高一数学试题-高一数学三角恒等变换测试题 最新
人教版高一数学第三章《三角恒等变换》测试题(A卷)及答案

i
sin
1
B.-3
cos
a的值为
1
代3
3—sin70的
8.2等于
2—cos10
1 2
A.2b.~2"
1n
9.把尹n20+cos(§—
2,3
3
C.
2
n
2 0)]—sin —cosCf^+20)化简,可得
A.sin20B.—sin20C.cos20D.—cos20
10.已知3cos(2a+ 3+5cos3=0,贝U tan(a+ 3tana的值为
三、解答题(共76分).
15.(本题满分
12分)已知
cosa—sin
a=
3.2,且
n«|n,求
sin2a+2sin
1—tana
a的值.
16.(本题满分12分)已知
(X、
B均为锐角,且
cos
^5
sinA ,w,求
a—3的值.
1
17.(本题满分12分)求证:丽
疏=|2cos20°
高中数学必修
考试时间:100分钟,满分:150分
、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代
号填在题后的括号内(每小题5分,共50分)
2
1.计算1-2sin 22.5的结果等于
A.1B晋
2 2
2.cos39 cos(—9°)—sin39
1
A.2
7
A.8
C.
3.已知
4,则
A. ±4B.4C.—4D.1
二、填空题(每小题6分,共计24分).
11.(1+tan17 )(1+tan28的=.
高一数学三角恒等变换综合练习题(解析版)

三角恒等变换综合练习一、单选题1.sin11cos19cos11cos71︒︒+︒︒的值为()A.32B.12C.132+D.312【答案】B【分析】化成标准的两角和的展开式,合并为一个角即可求得答案.【详解】解:sin11cos19cos11cos71︒︒+︒︒sin11cos19cos11sin19=︒︒+︒︒()1sin1119sin302=︒+︒=︒=.故选:B.【点睛】应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”. (2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.2.若4cos5θ=-,θ是第三象限的角,则1tan21tan2θθ-=+()A.12B.12-C.35D.-2【答案】D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan 21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan 1322131tan 2θθ-+==--+.故选:D.3.已知1sin cos 3αα+=,则sin 2α的值是( ).A .89B .89- CD.【答案】B【分析】已知条件平方后,利用sin 22sin cos ααα=,直接计算结果.【详解】 ∵1sin cos 3αα+=,平方得,)(21sin cos 9αα+=,∴)()(221sin 2sin cos cos 9αααα++=,∴82sin cos 9αα=-,∴8sin29α=-.故选:B4.在ABC 中,若sin sin()sin 2C B A A +-=,则ABC 的形状不可能是()A .等腰三角形B .直角三角形C .等腰直角三角形D .三个角都不相等的锐角三角形【答案】D【分析】由诱导公式化sin sin()C A B =+,由两角和与差的正弦公式和二倍角公式变形后可判断.【详解】由已知可得sin()sin()2sin cos A B A B A A +--=⋅,∴2sin cos 2sin cos B A A A ⋅=⋅,∴cos 0A =或sin sin B A =,∴2A π=或A B =,∴ABC 可能是等腰三角形、直角三角形或等腰直角三角形,故选:D .5.若1sin 63πα⎛⎫-=⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ). A .79- B .13- C .13 D .79【答案】A【分析】 根据1sin 63πα⎛⎫-= ⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解.【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1cos 33πα⎛⎫+= ⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故选:A6.已知()()21cos 022x f x x ωωω=-+>,则下列说法错误的是( ) A .若()f x 在()0,π内单调,则203ω<≤B .若()f x 在()0,π内无零点,则106ω<≤C .若()y f x =的最小正周期为π,则2ω=D .若2ω=时,直线2π3x =-是函数()f x 图象的一条对称轴 【答案】C【分析】 利用二倍角的余弦公式可得()πsin 6f x x ω⎛⎫=-⎪⎝⎭,根据正弦函数的单调区间可得πππ62ω-≤,解不等式可判断A ;在()0,π内无零点,只需ππ06ω-≤,解不等式即可判断B ;利用2T πω=可判断C ;令()ππ2π62x k k -=+∈Z ,解方程即可判断D. 【详解】()()211πcos 0cos sin 2226x f x x x x x ωωωωωω⎛⎫=-+>=-=- ⎪⎝⎭, 对于A ,若()f x 在()0,π内单调,则πππ62ω-≤,解得23ω≤,故203ω<≤,A 正确; 对于B ,由0πx <<,得ππππ666x ωω-<-<-,若()f x 在()0,π内无零点, 则ππ06ω-≤,解得1π6ω≤,故106ω<≤,B 正确; 对于C ,若()y f x =的最小正周期为π,则()f x 的最小正周期为2π, 因此2π2πω=,所以1ω=,C 错误; 对于D ,()πsin 26f x x ⎛⎫=- ⎪⎝⎭,令()ππ2π62x k k -=+∈Z ,则()1ππ23x k k =+∈Z , 当2k =-时,得()f x 的图象的一条对称轴为直线2π3x =-,D 正确; 故选:C二、多选题7.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,内切圆半径为r .若3c =,cos2sin 22A B C -=,则下列结论正确的是( )A .1tan tan 223AB = B .tan 2C ≥C .6a b +=D .2r ≤【答案】ACD【分析】利用三角形內角和以及诱导公式可判断A 正确;利用基本不等式判断B 错误;利用和角正弦公式以及正弦定理可得C 正确;利用基本不等式可得D 正确.【详解】由题设cos 2sin cos()2sin 2sin 2cos 2222222222A B C A B A B A B A B ππ---⎡⎤⎛⎫⎛⎫=⇒-==-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦得coscos sin sin 2cos cos sin sin 22222222A B A B A B A B ⎛⎫+=- ⎪⎝⎭, 所以3sin sin 22A B =cos cos 22A B 1tan tan 223A B =,所以A 正确; 所以123tan tan 2233A B +≥= 1211tan tan ()133322tan tan tan()2222tan tan tan tan tan tan tan 2222222A B C A B A B A B A B A B A B ππ---++==-====≤++++B 错误; 由cos2sin 22A B C -=得2cos sin 4sin cos 2222A B A B C C -+=, 所以sin cos cos sin sin cos cos sin 2sin 22222222A B A B A B A B A B A B A B A B C +-+-+-+-++-=()()所以sin sin 2sin A B C +=,即26a b c +==,所以C 正确; 如图,由1tan tan 223A B =,得133r r x x ⋅=-,所以2(3)334x x r -=≤(32x =取等号),所以3r ≤D 正确. 故选:ACD .8.若()cos 13tan101α︒+=,则α的一个可能值为( ) A .130︒B .220°C .40°D .320︒ 【答案】CD【分析】利用同角三角函数关系和诱导公式,以及辅助角公式和二倍角正弦公式化简已知等式,可得cos cos40α=︒,即可得出答案.【详解】 解:cos (13)1α+︒=,cos 13tan10α∴+︒1sin1013cos10=︒︒cos103sin10=︒+︒()cos10cos102sin 10302sin 40︒︒==︒+︒︒()cos 9080sin802sin 402sin 40︒-︒︒==︒︒ 2sin 40cos 40cos 402sin 40︒︒==︒︒, α的一个可能值为40︒,又()()cos320cos 36040cos 40cos 40=-=-=,故320︒也是一个可能值. 故选:CD .【点睛】 关键点睛:本题解题的关键是利用同角三角函数关系和诱导公式,以及辅助角公式和二倍角正弦公式进行化简,能得出cos cos40α=︒即可求解.三、填空题9.cos(α-35°)cos(α+25°)+sin(α-35°)sin(α+25°)=________. 【答案】12 【分析】 根据两角差的余弦公式进行化简、运算,即可求解 【详解】由cos(35)cos(25)sin(35)sin(25)cos[(35)(25)]αααααα-++-+=--+ 1cos(60)cos602=-==. 故答案为:12. 10.已知tan 2α=,则cos2=α__.【答案】35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解.【详解】 由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35.四、解答题11.设a =sin x cos x ,b =sin x +cos x .(1)求a ,b 的关系式;(2)若x ∈(0,2π),求y =sin x cos x +sin x +cos x 的最大值. 【答案】(1)b 2=1+2a ;(2)122+【分析】(1)将b =sin x +cos x 两边平方可得结果;(2)转化为关于b 的二次函数可求得结果.【详解】(1)∵b =sin x +cos x ,∴b 2=(sin x +cos x )2=1+2sin x cos x =1+2a ;(2)由(1)21(1)2a b =-,因为x ∈(0,2π),所以)4b x π=+∈. 所以y =a +b =2211(1)(1)122b b b -+=+-,∴b 时,y =sin x cos x +sin x +cos x 的最大值为12+【点睛】 关键点点睛:转化为关于b 的二次函数求解是解题关键.12.已知02a π<<,02πβ<<,4sin 5α,5cos()13αβ+=. (1)求cos β的值;(2)求2sin sin 2cos 21ααα+-的值. 【答案】(1)6365;(2)54-. 【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin()αβ+的值,进而根据()βαβα=+-,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin 2α,cos2α的值,进而即可代入求解.【详解】(1)因为02πα<<,4sin 5α所以3cos 5α==又因为02πβ<<,5cos()13αβ+=所以12sin()13αβ+==所以[]cos cos ()ββαα=+- cos()cos sin()sin βααβαα=+++53124135135=⨯+⨯ 6365= (2)因为3cos 5α=,4sin 5α 所以4324sin 22sin cos 25525ααα==⨯⨯= 2237cos 22cos 12()1525αα=-=⨯-=- 所以22424()sin sin 255257cos 214125ααα++==---- 【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想.。
高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知2tan 5α=-,则1sin 2cos 2αα+=( ) A .1318B .522 C .37-D .372.若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-BC .78D .3.已知sin cos αβ+=cos sin αβ+sin()αβ+=( )A .12B C .12- D .4.sin cos 44ππαβ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭化为和差的结果是( )A .11sin()cos()22αβαβ++-B .11cos()sin()22αβαβ++-C .11sin()sin()22αβαβ++- D .11cos()cos()22αβαβ++-5.已知()11cos 3cos cos 42πππαα⎛⎫⎛⎫+=-+ ⎪⎪⎝⎭⎝⎭,则cos2=α( )A B .13- C .23- D .136.0000cos80cos130sin100sin130-等于A B .12C .12-D .7.已知25cos2cos αα+=,()4cos 25αβ+=与0,2πα⎛⎫∈ ⎪⎝⎭和3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A .45- B .44125C .44125-D .458.已知π2cos()33α+=,则πsin()6α-=( )A B . C .23-D .139.图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =二、填空题10.数列{}n a 的通项公式为[]2log n a n n =+,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为__________.11.已知,2παπ⎛⎫∈ ⎪⎝⎭,且()23cos sin 210απα++=,则tan α=__________.12.已知1sin 3α=,cos()1αβ+=-则sin(2)αβ+=______.13.已知sin 2πααπ<<,则tan α=______________. 14.已知角0,2πθ⎛⎫∈ ⎪⎝⎭对任意的x ∈R ,()()2213cos 4sin 122x x x θθ+≥⋅恒成立,则θ的取值范围是_____.三、解答题15.已知函数()()1tan cos f x x x =+⋅(1)若44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,求tan x ;(2)若,02πα⎛⎫∈- ⎪⎝⎭时,则()f α=,求cos2α.16.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2A C =.(1)若a c =,求cos B 的大小; (2)若1b =,3c =求sin A .17.已知函数22π()sin 2cos sin ,6f x x x x x ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 求函数的最小正周期及对称中心. (2)求函数()y f x =在π0,2x ⎡⎤∈⎢⎥⎣⎦值域.18.ABC 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+ (1)求B ;(2)若6b AB CB =⋅=,求ABC 的周长19.已知向量(sin ,cos 1)a x x =-,(3cos ,cos 1)b x x =+和1()2f x a b =⋅+. (1)求函数的最小正周期T 及单调递增区间; (2)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.四、双空题 20.已知4sin 5α,且α是第二象限角,则cos α=______;sin 2α=_______. 参考答案与解析1.D【分析】结合二倍角公式,将所求表达式转化为只含tan α的式子,由此求得正确答案. 【详解】原式222222cos sin 2sin cos 1tan 2tan cos sin 1tan ααααααααα++++==-- 4491932552542121712525+-====-. 故选:D 2.C【分析】利用诱导公式和二倍角公式可得解.【详解】1sin 84x π⎛⎫-= ⎪⎝⎭sin 2sin 2cos 2cos 244248x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2712sin 88x π⎛⎫=--= ⎪⎝⎭故选:C . 3.A【分析】将两个已知等式两边平方相加,再根据两角和的正弦公式可求出结果.【详解】由sin cos αβ+=225sin cos 2sin cos 4αβαβ++⋅=由cos sin αβ+=227cos sin 2cos sin 4αβαβ++⋅=两式相加得22(sin cos cos sin )3αβαβ++=,得1sin()2αβ+=.故选:A 4.B【分析】利用积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤=++-⎣⎦化简即可. 【详解】解:原式1sin sin()22παβαβ⎡⎤⎛⎫=+++- ⎪⎢⎥⎝⎭⎣⎦11cos()sin()22αβαβ=++-. 故选:B .【点睛】本题考查积化和差公式的应用,属于基础题. 5.B【分析】首先根据诱导公式以及同角三角函数的基本关系求得tan α=再根据二倍角公式以及“1”的代换求得cos2α.【详解】由诱导公式化简原式,得cos 2αα-=,故tan α=所以22222222cos sin 1tan 1cos 2cos sin sin cos tan 13ααααααααα--=-===-++. 故选:B . 6.D【详解】试题分析:原式3cos80cos130sin 80sin130cos(80130)cos(18030)2=-=+=+=-. 考点:三角恒等变换. 7.B【解析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果.【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题. 8.C【分析】利用诱导公式化简变形可得结果【详解】解:因为π2cos()33α+=所以π2sin()sin cos cos 662633ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=---=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故选:C 9.A【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论.【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A . 10.631【分析】由[]22log [log ]n a n n n n =+=+,分析n 的不同取值对应的2[log ]n 的取值情况,分组求和即得解 【详解】由题意[]22log [log ]n a n n n n =+=+ 当1n =时,则2[log ]0n =; 当2,3n =时,则2[log ]1n =; 当4,5,6,7n =时,则2[log ]2n =; 当8,9,10,...,15n =时,则2[log ]3n =; 当16,17,18,...,31n =时,则2[log ]4n =; 当32n =时,则2[log ]5n =; 故{}n a 的前32项和为:3212...32102142831645S =++++⨯+⨯+⨯+⨯+⨯+(132)321035281036312+⨯=+=+= 故答案为:631 11.-7【详解】22221tan 131cos 232tan 31tan cos sin(2)sin 21021021tan 10αααααπααα-+++++=∴-=∴-=∴+ tan 7,tan 1αα=-= (舍).12.13-【分析】先由cos()1αβ+=-,得sin()0αβ+=,再由sin(2)sin()sin cos()+cos sin()αβααβααβααβ+=++=⋅+⋅+即可求出结果.【详解】因cos()1αβ+=-,得sin()0αβ+=所以1sin(2)sin()sin cos()+cos sin()3αβααβααβααβ+=++=⋅+⋅+=-.【点睛】本题主要考查三角函数的两角和差化积公式,熟记公式即可,属于常考题型. 13.-2【分析】利用同角的三角函数中的平方和关系求出cos α,再利用同角的三角函数关系中的商关系求出tan α即可.【详解】2sin sin cos tan 22cos παααπααα=<<∴===-. 【点睛】本题考查了同角三角函数关系中的平方和关系和商关系,考查了角的余弦值的正负性的判断,考查了数学运算能力. 14.5,1212ππ⎡⎤⎢⎥⎣⎦【分析】根据题意转化为22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立,利用基本不等式求得2234()cos ()sin sin 243x x θθθ+≥,得到1sin 22θ≥,结合三角函数的性质,即可求解.【详解】由()()2213cos 4sin 122x x x θθ+≥⋅,即()()2213cos 4sin 324x xx x θθ+≥⋅⋅即22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立又由2234()cos ()sin 2sin cos sin 243x x θθθθθ+≥=所以1sin 22θ≥又因为0,2πθ⎛⎫∈ ⎪⎝⎭,可得()20,θπ∈,所以5266ππθ≤≤,解得51212ππθ≤≤即θ的取值范围是5[,]1212ππ.故答案为:5[,]1212ππ.15.(1)tan 1x =(2)9【分析】(1)根据同角三角函数的关系、两角和正弦公式、诱导公式化简即可求解; (2)根据角的变换及两角差的正弦公式,二倍角的余弦公式计算即可求解. (1) ()sin cos 4f x x x x π⎛⎫=++ ⎪⎝⎭由44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2x x π⎛⎫=+ ⎪⎝⎭即有sin cos x x =,所以tan 1x =. (2)由()43f παα⎛⎫=+= ⎪⎝⎭1sin 43πα⎛⎫+= ⎪⎝⎭∵,02πα⎛⎫∈- ⎪⎝⎭∴,444πππα⎛⎫+∈- ⎪⎝⎭∴cos 4πα⎛⎫+= ⎪⎝⎭∴4sin sin 446ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦故22cos 212sin 12αα=-=-⨯=⎝⎭16.(1;(2. 【分析】(1)由正弦定理求出cos C ,进而求得sin C 、sin A 及cos A ,再利用和角公式即可得解;(2)由(1)结合余弦定理求得a ,进而求得cos C 及sin C 即可得解. 【详解】(1)ABC 中由正弦定理可得sin sin 22cos sin sin a A CC c C C===所以cos C =,sin C =和sin 2sin cos A C C ==221cos cos sin 3A C C =-=-所以cos cos()B A C =-+cos cos sin sin A C A C =-+13= (2)由(1)可知2cos aC c=,所以2cos 6cos a c C C ==由余弦定理可知222cos 2a b c C ab +-=282a a -=,于是2862a a a a -=⋅⇒=则cos C =,sin C =所以sin 2sin cos A C C =2==17.(1)π ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)由三角恒等变换可得正弦型三角函数,据此求周期、对称中心即可; (2)利用整体代换法求正弦函数的值域即可. (1)1()2co πs 2cos 2sin 226f x x x x x ⎛⎫=+-=- ⎪⎝⎭ 所以函数的最小正周期为2ππ2= ()sin 26πf x x ⎛⎫=- ⎪⎝⎭,令π2π6x k -=解得ππ212k x =+ ∴()f x 的对称中心是ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)令π26t x =-由π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,666t x ⎡⎤=-∈-⎢⎥⎣⎦则1()12f x ≤-≤所以()y f x =的值域是1,12⎡⎤-⎢⎥⎣⎦.18.(1)3B π=;(2)【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ⋅=求得ac 代入即可. 【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+ 所以()sin sin cos cos cos 2cos a A B A B c A b B -+= 所以cos()cos 2cos a A B c A b B -++= 所以cos cos 2cos a C c A b B +=由正弦定理得sin cos sin cos 2sin cos A C C A B B += 整理得()sin 2sin cos sin A C B B B +== 因为在ABC 中所以sin 0B ≠,则2cos 1B = 所以3B π=(2)由余弦定理得 2222cos b a c ac B =+-即()2312a c ac +-=因为1cos 62AB CB BA BC ac B ac ⋅=⋅=== 所以12ac = 所以()23612a c +-=解得a c +=所以ABC 的周长是【点睛】方法点睛:在解有关三角形的题目时,则要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则则考虑用正弦定理;以上特征都不明显时,则则要考虑两个定理都有可能用到. 19.(1)πT = πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)根据平面向量数量积的坐标表示公式,结合降幂公式、辅助角公式、二倍角公式、正弦型函数的最小正周期公式以及单调性进行求解即可;(2)利用换元法,结合正弦型函数的最值性质进行求解即可. (1)由211()3sin cos cos 22f x a b x x x =⋅+=+-1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭ 故函数()f x 的最小正周期πT = 当πππ2π22π(Z)262k x k k -≤+≤+∈时,则函数单调递增 解得ππππ36k x k -+≤≤+ Z k ∈函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭,ππ,63x ⎡⎤∈-⎢⎥⎣⎦令π26t x =+,则sin y t =,π5π,66t ⎡⎤∈-⎢⎥⎣⎦所以当π6t =-即π6x =-时,则min 1()2 f x =-当π2t =即π6x =时,则min ()1 f x =故函数()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.352425-【分析】根据正余弦恒等式求出cos α,再利用二倍角的正弦公式求出sin 2α. 【详解】因为4sin 5α,且α是第二象限角所以3cos 5α==-4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故答案为:352425-。
高一数学三角恒等变换试题

高一数学三角恒等变换试题1.已知,则【答案】【解析】由,因此,.【考点】(1)诱导公式的应用;(2)同角三角函数的基本关系.2.已知,则的值是()A.B.C.D.【答案】C【解析】,得,即,而故选择C.【考点】三角恒等变换中的求值.3.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.4.已知,,则()A.B.C.D.【答案】B【解析】由已知可知,又,所以,答案选B.【考点】两角差的正切公式5.若,则的值等于A.B.C.D.【解析】由于不易计算,且已知函数中含有,故需对原函数变形(变为所求函数形式).,所以,故选D.【考点】三角函数倍角公式,半角公式应用.6.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.7.已知求证:【答案】见解析【解析】本题是证明的关系,故需将拆分开,即;同时不含有单独的,故需将其转为,即,然后恒等变化.试题解析:因为所以 4分8分10分即 12分【考点】两角和与差三角函数公式,角的拆分.8.若α、β为锐角,且cosα=,sinβ=,则α+β= .【答案】【解析】∵,α是锐角,,又,β是锐角,,∴cos(α+β)=cosαcosβ-sinαsinβ=,∵0<α<90°,0<β<90°,∴0<α+β<180°,∴α+β=135°故应填入: 135°.【考点】1.同角三角函数的基本关系式;2.两角和与差的三角函数.9.求值()A.B.C.D.【解析】.【考点】三角恒等变形.10.如图,在半径为2,中心角为的扇形的内接矩形OABC(只有B在弧上)的面积的最大值= .【答案】2【解析】连接BO,设,则在矩形中,,矩形的面积;当,即,取到最大值2.【考点】二倍角公式.11.已知为锐角,且有,,则的值是 .【答案】.【解析】∵,∴①,又∵,∴②,联立①,②可得,∴,又∵为锐角,∴.【考点】1.诱导公式;2同角三角函数基本关系.12.设θ为第二象限角,若tan=,则sin θ+cos θ=________.【答案】【解析】∵,∴tanθ=,∵θ为第二象限角,∴则sinθ+cosθ=.故答案为:【考点】同角三角函数间的基本关系;两角和与差的正切函数公式.13.在中,已知,则是( )A.直角三角形B.钝角三角形C.锐角三角形D.最小内角大于45°的三角形【解析】因为,所以在三角形中,都是锐角.且,因为,所以,即,所以,则为锐角.【考点】切化弦;余弦和角公式;角的判断.14.设当时,函数取得最大值,则.【答案】【解析】根据辅助角公式化简原函数得,其中.①显然当时,原函数的最大值为.此时.所以,即,所以.【考点】辅助角公式;诱导公式.15.已知中,分别为的对边,,则为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】根据三角函数正弦定理,由题可知:又根据二倍角公式得:,所以或即选D.【考点】三角函数和与差公式,二倍角公式.16.已知函数在区间上的最大值为2,则常数a的值为 .【解析】,又,,则。
人教必修高一数学第三章三角恒等变换测试题及答案

高中数学必修4第三章《三角恒等变换》测试题A 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.计算1-°的结果等于 ( )2.cos39°cos(-9°)-sin39°sin(-9°)等于 ( ) C .-12D .-323.已知cos ⎝ ⎛⎭⎪⎫α-π4=14,则sin2α的值为 ( )B .-78D .-344.若tan α=3,tan β=43,则tan(α-β)等于 ( )A .-3B .-13C .35.cos 275°+cos 215°+cos75°·cos15°的值是( )D .1+236.y =cos 2x -sin 2x +2sin x cos x 的最小值是 ( ) B .-2 C .2D .-27.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫π6+α的值为 ( )B .-13D .-233等于 ( )C .29.把12[sin2θ+cos(π3-2θ)]-sin π12cos(π12+2θ)化简,可得 ( )A .sin2θB .-sin2θC .cos2θD .-cos2θ10.已知3cos(2α+β)+5cos β=0,则tan(α+β)·tan α的值为 ( )A .±4B .4C .-4D .1二、填空题(每小题6分,共计24分). 11.(1+tan17°)(1+tan28°)=________. 12.化简3tan12°-3sin12°·4cos 212°-2的结果为________.13.若α、β为锐角,且cos α=110,sin β=25,则α+β=______.14.函数f (x )=sin ⎝⎛⎭⎪⎫2x -π4-22sin 2x 的最小正周期是________.三、解答题(共76分).15.(本题满分12分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.16.(本题满分12分)已知α、β均为锐角,且cos α=25,sin β=310,求α-β的值.17.(本题满分12分)求证:1sin 210°-3cos 210°=32cos20°.18.(本题满分12分)已知-π2<α<π2,-π2<β<π2,且tan α、tan β是方程x 2+6x +7=0的两个根,求α+β的值.19.(本题满分14分)已知-π2<x <0,sin x +cos x =15,求:(1)sin x -cos x 的值;(2)求3sin 2x 2-2sin x 2cosx2+cos 2x2tan x +1tan x的值.20.(本题满分14分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.高中数学必修4第三章《三角恒等变换》测试题A 卷参考答案一、选择题 1. 【答案】B.【解析】 1-°=cos45°=22,故选B.2. 【答案】B.【解析】 cos39°cos(-9°)-sin39°sin(-9°)=cos(39°-9°)=cos30°=32.3. 【答案】B.【解析】 sin2α=cos(2α-π2)=2cos 2⎝ ⎛⎭⎪⎫α-π4-1=-78.4. 【答案】 D【解析】 tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13.5. 【答案】 A 【解析】原式=sin 215°+cos 215°+sin15°cos15°=1+12si n30°=54. 6. 【答案】 B【解析】y =cos2x +sin2x =2sin(2x +π4),∴y max =-2.7. 【答案】B.【解析】 cos ⎝ ⎛⎭⎪⎫π6+α=sin ⎝ ⎛⎭⎪⎫π2-π6-α =sin ⎝ ⎛⎭⎪⎫π3-α=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.8.【答案】C.【解析】 3-sin70°2-cos 210°=3-sin70°2-1+cos20°2=23-cos20°3-cos20°=2.9.【答案】A.【解析】原式=12[cos(π2-2θ)+cos(π3-2θ)]-sin π12cos(π12+2θ)=cos(5π12-2θ)cos π12-sin π12sin(5π12-2θ)=cos[(5π12-2θ)+π12]=cos(π2-2θ)=sin2θ. 10.【答案】C.【解析】 3cos[(α+β)+α]+5cos β=0,即3cos(α+β)cos α-3sin(α+β)sin α+5cos β=0.3cos(α+β)cos α-3sin(α+β)sin α+5cos[(α+β)-α]=0,3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)·cos α+5sin(α+β)sin α=0,8cos(α+β)cos α+2sin(α+β)sin α=0,8+2tan(α+β)tan α=0,∴tan(α+β)tan α=-4. 二、填空题 11. 【答案】 2【解析】原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2. 12.【答案】-43【解析】3tan12°-3sin12°·4cos 212°-2=3tan12°-32sin12°·cos24°=3tan12°-32cos12°2sin12°·cos12°·2cos24°=23sin 12°-6cos12°sin48°=43sin12°·cos60°-cos12°·sin60°sin48°=-43sin48°sin48°=-43.13.【答案】3π4【解析】∵α、β为锐角,∴sin α=31010,cos β=55,∴cos(α+β)=cos αcos β-sin αsin β =1010×55-31010×255=-22<0,又0<α<π2,0<β<π2,∴π2<α+β<π. ∴α+β=3π4.14.【答案】π【解析】f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4-22sin 2x =sin ⎝⎛⎭⎪⎫2x -π4-2(1-cos2x ) =sin2x cos π4-sin π4cos2x +2cos2x -2=22sin2x -22cos2x +2cos2x - 2 =22sin2x +22cos2x -2=sin ⎝⎛⎭⎪⎫2x +π4-2∴最小正周期为π. 三、解答题15. 解: 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725. 又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425,所以sin2α+2sin 2α1-tan α=2sin αcos α+2sin 2αcos αcos α-sin α=2sin αcos αcos α+sin αcos α-sin α=725×-425325=-2875. 16. 解: 已知α、β均为锐角,且cos α=25,则sin α=1-252=15.又∵sin β=310,∴cos β=1-3102=110. ∴sin(α-β)=sin αcos β-cos αsin β =15×110-25×310=-550=-22.又∵sin α<sin β,∴0<α<β<π2.∴-π2<α-β<0.∴α-β=-π4.17. 证明:左边=11-cos20°2-31+cos20°2=21-cos20°-61+cos20°=8cos20°-41-cos 220°=8cos20°-12sin 220° =8cos20°-cos60°sin 220°=8[cos40°-20°-cos40°+20°]sin 220°=16sin40°sin20°sin 220°=32sin 220°cos20°sin 220°=32cos20°=右边, ∴原式成立.18. 解: 由题意知tan α+tan β=-6,tan αtan β=7 ∴tan α<0,tan β<0. 又-π2<α<π2,-π2<β<π2,∴-π2<α<0,-π2<β<0.∴-π<α+β<0.∵tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1,∴α+β=-3π4.19. 解:(1)由sin x +cos x =15,得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925, ∵-π2<x <0.∴sin x <0,cos x >0.∴sin x -cos x <0.故sin x -cos x =-75.(2)3sin 2x 2-2sin x 2cos x2+cos 2x2tan x +1tan x=2sin 2x2-sin x +1sin x cos x +cos xsin x=sin x cos x ⎝⎛⎭⎪⎫2sin 2x2-sin x +1 =sin x cos x [2(1-cos 2x2)-sin x +1)]=sin x cos x ⎝ ⎛⎭⎪⎫1-2cos 2x2+2-sin x=sin x cos x (-cos x +2-sin x )=⎝ ⎛⎭⎪⎫-1225×⎝ ⎛⎭⎪⎫2-15 =-108125.20. 解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ =12(sin2x sin φ+cos2x cos φ) =12cos(2x -φ). 又函数图象过点⎝ ⎛⎭⎪⎫π6,12,所以12=12cos ⎝ ⎛⎭⎪⎫2×π6-φ,即cos ⎝ ⎛⎭⎪⎫π3-φ=1. 又0<φ<π,∴φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3. 将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,变为g (x )=12cos ⎝⎛⎭⎪⎫4x -π3.∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.。
(完整版)高一必修4三角恒等变换测试题及答案

5山东省莱州一中高一数学试题-三角恒等变换测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)4.已知 tan 3,tan44A-B — C775.,都是锐角,且sin513 3316 A 、 B— 65651 3A 0,1B 1,1C 丄,32 21、cos 24 cos36 cos66 cos54 的值为(3 2. cos 5 ,,sin 212 13是第三象限角,则 cos (33 6563 6556 6516 653. tan 20 tan 40 • 3tan20 tan 40 的值为(5,则 tan 2的值为()11— D — 8 4 8则sin 的值是(55663 C 、 D 、 — 6565C - 3D .3)6., x (34 ,)且 cos x 3 —则cos2x 的值是 54 472424A 、 —B 、 —C 、25 2525251,144 7.函数y sin x cos x 的值域是(8.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()J10 V10 3J10 3J10AB C D10 10 10 109.要得到函数y 2sin 2x的图像,只需将y , 3sin 2x cos2x的图像()A、向右平移一个单位B、向右平移一个单位C向左平移—个单位D向左平移—个单位6 12 6 12 10. 函数y .x sin 、3 cos的图像的一条对称轴方程是( )2 2A、1 5 5x B 、x C 、x D 、x —3 3 3 311. 已知1cosx sin x2,则tanx的值为( )1 cosx sin xA、4B4 3 3、-- C 、 D 、3 34 412若0,—0, 且ta n 「tan -,则2 ( )4 2 7A、5 2 7 3B 、C 、D 、6 3 12 4二、填空题(本大题共 4 小题,每小题5分,共20分.请把答案填在题中的横线上)13. .在ABC中,已知tanA ,tanB是方程3x2 7x 2 0的两个实根,则tanC _______________3sin 2x 2cos 2x 砧14. 已知tanx 2,贝U 的值为_____________________cos2x 3sin 2x15. 已知直线IJ/12, A是"J之间的一定点,并且A点到「J的距离分别为0山2 , B是直线I?上一动点,作AC AB,且使AC与直线|1交于点C,则ABC面积的最小值为___________________ 。
高一数学三角恒等变换练习题

第三章 三角恒等变换一、选择题1. 1- tan 275 的值是 ( ) .tan 752 3B .- 2 3C .2 3D .-2 3A .332. cos 40°+ cos 60°+ 2cos 140°cos 2 15°-1 的值是 ( ) .A . 0B .3C . 1+ 3D .12223.已知 sin( - ) cos - cos( - ) sin= 3,且 在第三象限, 则 sin 的值是 ( ) .5 2A .-10B .-3 10C .± 10 3 10 1010D .± 10104.已知1sincos = 1,则 tan = () .1 sincos2A .4B .4 C . 3D .333445. tan( +45°)- tan( 45°- ) 等于 ( ) .A . 2tan 2B .- 2tan 2C .2 D .-2tan 2tan 26.已知 sin( - ) cos - cos( - ) sin = 3,且为第三象限角, 则 cos 等于 ( ) .5A .4B .-4C .3D .-355557. 2sin 14 °cos 31°+ sin 17°等于 () .2B .-2C .3D .- 3A .22228.在△ ABC 中,若 0< tan Α·tan B < 1,那么△ ABC 一定是 ( ) .A .锐角三角形B .钝角三角形C .直角三角形D .形状不确定9.已知为第三象限角且 sin4+ cos 4 = 5,则 sin 2等于 () .922B .22 2D .-2A .C .-333310. sin 6°· cos 24°· sin 78°· cos 48°的值为 ( ) .A .1B .1 C .1D .11616328二、填空题11.若 sin x-sin y=-1,cos x- cos y=1,x,y 都是锐角,则 tan( x- y) 的值为.2212.化简2sin 2 2cos 4 = __________ .13.若 3sin= cos,则 tan 4=.14.若5<< 11, sin 2=-4,则 tan =.24515.求函数 y=( sin x+cos x) 2+ 2cos2x 的最小正周期=.16.已知 2 sin 2+ sin 2=k(<<) ,试用 k 表示 sin- cos的值.1+ tan42三、解答题222 17.化简: cos A+ cos (2+ A) + cos ( 4+ A) .3318.已知:∈( 0,),∈(4,3) 且 cos(- )=4, sin(3+)=5,4445413求: cos, cos(+ ) .19. ( 1) 已知 tan(- ) =1, tan=1,且,∈(0, ),求 2-的值.27( 2) 已知 cos(-) =1,sin(- )=2,且<<,0<<,求 cos(+ )292322的值.π2cos2- sin -120.已知 tan 2 =2,求2., 2 ∈,ππ22 sin +4第三章三角恒等变换参考答案一、选择题1. D解析:原式=2=2=2=-2=- 2 3 .2 tan 75tan150-t an3011- tan 2 7532. C解析:原式=1+ cos 40°-cos 40°+ cos 30°2=1 + 3 22 =13 .23. D解析:∵ sin(--)=3 ,∴ sin =- 3.55又知是第三象限角,∴ cos =- 4.又 cos= 1-2sin 2,5 21--42∴ sin=± 25 =±310 .2104. B1+ sin + cos2 cos 2 +2 sin cos 2=1, 解析:∵ =2 2 1+ sin - cos 2 sin 2 +2 sin cos2222∴ cos 2 = 1,即 tan=2.sin222∴ tan =2 tan = 4 =- 4.1- tan 2 1-4 325. A解析:原式= 1+ tan- 1- tan1- tan1+ tan= (1+ tan ) 2-(1- tan ) 21- tan2= 2( 2 tan)1-tan 2= 2tan 2 . 6. B解析:由已知得sin( -) =3 ,即5sin=-3 ,又5为第三象限角,∴ cos =-4. 57. A解析:原式= 2sin 14°cos 31°+ sin( 31°- 14°)= sin 31°cos 14°+ cos 31°sin 14°= sin( 31°+ 14°)= sin 45°=2.28. B解析:∵ A ,B 是△ ABC 内角,又∵ 0< tan Α· tan B < 1,∴ A , B ∈ ( 0, ) .2∵ 0<sin A sin B<1, cos Acos B > 0,cos A cos B∴ cos Acos B - sin Asin B >0,即 cos( A + B) > 0,∴ 0<A + B <,2∴ -( A +B) =C >,2∴△ ABC 一定是钝角三角形.9. A解析:∵ sin4cos 4= 5,9∴ ( sin 22 22 2=5,+cos ) - 2sin· cos9∴ 1- 1sin 22 = 5,2 928 .∴ sin 2 =9∵ 2k + < < 2k +3,2∴ 4k + 2 < 2 <4k +3 .∴ sin 2 =2 2.310. A解析: sin 6°·cos 24°· sin 78°·cos 48°= 2sin 6cos6cos12 cos 24 cos 482cos 6= 2 3sin 12cos12 cos24 cos48232 cos6= sin 962 4cos 6=1 .16二、填空题11.答案:-7 .3sin x sin y12 平方相加,可求cos( x- y) =3.解析:由cos x cos y142∵ 0< x<, 0< y<且 sin x- sin y=-1< 0,222∴0< x< y<,2∴-<x- y< 0,2∴ sin( x-y) =-7 ,4∴ tan( x- y) =-7 .312.答案 : -3c os 2.解析:原式=2- sin 2 2+ cos2 2- sin 2 2=2-2 sin 2 2+ cos2 2=3cos2 2= 3 | cos 2| .∵<2<,2∴cos 2<0.∴原式=- 3 cos 2.13.答案:12.7解析:∵ 3sin=cos,∴ tan=1.32∴ tan 2 =41-1332= 3 , 4412 tan 4 =2=.- 371414.答案: - 2.解析:∵ 5 < <11 , 2 4 ∴5 <2 <11, 5< <11,2428∴ , 2均为第三象限角,为第二象限角.2∵ sin 2 =- 4 ,∴ cos 2 =- 3,5 5 又 cos 2 = 2cos 2 - 1,1+ cos 21-35 . ∴ cos =-=25=-25又 sin 2 = 2sincos=- 4,5-42 5∴ sin =5 = ,2 cos 5∴ tan = sin =- 2.cos15.答案: .解析: y = 1+ sin 2x + 2cos 2 x = sin 2x + cos 2x + 2= 2 sin( 2x +) +2.4故最小正周期为 .16.答案: 1- k .解析:∵ 2 sin2+ sin 2 = 2sin ( sin + cos)=2sin cos,1+ tan 1+ sincos∴ k = 2sin cos .而 ( sin - cos ) 2= 1- 2sin cos = 1- k .又< < ,于是 sin - cos > 0,所以 sin -cos = 1- k . 4 2三、解答题17.解析:原式=1cos2 A + 1 cos(42 A) 1 cos(82 A)3 +3222= 3+ 1[ cos 2A + cos( 4 2 A ) + cos( 82A )]2 23 3= 3 + 1 ( cos 2A - 1 cos 2A + 3 1 cos 2A -3 sin 2A - sin 2A)2 2 2 2 22=3.218.答案: cos =2, cos( + )=-16.1065解析:∵< < 3π,∴- < - <0.4 4 2 4∵ cos(4 - ) = 4,∴ sin( - )=-3,545∴ cos = cos[- ( - )]4 4= cos · cos( -) + cos · sin( - )4 4 4 4=2·4+2·(- 3)2 5 25=2.10又∵0<< ,∴3 <3+ < .44 4∵ sin( 3 + ) =5,∴ cos( 3+ ) = 12 , 4 13 4 13∴ cos( + ) = sin[+ ( + )] = sin[( 3 + )-(- )]24 4= sin( 3+ ) · cos(- ) -cos(3+ ) ·sin( - )4444=5· 4-(-12)·(-3) 135135=-16.6519.答案: ( 1) 23 ; ( 2) cos( + )=-239. - =-π7294解析: ( 1) ∵ tan(- )=1,2∴ tan 2( - ) = 2 tan(- ) = 4.1- tan 2(- )3又∵2 - =2(- ) + 且 tan=-1,7 ∴ tan( 2()= 1.- ) = tan 2 - + tan(-) tan1- tan 2∵ , ∈ ( 0, ) 且 tan=- 1<0,7()tan =tan -+ tan= 1∈(0,1),(- )tan 1- tan3∴0<<,<<0<2 < ,- <- <--<2-<0,4 2 2 2而在 ( - , 0) 内使正切值为1 的角只有一个-3π,4∴ 2 - =- 3π.4(2)∵ <<,0<<,∴ <- <,4<-<.2 2 42 22又∵ cos( -)=- 1,sin(- )=2,29 23 ∴ sin(- )=4 5, cos(- ) =5 ,2 923∴ cos= cos[( - ) - ( - )]22 2= cos( -) cos( - ) + sin( -) sin( - )2222=7 5,27∴ cos(2+ 239 .+ ) = 2cos- 1=729220.答案:- 3+ 2 2 .2 cos 2- sin -1= 1- tan解析:2π= cos - sin ,2 sincos + sin1+ tan+4∵ tan 2 = 2tan=- 22 ,1- tan 2∴ 2 tan 2 - tan- 2 =0,解得 tan = 2 或 tan =-2 .2∵ < 2< ,∴ < <,∴ tan = 2 ,24 2∴原式=1 2 =-3+2 2.12。
高一必修 三角恒等变换练习题及答案

高一必修三角恒等变换练习题及答案2006学年高一必修4三角恒等变形练题满分100分,时间:100分钟______一、选择题(每题4分,计40分)1.已知 $\frac{\pi}{4}<\alpha<\beta<\pi$。
又,$\sin\alpha=\frac{2}{5}$,$\sin(\alpha+\beta)=-\frac{7}{25}$,则$\sin\beta=$($\quad$)。
A)-1$ $(B)-\frac{1}{2}$ $(C)-\frac{7}{25}$ $(D)\frac{7}{25}$2.如果$\sin\alpha=-\frac{1}{2}$,$\cos\alpha=-\frac{\sqrt{3}}{2}$,则$\alpha$所在的象限是($\quad$)。
A)$一 $(B)$二 $(C)$三 $(D)$四3.设$\frac{1+\tan x}{1-\tan x}=2$,则$\sin 2x$的值是($\quad$)。
A)-\frac{3}{4}$ $(B)-\frac{4}{3}$ $(C)-\frac{3}{5}$ $(D)-\frac{5}{4}$4.已知$\alpha\in(\pi,2\pi)$,则$\frac{1+\sin^2\alpha-\cos^2\alpha}{1+\sin^2\alpha+\cos^2\alpha}$等于($\quad$)。
A)\sin\alpha$ $(B)\cos\alpha$ $(C)-\sin\alpha$ $(D)-\cos\alpha$5.化简$\frac{2\sin\alpha}{1+\cos\alpha}$的结果是($\quad$)。
A)2\sin\alpha$ $(B)\cos\alpha$ $(C)\tan\alpha$ $(D)2\tan\alp ha$6.在$3\sin x+\cos x=2a-3$中,$a$的取值范围是($\quad$)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学试题
-三角恒等变换测试题
第I 卷
一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos24cos36cos66cos54︒
︒
︒
︒
-的值为( )
A 0 B
12 C 2
D 12- 2.3cos 5α=-
,,2παπ⎛⎫
∈ ⎪⎝⎭
,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365-
B 、6365
C 、5665
D 、1665
-
3. tan 20tan 4020tan 40︒
︒
︒
︒
+的值为( )
A 1 B
3
C D 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( )
A 47-
B 47
C 18
D 18-
5.βα,都是锐角,且5sin 13α=,()4
cos 5
αβ+=-,则βsin 的值是( )
A 、3365
B 、1665
C 、5665
D 、6365
6.,)4,43(ππ-
∈x 且3cos 45x π⎛⎫
-=- ⎪⎝⎭
则cos2x 的值是( ) A 、725-
B 、2425-
C 、2425
D 、725
7. 函数4
4
sin cos y x x =+的值域是( )
A []0,1
B []1,1-
C 13,22⎡⎤⎢⎥⎣⎦
D 1,12⎡⎤
⎢⎥⎣⎦
8. 已知等腰三角形顶角的余弦值等于
5
4
,则这个三角形底角的正弦值为( )
A
1010 B 1010- C 10103 D 10
103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( )
A 、向右平移6π个单位
B 、向右平移12π个单位
C 、向左平移6π个单位
D 、向左平移12π
个单位
10. 函数sin 22x x
y =+的图像的一条对称轴方程是 ( )
A 、x =113
π B 、x =53π C 、53x π=- D 、3x π
=-
11. 已知
1cos sin 21cos sin x x
x x -+=-++,则x tan 的值为 ( ) A 、34 B 、34- C 、43 D 、4
3-
12.若0,4πα⎛⎫
∈ ⎪⎝⎭
()0,βπ∈且()1tan 2αβ-=,1tan 7β=-,则=-βα2 ( ) A 、56π-
B 、23π-
C 、 712
π- D 、34π
- 二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)
13. .在ABC ∆中,已知tanA ,tanB 是方程2
3720x x -+=的两个实根,则tan C =
14. 已知tan 2x =,则
3sin 22cos 2cos 23sin 2x x
x x
+-的值为
15. 已知直线12//l l ,A 是12,l l 之间的一定点,并且A 点到12,l l 的距离分别为12,h h ,B 是直线2l 上一动点,作AC ⊥AB ,且使AC 与直线1l 交于点C ,则ABC ∆面积的最小值为 。
16. 关于函数()cos 2cos f x x x x =-,下列命题:
①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤
-
⎢⎥⎣⎦
上是单调递增;
③函数()f x 的图像关于点,012π⎛⎫
⎪⎝⎭
成中心对称图像; ④将函数()f x 的图像向左平移
512
π
个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)
第II 卷
一、选择题:(每小题5分共计60分)
二、填空题:(每小题5分,共计20分)
13、______________14、_______________15、____________________ 16、_______________ 三、解答题: 17. 已知02
π
α<<
,15tan
2
2tan
2
α
α
+
=
,试求sin 3πα⎛
⎫- ⎪⎝⎭
的值.(12分)
18. 求)
212cos 4(12sin 3
12tan 30200--的值.(12分)
19. 已知α为第二象限角,且 sin α=,415求1
2cos 2sin )
4sin(+++
ααπ
α的值.(12分)
20.已知函数2
2
sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
(2)函数的单调减区间
(3
)此函数的图像可以由函数2y x =的图像经过怎样变换而得到。
(12分)
21.已知在△ABC 中,A,B,C 为其内角,若C B A sin cos sin 2=⋅,判断三角形的形状。
(12分)
22.四边形ABCD 是一个边长为100米的正方形地皮,其中ATPS 是一半径为90米的扇形小山,其余部分都是平地,P 是弧TS 上一点,现有一位开发商在平地上建造一个两边落在BC 与CD 上的长方形停车场PQCR.求长方形停车场PQCR 面积的最大值与最小值.(14分)
.
三角恒等变换测试题参考答案
一、选择题:(每小题5分共计60分)
二、填空题:(每小题5分,共计20分) 13、-7 14、-5
2
15、21h h 16、①③ 三、解答题: 17.
10
3
34- 18.34- 19.2- 20.(1)最小值为22-,x的集合为⎭
⎬⎫⎩
⎨⎧∈+=
Z k k x x ,85|ππ (2) 单调减区间为)(85,8Z k k k ∈⎥⎦
⎤
⎢⎣⎡++ππππ
(3)先将x y 2sin 2=
的图像向左平移
8
π个单位得到)42sin(2π
+=x y 的图像,然后将
)42sin(2π+=x y 的图像向上平移2个单位得到)4
2sin(2π
+=x y +2的图像。
21.等腰三角形
22.最小值为950米2,最大值为290014050-米2。