙分别到达E,F处,且两舰艇与指挥中心O连线的夹角∠EOF=70°,试求此时两舰艇之间的距离.10.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:+(2b﹣a﹣c)2+|b﹣c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.11.【操作】如图①,在矩形ABCD中,E为对角线AC上一点(不与点A重合).将△ADE 沿射线AB方向平移到△BCF的位置,E的对应点为点F,易知△ADE≌△BCF(不需要证明)【探究】过图①的点E作BG∥BC交FB延长线于点G,连结AG,其它条件不变,如图②.求证:△EGA≌△BCF【拓展】将图②中的△BCF沿BC翻折得到△BCF′,连结GF′,其它条件不变,如图③当GF′最短时,若AB=4,BC=2,直接写出FF′的长和此时四边形BFCF′的周长.12.如1,在矩形ABCD中,AB=6,AD=10,E为AD上一点且AE=6,连接BE.(1)将△ABE绕点B逆时针旋转90°至△ABF(如图2),且A、B、C三点共线,再将△ABF沿射线BC方向平移,平移速度为每秒1个单位长度,平移时间为t(s)(t≥0),当点A与点C重合时运动停止.①在平移过程中,当点F与点E重合时,t=(s).②在平移过程中,△ABF与四边形BCDE重叠部分面积记为S,求s与t的关系式.(2)如图3,点M为直线BE上一点,直线BC上有一个动点P,连接DM、PM、DP,且EM=5,试问:是否存在点P,使得△DMP为等腰三角形?若存在,请直接写出此时线段BP的长;若不存在,请说明理由.13.在四边形ABCD中,AD=BC,AB=CD.(1)如图1,连接AC,求证:AB∥CD;(2)如图2,在CB的延长线上取一点M,连接DM,在DM上取一点L,连接BL,当∠CBL=2∠M时,求证:LB=MB;(3)如图3,在(2)条件下,CE平分∠ACB交DM于E点,连接AE,当AE⊥CE,BL=8时,求AC的长.14.阅读下面的例题及点拨,补全解题过程(完成点拨部分的填空),并解决问题:例题:如图1,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°点拨:如图2,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连结EM,易证△ABM≌△EBM(),可得AM=EM,∠1=∠2;又AM=MN,则EM =MN,可得∠=∠;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠.又因为∠2+∠6=120,所以∠5+∠6=120°,所以∠AMN=60°.问题:如图3,四边形ABCD的四条边都相等,四个角都等于90°,M是BC边上一点(不含端点B,C),N是四边形ABCD的外角∠DCH的平分线上一点,且AM=MN.求∠AMN的度数.15.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E 沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;2.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣2.3.(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,∴菱形ABCD的面积=2S△ABC=2××42=8;故答案为:8.4.解:(1)如图1中,作AH⊥BC于H,∵AD∥BC,∠C=90°,∴∠AHC=∠C=∠D=90°,∴四边形AHCD是矩形,∴AD=CH=2,AH=CD=3,∵tan∠AEC=3,∴=3,∴EH=1,CE=1+2=3,∴BE=BC﹣CE=5﹣3=2.(2)延长AD交BM的延长线于G.∵AG∥BC,∴=,∴=,∴DG=,AG=2+=,∵=,∴=,∴y=(0<x<3).(3)①如图3﹣1中,当点M在线段DC上时,∠BNE=∠ABC=45°,∵△EBN∽△EAB,∴EB2=EN•AE,∴,解得x=.②如图3﹣2中,当点M在线段DC的延长线上时,∠ANB=∠ABE=45°,∵△B NA∽△EBA,∴AB2=AE•AN,∴(3)2=•[+解得x=13,综上所述DM的长为或13.5.解:(1)∵|a+c﹣10|+=0,∴a+c﹣10=0,且c﹣7=0,∴c=7,a+c=10,∴c=3,∴A(0,3),C(7,0),∵AB∥x轴,AB=6,∴B(6,3);(2)∴A(0,3),C(7,0),∴OA=3,OC=7,由题意得:ON=t,CM=2t,∴AN=3﹣t,∵2S△ABN≤S△BCM,∴2××(3﹣t)×6≤×2t×3,解得:t≥2,∵当点N从点O运动到点A时,点M同时也停止运动,∴0≤t≤3,∴t的取值范围为2≤t≤3;(3)设AB与CN交于点D,如图3所示:∵AB∥OC,∴∠BDC=∠OCD,∵∠BDC=∠BND+∠ABN,∠CNQ=k∠BNQ,∠NCH=k∠OCH,∴∠BDC=(k+1)∠BNQ+∠ABN,∠OCD=(k+1)∠OCH,∴(k+1)∠BNQ+∠ABN=∠OCD=(k+1)∠OCH,∴∠ABN═(k+1)∠OCH﹣(k+1)∠BNQ=(k+1)(∠OCH﹣∠BNQ),∵NQ∥CJ,∴∠NCJ=∠CNQ=k∠BNQ,∵∠HCJ+∠NCJ=∠NCH=k∠OCH,∴∠HCJ=k∠OCH﹣∠NCJ=k∠OCH﹣k∠BNQ=k(∠OCH﹣∠BNQ),∴==.6.解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°﹣∠BDE﹣∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+CD=BC=AB,∵BE+CF=nAB,∴n=,故答案为:;(2)如图2,①,连接AD,过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠GDH=360°﹣∠AGD﹣∠AHD﹣∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH,∴EG=FH,∴BE+CF=BG﹣EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变;(3)由(2)知,DE=DF,BE+CF=AB,∵AB=8,∴BE+CF=4,∴四边形DEAF的周长为L=DE+EA+AF+FD=DE+AB﹣BE+AC﹣CF+DF=DE+AB﹣BE+AB﹣CF+DE=2DE+2AB﹣(BE+CF)=2DE+2×8﹣4=2DE+12,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,此时,BE=BD=2,当点F和点C重合时,DE最大,此时,∠BDE=180°﹣∠EDF=120°=60°,∵∠B=60°,∴△BDE是等边三角形,∴BE=BD=4,综上所述,周长L取最大值时,BE=4,周长L取最小值时,BE=2.7.解:(1)∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴OB=AC=3,OA=BC=5,∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到的,∴AD=OA=5,在Rt△ACD中,CD===4,∴BD=5﹣4=1,∴D(1,3);(2)①由旋转可知,OA=DA,∠AOB=∠ADE=90°,∴∠AOB=∠ADB=90°,在Rt△AOB与Rt△ADB中,,∴Rt△ADB≌Rt△AOB(HL);②∵△ADB≌△AOB,∴BD=BO=AC,在△BDH与△ACH中,,∴△BDH≌△ACH(AAS),∴DH=CH,∵DH+AH=AD=5,∴CH+AH=5,设CH=x,则AH=5﹣x,在Rt△ACH中,(5﹣x)2=x2+32,解得,x=,∴BH=5﹣=,∴点H的坐标为(,3).8.(1)解:∵△ABC≌△DEF,∴AB=DE=4,∠D=∠A=30°,∠ACB=∠DFE=90°,∴EF=DE=2;故答案为:2;(2)证明:∵△ABC≌△DEF,∴AC=DF=BF,BC=EF=AF,在四边形ACBF中,AC=BF,BC=AF,∴四边形ACBF是平行四边形,∵∠ACB=90°,∴四边形ACBF是矩形;(3)解:四边形BCEF是菱形;理由如下:由(2)可知:四边形ACBF是平行四边形,∴EF∥BC,EF=BC,∵△DEF是沿AB方向平移的,∴EF∥BC,EF=BC,∴四边形BCEF是平行四边形,∵点E是AB的中点,∠ACB=90°,∴CE=AB=2,∴CE=EF=2,∴四边形BCEF是菱形.9.解:(1)延长FD到点G,使DG=BE,连结AG,如图1所示:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案为:EF=BE+DF;(2)BE,EF,DF之间的数量关系是:EF=BE﹣DF;理由如下:在CB上截取BM=DF,连接AM,如图2所示:∵∠B+∠D=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∴∠BAD=∠MAF,∵∠BAD=2∠EAF,∴∠MAF=2∠EAF,∴∠MAE=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE﹣BM=BE﹣DF,即EF=BE﹣DF;(3)连接EF,延长AE、BF相交于点C,如图3所示:∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合(1)中的条件,即结论EF=AE+BF成立,∴EF=1.5×(60+80)=210(海里).答:此时两舰艇之间的距离是210海里.10.解:(1)∵+(2b﹣a﹣c)2+|b﹣c|=0,∴a=4,b=c,2b﹣a﹣c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6﹣OE,∵DE2=OD2+OE2,∴(6﹣OE)2=4+OE2,∴OE=,∴点E坐标为(,0);(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.11.解:【探究】由平移可知:AE=BF,AE∥BF,∴∠CBF=∠ACB,∵四边形ABCD是矩形,∴AD=BC,∵EG∥BC,∴∠AEG=∠ACB,∴∠AEG=∠CBF,∵GE∥BC,AC∥BG,∴四边形EGBC是平行四边形,∴EG=BC,∴△EGA≌△BCF(SAS).【拓展】如图3中,连接BD交AC于点O,作BK⊥AC于K,F′H⊥BC于H.∵四边形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴AC===2,∵•AB•CB=•AC•BK,∴BK=,∴OK===,由题意四边形AGFC是平行四边形,∴GF=AC=2,∵BF=BF′,可以假设BF=x,则BG=2﹣x,∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴==,∴==,∴F′H=x,BH=x,GH=BG﹣BH=2﹣x﹣x=2﹣x,∴GF′===,∵>0,∴当x=﹣=时,GF′的值最小,此时点F′与O重合,可得FF′=4,四边形BFCF′的周长为4.12.解:(1)①如图1中,连接EF.由题意EF=AB=BF=6,∴t=6时,点F与点E重合,故答案为6.②如图2﹣1中,当0<t≤6时,重叠部分是△BMB′,S=t2.如图2﹣2中,当6<t≤10时,重叠部分是△AFB′,S=×6×6=18.如图2﹣3中,当10<t≤16时,重叠部分是△AMC,S=(16﹣t)2,综上所述,S=.(2)如图3中,总MH⊥AD于H,交BC于G.∵AB=AE=6,∠A=90°,∴BE=6,∵EM=5,∴BM=,∴BG=MG=AH=1,HM=HE=5,DH=AD﹣AH=9,∴DM===,当DM=DP时,可得CP1=CP2===,∴BP1=10﹣,BP2=10+.当MD=MP时,可得GP3=GP4===,∴BP3=﹣1,BP4=+1,当PM=PD时,设GP5=x,则=,解得x=,∴BP5=1+=.13.解:(1)证明:在△ADC与△CBA中,,∴△ADC≌△CBA(SSS),∴∠A CD=∠BAC,∴AB∥CD;(2)∵∠CBL=∠M+∠BLM,∠CBL=2∠M,∴∠M+∠BLM=2∠M,∴∠M=∠BLM,∴BM=BL;(3)延长AE交CM于H,∵CE平分∠ACB交DM于E点,∴∠ACE=∠HCE,∵AE⊥CE,∴∠AEC=∠HEC=90°,在△ACE与△HCE中,,∴△ACE≌△CHE(ASA),∴AE=EH,AC=CH,∵AD∥CM,∴∠ADE=∠M,在△ADE与△HME中,,∴△ADE≌△HME(AAS),∴AD=HM,∵AD=BC,∴HM=BC,∴CH=BM,∴CH=BM=8,∴AC=CH=8.14.解:点拨:如图2,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连结EM,易证△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5.又因为∠2+∠6=120,所以∠5+∠6=120°,所以∠AMN=60°.问题:延长AB至E,使EB=AB,连接EMC、EC,如图所示:则EB=BC,∠EBM中=90°=∠ABM,∴△EBC是等腰直角三角形,∴∠BEC=∠BCE=45°,∵N是正方形ABCD的外角∠DCH的平分线上一点,∴∠MCN=90°+45°=135°,∴∠BCE+∠MCN=180°,∴E、C、N,三点共线,在△ABM和△EBM中,,∴△ABM≌△EBM(SAS),∴AM=EM,∠1=∠2,∵AM=MN,∴EM=MN,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠AMN=180°﹣90°=90°.故答案为:SAS,3,4,5.15.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M 为CE的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).。
平行四边形培优
平行四边形性质培优一:角的题型。
1、在▱ABCD中,∠A:∠B:∠C:∠D可能是()A.1:2:3:4B.2:3:2:3C.2:2:1:1D.2:3:3:22.▱ABCD中,∠B=5∠A,则∠C的度数为3.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是4.在▱ABCD中,∠A﹣∠B=40°,则∠C的度数为5.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为二:周长题型。
1.如图,平行四边形ABCD的周长为8,△AOB的周长比△BOC的周长多2,求:AB边的长。
2.在▱ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若▱ABCD的周长为22cm,则△CDE的周长为3、如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为4.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为5、如图所示,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45∘,且AE+AF=32求平行四边形ABCD的周长。
6、如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处,若△FDE的周长为12,△FCB的周长为22,则FC的长为_________.三:面积题型。
1、如图,□ABCD的两条对角线相交于点O,E,F分别是边CD,BC的中点,图中与△BCE面积相等的三角形(不包括△BCE)共有_______个.2,如图,E是□ABCD中AB边上的任意一点,连接CE、DE,DE与对角线AC 相交于点F,则下列结论中不正确的是()A.S△ADE=S△BCEB.S△ACD=S△ABCB..S△CDE=S△ABC D.S△CDE=S△ADE+S△BCE3、如图,四边形ABCD、BEFD、EGHD均为平行四边形,其中C.F两点分别在EF、GH上。
浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)
浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】C【解析】A 、此图形不是中心对称图形,故本选项不符合题意; B 、此图形不是中心对称图形,故此选项不符合题意; C 、此图形是中心对称图形,故此选项符合题意;D 、此图形不是中心对称图形,故此选项不符合题意. 故答案为:C .2.已知平行四边形ABCD 中,∠A +∠C =240°,则∠B 的度数是( ) A .100° B .60° C .80° D .160° 【答案】B【解析】∵四边形ABCD 为平行四边形, ∴∠A=∠C ,∠A+∠B =180°. 又∵∠A+∠C=240°, ∴∠A=∠C=120°, ∠B=180°-∠A=60°. 故答案为:B3.多边形边数从n 增加到n +1,则其内角和( ) A .增加180° B .增加360° C .不变 D .减少180° 【答案】A【解析】n 边形的内角和是(n -2)•180°,边数增加1,则新的多边形的内角和是(n+1-2)•180°. 则(n+1-2)•180°-(n -2)•180°=180°. 故它的内角和增加180°. 故答案为:A .4.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB∠AC .若AC =6,BD =10,则AB 的长是( )A .3B .4C .5D .6 【答案】B【解析】∵四边形ABCD 是平行四边形,BD =10,AC =6, ∴AO =OC =12AC =3,BO =DO =12BD =5,又∵AB∠AC , ∴∠BAC =90°,∴AB =√BO 2−AO 2=√52−32=4, 故答案为:B . 5.用反证法证明,“在∠ABC 中,∠A 、∠B 对边是a 、b ,若∠A <∠B ,则a <b .”第一步应假设( ) A .a >b B .a =b C .a≤b D .a≥b【答案】D【解析】根据反证法步骤,第一步应假设a <b 不成立,即a≥b . 故答案为:D.6.如图,点E 、F 分别是∠ABCD 边AD 、BC 的中点,G 、H 是对角线BD 上的两点,且BG=DH .则下列结论中错误的是( )A .GF =EHB .四边形EGFH 是平行四边形C .EG =FHD .EH ⊥BD【答案】D【解析】连接EF 交BD 于点O ,在平行四边形ABCD 中,AD=BC ,∠EDH=∠FBG , ∵E 、F 分别是AD 、BC 边的中点,∴DE=BF=12BC ,∠EDO=∠FBO ,∠DOE=∠BOF ,∴∠EDO∠∠FBO , ∴EO=FO ,DO=BO , ∵BG=DH , ∴OH=OG ,∴四边形EGFH 是平行四边形, ∴GF=EH ,EG=HF ,故答案为:A 、B 、C 不符合题意; ∵∠EHG 不一定等于90°,∴EH∠BD 错误,D 符合题意; 故答案为:D .7.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠CBD=30°,∠ADB=100°,则∠PFE 的度数是( )A .15°B .25°C .30°D .35°【答案】D【解析】∵点P 是BD 的中点,点E 是AB 的中点, ∴PE 是∠ABD 的中位线, ∴PE=12AD ,PE∠AD ,∴∠EPD=180°-∠ADB=80°, 同理可得,PF=12BC ,PE∠BC ,∴∠FPD=∠CBD=30°, ∵AD=BC , ∴PE=PF ,∴∠PFE=12×(180°-110°)=35°,故答案为:D .8.如图, ▱EFGH 的四个顶点分别在 ▱ABCD 的四条边上, QF ∥AD ,分别交EH 、CD 于点P 、Q 过点P 作 MN ∥AB ,分别交AD 、BC 于点M 、N ,若要求 ▱EFGH 的面积,只需知道下列哪个四边形的面积( )A .四边形AFPMB .四边形MPQDC .四边形FBNPD .四边形PNCQ【答案】C【解析】如图,连接PG ,FN ,∵∠EFGH ,∴S △FPG =12S ▱EFGH ,∵FQ ∥BC ,∴S △FPN =S △FPG , 又∵MN∠AB ,∴四边形FBNP 为平行四边形,∴S △FPN =S △FPG =12S ▱FBNP∴S ▱FBNP =S ▱EFGH ,∴要求∠EFGH 的面积,只需要知道四边形FBNP 的面积. 故答案为:C.9.如图,已知□OABC 的顶点A ,C 分别在直线 x =1 和 x =4 上,O 是坐标原点,则对角线OB 长的最小值为( )A .3B .4C .5D .6 【答案】C【解析】过点B 作BD⊥直线x=4,交直线x=4于点D ,过点B 作BE⊥x 轴,交x 轴于点E ,直线x=1与OC 交于点M ,与x 轴交于点F ,直线x=4与AB 交于点N ,如图:∵四边形OABC是平行四边形,∴⊥OAB=⊥BCO,OC⊥AB,OA=BC.∵直线x=1与直线x=4均垂直于x轴,∴AM⊥CN,∴四边形ANCM是平行四边形,∴⊥MAN=⊥NCM,∴⊥OAF=⊥BCD.∵⊥OFA=⊥BDC=90°,∴⊥FOA=⊥DBC.在⊥OAF和⊥BCD中,⊥FOA=⊥DBC,OA=BC,⊥OAF=⊥BCD,∴⊥OAF⊥⊥BCD,∴BD=OF=1,∴OE=4+1=5,∴OB=√OE2+BE2.由于OE的长不变,所以当BE最小时,OB取得最小值,最小值为OB=OE=5.故答案为:C.10.如图,∠ ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠ADO=30°;②S ∠ ABCD=AB·AC;③OB=AB;④S四边形OECD=32S∠AOD,其中成立的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD为平行四边形,∠ADC=60°,∴OA=OC,OB=OD,∠ABC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=60°,∴△ABE是等边三角形,∴AB=AE=BE,∠AEB=60°,∵AB=12BC,∴BE=12BC,∴CE=BE=AE,∴∠ACE=∠CAE=30°,∴∠OAB=90°,∠OAD=30°,∴在Rt△AOB中,OB>OA,OB>AB,则结论③不成立;∴OD >OA ,∴∠ADO ≠∠OAD ,即∠ADO ≠30°,结论①不成立; ∵∠OAB =90°,即AB ⊥AC ,∴S ▱ABCD =AB ⋅AC ,则结论②成立; 设平行四边形ABCD 的面积为8a(a >0), 则S △AOD =S △COD =S △BOC =14S ▱ABCD =2a ,∵BE =CE ,∴S △BOE =S △COE =12S △BOC =a ,∴S 四边形OECD =S △COE +S △COD =3a =32S △AOD ,结论④成立;综上,成立的个数为2个, 故答案为:B .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一个多边形的内角和与外角和的和为2160∠,则这个多边形的边数为 . 【答案】12【解析】设这个多边形的边数是n , (n -2)•180°+360°=2160°, 解得n=12. 故答案为:12.12.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),若一次函数y=mx -6m 的图象将四边形ABCD 的面积分成1:3两部分,则m 的值为 .【答案】−35或−6【解析】∵直线y=mx -6m 经过定点B (6,0),A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),∴CD∠AB ,CD=8-2=6= AB , ∴四边形ABCD 是平行四边形,∴S∠ADC= S∠ADC=12S 平行四边形ABCD ,又∵直线y=mx -6m 把平行四边形ABCD 的面积分成1:3的两部分.∴直线y=mx -6m 经过AD 的中点M (1,3)或经过CD 的中点N (5,6), ∴m -6m=3或5m -6m=6,∴m=-35或-6,故答案为:-35或-6.13.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,ED ,EF 分别交AC ,AB 于点D ,F ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,E 1D 1,E 1F 1分别交EF ,BF 于点D 1,F 1,得到四边形E 1D 1FF 1,它的面积记作S 2……照此规律作下去,则S n = .【答案】√322n+1【解析】∵∠ABC 是边长为1的等边三角形,∴∠ABC 的高为:√12−(12)2=√32,∴S △ABC =12×1×√32=√34,∵DE 、EF 分别是∠ABC 的中位线,∴AF =12AC =12,∴S 1=12S △ABC =√38,同理可得S 2=√38×14;…,∴S n =√38×(14)n−1=√322n+1;故答案为:√322n+1.14.如图, ΔABC 和 ΔDEC 关于点C 成中心对称,若 AC =1 , AB =2 , ∠BAC =90° ,则 AE 的长是 .【答案】2√2【解析】∵∠DEC 与∠ABC 关于点C 成中心对称, ∴DC=AC=1,DE=AB=2,∴在Rt∠EDA 中,AE 的长是:AE =√AD 2+DE 2=√(DC +AC)2+DE 2=√(1+1)2+22=2√2 . 故答案为: 2√2 . 15.已知:如图,线段AB =6cm ,点P 是线段AB 上的动点,分别以AP 、BP 为边在AB 作等边△APC 、等边△BPD ,连接CD ,点M 是CD 的中点,当点P 从点A 运动到点B 时,点M 经过的路径的长是 cm .【答案】3【解析】如图,分别延长AC,BD交于H,过点M作GN∠AB分别交AH于G,BH于N,∵∠APC、∠BPD都是等边三角形,∴∠A=∠B=∠DPB=∠CPA=60°,∴AH∠PD,BH∠CP,∴四边形CPDH是平行四边形,∴CD与HP互相平分,∴M是PH的中点,故在P运动过程中,M始终在HP的中点,所以M的运动轨迹即为∠HAB的中位线,即线段GN,∴GN=12AB=3cm,故答案为:3.16.如图,把含45∘,30∘角的两块直角三角板放置在同一平面内,若AB//CD,AB=CD=√6则以A,B,C,D为顶点的四边形的面积是.【答案】3+2√3【解析】延长CO,交AB于点E,由题意可知:∠BAO=45°,∠CDO=30°∵AB//CD,AB=CD=√6∴四边形ABCD为平行四边形∵OC∠CD∴CE∠AB∴S∠AOB+S∠COD= 12AB·OE+12CD·OC= 12AB·(OE+OC)= 12AB·CE= 12S平行四边形ABCD∴S平行四边形ABCD=2(S∠AOB+S∠COD)在Rt∠AOB中,AO2+BO2=AB2=6,AO=BO解得:AO=BO= √3在Rt∠COD中,∠CDO=30°,OC2+CD2=OD2∴OD=2OC,OC2+6=(2OC)2解得:OC= √2,∴S∠AOB= 12AO·BO= 32,S∠COD=12CD·OC= √3∴S平行四边形ABCD=2(S∠AOB+S∠COD)=2×(32+√3)= 3+2√3故答案为:3+2√3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,在▱ABCD中,点E、F在对角线AC上,且AE=CF,连接BF、DE.求证:BF=DE,BF∥DE.【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAC=∠BCA.又∵AE=CF,∴△DAE≌△BCF(SAS),∴BF=DE,∠DEA=∠BFC.∴∠DEC=∠BFA.∴BF∥DE.18.如图,在∠ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.【答案】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∠BC,∵∠DCE=20°,AB∠CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)解:∵四边形ABCD是平行四边形,∴AD=BC,AD∠BC,∵BF=BE,CG=CE,∴BC是∠EFG的中位线,∴BC∠FG ,BC =12FG ,∵H 为FG 的中点, ∴FH =12FG ,∴BC∠FH ,BC =FH , ∴AD∠FH ,AD =FH ,∴四边形AFHD 是平行四边形.19.如图,∠ABC 中,点D ,E 分别是边AB ,AC 的中点,过点C 作CF∠AB 交DE 的延长线于点F ,连接BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB =BC 时,若BD =2,BE =3,求AC 的长. 【答案】(1)证明:∵点 D ,E 分别是边 AB ,AC 的中点, ∴DE∠BC . ∵ CF∠AB ,∴四边形 BCFD 是平行四边形;(2)解:∵AB =BC ,E 为 AC 的中点, ∴BE∠AC .∵AB =2DB =4, BE =3, ∴AE =√42−32=√7 ∴AC =2AE =2√720.如图,在 5×5 的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2,图3中各画一个四边形(所画四边形的顶点均在小正方形的项点上)(1)在图1中画四边形 ABCD ,使其为中心对称图形,但不是轴对称图形; (2)在图2中画以A ,B ,M ,N 为顶点的平行四边形,且面积为5;(3)在图3中画以A ,B ,E ,F 为顶点的平行四边形,且其中一条对角线长等于3. 【答案】(1)解:如图1中,四边形ABCD 即为所求作.(2)解:如图2中,四边形ABMN即为所求作. (3)解:如图3中,四边形ABEF即为所求作. 21.如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥BF,AB=8,BF=6,AC=16.求线段EF长.【答案】(1)证明:连接BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形.(2)解:在Rt△ABF中,AF=√AB2+BF2=√82+62=10,∵AC=16,∴CF=AC−AF=16−10=6,∵AE=CF,∴AE=6,∴EF=AF−AE=10−6=4.22.如图,已知:在∠ABCD中,AE∠BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)求证:G 为CD 的中点.(2)若CF =2.5,AE =4,求BE 的长.【答案】(1)证明:∵点F 为CE 的中点,∴CF=12CE , 在∠ECG 与∠DCF 中,∵∠2=∠1, ∠C =∠C , CE =CD ,∴∠ECG∠∠DCF (AAS ),∴CG=CF= 12CE. 又CE=CD , ∴CG=12CD , 即G 为CD 的中点; (2)解:∵CE=CD ,点F 为CE 的中点,CF=2.5,∴DC=CE=2CF=5,∵四边形ABCD 是平行四边形,∴AB=CD=5,∵AE∠BC ,∴∠AEB=90°,在Rt∠ABE 中,由勾股定理得:BE=√52−42=3.23.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:求证:(1)∠ABE 是等边三角形;(2)∠ABC ∠∠EAD ;(3)S △ABE =S △CEF .【答案】(1)证明:∵ABCD 是平行四边形∴AD∠BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴∠ABE 是等边三角形;(2)证明:∵∠ABE 是等边三角形∴∠ABE=∠EAD=60∠,∵AB=AE ,BC=AD ,∴∠ABC∠∠EAD(SAS)(3)证明:∵∠FCD 与∠ABC 等底(AB=CD)等高(AB 与CD 间的距离相等),∴S∠FCD=S∠ABC ,又∵∠AEC与∠DEC同底等高,∴S∠AEC=S∠DEC,∴S∠ABE=S∠CEF24.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)如图2,在“准筝形”ABCD中,AB=AD,∠BAD=∠BCD=60°,BC=4,CD=3,求AC的长;(3)如图3,在∠ABC中,∠A=45°,∠ABC=120°,AB=3-√3,设D是∠ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.【答案】(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°-(∠A+∠C+∠D)=360°-(270°+30°)=60°,∵AB=BC,∴四边形ABCD是“准筝形”;(2)解:以CD为边作等边∠CDE,连接BE,过点E作EF∠BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴∠ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在∠ADC和∠BDE中,{AD=BD∠ADC=∠BDEDC=DE,∴∠ADC∠∠BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°-60°-60°=60°,∵∠EFC =90°,∴∠CEF =30°,∴CF =12CE =32 , 由勾股定理得:EF =√CE 2−CF 2=√32−(32)2=3√32 , BF =BC +CF =4+32=112, 在Rt∠BEF 中,由勾股定理得:BE =√BF 2+EF 2=√(112)2+(3√32)2=√37 , ∴AC =√37 ;(3)解:四边形ABCD 的面积为3√32或9+3√32 或 92+3√3. 【解析】(3)过点C 作CH∠AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是∠ABC 的高线,∴∠BCH =30°,∴HC =√3x ,BC =2BH =2x ,又∵∠A =45°,∴∠HAC 是等腰直角三角形,∴HA =HC ,∵AB =3-√3 ,∴√3x =3-√3+x ,解得:x =√3,∴HC =√3x =3,BC =2√3 ,∴AC = √2 HC =3 √2 ,当AB =AD =3- √3 ,∠BAD =60°时,连接BD ,过点C 作CG∠BD ,交BD 延长线于点G ,过点A 作AK∠BD ,如图4所示:则BD =3-√3 ,∠ABD =60°,BK =12AB =12(3-√3 ), ∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在∠CBG 和∠CBH 中, {∠CGB =∠CHB =90°∠CBG =∠CBH BC =BC,∴∠CBG∠∠CBH (AAS ),∴GC =HC =3,在Rt∠ABK 中,由勾股定理得:AK =√AB 2−BK 2 =√(3−√3)2−[12(3−√3)]2 = 3√3−32, ∴S ∠ABD = 12 BD•AK = 12×(3-√3 )×3√3−32 =6√3−92, S ∠CBD = 12 BD•CG = 12×(3-√3 )×3=9−3√32, ∴S 四边形ABCD = 6√3−92 + 9−3√32 = 3√32; ②当BC =CD =2√3 ,∠BCD =60°时,连接BD ,作CG∠BD 于点G ,AK∠BD 于K ,如图5所示:则BD =2√3 ,CG =√32 BC =√32×2√3 =3,AK =3√3−32 , ∴S ∠BCD =12 BD•CG =12×2√3×3=3√3, S ∠ABD =12BD•AK =12×2√3×3√3−32=9−3√32, ∴S 四边形ABCD =3√3+9−3√32=9+3√32 ; ③当AD =CD =AC =3√2,∠ADC =60°时,作DM∠AC 于M ,如图6所示:则DM =√32AD =√32×3√2 =3√62 , ∴S ∠ABC =12AB•CH =12×(3-√3)×3=9−3√32, S ∠ADC = 12 AC•DM =12×3√2×3√62=9√32, ∴S 四边形ABCD =9−3√32+ 9√32=92+3√3. 综上所述,四边形ABCD 的面积为3√32或9+3√32 或 92+3√3.。
人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)
人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。
A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。
八年级数学下《四边形》培优练习卷
八年级数学下《四边形》培优练习卷一、选择题1.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.如图,在△ABC,∠ACB=90°中,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形A CEB的周长。
A.4 B.10+ 4 C. 10+2 D. 23.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE= ( )A.30° B.22.5° C.15° D.以上都不对4.如图,将矩形ABCD沿AE折叠,若∠BAD'=30°,则∠AED' 等于 ( )A.30° B.45° C.60° D.75°第6题5.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是 ( ) A.1.6 B.2.5 C.3 D.3.46.平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD五等分点,点B1,B2和D1,D2分别是BC和DA三等分点,若四边形A4B2C4D2面积为1.则平行四边形ABCD面积为 ( )A.2 B.35C.53D.157.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EB的长为()A.1 B.4C.4﹣2D.4﹣4第7题二、填空题8.在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为______.9.矩形的两条对角线的夹角为60°,一条对角线与较短边的和为15,则较长边的长为_______.10.已经△ABC中,∠C=90°,C=10,a:b=3:4 ,则a= b=11.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE、BF.当∠ACB为度时,四边形ABFE为矩形.第11题第12题第13题第14题12.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F.连接CE,则CE的长是_______.13.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_______厘米.14.如图,△ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③CEBFSSCEDBFD=∆∆;④EF∥BC.其中正确的是_______.15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,7=∆ABCS,DE=2,AB=4,则AC长为.三、解答题16.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明:四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC,且EF=BC,证明:平行四边形EGFH是正方形.17.已知△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D为BC边上一点.(1)求证:△ACE≌△ABD;(2)若AC=8,CD=1,求ED的长.18.如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E、F.求证:∠BEN=∠NFC. (提示:连结AC并取中点)19.如图,在Rt⊿ABC中,∠B=90°,AC=100cm,BC=80cm,点P从点A开始沿边AB向点B以1cm/s的速度运动,同时,另一点Q由点B开始沿边BC向点C以1.5cm/s的速度运动.(1)20s后,点P与点Q相距 cm.(2)在(1)的条件下,若P、Q两点同时在直线PQ上相向而行,多少秒后,两点相遇?(3)多少秒后,AP=CQ?20.△ABC中,∠ACB=90°,AC=BC,AB=2.现将一块三角板的直角顶点放在AB的中点D处,两直角边分别与直线..AC、直线..BC相交于点E、F.我们把DE⊥AC时的位置定为起始位置(如图1),将三角板绕点D顺时针方向旋转一个角度α (0°<α<90°).(1)在旋转过程中,当点E在线段AC上,点F在线段BC上时(如图2),①试判别△DEF的形状,并说明理由;②判断四边形ECFD的面积是否发生变化,并说明理由.(2)设直线..ED交直线..BC于点G,在旋转过程中,是否存在点G,使得△EFG为等腰三角形?若存在,求出CG的长,若不存在,说明理由;D DEADEDA。
【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷
人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。
八下数学《平行四边形》培优试卷-(A4含答案)
《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。
冲刺重点高中提前自主招生培优专题测试--特殊平行四边形(附答案详解)
冲刺重点高中提前自主招生测试--特殊平行四边形一、选择题(共10小题,满分40分,每小题4分)1.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.第1题第2题2.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,如果四边形ABCD的面积为12,那么BE的长为()A.2 B.3 C.2D.23.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3第3题第4题4.如图,ABCD是边长为1的正方形,EFGH是内接于ABCD的正方形,AE=a,AF=b,若S EFGH=,则|b﹣a|等于()A.B.C.D.5.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP翻折,点B 的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP 长度为()A.B.C.D.第5题第6题6.如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A .B .C .D .7.如图,以正方形ABCD 的一边向形外作等边△ABE ,BD 与EC 交于点F ,且DF=EF ,则∠AFD 等于( )A .60°B .50°C .45°D .40°第7题第8题8.如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是( )A .1B .C .D .9.如图,正方形ABCD 的边长为8,∠DAC 的平分线交DC 于点E .若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值是( )第9题A .4B .8C .4D .8第9题第10题10.如图,边长为1的正方形ABCD 的对角线AC ,BD 相交于点O ,∠MPN 为直角,使点P 与点O 重合,直角边PM ,PN 分别与OA ,OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM ,PN 分别交AB ,BC 于E ,F 两点,连接EF 交OB 于点G ,则下列结论:①EF=OE ;②S 四边形OEBF :S 正方形ABCD =1:4;③BE +BF=OA ;④在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=;⑤OG•BD=AE 2+CF 2.其中结论正确的个数是( )A.2个B.3个C.4个D.5个二、填空题(共10小题,满分40分,每小题4分)11.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.12.如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=16°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为.第12题第13题13.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为.14.已知:如图,矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,∠CAE=15°,则∠BOE=°.第14题第15题15.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角△CEF的面积为200,则BE的值为.16.如图,四边形ABCD是菱形,E在AD上,F在AB延长线上,CE和DF 相交于点G,若CE=DF,∠CGF=30°,AB的长为6,则菱形ABCD的面积为.第16题第17题17.如图,ABCD是正方形,M是BC中点,将正方形折起,使点A与点M重合,设折痕为EF,若正方形面积是64,那么梯形AEFD的面积是.18.如图,将边长为4cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN交AB于M,交DC于N,则线段FM长为cm.第18题第19题19.如图,正方形ABCD中,点E、F分别是BC、CD边上的点,且∠EAF=45°,对角线BD交AE于点M,交AF于点N.若AB=2,BM=1,则MN的长为.20.一个矩形各边的长都是正整数,而且它的面积的数量等于其周长的数量的2倍,这样的矩形有个.三、解答题(共5小题,满分70分)21.(12分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA 的度数.第21题22.(12分)已知,如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,E为BC边上一点,作∠AEF=∠ACF=90°(1)试判断AE和EF的数量关系,并说明理由;(2)当四边形ABCD的面积为16,BC的长为6,求AD的长.第22题23.(14分)如图,在正方形ABCD中,点P是AD边上的一个动点,连接PB,过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.(1)求证:△PBQ是等腰直角三角形;(2)若PQ2=PB2+PD2+1,求△PAB的面积.第23题24.(15分)已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G.将∠AEG绕点A顺时针旋转30°得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上,求菱形AB′C′D′的边长.第24题25.(17分)如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?分析:连接PA、PB、PC,则△ABC被分割成三个三角形,根据:S△PAB+S△PBC+S△PAC=S△ABC,即:,可得.问题1:若点P是边长为a的等边△ABC外一点(如图二所示位置),点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3.探索h1,h2,h3之间有什么关系呢?并证明你的结论;问题2:如图三,正方形ABCD的边长为a,点P是BC边上任意一点(可与B、C重合),B、C、D三点到射线AP的距离分别是h1,h2,h3,设h1+h2+h3=y,线段AP=x,求y与x的函数关系式,并求y的最大值与最小值.第25题冲刺重点高中提前自主招生测试--特殊平行四边形参考答案与试题解析一、选择题(共10小题,满分40分,每小题4分)1.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.【解析】延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,故选A.2.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,如果四边形ABCD的面积为12,那么BE的长为()A.2 B.3 C.2D.2【解析】过点B作BF⊥CD,于DC的延长线交于点F,如右图所示,∵BF⊥CD,BE⊥AD,∴∠BFC=∠BEA=90°,∵∠ABC=∠ADC=90°,∴∠ABE+∠EBC=90°,∠EBC+∠CBF=90°,∴∠ABE=∠CBF,∵AB=CB,∴△AEB≌△CFB(AAS)∴BE=BF,∵四边形ABCD的面积为12,∴四边形BEDF的面积为12,∴BE×BF=12,即BE2=12,∴BE=2,故选D.3.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【解析】连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2=•AB•BC=×2×2=4,∵S△ABC∴S=2,△ADC∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S △BEF =•EF•BH=×2×=,故选C .方法二:S △BEF =S 四边形ABCD ﹣S △ABE ﹣S △BCF ﹣S △FED ,易知S △ABE +S △BCF =S 四边形ABCD =3,S △EDF =,∴S △BEF =S 四边形ABCD ﹣S △ABE ﹣S △BCF ﹣S △FED =6﹣3﹣=.故选C .4.如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE=a ,AF=b ,若S EFGH =,则|b ﹣a |等于( )A .B .C .D .【解析】在△AEF 和△DHE 中,,∴△AEF ≌△DHE ,∴AF=DE ,∵DE +AE=1,∴a +b=1,∵a 2+b 2=求解得:a=,b=,∴|b﹣a|=,故选D.5.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP翻折,点B 的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP 长度为()A.B.C.D.【解析】由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=.故选A.6.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.【解析】延长AE交DF于G,如图:∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.7.如图,以正方形ABCD的一边向形外作等边△ABE,BD与EC交于点F,且DF=EF,则∠AFD等于()A.60°B.50°C.45°D.40°【解析】连接AC,∵BD为AC的垂直平分线,∴FA=FC,∵四边形ABCD是正方形,∴AD=DC=AB,在△DCF和△DAF中,,∴△DCF ≌△DAF ,∵三角形ABE 是等边三角形,∴AE=AB=AD ,在△DAF 和△EAF 中,,∴△DAF ≌△EAF ,∴△DCF ≌△DAF ≌△EAF ,得:∠DFC=∠AFD=∠AFE ,又∵∠DFC +∠AFD +∠AFE=180°∴∠DFC=∠AFD=∠AFE=60°故选 A .8.如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是( )A .1B .C .D .【解析】连接AC ,DP ,如图所示.∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB=CD ,S 正方形ABCD =1,∵S △ADP =S 正方形ABCD =,S △ABP +S △ACP =S △ABC =S 正方形ABCD =,∴S △ADP +S △ABP +S △ACP =1, ∴AP•BB′+AP•CC′+AP•DD′=AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=,∵当点P与C重合时,PA的值最大,PA的最大值为,∴BB′+CC′+DD′的最小值是,故选B.9.如图,正方形ABCD的边长为8,∠DAC的平分线交DC于点E.若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是()A.4 B.8 C.4D.8【解析】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=8,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,∵AP′=P′D',2P′D′2=AD′2=64,∴P′D′=4,即DQ+PQ的最小值为4.故选C.10.如图,边长为1的正方形ABCD 的对角线AC ,BD 相交于点O ,∠MPN 为直角,使点P 与点O 重合,直角边PM ,PN 分别与OA ,OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM ,PN 分别交AB ,BC 于E ,F 两点,连接EF 交OB 于点G ,则下列结论:①EF=OE ;②S 四边形OEBF :S 正方形ABCD =1:4;③BE +BF=OA ;④在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=;⑤OG•BD=AE 2+CF 2.其中结论正确的个数是( )A .2个B .3个C .4个D .5个【解析】①∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF +∠COF=90°,∵∠EOF=90°,∴∠BOF +∠COE=90°,∴∠BOE=∠COF ,在△BOE 和△COF 中,,∴△BOE ≌△COF (ASA ),∴OE=OF ,BE=CF ,∴EF=OE ;故正确;②∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =S 正方形ABCD ,∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;③过点O 作OH ⊥BC ,∵BC=1,∴OH=BC=,设AE=x ,则BE=CF=1﹣x ,BF=x ,∴S △BEF +S △COF =BE•BF +CF•OH=x (1﹣x )+(1﹣x )×=﹣(x ﹣)2+,∵a=﹣<0,∴当x=时,S △BEF +S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=;故错误;④∵∠EOG=∠BOE ,∠OEG=∠OBE=45°,∴△OEG ∽△OBE ,∴OE :OB=OG :OE ,∴OG•OB=OE 2,∵OB=BD ,OE=EF ,∴OG•BD=EF 2,∵在△BEF 中,EF 2=BE 2+BF 2,∴EF 2=AE 2+CF 2,∴OG•BD=AE 2+CF 2.故正确.故选B .二.填空题(共10小题,满分40分,每小题4分)11.已知菱形ABCD 的边长为6,∠A=60°,如果点P 是菱形内一点,且PB=PD=2,那么AP 的长为 或 .【解析】当P 与A 在BD 的异侧时:连接AP 交BD 于M ,∵AD=AB ,DP=BP ,∴AP ⊥BD (到线段两端距离相等的点在垂直平分线上),在直角△ABM 中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•si n30°=3, ∴PM==,∴AP=AM +PM=4;当P 与A 在BD 的同侧时:连接AP 并延长AP 交BD 于点MAP=AM ﹣PM=2;当P 与M 重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP 的长为4或2.故答案为4或2.12.如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=16°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为29°或61°.【解析】∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,,∴△AGE≌△ADF(SSS),∴∠DAF=∠CAE=16°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD﹣∠DAF=45°﹣16°=29°,点F在AD的上方时,∠CAF=∠CAD+∠DAF=45°+16°=61°,综上所述,∠CAF的度数为29°或61°.故答案为:29°或61°.13.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为20.【解析】延长BG,交AE与点C,∵∠ABC=45°∴△ABC是等腰直角三角形,∴AB=AC∴CE=5∵△CED是等腰直角三角形,∴CD=5∵CD=GF,∴中间的小正方形的边长是5,因而周长是20.故答案为2014.已知:如图,矩形ABCD的对角线相交于O,AE平分∠BAD交BC于E,∠CAE=15°,则∠BOE=75°.【解析】∵AE平分∠BAD交BC于E,∴∠AEB=45°,AB=BE,∵∠CAE=15°,∴∠ACB=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=60°,又∵OA=OB,∴△BOA是等边三角形,∴OA=OB=AB,即OB=AB=BE,∴△BOE是等腰三角形,且∠OBE=∠OCB=30°,∴∠BOE=(180°﹣30°)=75°.故答案为:75.15.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,直角△CEF的面积为200,则BE的值为12.【解析】∵四边形ABCD是正方形,∴BC=CD,∠D=∠ABC=∠BCD=90°,∴∠CBE=90°,∵∠ECF=90°,∴BCE=∠DCF,在△BCE和△DCF中,,∴△BCE≌△DCF(ASA),∴CE=CF,∴△CEF是等腰直角三角形,∴△CEF的面积=CE•CF=CE2=200,∴CE=20,∵正方形ABCD的面积为256,∴BC==16,∴BE===12.故答案为:12.16.如图,四边形ABCD是菱形,E在AD上,F在AB延长线上,CE和DF 相交于点G,若CE=DF,∠CGF=30°,AB的长为6,则菱形ABCD的面积为18.【解析】连接AC、BD,交于点O,分别取AE、BF的中点M、N,连接OM、ON,在AB上截取AH=AM,连接OH,过C作CP⊥AF于P,∵四边形ABCD是菱形,∴O是BD的中点,也是AC的中点,∴OM=CE,ON=DF,∵CE=DF,∴OM=ON,∵AC平分∠DAB,∴∠DAC=∠BAC,∵AO=AO,∴△AMO≌△AHO,∴OM=OH,∠AMO=∠AHO,∴OM=OH=ON,∴∠OHN=∠ONH,∵∠AHO+∠OHN=180°,∴∠AMO+∠ONH=180,∵OM∥EC,ON∥DF,∴∠AMO=∠AEC,∠ONH=∠GFA,∴∠AEC+∠GFA=180°,∴∠DAB+∠EGF=180°,∵∠CGF=30°,∴∠EGF=150°,∴∠DAB=30°,∵AD∥BC,∴∠CBF=∠DAB=30°,∵AB=BC=6,∴CP=BC=3,∴菱形ABCD的面积=AB•CP=6×3=18,故答案为18.17.如图,ABCD是正方形,M是BC中点,将正方形折起,使点A与点M重合,设折痕为EF,若正方形面积是64,那么梯形AEFD的面积是24.【解析】依题意得,正方形的边长为8,设AE=x,由折叠可知EM=AE=x,BE=8﹣x,BM=8÷2=4,在Rt△BME中,BE2+BM2=EM2,即(8﹣x)2+42=x2,解得:x=5,再设DF=y,则CF=8﹣y,AD2+DF2=CF2+CM2,即82+y2=(8﹣y)2+42,解得:y=1,S梯形AEFD=×(AE+DF)×AD=×(5+1)×8=24.故答案为:24.18.如图,将边长为4cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN交AB于M,交DC于N,则线段FM长为cm.【解析】∵点E为BC的中点,∴CE=BC=2,由翻折的性质得,EN=DN,设CN=x,则EN=DN=4﹣x,在Rt△CEN中,CE2+CN2=EN2,即22+x2=(4﹣x)2,解得x=,过点M作MG⊥CD于G,连接DE,则MG=CD,由翻折的性质得,MN⊥DE,∴∠NMG=∠EDC,在△CDE和△GMN中,,∴△CDE≌△GMN(ASA),∴GN=CE=2cm,∴DG=4﹣﹣2=cm,∵MG⊥CD,四边形ABCD是正方形,∴四边形AMGD是矩形,∴AM=DG,由翻折的性质得,FM=AM=cm.故答案为:cm.19.如图,正方形ABCD中,点E、F分别是BC、CD边上的点,且∠EAF=45°,对角线BD交AE于点M,交AF于点N.若AB=2,BM=1,则MN的长为.【解析】如图,延长BC到G,使BG=DF连接AG,在AG截取AH=AN,连接MH、BH.∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠4=∠5=45°,∠BAD=∠ADF=∠ABE=∠ABG=90°,在RT△ABG和RT△ADF中,,∴RT△ABG≌RT△ADF(SAS),∴∠1=∠2,∠7=∠G,AF=AG,∴∠GAE=∠2+∠3=∠1+∠3=∠BAD﹣∠EAF=90°﹣45°=45°=∠EAF,在△AMN和△AMH中,,∴△AMN≌△AMH(SAS),∴MN=MH,∵AF=AG,AN=AH,∴FN=AF﹣AN=AG﹣AH=GH,在△DFN和△BFH中,,∴△DFN≌△BGH(SAS),∴∠6=∠4=45°,DN=BH,∴∠MBH=∠ABH+∠5=∠ANG﹣∠6+∠5=90°﹣45°+45°=90°∴BM2+DN2=BM2+BH2=MH2=MN2,∵BD=AB=4,∴12+(4﹣1﹣MN)2=MN2,∴MN=,故答案为:.20.一个矩形各边的长都是正整数,而且它的面积的数量等于其周长的数量的2倍,这样的矩形有3个.【解析】设矩形的长和宽分别是y和x,∵矩形的面积(量数)是周长(量数)的2倍,∴xy=4(x+y),即xy﹣4x﹣4y=0.∴xy﹣4x﹣4y+16=16,即(x﹣4)(y﹣4)=16.不妨设x≤y,∴x﹣4=1,y﹣4=16 或者x﹣4=2,y﹣4=8 或者x﹣4=4,y﹣4=4,∴x=5时y=20;x=6时y=12;x=8时,y=8,∴(5,20)或者(6,12)或者(8,8).故答案为:3.三.解答题(共5小题,满分70分)21.(12分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA 的度数.【解析】(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.22.(12分)已知,如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,E 为BC边上一点,作∠AEF=∠ACF=90°(1)试判断AE和EF的数量关系,并说明理由;(2)当四边形ABCD的面积为16,BC的长为6,求AD的长.【解析】(1)作AM⊥BC,AN⊥CD垂足分别为M、N,在线段AM上截取AH=CE,连接HE.∵∠AMC=∠MCN=∠=90°,∴四边形AMCN 是矩形,∴∠MAN=90°,∵∠BAD=90°,∴∠BAD=∠MAN ,∴∠BAM=∠DAN ,在△AMB 和△AND 中,,∴△AMB ≌△AND ,∴AM=AN ,∴四边形AMCN 是正方形,∴AM=CM ,∠ACM=45°,∵∠ACF=90°,∴∠ECF=135°,∵AH=EC ,∴MH=ME ,∴∠MHE=45°,∠AHE=135°=∠ECF ,∵∠FEC +∠AEM=90°,∠HAE +∠AEM=90°,∴∠FEC=∠HAE ,在△AHE 和△ECF 中,,∴△AHE ≌△ECF ,∴AE=EF .(2)由(1)可知:四边形AMCN 是正方形,△AMB ≌△AND ,∴S △AMB =S △AND ,∴S 四边形ABCD =S 正方形AMCN =16,∴AN=MC=4,∵BC=6,∴MB=ND=2,在RT△AND中,∵AN=4,ND=2,∴AD===2.23.(14分)如图,在正方形ABCD中,点P是AD边上的一个动点,连接PB,过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.(1)求证:△PBQ是等腰直角三角形;(2)若PQ2=PB2+PD2+1,求△PAB的面积.【解析】(1)证明:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△PAB和Rt△QCB中,,∴△PAB≌△QCB(ASA),∴PB=QB,∴△PBQ是等腰直角三角形;(2)设正方形的边长AB=a,PA=x,∵△PAB≌△QCB,∴QC=PA=x,∴DQ=DC+QC=a+x,PD=AD﹣PA=a﹣x,在Rt△PAB中,PB2=PA2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△PAB的面积S=PA•PB=ax=.24.(15分)已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为.(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G.将∠AEG绕点A顺时针旋转30°得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′,C′分别在直线l2,l4上,求菱形AB′C′D′的边长.【解析】(1)∵l1∥l2∥l3∥l4,∠AED=90°∴∠DGC=90°,∵四边形ABCD为正方形∴∠ADC=90°,AD=CD,∵∠ADE+∠2=90°,∴∠1+∠2=90°,∴∠1=∠ADE,∵l3∥l4∴∠1=∠DCG,∠ADE=∠DCG,在△AED与△DGC中,,∴△AED≌△GDC(AAS),∴AE=GD=1,ED=GC=3,∴AD==,故答案为:;(2)如图2过点B作BE⊥L1于点E,反向延长BE交L4于点F,则BE=1,BF=3,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠FBC=90°,∵∠ABE+∠EAB=90°,∴∠FBC=∠EAB,当AB<BC时,AB=BC,∴AE=BF=,∴AB==;如图3当AB>BC时,同理可得:BC=,∴矩形的宽为:,;(3)如图4过点E′作ON垂直于l1分别交l1,l4于点O,N,∵∠OAE′=30°,则∠E′FN=60°∵AE′=AE=1,故E′O=,E′N=,E′D′=,由勾股定理可知菱形的边长为:==.25.(17分)如图一,已知点P是边长为a的等边△ABC内任意一点,点P到三边的距离PD、PE、PF的长分别记为h1,h2,h3,则h1,h2,h3之间有什么关系呢?分析:连接PA 、PB 、PC ,则△ABC 被分割成三个三角形,根据:S △PAB +S △PBC +S △PAC =S △ABC ,即:,可得.问题1:若点P 是边长为a 的等边△ABC 外一点(如图二所示位置),点P 到三边的距离PD 、PE 、PF 的长分别记为h 1,h 2,h 3.探索h 1,h 2,h 3之间有什么关系呢?并证明你的结论;问题2:如图三,正方形ABCD 的边长为a ,点P 是BC 边上任意一点(可与B 、C 重合),B 、C 、D 三点到射线AP 的距离分别是h 1,h 2,h 3,设h 1+h 2+h 3=y ,线段AP=x ,求y 与x 的函数关系式,并求y 的最大值与最小值.【解析】问题1:h 1+h 3﹣h 2=.理由:连接PA 、PB 、PC . ∵PE ⊥BC ,PD ⊥BA ,且△ABC 是边长为a 的等边三角形,∴S △PAB =,S △PBC =,∴S 四边形ABCP =S △PAB +S △PBC =+, 又∵S 四边形ABCP =S △APC +S △ABC =+a 2, ∴+=++a 2,即:h 1+h 3﹣h 2=;问题2:连接DP 、AC . 易求:S △APB +S △ADP +S △ACP =, 易证:S △DCP =S △ACP (同底等高), 而S 正方形ABCD =S △APB +S △ADP +S △DCP , ∴,∴y=(a ≤x ≤a ), ∵2a 2>0,∴y 随x 的增大而减少, ∴当x=a 时,y 最小=a ,当x=a 时,y 最大=2a .。
中考数学平行四边形(大题培优)附答案解析
OE OD OH OG 2OC .
【详解】
解:(1)∵ AOB 90 , MCN 90, CD OA , ∴ 四边形 ODCE 为矩形. ∵ OP 是 AOB 的角平分线, ∴ DOC EOC 45 ,
∴ OD CD ,
∴ 矩形 ODCE 为正方形,
∴ OC 2OD , OC 2OE .
【答案】(1)D(1,3);(2)①详见解析;②H( 17 ,3);(3) 5
30 3 34 ≤S≤ 30 3 34 .
4
4
【解析】
【分析】
(1)如图①,在 Rt△ ACD 中求出 CD 即可解决问题;
(2)①根据 HL 证明即可;
②,设 AH=BH=m,则 HC=BC-BH=5-m,在 Rt△ AHC 中,根据 AH2=HC2+AC2,构建方程求出
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,△ ABC 是等边三角形,AB=6cm,D 为边 AB 中点.动点 P、Q 在边 AB 上同时从 点 D 出发,点 P 沿 D→A 以 1cm/s 的速度向终点 A 运动.点 Q 沿 D→B→D 以 2cm/s 的速度 运动,回到点 D 停止.以 PQ 为边在 AB 上方作等边三角形 PQN.将△ PQN 绕 QN 的中点旋 转 180°得到△ MNQ.设四边形 PQMN 与△ ABC 重叠部分图形的面积为 S(cm2),点 P 运 动的时间为 t(s)(0<t<3). (1)当点 N 落在边 BC 上时,求 t 的值. (2)当点 N 到点 A、B 的距离相等时,求 t 的值. (3)当点 Q 沿 D→B 运动时,求 S 与 t 之间的函数表达式. (4)设四边形 PQMN 的边 MN、MQ 与边 BC 的交点分别是 E、F,直接写出四边形 PEMF 与四边形 PQMN 的面积比为 2:3 时 t 的值.
中考数学 平行四边形 培优 易错 难题练习(含答案)附答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析. 【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题; 试题解析:解:(1)AC=AD+AB . 理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°, ∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB , ∴∠DAC=∠BAC=60°, ∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA ≌△CBE , ∴AD=BE , ∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°, ∴AE =245ACAC cos ︒= ∴2AD AB AC +=.2.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD , ∴∠OBE=∠ODF , 在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ), ∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF , 设BE=x ,则 DE=x ,AE=6-x , 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x )2,解得:x= 133, ∵BD=22AD AB + =213,∴OB=12BD=13, ∵BD ⊥EF ,∴EO=22BE OB -=213, ∴EF=2EO=4133. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键3.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标.(3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可).【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344+. 【解析】 【分析】(1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可;②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;【详解】(1)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=22=4,AD AC∴BD=BC-CD=1,∴D(1,3).(2)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(1)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC,∴∠CBA=∠OAB,∴∠BAD=∠CBA,∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,∵AH2=HC2+AC2,∴m2=32+(5-m)2,∴m=175,∴BH=175,∴H(175,3).(3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=12•DE•DK=12×3×(5-342)=303344-,当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=12×D′E′×KD′=12×3×(5+342)=303344+.30334-S30334+【点睛】本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.4.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.【答案】(1)、5;(2)、622+;(3)、3212++.【解析】【分析】试题分析:(1)、如图1中,连接OD,在Rt△ODC中,根据OD=22OC CD+计算即可.(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.在Rt△OCE中,根据OC=22OE CE+计算即可.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.分别求出MH、OM、FH即可解决问题.【详解】试题解析:(1)、如图1中,连接OD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=1,∠C=90°在Rt△ODC中,∵∠C=90°,OC=2,CD=1,∴OD=2222215OC CD+=+=(2)、如图2中,作CE⊥OB于E,CF⊥AB于F,连接OC.∵∠FBE=∠E=∠CFB=90°,∴四边形BECF是矩形,∴BF=CF=12,3在Rt△OCE中,222231122OE CE⎛⎫⎛⎫+=++⎪ ⎪⎪⎝⎭⎝⎭622.(3)、如图3中,当OF⊥DE时,OF的值最大,设OF交DE于H,在OH上取一点M,使得OM=DM,连接DM.∵FD=FE=DE=1,OF ⊥DE , ∴DH=HE ,OD=OE ,∠DOH=12∠DOE=22.5°, ∵OM=DM , ∴∠MOD=∠MDO=22.5°, ∴∠DMH=∠MDH=45°, ∴DH=HM=12, ∴DM=OM=22, ∵FH=223DF DH -=, ∴OF=OM+MH+FH=2132++=321++. ∴OF 的最大值为321++. 考点:四边形综合题.5.如图(1)在正方形ABCD 中,点E 是CD 边上一动点,连接AE ,作BF ⊥AE ,垂足为G 交AD 于F(1)求证:AF =DE ;(2)连接DG ,若DG 平分∠EGF ,如图(2),求证:点E 是CD 中点; (3)在(2)的条件下,连接CG ,如图(3),求证:CG =CD .【答案】(1)见解析;(2)见解析;(3)CG =CD ,见解析. 【解析】 【分析】(1)证明△BAF ≌△ADE (ASA )即可解决问题.(2)过点D 作DM ⊥GF ,DN ⊥GE ,垂足分别为点M ,N .想办法证明AF =DF ,即可解决问题.(3)延长AE ,BC 交于点P ,由(2)知DE =CD ,利用直角三角形斜边中线的性质,只要证明BC =CP 即可. 【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=1BP=BC,2∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.6.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度7.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【答案】(1)见解析;(2)S△B′EC=108 25.【解析】【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.【详解】(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=165cm,∴BO22AB AO125cm,∴BB′=2BO=245cm,∴在Rt △BB 'C 中,B ′C =22BC BB '-=518cm , 由题意可知四边形OEFB ′是矩形,∴EF =OB ′=125, ∴S △B ′EC =*111812108225525B C EF '⨯=⨯⨯=.【点睛】考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.8.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME ,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.9.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因为S△ABC=12 BC•AP,S△DFC=12FC•DQ,所以S△ABC=S△DFC;(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×12×3×4=18.(1)证明:在△ABC与△DFC中,∵{AC DCACB DCFBC FC∠∠===,∴△ABC≌△DFC.∴△ABC与△DFC的面积相等;(2)解:成立.理由如下:如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.∴∠APC=∠DQC=90°.∵四边形ACDE,BCFG均为正方形,∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ.∴{APC DQCACP DCQAC CD∠∠∠∠===,△APC≌△DQC(AAS),∴AP=DQ.又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题10.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .Rt △AED 中,由勾股定理,得222AE DE AD =-,即2222AE AD AE AD ()=--,∴AE=34AD. ∴BE=2AD-34AD=54. ∴554334AD BE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°.∵M 为AD 的中点,∴AM=DM .∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD.∴∠GAM=∠PDM .在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP , ∴△GAM ≌△PDM (ASA ).∴MG=MP .在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME ,∴△EMP ≌△EMG (SAS ).∴EG=EP .∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .(3)12BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O ,∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°.∵四边形FKBC 是矩形,∴KF=BC ,FC=KB.∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ.∵∠A=∠EKF=90°,∴△ABM ∽△KFE.∴EK KF AM AB =即BE BK BC AM AB-=.∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CF AM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.。
人教版八年级下册数学 第十八章 平行四边形 单元培优测试题
人教版八年级下册数学第十八章平行四边形单元培优测试题一.选择题(本大题共10小题,每小题3分,共30分)1.如图,▱ABCD的对角线AC、BD相交于点O,下列说法错误的是()A.AD∥BC B.∠ABC=∠ADC C.OA=OC D.∠ACD=2∠ABD2.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直3.如图,在矩形ABCD纸片中,E为AD上一点,将△CDE沿CE翻折至△CFE.若点F恰好落在AB 上,AF=3,BC=9,则AE=()A.9B.32C.23D.44.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90°时,它是矩形5.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,=()OH的长为3,则S菱形ABCDA.12B.24C.36D.486.如图,菱形ABCD的对角线AC.BD相交于点O,过点D作DH⊥AB于点H,连接CH,若AB=2,AC=23,则CH的长是()A.5B.3C.7D.47.如图,矩形AEFG 的顶点E、F 分别在菱形ABCD 的边AB 和对角线BD 上,连接EG、CF,若EG=5,则CF 的长为()A.4B.5C.5D.78.如图,在平面直角坐标系中,AD∥BC∥x 轴,AD=BC=7,且A(0,3),C(5,﹣1),则四边形ABCD 的面积为()A.14B.21C.28D.309.如图,正方形ABCD 和正方形DEFG 中,A,D,E 在同一条直线上,AD=2DE,M 为BC 的中点,延长FG 交AB 于点N,连接MN,CN,CF,连接FM 分别交CN,CD 于点P、Q,下列说法:①△FQG≌△MQC;②∠BCN=∠MFG;③S △CFQ :S 四边形BMPN =3:7;④FQ=2PQ,其中正确的结论有()A.4个B.3个C.2个D.1个10.如图,在正方形ABCD 中,E、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当0<x<42−2,△PEF 是等腰三角形时,下列关于P 点个数的说法中,P 点最多有()A.8个B.10个C.12个D.14个二.填空题(本大题共6小题,每小题3分,共18分)11.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于点E,若∠A=130°,则∠BEC=°.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是.13.如图,在▱ABCD两对角线A,BD相交于点O,且AC+BD=36,AB=11,则△COD的周长是.14.如图,在矩形ABCD中,AB=4,AD=6,点E是边BC的中点,连接AE,若将△ABE沿AE翻折,点B落在点F处,连接FC,则CF=.15.如图,正方形ABCD的边长为6,点P为BC边上一动点,以P为直角顶点,AP为直角边作等腰Rt△APE,M为边AE的中点,当点P从点B运动到点C,则点M运动的路径长为.16.如图,在矩形ABCD中,AB=6,AD=2,E、F分别是AB和DC上的两个动点,M为BC的中点,则DE+EF+FM的最小值是;若∠EFD=45°,则DE+EF+FM的最小值为.三.解答题(本大题共9小题,共72分)17.(6分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.18.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE 是平行四边形.19.(6分)如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)四边形BFDE是什么特殊四边形?请说明理由;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.20.(6分)如图,点O是△ABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.21.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,连接BE.(1)求证:四边形OCED是菱形;(2)若∠AOB=60°,AB=2,求BE的长.22.(10分)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值;若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动秒时,四边形BCMP的周长最小,其最小值为.23.(10分)如图1,以▱ABCD的邻边AB和BC为边向外作正方形ABFE和正方形BCHG,连接BD、FG,线段BD和FG之间存在怎样的数量关系和位置关系?(1)先将问题特殊化,如图2,当∠ADC=90°时,直接写出BD和FG之间的数量关系和位置关系.(2)再探究一般情况,当∠ADC≠90°时,证明(1)中的结论依然成立.(3)在(2)的条件下,连接EH,M为EH的中点,连接MF,试给出FM和BD的数量关系并证明.24.(10分)如图,点B(m,n)为平面直角坐标系内一点,且m,n满足n=m−6+6−m+6,过点B分别作BA⊥y轴于点A,BC⊥x轴于点C.(1)求证:四边形ABCO是正方形;(2)点E(0,b)为y轴上一点,点F(a,0)为x轴上一点.①如图1,若a=2,b=4,点G为线段BE上一点,且∠EGF=45°,求线段FG的长;②如图2,若a+b=6,直线AF与BE交于点H,连接CH,则CH的最小值为.25.(10分)菱形ABCD中,∠ABC=60°,△BEF为等边三角形,将△BEF绕点B顺时针旋转,M为线段DF的中点,连接AM、EM.(1)如图1,E为边AB上一点(点A、E不重合),则EM、AM的位置关系是,EM、AM的数量关系是;(2)将△BEF旋转至如图2所示位置,(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)若AB=23,EF=1,在旋转过程中,CM的最小值为,此时DF的长为.。
四边形经典培优提高题
四边形一.选择题(共16小题)★★★1.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则图中阴影面积(△PEF和△PGH的面积和)等于()A.7 B.8 C.12 D.14★★★2.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB、OC,点E在线段BC上(点E不与点B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为()A.6 B.1.5 C .D .★★★3.如图,O为矩形ABCD对角线的交点,AD=8cm,AB=6cm,将△ABO向右平移得到△DCE,则△ABO向右平移过程中扫过的面积是()A.12cm2B.24cm2C.48cm2D.60cm2★★★4.如图,线段AB 的长为,点D在AB上,△ACD是边长为15的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A .B.15 C .D.30★★★5.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6★★★6.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2B .C.2D.31★★★7.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2★★★8.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)9.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC★★★10.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A (5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)★★★11.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D .二.填空题(共3小题)★★★12.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB +,2若AC=CD,则边AD 的长为.★★★13.如图,正方形ABCD的长为8cm ,E 、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是cm2.★★★14.已知正方形ABCD,正方形CEFG,正方形PQFH如图放置,且正方形CEFG的边长为4,A、G、P三点在同一条直线上,连接AE、EP,那么△AEP的面积是.15.如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是.★★★16.如图所示,在平面直角坐标系中,矩形ABCD 定点A、B在y轴、x轴上,当B在x轴上运动时,A随之在y轴运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为.17.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于度.★★★18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.★★★19.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.★★★20.如图,在正方形ABCD中,AB=6,点E在边CD上,DE=DC,连接AE,将△ADE3沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG 的周长是.★★★21.如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.★★★22.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.23.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.12.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.24.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.★★★25.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A 恰好落在直线l上,则DF的长为.26.如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.427.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.28.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE 所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB=.★★★29.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.★★★30.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP 的底边长是.★★★31.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.32.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.533.如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE ,则=.34.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.35.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.★★★36.如图,点E为正方形ABCD中AD边上的动点,AB=2,以BE为边画正方形BEFG,连结CF和CE,则△CEF面积的最小值为.★★★37.如图,在平面直角坐标系xOy中,边长为2的正方形OCBA,点A、C分别在x轴、y轴上,把正方形绕点O逆时针旋转α 度后得到正方形OC1B1A1(0<α<90)﹒(1)直线OB的表达式是;(2)在直线OB上找一点P(原点除外),使△PB1A1为等腰直角三角形,则点P的坐标是.★★★38.如图,已知正方形ABCD的边长是4cm,点E是CD的中点,连结AE,点M是AE 的中点,过点M任意作直线分别与边AD、BC相交于点P、Q.若PQ=AE,则AP=cm.★★★39.如图,E、F是正方形ABCD的边AD上有两个动点,满足AE=DF,连接CF交BD于G,连接BE交AG于点H,若正方形的边长为3,则线段DH长度的最小值是.★★★40.如图,正方形ABCD的边长为4,线段GH=AB,将GH的两端放在正方形的相邻的两边上同时滑动,如果G点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点H从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段GH 的中点P所经过的路线围成的图形的面积为.★★★41.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,6AP=.★★★42.如图,正方形ABCD和正方形CEFG 中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.★★★43.如图,矩形ABCD中,AB=6,BC=4,点E在AB上,EF⊥DC于点F,在边AD,DF,EF,AE上分别存在点M,N,P,Q,这四点构成的四边形与矩形BCFE全等,则DM的长度为.★★★44.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是.★★★45.如图,矩形ABCD,对角线AC,BD相交于点O,点E是边CD上一动点,已知AC=10,CD=6,则OE的最小值是.★★★46.如图,线段AB的长为10cm,点D在AB上,△ACD为等边三角形,过点D作DP ⊥CD,点G是DP上不与点D重合的一动点,作矩形CDGH.记矩形CDGH的对角线交点为O,连接OA、OB,(1)∠OAB=度;(2)线段BO的最小值为cm.★★★47.如图,在矩形ABCD中,AB=2,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为时,△CDF是等腰三角形.7★★★48.如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是.★★★49.如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG的最小值是.★★★50.如图,在Rt△ABC中,∠BAC=90°,AB=AC=,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S2,运y=S1+S2,则y与x的关系式是.★★★51.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为.★★★52.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是.★★★53.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、8D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E(3,0)在x轴上,点P在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有个.★★★54.如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE 折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为.★★★55.矩形ABCD中,AB=10,BC=4,Q为AB边的中点,P为CD边上的动点,且△AQP 是腰长为5的等腰三角形,则CP的长为.★★★56.如图,在矩形ABCD中,BC=6,CD=8,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=.★★★57.如图,在矩形ABCD中,AB=8,AD=6,P,Q分别是AB和CD上的任意一点,且AP=CQ,线段EF是PQ的垂直平分线,交BC于F,交PQ于E.设AP=x,BF=y,则y与x的函数关系式为.★★★59.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴上,顶点B的坐标为(8,4),点P是对角线OB上一个动点,点D的坐标为(0,﹣2),当DP与AP之和最小时,点P的坐标为.★★★60.如图,已知菱形ABCD的两条对角线长分别是3和4,点M、N分别是边BC、CD9的中点,点P是对角线上的一点,则PM+PN的最小值是.★★★61.如图,在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF⊥AC分别交AD、AB于点E、F,将△AEF沿EF折叠,点A落在点A′处,当△A′BC是等腰三角形时,AP的长为.★★★62.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是.★★★63.如图,在菱形ABCD中,sin∠D=,E,F分别是AB和CD上的点,BC=5,AE=CF=2,点P是线段EF上一点,则当△BPC是直角三角形时,CP的长为.★★★64.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF= 60°,连接EF,则△AEF的面积最小值是.三.解答题(共11小题)★★★65.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?1066.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.★★★67.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.★★★68.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.69.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.1170.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.★★★71.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.12。
专题44 特殊的四边形 初中数学学科素养能力培优竞赛试题精选专练含解析卷
专题44特殊的四边形一、三角形的中位线【典例】如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?【解答】解:AP=AQ.理由如下:如图,取BC的中点H,连接MH,NH.∵M,H为BE,BC的中点,∴MH∥EC,且MH=12EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=12BD.∵BD=CE,∴MH=NH.∴∠HMN=∠HNM;∵MH∥EC,∴∠HMN=∠PQA,同理∠HNM=∠QPA.∴△APQ为等腰三角形,∴AP=AQ.【巩固】如图,在▱ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,求线段BC的长.二、矩形中的折叠【典例】如图,折叠矩形纸片ABCD ,使点B 的对应点E 落在CD 边上,GH 为折痕,已知AB =6,BC =10.当折痕GH 最长时,线段BH 的长为 .【解答】解:由题知,当E 点与D 点重合时GH 最长, 设BH =x ,则CH =10﹣x ,HE =BH =x , 由勾股定理得,HC 2+CE 2=HE 2, 即(10﹣x )2+62=x 2, 解得x =6.8, 故答案为:6.8.【巩固】如图,点E 是矩形ABCD 的边CD 上一点,(1)如图1,将△ADE 沿AE 翻折,使点D 的对应点M 恰好在BC 边的中点,求AD AB的值;(2)如图2,若点E 为CD 的中点,过点A 作AF ⊥BE 于F ,连接DF ,求证DF =BC .三、直角三角形斜边上的中线【典例】如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .1B .1.3C .1.2D .1.5【解答】解:∵AB =3,AC =4,BC =5, ∴∠EAF =90°,∵PE ⊥AB 于E ,PF ⊥AC 于F , ∴四边形AEPF 是矩形,∴EF ,AP 互相平分.且EF =AP , ∴EF ,AP 的交点就是M 点.∵当AP 的值最小时,AM 的值就最小,∴当AP ⊥BC 时,AP 的值最小,即AM 的值最小. ∵12AP •BC =12AB •AC ,∴AP •BC =AB •AC . ∵AB =3,AC =4,BC =5, ∴5AP =3×4, ∴AP =2.4, ∴AM =1.2; 故选:C . 【巩固】如图,∠BAC =∠BDC =90°,四边形ABDE 为平行四边形,若AD =6,BC =8,则CE 的长为 .四、菱形中最值问题【典例】如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=1 4S菱形ABCD,则PB+PC的最小值为.【解答】解:过A作AE⊥BC于E,∵∠ABC=30°,AB=4,∴AE=12AB=2,∴S△PBC=14S菱形ABCD=14×4×2=2,设点P到BC的距离为h,∴h=1,即点P在平行于BC且到BC的距离为1的直线上,作点B关于直线l的对称点G,连接CG交直线l于点P,则此时,PB+PC的值最小,PB+PC的最小值=CG,∵BG⊥l,∴BG⊥BC,∴∠CBG=90°,BG=2h=2,∴CG=√22+42=2√5,【巩固】如图,菱形ABCD中,AB=2,∠A=120°,点P是直线BD上一动点,连接PC,当PC+PB 2的值最小时,线段PD长是.巩固练习1.如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E 不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论.其中错误的是()A.∠GEB与∠GFB一定互补B.点G到边AB,BC的距离一定相等C.点G到边AD,DC的距离可能相等D.点G到边AB的距离的最大值为2√22.如图,分别以R t△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当ACAB=时,四边形ADFE是平行四边形.3.如图,矩形ABCD,AB=1,BC=2,点A在x轴正半轴上,点D在y轴正半轴上.当点A在x轴上运动时,点D也随之在y轴上运动,在这个运动过程中,点C到原点O的最大距离为.4.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.5.如图,在矩形ABCD中,AD=√3AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N 运动过程中,则以下结论正确的是.(写出所有正确结论的序号)①点M、N的运动速度不相等;②存在某一时刻使S△AMN=S△MON;③S△AMN逐渐减小;④MN2=BM2+DN2.6.如图,菱形ABCD,AB=5,E在BC上,BE=4,过点E作EG⊥AD于G,交BD于F,连接DE,若∠A=4∠DEG,则EF的长为.7.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P 为BF中点,连接PD,则线段PD长的取值范围是.8.如图,在△ABC中,∠ABC=90°,BD为△ABC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形:(2)若∠BAC=30°,BC=2,求四边形BDFG的面积.9.已知四边形ABCD是矩形.(1)如图1,E、F分别是AB、AD上的点,CE垂直平分BF,垂足为G,连接DG.①求证:DG=CG;②若BC=2AB,求∠DGC的大小;(2)如图2,AB=BC=6,M、N、P分别是AB、CD、AD上的点,MN垂直平分BP,点Q是CD的中点,连接MP,PQ,若PQ⊥MP,直接写出CN的长.10.已知:如图,把矩形纸片OABC放入直角坐标系x O y中,使OA、OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在该坐标平面内,设这个落点为D,CD交x轴于点E.如果CE=5,OC、OE的长是关于x的方程x2+(m﹣1)x+12=0的两个根,并且OC>OE.(1)求点D的坐标;(2)如果点F是AC的中点,判断点(8,﹣20)是否在过D、F两点的直线上,并说明现由.11.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)线段AO的长为;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AM=√33AC;(3)连接EM.若△AFM的周长为3√29,请直接写出△AEM的面积.12.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE、CE、若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论;(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.专题44特殊的四边形一、三角形的中位线【典例】如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?【解答】解:AP=AQ.理由如下:如图,取BC的中点H,连接MH,NH.∵M,H为BE,BC的中点,∴MH∥EC,且MH=12EC.∵N,H为CD,BC的中点,∴NH∥BD,且NH=12BD.∵BD=CE,∴MH=NH.∴∠HMN=∠HNM;∵MH∥EC,∴∠HMN=∠PQA,同理∠HNM=∠QPA.∴△APQ为等腰三角形,∴AP=AQ.【巩固】如图,在▱ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,求线段BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5,R t △BNM 中,由勾股定理得:BN 2=BM 2+MN 2,即52=x 2+(12x )2, 解得,x =2√5,∴BC =2x =4√5.答:线段BC 的长为4√5.二、矩形中的折叠【典例】如图,折叠矩形纸片ABCD ,使点B 的对应点E 落在CD 边上,GH 为折痕,已知AB =6,BC =10.当折痕GH 最长时,线段BH 的长为 .【解答】解:由题知,当E 点与D 点重合时GH 最长,设BH =x ,则CH =10﹣x ,HE =BH =x ,由勾股定理得,HC 2+CE 2=HE 2,即(10﹣x )2+62=x 2,解得x =6.8,故答案为:6.8.【巩固】如图,点E 是矩形ABCD 的边CD 上一点,(1)如图1,将△ADE 沿AE 翻折,使点D 的对应点M 恰好在BC 边的中点,求AD AB 的值;(2)如图2,若点E 为CD 的中点,过点A 作AF ⊥BE 于F ,连接DF ,求证DF =BC .【解答】(1)解:如图1,∵四边形ABCD 是矩形,∴AD =BC ,由折叠可得AD =AM ,∴BC =AM ,又∵M 是BC 的中点,∴BM =12BC =12AM ,又∵∠B =90°,∴R t △ABM 中∠BAM =30°,∴BM =12AM ,AB =√3BM ,∴AM AB =√3BM =23√3,即AD AB =23√3;(2)证明:如图2所示,延长BE ,AD ,交于点G ,则∠BEC =∠GED ,∵AG ∥BC ,∴∠G =∠CBE ,∵E 是CD 的中点,∴DE =CE ,在△BCE 和△GDE 中,{∠BEC =∠GED ∠CBE =∠G CE =DE ,∴△BCE ≌△GDE (AAS ),∴DG =BC =AD ,即D 是AG 的中点,又∵AF ⊥BG ,∴R t △AFG 中,DF =12AG =AD ,又∵矩形ABCD 中,AD =BC ,∴DF =BC .三、直角三角形斜边上的中线【典例】如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .1B .1.3C .1.2D .1.5【解答】解:∵AB =3,AC =4,BC =5,∴∠EAF =90°,∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF ,AP 互相平分.且EF =AP ,∴EF ,AP 的交点就是M 点.∵当AP 的值最小时,AM 的值就最小,∴当AP ⊥BC 时,AP 的值最小,即AM 的值最小.∵12AP •BC =12AB •AC , ∴AP •BC =AB •AC .∵AB =3,AC =4,BC =5,∴5AP =3×4,∴AP =2.4,∴AM =1.2;故选:C .【巩固】如图,∠BAC =∠BDC =90°,四边形ABDE 为平行四边形,若AD =6,BC =8,则CE 的长为 .【解答】解:如图,过点B 作BF ∥CD ,且BF =CD ,连接DF ,CF ,AF ,∵BF ∥CD ,DC =BF ,∴四边形BDCF 是平行四边形,且∠BDC =90°,∴四边形BDCF 是矩形,∴BC=DF=8,CF∥BD,CF=BD,∵四边形ABDE是平行四边形,∴BD∥AE,BD=AE,∴AE∥CF,AE=CF,∴四边形AECF是平行四边形,∴AF=CE,∵∠BAC=∠BDC=90°,∴点A,点B,点C,点D四点共圆,∴∠CAD=∠CBD,∵四边形BDCF是矩形,∴∠DBC=∠DFC,∠FCD=90°,∴∠DFC=∠DAC,∴点A,点F,点C,点D四点共圆,∴∠FAD+∠FCD=180°,∴∠FAD=90°,∴AF=√DF2−AD2=√82−62=2√7,∴EC=2√7,故答案为:2√7.四、菱形中最值问题【典例】如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且S△PBC=1 4S菱形ABCD,则PB+PC的最小值为.【解答】解:过A作AE⊥BC于E,∵∠ABC=30°,AB=4,∴AE=12AB=2,∴S△PBC=14S菱形ABCD=14×4×2=2,设点P到BC的距离为h,∴h=1,即点P在平行于BC且到BC的距离为1的直线上,作点B关于直线l的对称点G,连接CG交直线l于点P,则此时,PB +PC 的值最小,PB +PC 的最小值=CG ,∵BG ⊥l ,∴BG ⊥BC ,∴∠CBG =90°,BG =2h =2,∴CG =√22+42=2√5,【巩固】如图,菱形ABCD 中,AB =2,∠A =120°,点P 是直线BD 上一动点,连接PC ,当PC +PB 2的值最小时,线段PD 长是 .【解答】解:如图,过P 作PE ⊥BC 于E ,连接AP ,由菱形ABCD ,可得AB =CB ,∠ABP =∠CBP =∠ADP =30°,∴△ABP ≌△CBP ,BP =2PE ,∴AP =CP ,∴PC +PB 2=AP +PE , ∵当点A ,P ,E 在同一直线上时,AP +PE 最短, ∴此时,PC +PB 2的值最小,AP ⊥AD ,∵R t △ABE 中,AB =2,∴BE =1,AE =√3,∴R t △BEP 中,PE =13√3, ∴AP =23√3, ∵∠ADP =30°,∴R t △ADP 中,PD =2AP =43√3,故答案为:43√3.巩固练习1.如图,在矩形ABCD 中,AB =4,AD =5,点E ,F 分别是边AB ,BC 上的动点,点E 不与A ,B 重合,且EF =AB ,G 是五边形AEFCD 内满足GE =GF 且∠EGF =90°的点.现给出以下结论.其中错误的是( )A .∠GEB 与∠GFB 一定互补B .点G 到边AB ,BC 的距离一定相等C .点G 到边AD ,DC 的距离可能相等D .点G 到边AB 的距离的最大值为2√2【解答】解:A 、∵四边形ABCD 是矩形,∴∠B =90°,又∵∠EGF =90°,四边形内角和是360°,∴∠GEB +∠GFB =180°,故A 正确;B 、过G 作GM ⊥AB ,GN ⊥BC ,分别交AB 于M ,交BC 于N ,∵GE =GF 且∠EGF =90°,∴∠GEF =∠GFE =45°,又∵∠B =90°,∴∠BEF +∠EFB =90°,即∠BEF =90°﹣∠EFB ,∵∠GEM =180°﹣∠BEF ﹣∠GEF =180°﹣45°﹣(90°﹣∠EFB )=45°+∠EFB , ∠GFN =∠EFB +∠GFE =∠EFB +45°,∴∠GEM =∠GFN ,在△GEM 和△GFN 中,{∠GME =∠GNF∠GEM =∠GFN GE =GF ,∴△GEM≌△GFN(AAS),∴GM=GN,故B正确;C、∵AB=4,AD=5,并由B知,点G到边AD,DC的距离不相等,故C错误:D、在直角三角形EMG中,MG≤EG,当点E、M重合时EG最大,∵EF=AB=4,∴GE=EB=BF=FG=4×√22=2√2,故D正确.故选:C.2.如图,分别以R t△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当ACAB=时,四边形ADFE是平行四边形.【解答】解:当ACAB =√32时,四边形ADFE是平行四边形.理由:∵ACAB =√32,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,{∠ACB =∠EFA∠BAC =∠AEF AB =AE,∴△ABC ≌△EAF (AAS );∵∠BAC =30°,∠DAC =60°,∴∠DAB =90°,即DA ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ,∵△ABC ≌△EAF ,∴EF =AC =AD ,∴四边形ADFE 是平行四边形.故答案为:√32.3.如图,矩形ABCD ,AB =1,BC =2,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 .【解答】解:如图,取AD 的中点H ,连接CH ,OH ,∵矩形ABCD,AB=1,BC=2,∴CD=AB=1,AD=BC=2,∵点H是AD的中点,∴AH=DH=1,∴CH=√DH2+CD2=√1+1=√2,∵∠AOD=90°,点H是AD的中点,∴OH=12AD=1,在△OCH中,CO<OH+CH,当点H在OC上时,CO=OH+CH,∴CO的最大值为OH+CH=√2+1,故答案为:√2+1.4.如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是.【解答】解:连接DB,DE,设DE交AC于M,连接MB,DF,延长BA,DH⊥BA于H,∵四边形ABCD是菱形,∴AC,BD互相垂直平分,∴点B关于AC的对称点为D,∴FD=FB,∴FE+FB=FE+FD≥DE.只有当点F运动到点M时,取等号(两点之间线段最短),△ABD中,AD=AB,∠DAB=120°,∴∠HAD=60°,∵DH⊥AB,∴AH=12AD,DH=√32AD,∵菱形ABCD的边长为4,E为AB的中点,∴AE=2,AH=2,∴EH=4,DH=2√3,在R t△EHD中,DE=√EH2+DH2=√42+(2√3)2=2√7,∴EF+BF的最小值为2√7.故答案为:2√7.5.如图,在矩形ABCD中,AD=√3AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N 运动过程中,则以下结论正确的是.(写出所有正确结论的序号)①点M、N的运动速度不相等;②存在某一时刻使S△AMN=S△MON;③S△AMN逐渐减小;④MN2=BM2+DN2.【解答】解:如图,当M与B点重合时,此时NO⊥BD,∵在矩形ABCD中,AD=√3AB,∴∠ADB=∠DAC=30°,∴∠AOD=180°﹣30°﹣30°=120°,∴∠NAO=∠AOD﹣∠NOD=120°﹣90°=30°,∴∠DAO=∠NOA=30°,∴AN=ON=DN•sin30°=12DN,∵AN+DN=AD,∴AN=13AD,当M点运动到M'位置时,此时OM'⊥AB,N点运动到了N',∵AC和BD是矩形ABCD的对角线,∴M点运动的距离是MM'=12AB,N点运动的距离是NN'=12AD−AN=12AD−13AD=16AD,又∵AD=√3AB,∴NN'=16×√3AB=√36AB=√33MM',∴N 点的运动速度是M 点的√33, 故①正确,当M 在M '位置时, ∵∠OM 'A =90°,∠N 'AB =90°,∠M 'ON '=90°,∴四边形AM 'ON '是矩形,∴此时S △AMN =S △MON ,故②正确,令AB =1,则AD =√3,设BM =x ,则N 点运动的距离为√33x , ∴AN =13AD +√33x =√33+√33x ,∴S △AMN =12AM •AN =12(AB ﹣BM )•AN =12(1﹣x )(√33+√33x )=√36−√36x 2, ∵0≤x ≤1,在x 的取值范围内函数√36−√36x 2的图象随x 增加而减小, ∴S △AMN 逐渐减小,故③正确,∵MN 2=(AB ﹣BM )2+(AD ﹣DN )2=AB 2﹣2AB •BM +BM 2+AD 2﹣2AD •DN +DN 2=(AB 2﹣2AB •BM +3AB 2﹣2√3AB •DN )+BM 2+DN 2=(4AB 2﹣2AB •BM ﹣2√3AB •DN )+BM 2+DN 2, ∵AN =13AD +√33BM =√33AB +√33BM ,∴DN =AD ﹣AN =√3AB ﹣(√33AB +√33BM )=2√33AB −√33BM , ∵2√3AB •DN =2√3AB ×(2√33AB −√33BM )=4AB 2﹣2AB •BM , ∴MN 2=(4AB 2﹣2AB •BM ﹣2√3AB •DN )+BM 2+DN 2=BM 2+DN 2,故④正确,方法二判定④:如图2,延长MO 交CD 于M ',∵∠MOB =∠M 'OD ,OB =OD ,∠DBA =∠BDC ,∴△OMB ≌△OM 'D (ASA ),∴BM =DM ',OM =OM ',连接NM ',∵NO ⊥MM ',则MN =NM ',∵NM '2=DN 2+DM '2,故④正确,故答案为:①②③④.6.如图,菱形ABCD,AB=5,E在BC上,BE=4,过点E作EG⊥AD于G,交BD于F,连接DE,若∠A=4∠DEG,则EF的长为.【解答】解:如图,过点D作DM⊥BD,交BC的延长线于点M,设∠DEG=α,则∠A=4α,∵四边形ABCD是菱形,∴∠ABC=180°﹣∠A=180°﹣4α,∠ABD=∠CBD=∠BDC,∴∠ABD=∠CBD=∠BDC=90°﹣2α,∴∠M=90°﹣∠CBD=90°﹣(90°﹣2α)=2α,∠CDM=90°﹣∠BDC=90°﹣(90°﹣2α)=2α,∴∠M=∠CDM,∴CD=CM=5,∵EG⊥AD,∴∠BEG=90°,∴∠DEM=180°﹣∠BEG﹣∠DEG=180°﹣90°﹣α=90°﹣α,∴∠EDM=180°﹣∠DEM﹣∠M=180°﹣(90°﹣α)﹣2α=90°﹣α,∴DM=EM=EC+CM=1+5=6,∴BM=BC+CM=5+5=10,∴BD=√BM2−DM2=√102−62=8,∵∠BEF=∠BDM=90°,∠FBE=∠MBD,∴△FBE∽△MBD,∴EFDM =BEBD,即EF6=48,∴EF=3.故答案为:3.7.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P 为BF中点,连接PD,则线段PD长的取值范围是.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=12CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=12CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2√2,CE=2√2,∴P1P2=√2,∴DP2=√(2√2)2+(√2)2=√10,故答案为:2√2≤PD≤√10.8.如图,在△ABC中,∠ABC=90°,BD为△ABC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG是菱形:(2)若∠BAC=30°,BC=2,求四边形BDFG的面积.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=12AC,∵AG∥BD,BD=FG,∴四边形BDFG是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=12AC,∴BD=DF;∴平行四边形BDFG是菱形;(2)解:作DH⊥AG于H,如图所示:∵四边形BDFG是菱形,∴GF=BD,∵∠ABC=90°,∠BAC=30°,BC=2,∴AC=2BC=4,∵点D是AC中点,∴GF=BD=12AC=AD=2,∴∠DBA=∠BAC=30°,又∵AG∥BD,∴∠BAF=∠DBA=30°,∴∠DAF=60°,∵DH⊥AG,∴∠ADH=30°,∴AH=12AD=1,DH=√3AH=√3,∴S菱形BDFG=GF•DH=2×√3=2√3.9.已知四边形ABCD是矩形.(1)如图1,E、F分别是AB、AD上的点,CE垂直平分BF,垂足为G,连接DG.①求证:DG=CG;②若BC=2AB,求∠DGC的大小;(2)如图2,AB=BC=6,M、N、P分别是AB、CD、AD上的点,MN垂直平分BP,点Q是CD的中点,连接MP,PQ,若PQ⊥MP,直接写出CN的长.【解答】解:(1)①如图1,过G作MN⊥CD于N,与AB交于点M,则MN∥AD,∵CE垂直平分BF,∴GB=GF,∴AM=BM,∵四边形ABCD是矩形,∴∠A=∠ADN=∠MND=90°,∴四边形ADNM是矩形,∴DN=AM=12AB=12CD,∵MN垂直平分CD,∴DG=CG;②连接CF,如图1,∵CE垂直平分BF,∴CF=CB.∴∠BCG=∠FCG=12∠BCF,∵四边形ABCD是矩形,∴AB=CD,∠CDF=∠BCD=90°,AD∥BC,∵BC=2AB,∴CF=2CG,延长CD至H,使得DH=CD,连接FH,则CF=CH,∴AD垂直平分CH,∴FH=FC=CH,∴∠FCD=60°,∴∠BCF=90°﹣∠FCD=30°,∴∠BCG=∠FCG=15°,∴∠GDC=∠GCD=∠BCD﹣∠BCG=75°,∴∠CGD=180°﹣75°×2=30°;(3)∵MN垂直平分BP,∴MB=MP,∴∠MBP=∠MPB,∵MP⊥PQ,∴∠MPQ=∠A=90°,∴∠ABP+∠APB=∠BPM+∠BPQ=90°,∴∠BPA=∠BPQ,作BS⊥PQ于S,连接BQ,如图2,∴BA=BS,∵BP=BP,∴R t△PBA≌R t△PBS(HL),∴AP=PS,∵AB=BC,∴BS=BC,∵BQ=BQ,∴R t△QBS≌R t△QBC(HL),∴QS=QC=3,∴PQ=AP+CQ,设AP=x,PD=6﹣x,PQ=3+x,在R t△PQD中,DQ=3,由勾股定理得,(3+x)2﹣(6﹣x)2=32,解得,x=2,∴AP=2,设BM=MP=y,AM=6﹣y,在R t△AMP中由勾股定理得,y2﹣(6﹣y)2=22,解得,y=10 3,作NK ⊥AB 于K ,如图2,得四边形AKND 是矩形,∴AB =AD =KN ,∠A =∠MKN =90°,∵MN ⊥BP ,∴∠ABP +∠KMN =∠KMN +∠KNM =90°,∴∠ABP =∠KNM ,∴△ABP ≌△KNM (ASA ),∴AP =KM =2,∴CN =BK =BM ﹣MK =103−2=43;另一解法:过N 点作NK ⊥AB 于点K ,得四边形AKND 是矩形,∴AB =AD =MN ,∠A =∠MKN =90°,∵MN ⊥BP ,∴∠ABP +∠KMN =∠KMN +∠KNM =90°,∴∠ABP =∠KNM ,∴△ABP ≌△KNM (ASA ),∴AP =KM ,∵MN 垂直平分BP ,∴MB =MP ,不妨设BM =MP =x ,则AM =6﹣x ,∴AP =√x 2−(6−x)2=√12x −36,∴DP =6−√12x −36,∵Q 是CD 的中点,∴DQ =3,∵PQ ⊥MP ,∠A =∠D =90°,∴∠APM +∠AMP =∠APM +∠DPQ =90°,∴∠AMP =∠DPQ ,∴△APM ∽△DQP ,∴AP DQ =AM DP ,即√12x−363=6−√12x−36, 解得,x =6或103,∴CN =BK =AB ﹣AM ﹣MK =6﹣(6﹣x )−√12x −36=x −√12x −36=0或43.舍去CN =0,10.已知:如图,把矩形纸片OABC放入直角坐标系x O y中,使OA、OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在该坐标平面内,设这个落点为D,CD交x轴于点E.如果CE=5,OC、OE的长是关于x的方程x2+(m﹣1)x+12=0的两个根,并且OC>OE.(1)求点D的坐标;(2)如果点F是AC的中点,判断点(8,﹣20)是否在过D、F两点的直线上,并说明现由.【解答】解:(1)∵OC、OE的长是关于x的方程x2+(m﹣1)x+12=0的两个根,设OC=x1,OE=x2,x1>x2.∴x1+x2=﹣(m﹣1).x1•x2=12.在R t△COE中,∵OC2+OE2=CE2,CE=5.∴x12+x22=52,即(x1+x2)2﹣2x1x2=25.∴[﹣(m﹣1)]2﹣2×12=25,解这个方程,得m1=﹣6,m2=8.∵OC+OE=x1+x2=﹣(m﹣1)>0,∴m=8不符合题意,舍去.∴m=﹣6.解方程x2﹣7x+12=0,得x1=4,x2=3.∴OC=4,OE=3.△ABC沿AC翻折后,点B的落点为点D.过D点作DG⊥x轴于G.DH⊥y轴于H.∴∠BCA=∠ACD.∵矩形OABC中,CB∥OA.∴∠BCA=∠CAE.∴∠CAE=∠ACD.∴EC=EA.在R t△COE与R t△ADE中,∵{OC =AD EC =EA∴R t △COE ≌R t △ADE .∴ED =3,AD =4,EA =5.在R t △ADE 中,DG •AE =ED •AD ,∴DG =ED⋅AD AE=125, 在△CHD 中,OE ∥HD , ∴CE CD =CE HD,55+3=3HD , ∴HD =245,由已知条件可知D 是第四象限的点,∴点D 的坐标是(245,−125);(2)∵F 是AC 的中点,∴点F 的坐标是(4,2),设过D 、F 两点的直线的解析式为y =kx +b .∴{4k +b =2245k +b =−125,解得{k =−112b =24, ∴过点D 、F 两点的直线的解析式为y =−112x +24,∵x =8,y =﹣20满足上述解析式,∴点(8,﹣20)在过D 、F 两点的直线上.11.如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =13,BD =24,在菱形ABCD 的外部以AB 为边作等边三角形ABE .点F 是对角线BD 上一动点(点F 不与点B 重合),将线段AF 绕点A 顺时针方向旋转60°得到线段AM ,连接FM .(1)线段AO 的长为 ;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AM=√33AC;(3)连接EM.若△AFM的周长为3√29,请直接写出△AEM的面积.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=12,在R t△AOB中,AB=13,根据勾股定理得,AO=√AB2−OB2=√132−122=5,故答案为5;(2)由旋转知,AM=AF,∠MAF=60°,∴△AMF是等边三角形,∴∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠AFC=180°﹣∠AFM=120°,∵菱形ABCD的对角线AC与BD相交于O,∴OA=OC=12AC,在△AOF和△COF中,{OA=OC∠AOF=∠COF=90°OF=OF,∴△AOF≌△COF(SAS),∴∠AFO=12∠AFC=60°,在R t△AOF中,sin∠AFO=OA AF,AF=OAsin∠AFO=OAsin60°=2√33OA=√33AC,∴AM=√33AC;(3)①当点F在线段OB上时,如图,由(2)知,△AMF是等边三角形,∵△AFM的周长为3√29,∴AF=√29,在R t△AOF中,根据勾股定理得,OF=√AF2−AO2=2,∴BF=OB﹣OF=12﹣2=10,连接EM ,∵△ABE 是等边三角形,∴AE =AB =13,∠BAE =60°,由(1)知,AM =AF ,∠FAM =60°,∴∠BAE =∠EAM ,∴∠EAM =∠BAF ,∴△AEM ≌△ABF (SAS ),∴EM =BF =10,∠AEM =∠ABF ,过点M 作MN ⊥AE 于N ,∴∠MNE =∠AOB =90°,∴△MNE ∽△AOB ,∴MN AO =EM AB , ∴MN 5=1013,∴MN =5013,∴S △AEM =12AE •MN =12×13×5013=25, ②当点F 在OD 上时,同①的方法得,MN =7013, S △AEM =12AE •MN =12×13×7013=35,即:△AEM 的面积为25或35.12.在菱形ABCD 中,∠BAD =60°.(1)如图1,点E 为线段AB 的中点,连接DE 、CE 、若AB =4,求线段EC 的长;(2)如图2,M 为线段AC 上一点(不与A 、C 重合),以AM 为边向上构造等边三角形AMN ,线段MN 与AD 交于点G ,连接NC 、DM ,Q 为线段NC 的中点,连接DQ 、MQ ,判断DM 与DQ 的数量关系,并证明你的结论;(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.【解答】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=√42−22=2√3,∵DC∥AB,∴∠EDC=∠DEA=90°,在R t△DEC中,DC=4,EC=√DC2+DE2=√42+(2√3)2=2√7;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD =CD ,∴AD =DH ,∵CD ∥AB ,∴∠HDA =∠BAD =60°,∴△ADH 是等边三角形,∴AH =AD ,∠HAD =60°,∵△AMN 是等边三角形,∴AM =AN ,∠NAM =60°,∴∠HAN +∠NAG =∠NAG +∠DAM ,∴∠HAN =∠DAM ,在△ANH 和△AMD 中,∵{AH =AD∠HAN =∠DAM AN =AM,∴△ANH ≌△AMD (SAS ),∴HN =DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN =2DQ ,∴DM =2DQ .(3)如图2,由(2)知,HN =DM ,∴要CN +DM 最小,便是CN +HN 最小,即:点C ,H ,N 在同一条线上时,CN +DM 最小, 此时,点D 和点Q 重合,即:CN +DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC是菱形ABCD的对角线,∴∠ACD=12∠BCD=12∠BAD=30°,∴∠CAH=180°﹣30°﹣60°=90°,在R t△ACH中,CH=ACcos30°=2,∴DM+CN的最小值为2.。
2022年二年级数学下册第5单元四边形的认识单元培优测试卷冀教版
单元培优测试卷第五单元四边形的认识一、填空。
(每空1分,共18分)1.长方形和正方形都有( )个直角,长方形的( )边相等,平行四边形有( )个锐角、( )个钝角。
2.日常生活用的物品中,( )的表面是长方形,( )的表面是正方形。
3.用木条钉成一个长方形,捏住对角,用力一拉,就变成一个( )形。
4.学校门口的电动伸缩门,运用了平行四边形( )的特性。
5.右图中的正方形被挡住的是( )角。
6.用同样的小棒摆一个正方形,至少用( )根小棒;摆一个长方形,至少用( )根小棒。
7.右面的长方形,至多可以裁出( )个最大的正方形。
8.一张正方形纸最少能剪成( )张完全一样的三角形纸;将剪成的三角形重新拼成与之前不同的图形,可以拼成( )形或( )形。
9.剪纸是中国最古老的艺术之一。
一节手工课上,小明拿一张长16厘米、宽11厘米的长方形纸,剪下一个最大的正方形。
剪下的正方形的边长是( )厘米。
剩下的长方形的长是( )厘米,宽是( )厘米。
二、选择。
(将正确答案的序号填在括号里)(每小题2分,共16分)1.下面的图形中,不是四边形的是( )。
2.七巧板里面没有( )。
①正方形②长方形③平行四边形3.下面( )的对边相等。
①正方形和四边形②平行四边形和四边形③正方形和平行四边形4.四个长是8厘米,宽是2厘米的长方形能拼成一个( )。
①长方形②正方形③长方形或正方形5.至少用( )个相同的小正方形就可以拼成一个大正方形。
① 2 ② 3 ③ 46.如右图,将两张长方形纸交叉摆放,重叠的部分是( )。
①梯形②正方形③平行四边形7.下面三个信封中分别装有一张硬纸板,并且硬纸板都露出了一部分,从( )号信封中抽出的硬纸板的形状可能是正方形。
8.选择合适的4根小棒,能摆成长方形的是( );能摆成正方形的是( )。
三、操作题。
(共39分)1.分一分。
(12分)2.一个平行四边形被破坏了,请你完整地补画出这个图形。
(3分)3.下面的方格纸上每个小正方形的边长都是1厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形培优题1、矩形ABCD 的两条对角线相交于点O ,,AD=2,则AC 的长是( )2、顺次连接矩形四边中点所得四边形是( )3、如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )3题4、如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )5、 如图,CD 与BE 互相垂直平分,AD ⊥DB ,∠BDE =700,则∠CAD= 0.6、如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )7、如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________8、如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于E ,F ,连接EF ,则四边形ABEF 是菱形.根据两人的作法可判断( )A . 甲正确,乙错误B . 乙正确,甲错误C . 甲、乙均正确D . 甲、乙均错误 9、(2013•河南)如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B60AOD ∠=ABC DEOyx图 1ODC P4 9图 2NMFEDCBA 4题沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.10题 11题10、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( ) 11、以边长为2的正方形的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于A 、B 两点,则线段AB 的最小值是__________.12、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________.解答题:1、矩形ABCD 对角线相交与O ,DE //AC ,CE //BD .求证:四边形OCED 是菱形.2、如图,△ABC 中,90B ∠=,AB =6cm ,BC =8cm 。
将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连结AD 。
求证:四边形ACFD 是菱形。
3、如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点. (1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.ECDBA 9题B′第12题图D A B CPMNADCB M N PQ4、如图11,已知E 是ABCD 中BC 边的中点,连接AE 并延长AE 交DG 的延长线于点F .(1)求证:△ABE ≌△FCE .(2)连接AC 、BF ,若∠AEC =2∠ABC ,求证:四边形ABFC 为矩形.5、(2013•铁岭)如图,△ABC 中,AB=AC ,AD 是△ABC 的角平分线,点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD ,连接AE ,BE . (1)求证:四边形AEBD 是矩形;(2)当△ABC 满足什么条件时,矩形AEBD 是正方形,并说明理由.6、如图,在平行四边形中,.(1)作出的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交于点,⊥,垂足为点,交于点,连接.求证:四边形为菱形.7、(2013•临沂)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.9、问题情境:如图1,四边形ABCD 是正方形,M 是 BC 边上的一点,E 是CD 边的中点,AE 平分DAM ∠.探究展示:(1)证明:AM AD MC =+; (2)AM DE BM =+是否成立?ABCD AD AB >ABC ∠AD E AF BE O BC F EFABFE D C B A 第6题图ABMDEC 图1若成立,请给出证明;若不成立,请说明理由.拓展延伸:(3)若四边形ABCD 是长与宽不相等的矩形, 其他条件不变,如图2,探究展示(1)、(2)中的结 论是否成立?10、如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点. (1)探究:线段与的数量关系并加以证明;(2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由;(3)当点运动到何处,且满足什么条件时,四边形是正方形?11、(2008义乌)如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.12、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.,且EF 交正方形外角的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证,所以.在此基础上,同学们作了进一步的研究:ABC △O AC O MN BC ∥MN BCA ∠E BCA ∠F OE OF O AC BCFE O ABC △AECF 90AEF ∠=DCG ∠AME ECF △≌△AE EF =ABM图2DEC (第9题图)AF ND C B M EO(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.13、(1)如图1,已知△ABC,以AB、AC为边向△ABC外做等边△ABD和等边△ACE.连接BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹)(2)如图2,已知△ABC,以AB、AC为边向外做正方形ABFD和正方形ACGE.连接BE,CD.BE 与CD有什么数量关系?简单说明理由.(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE.求BE的长.14、探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为 .A DFC GEB图1A DFC GEB图2A DFC GEB图3(第25题图)AB C第13题图1AB CFDGE第13题EAB C第13题图315、(2013•绥化)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边做正方形ADEF ,连接CF (1)如图1,当点D 在线段BC 上时.求证CF+CD=BC ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变;①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为2,对角线AE ,DF 相交于点O ,连接OC .求OC 的长度.16、已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBM BC N CN M CNM 图图图AAADD D。