高一数学三角恒等变换-名校试题(答案)
高中试卷-专题5.5 三角恒等变换(含答案)
专题5.5 三角恒等变换(一)两角和与差的正弦、余弦、正切公式1.C (α-β):cos(α-β)=cos αcos β+sin αsin β;C (α+β):cos(α+β)=cos αcos_β-sin_αsin β;S (α+β):sin(α+β)=sin αcos β+cos αsin β;S (α-β):sin(α-β)=sin_αcos_β-cos αsin β;T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);.sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β,3.辅助角公式:函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.(二)二倍角的正弦、余弦、正切公式1.S 2α:sin 2α=2sin αcos α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;T 2α:tan 2α=2tan α1-tan 2α.2.变形公式:(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,sin αcos α=12sin 2α.(2)升幂公式1+cos α=2cos 2α2;1-cos α=2sin 2α2;1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.)4sin(2cos sin πααα±=±(3)配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=(sin α2±cos α2)2,1+cos α=2cos 2α2,1-cos α=2sin 2α2(4)sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.tan α2=sin α1+cos α=1-cos αsin α.(三)常见变换规律(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,(π4+α)+(π4-α)=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.一、单选题1.sin 40sin 50cos 40cos50°°-°°等于( )A .1-B .1C .0D .cos10-°【来源】陕西省西安市莲湖区2021-2022学年高一下学期期末数学试题【答案】C【解析】由两角和的余弦公式得:()()sin 40sin 50cos 40cos50cos 40cos50sin 40sin 50cos 4050cos900°°-°°=-°°-°°=-+=-=o o o 故选:C2.已知()5cos 2cos 22παπαæö-=+ç÷èø,且()1tan 3αb +=,则tan b 的值为( )A .7-B .7C .1D .1-【来源】辽宁省沈阳市第一中学2021-2022学年高一下学期第三次阶段数学试题【答案】D【解析】:因为()5cos 2cos 22παπαæö-=+ç÷èø,所以sin 2cos αα=,所以sin tan 2cos ααα==,又()1tan 3αb +=,所以()()()12tan tan 3tan tan 111tan tan 123αb αb αb ααb α-+-=+-===-éùëû+++´.故选:D3.已知,αb 均为锐角,且1sin 2sin ,cos cos 2αb αb ==,则()sin αb -=( )A .35B .45CD .23【来源】辽宁省县级重点高中协作体2021-2022学年高一下学期期末考试数学试题【答案】A【解析】:因为1sin 2sin ,cos cos 2αb αb ==,所有22221sin cos 4sin cos 14ααb b +=+=,则2153sin 44b =,又,αb均为锐角,所以sin b =cos b =所以sin αα==所以()3sin sin cos cos sin 5αb αb αb -=-=.故选:A.4.已知()1sin 5αb +=,()3sin 5αb -=,则tan tan αb 的值为( )A .2B .2-C .12D .12-【来源】内蒙古自治区包头市2021-2022学年高一下学期期末数学试题【答案】B【解析】()()1sin sin cos cos sin 53sin sin cos cos sin 5αb αb αb αb αb αb ì+=+=ïïíï-=-=ïî,解得2sin cos 51cos sin 5αb αb ì=ïïíï=-ïî,所以tan sin cos 2tan cos sin ααbb αb==-.故选:B5.已知sin sin 13πq q æö++=ç÷èø,则tan 6πq æö+=ç÷èø( )ABC .D .【来源】陕西省汉中市六校联考2021-2022学年高一下学期期末数学试题(B 卷)【答案】D【解析】sin sin(13πq q ++=,则1sin sin 12q q q +=,即312q =,1cos 2q q +=sin 6πq æö+ç÷èøcos 6πq æö+==ç÷èø所以tan 6πq æö+==ç÷èø故选:D6.下面公式正确的是( )A .3sin cos 2πq q æö+=ç÷èøB .2cos212cos q q =-C .3cos sin 2πq q æö+=-ç÷èøD .cos(sin 2πq q-=【来源】陕西省宝鸡市渭滨区2021-2022学年高一下学期期末数学试题【答案】D 【解析】对A ,3sin cos 2πq q æö+=-ç÷èø,故A 错误;对B ,2cos 22cos 1q q =-,故B 错误;对C ,3cos sin 2πq q æö+=ç÷èø,故C 错误;对D ,cos()sin 2πq q -=,故D 正确;故选:D7.已知2tan()5αb +=,1tan(44πb -=,则tan()4πα+的值为( )A .16B .322C .2213D .1318【来源】内蒙古自治区呼伦贝尔市满洲里市第一中学2021-2022学年高一下学期期末数学试题【答案】B【解析】:因为2tan()5αb +=,1tan()44πb -=,所以()tan()tan 44ππααb b éùæö+=+--ç÷êúèøëû()()tan tan 41tan tan 4παb b παb b æö+--ç÷èø=æö++-ç÷èø213542122154-==+´.故选:B 8.设1cos102a =o o,22tan131tan 13b =+oo,c =,则a ,b ,c 大小关系正确的是( )A .a b c <<B .c b a <<C .a c b<<D .b c a<<【来源】湖北省云学新高考联盟学校2021-2022学年高一下学期5月联考数学试题【答案】C【解析】()1cos10cos 6010cos 70sin 202a =°=°+°=°=°o ,2222sin132tan13cos132sin13cos13sin 26sin 131tan 131cos 13b °°°===°°=°°+°+°,sin 25c ===o ,因为函数sin y x =在0,2πæöç÷èø上是增函数,故sin 20sin 25sin 26<<o o o ,即a c b <<.故选:C.9.已知sin()6πα+=2cos(2)3πα-=( )A .23-B .13-C .23D .13【来源】海南省海口市第一中学2021-2022学年高一下学期期中考试数学试题(A )【答案】B【解析】:因为sin()6πα+=,所以2cos 2cos 263παππαéùæöæö-=-ç÷ç÷êúèøë+øèû6cos 2πα÷+æö=-çèø212n 6si παéùæö=--ç÷êúøë+èû21123éùæêú=--=-ççêúèëû故选:B10.若11tan ,tan()72b αb =+=,则tan =α( )A .115B .112C .16D .13【来源】北京市房山区2021—2022学年高一下学期期末学业水平调研数学试题【答案】D【解析】:因为11tan ,tan()72b αb =+=,所以()()()11tan tan 127tan =tan 111tan tan 3127αb b ααb b αb b -+-+-===éùëû+++´.故选:D.11.已知3cos 16πααæö--=ç÷èø,则sin 26παæö+=ç÷è( )A .13-B .13C .D【来源】四川省内江市2021-2022学年高一下学期期末数学理科试题【答案】B【解析】:因为3cos 16πααæö--=ç÷èø,即3cos cos sin sin 166ππαααæö-+=ç÷èø,即13sin 12αααö-+=÷÷ø3sin 12αα-=1cos 123παααöæö=+=÷ç÷÷èøø,所以cos 3παæö+=ç÷èø所以sin 2cos 2662πππααæöæö+=-++ç÷ç÷èøèø2cos 22cos 133ππααéùæöæö=-+=-+-ç÷ç÷êúèøèøëû21213éùêú=--=êúëû.故选:B 12.已知4sin 5α=,π5,π,cos ,213αb b æöÎ=-ç÷èø是第三象限角,则()cos αb -=( )A .3365-B .3365C .6365D .6365-【来源】西藏林芝市第二高级中学2021-2022学年高一下学期第二学段考试(期末)数学试题【答案】A【解析】由4sin 5α=,π,π2αæöÎç÷èø,可得3cos 5α===-由5cos ,13b b =-是第三象限角,可得12sin 13b ===-则()3541233cos cos cos sin sin 51351365αb αb αb æöæöæö-=+=-´-+´-=-ç÷ç÷ç÷èøèøèø故选:A13.若sin 2α=()sin b α-=,4απéùÎπêúëû,3,2b ππéùÎêúëû,则αb +的值是( )A .54πB .74πC .54π或74πD .54π或94π【答案】B【解析】,,2,242ππαπαπéùéùÎ\ÎêúêúëûëûQ ,又∵sin 22,,,242πππααπαéùéù=\ÎÎêúêúëûëû,∴cos2α==又∵35,,,224πππb πb αéùéùÎ\-Îêúêúëûëû,∴()cos b α-==于是()()()()cos cos 2cos 2cos sin 2sin αb αb ααb ααb α+=+-=---éùëûææ==ççççèè5,24αb πéù+Îπêúëû,则74αb π+=.故选:B.14.)sin20tan50=oo ( )A .12B .2C D .1【来源】安徽省宣城市泾县中学2021-2022学年高一下学期第一次月考数学试题【答案】D 【解析】原式()()()2sin 20sin 50602sin 20sin 9020cos50cos 9050++===-oooooooo o 2sin 20cos 20sin 401sin 40sin 40===o o o o o.故选:D.15.若1cos ,sin(),0722ππααb αb =+=<<<<,则角b 的值为( )A .3πB .512πC .6πD .4π【来源】陕西省西安中学2021-2022学年高一下学期期中数学试题【答案】A 【解析】∵0,022ππαb <<<<,0αb π\<+<,由1cos 7α=,()sin αb +=sin α=,11cos()14αb +=±,若11cos()14αb +=,则sin sin[()]b αb α=+-sin()cos cos()sin αb ααb α=+-+1110714=-<,与sin 0b >矛盾,故舍去,若11cos()14αb +=-,则cos cos[()]b αb α=+-cos()cos sin()sin αb ααb α=+++111147=-´+12=,又(0,)2πb ÎQ ,3πb \=.故选:A.161712πα<<,且7cos 268παæö+=-ç÷ø,则αö=÷ø( )A .B .CD .14-【来源】河南省南阳地区2021-2022学年高一下学期期终摸底考试数学试题【答案】A【解析】由27cos 212sin 6128ππααæöæö+=-+=-ç÷ç÷èøèø,得215sin 1216παæö+=ç÷èø.因为7171212ππα<<,所以233122πππα<+<,所以sin 12παææö+Î-çç÷çèøè,所以sin 12παæö+=ç÷èø所以5cos cos sin 1221212ππππαααæöæöæöæö-=-+=+=ç÷ç÷ç÷ç÷èøèøèøèø故选:A17.已知sin cos αα-=π£,则sin 2æçè )A C .D 【来源】湖北省新高考联考协作体2021-2022学年高一下学期期末数学试题【答案】D【解析】:因为sin cos αα-=()22sin cos αα-=,即222sin 2sin cos cos 5αααα-+=,即21sin 25α-=,所以3sin 25α=,又sin cos 4παααæö--=ç÷èø即sin 4παæö-=ç÷èø因为0απ££,所以3444πππα-£-£,所以044ππα<-£,即42ππα<£,所以22παπ<£,所以4cos 25α==-,所以sin 2sin 2cos cos 2sin333πππαααæö-=-ç÷èø314525æö=´--=ç÷èø;故选:D18.若10,0,cos ,cos 224342ππππb αb αæöæö<<-<<+=-=ç÷ç÷èøèøcos 2b αæö+=ç÷èø( )A B .C D .【来源】广东省佛山市顺德区乐从中学2021-2022学年高一下学期期中数学试题【答案】C 【解析】cos cos cos cos sin sin 2442442442b ππb ππb ππb ααααéùæöæöæöæöæöæöæö+=+--=+-++-ç÷ç÷ç÷ç÷ç÷ç÷ç÷êúèøèøèøèøèøèøèøëû,因为0,022ππαb <<-<<所以3,444πππαæö+Îç÷èø,,4242πb ππæö-Îç÷èø,因为1cos 43παæö+=ç÷èø,cos 42πb æö-=ç÷èø所以sin 4παæö+=ç÷èø,sin 42πb æö-=ç÷èø则1cos 23b αæö+==ç÷èøC19.已知πcos sin 6ααæö-+ç÷èø,则2πcos 3αæö+ç÷èø的值是( )A .45-B .45C .D 【来源】广东省汕尾市2021-2022学年高一下学期期末数学试题【答案】A【解析】由πcos sin 6ααæö-+=ç÷èøππ3πcos cossin sin sin sin 6623ααααααæö++=+=-=ç÷èø所以,π4cos 35αæö-=ç÷èø,所以,2πππ4cos cos πcos 3335αααæöæöæöæö+=--=--=-ç÷ç÷ç÷ç÷èøèøèøèø.故选:A.20.已知,2παπæöÎç÷ø,且25,则cos()α-=( )A B C D 【来源】陕西省商洛市2021-2022学年高一下学期期末数学试题【答案】C【解析】因为,2παπæöÎç÷èø,所以35,444πππαæö+Îç÷èø.又2sin 45παæö+=ç÷èø,所以cos 4παæö+==ç÷èøcos()cos cos cos cos sin sin 444444ππππππαααααéùæöæöæö-==+-=+++=ç÷ç÷ç÷êúèøèøèøëû故选:C.二、多选题21.对于函数()sin 22f x x x =,下列结论正确的是( )A .()f x 的最小正周期为πB .()f x 的最小值为2-C .()f x 的图象关于直线6x π=-对称D .()f x 在区间,26ππæö--ç÷èø上单调递增【来源】湖北省部分普通高中联合体2021-2022学年高一下学期期中联考数学试题【答案】AB【解析】()1sin 222(sin 22)2sin(223f x x x x x x π==+=+,22T ππ==,A 正确;最小值是2-,B 正确;()2sin()0633f πππ-=-+=,C 错误;(,)26x ππÎ--时,22(,0)33x ππ+Î-,232x ππ+=-时,()f x 得最小值2-,因此函数不单调,D 错误,故选:AB .22 )A .222cos2sin 1212ππ-B .1tan151tan15+°-°C .cos 75°°D .cos15°°【来源】江西省南昌市第十中学2021-2022学年高一下学期期中考试数学试题【答案】ABC【解析】A :222cos 2sin 2cos12126πππ-==B :1tan15tan 45tan15tan 601tan151tan 45tan15+°°+°==°=-°-°°C :cos 75sin1530°°=°°=°=,符合;D :cos152sin(3015)2sin15°°=°-°=°¹.故选:ABC23.已知函数2()cos sin 222x x xf x =-,则下列结论正确的有( )A .()f x 的最小正周期为4πB .直线23x π=-是()f x 图象的一条对称轴C .()f x 在0,2πæöç÷èø上单调递增D .若()f x 在区间,2m πéù-êúëû上的最大值为12,则3m π³【来源】江苏省南京师范大学附属中学2021-2022学年高一下学期期中数学试题【答案】BD【解析】:()21cos 1cos sin sin 222262x x x x f x x x π-æö=-=-=+-ç÷èø,所以()f x 的最小正周期为2,π故A 不正确;因为2362πππ-+=-,所以直线23x π=-是()f x 图象的一条对称轴,故B 正确;当02x π<<时,2+663x πππ<<,而函数sin y x =在2,63ππæöç÷èø上不单调,故C 不正确;当2x m π-££时,++366x m πππ-££,因为()f x 在区间,2m πéù-êúëû上的最大值为12,即11sin 622x πæö+-£ç÷èø,所以sin 16x πæö+£ç÷èø,所以+62m ππ³,解得3m π³,故D 正确.故选:BD.24.已知函数22()cos cos sin (0)f x x x x x ωωωωω=+->的周期为π,当π[0]2x Î,时,()f x 的( )A .最小值为2-B .最大值为2C .零点为5π12D .增区间为π06éùêúëû,【来源】江苏省徐州市2021-2022学年高一下学期期中数学试题【答案】BCD【解析】22()cos cos sin (0)f x x x x x ωωωωω=+->2cos 2x xωω=+2sin 26x πωæö=+ç÷èø,因为()f x 的周期为π,所以22ππω=,得1ω=,所以()2sin 26f x x πæö=+ç÷èø,当π[02x Î,时,72,666x πππéù+Îêúëû,所以1sin 2126x πæö-£+£ç÷èø,所以12sin 226x πæö-£+£ç÷èø,所以 ()f x 的最小值为1-,最大值为2,所以A 错误,B 正确,由()2sin 206f x x πæö=+=ç÷èø,72,666x πππéù+Îêúëû,得26x ππ+=,解得512x π=,所以()f x 的零点为5π12,所以C 正确,由2662x πππ£+£,得06x π££,所以()f x 的增区间为π06éùêëû,,所以D 正确,故选:BCD25.关于函数()cos 2cos f x x x x =-,下列命题正确的是( )A .若1x ,2x 满足12πx x -=,则()()12f x f x =成立;B .()f x 在区间ππ,63éù-êúëû上单调递增;C .函数()f x 的图象关于点π,012æöç÷èø成中心对称;D .将函数()f x 的图象向左平移7π12个单位后将与2sin 2y x =的图象重合.【来源】广东省佛山市顺德区第一中学2021-2022学年高一下学期期中数学试题【答案】ACD【解析】()1cos 2cos cos 222cos 222f x x x x x x x x æö=-==ç÷ç÷èøπ2cos 23x æö=+ç÷èø,对于A ,若1x ,2x 满足12πx x -=,则()()()1222ππ2cos 2π2cos 233f x x x f x éùæö=++=+=ç÷êúëûèø成立,故A 正确;对于B ,由ππ2π22π2π,3k x k k Z +£+£+Î,得:π5πππ,36k x k k +££+ÎZ ,即()f x 在区间π5π,36éùêúëû上单调递增,故B 错误;对于C ,因为πππ2cos 2012123f æöæö=´+=ç÷ç÷èøèø,所以函数()f x 的图象关于点π,012æöç÷èø成中心对称,故C 正确;对于D ,将函数()f x 的图象向左平移7π12个单位后得到7π7ππ3π2cos 22cos 22sin 2121232y f x x x x éùæöæöæö=+=++=+=ç÷ç÷ç÷êèøèøèøëû,其图象与2sin 2y x =的图象重合,故D 正确.故选:ACD三、解答题26.求下列各式的值(1)cos54cos36sin54sin36×-×o o o o (2)sin7cos37cos(7)sin(37)×+-×-o o o o (3)ππcos sin 1212×(4)22ππsincos 88-【来源】黑龙江省鸡西市第四中学2021-2022学年高一上学期期末考试数学试题【答案】(1)0;(2)12-;(3)14;(4)【解析】(1)cos54cos36sin54sin36cos(5436)cos900×-×=+==o o o o o o o .(2)sin7cos37cos(7)sin(37)sin7cos37cos7sin37×+-×-=×-×o o o o o o o o1sin(737)sin(30)2=-=-=-o o o .(3)ππ1π1cossin sin 1212264×==.(4)22πππsin cos cos 884-=-=27.已知3sin 5α=,其中2απ<<π.(1)求tan α;(2)若0,cos 2πb b <<=()sin αb +的值.【来源】广东省珠海市2021-2022学年高一下学期期末数学试题(A 组)【答案】(1)34-(2)【解析】(1)由3sin 5α=可得4cos 5α==±,因为2απ<<π,故4cos 5α=-,进而sintan cos ααα==(2)π0,cos 2b b <<,故sinb =;()34sin =sin cos cos sin 55αb αb αb ++=28.已知角α为锐角,2πb απ<-<,且满足1tan23=α,()sin b α-(1)证明:04πα<<;(2)求b .【来源】江西省名校2021-2022学年高一下学期期中调研数学试题【答案】(1)证明见解析(2)3.4πb =【解析】(1)证明:因为1tan23α=,所以2122tan332tan 1tan 1441tan 129απαα´===<=--,因为α为锐角且函数tan y x =在0,2πæöç÷èø上单调递增,所以04πα<<(2)由22sin 3tan cos 4sin cos 1αααααì==ïíï+=î,结合角α为锐角,解得3sin 5α=,4cos 5α=,因为2πb απ<-<)=所以()cos b α-==()()()sin sinsin cos cos sin b αbααb ααbαéù=+-=-+-ëû3455æ=´+=çè又5224πππαb πα<+<<+<,所以3.4πb =29.已知α,b 为锐角,πsin 3αæö-=ç÷èø()11cos 14αb +=-.(1)求cos α的值;(2)求角b .【来源】江苏省南京市六校联合体2021-2022学年高一下学期期末数学试题【答案】(1)17(2)π3【解析】(1)因为π0,2αæöÎç÷èø,所以ππ336παæö-Îç÷ø-,,又πsin 3αæö-=ç÷èø所以π13cos 314αæö-===ç÷èø所以ππcos =cos +33ααéùæö-ç÷êúèøëûππππ1cos cos sin sin =33337ααæöæö=---ç÷ç÷èøèø(2)因为α,b 为锐角,所以0αb <+<π,则()sin 0αb +>,因为()11cos 14αb +=-,所以()sin αb +==又α为锐角,1cos 7α=,所以sin α==故()()()sin sin sin cos cos sin b αb ααb ααb α=+-=+-+éùû111714=+=因为b 为锐角,所以π3b =.30.已知sincos22αα-=(1)求sin α的值;(2)若αb ,都是锐角,()3cos 5αb +=,求sin b 的值.【来源】湖北省部分市州2021-2022学年高一下学期7月期末联考数学试题【答案】(1)12【解析】(1)解:2221sin cos sin 2sin cos cos 1sin 2222222a ααααααæö-=-+=-=ç÷èø,1sin 2a =.(2)因为αb ,都是锐角,所以0αb <+<π,()4sin 5αb +==,1sin cos 2a a =Þ=,()()()43sin cos c s 1si o 55n sin sin 2αb ααb ααb b α=+=+-=+-=´éùëû31.已知tan ,tan αb 是方程23570x x +-=的两根,求下列各式的值:(1)()tan αb +(2)()()sin cos αb αb +-;(3)()cos 22αb +.【来源】江苏省泰州市兴化市楚水实验学校2021-2022学年高一下学期阶段测试一数学试题【答案】(1)12-(2)54(3)35【解析】(1)由题意可知:57tan tan ,tan tan 33αb αb +=-=-()5tan tan 13tan 71tan tan 213αb αb αb -++===--+(2)()()5sin sin cos cos sin tan tan 537cos cos cos sin sin 1tan tan 413αb αb αb αb αb αb αb αb -+++====-++-(3)()22222211cos ()sin ()1tan ()34cos 221cos ()sin ()1tan ()514αb αb αb αb αb αb αb -+-+-++====++++++。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.已知△ABC的平面直观图△是边长为a的正三角形,则原△ABC的面积为()A.B.C.D.【答案】D【解析】三角形由平面图形转化到直观图形时,位于上的边长不变,位于轴上的长度减半,因此直观图与平面图比较底边长不变,高为平面图高的倍,【考点】平面图形的直观图2.下列函数中,最小正周期为π的偶函数为A.B.C.D.【答案】D【解析】A中函数为奇函数;B中函数最小周期为;C中由函数图像可知函数不具有周期性;D中函数周期为,且为偶函数【考点】三角函数的周期性奇偶性3.(本小题满分12分)在中,角的对边分别为,且.(1)求的值;(2)若成等差数列,且公差大于0,求的值.【答案】(1);(2).【解析】(1)根据正弦定理,将边化为角,直接求得;(2)因为三边成等差数列,所以,同样根据正弦定理,将边化角得到,第二步,考虑两角和的公式,所以将,两个式子平方相加能够解得,第三步,考虑的大小关系,得到.试题解析:(1)由,根据正弦定理得,所以(2)由已知和正弦定理以及(1)得①设,②①2+②2,得③代入③式得因此【考点】1.正弦定理;2.两角和的余弦公式.4.如果,那么的值为()A.-2B.2C.-D.【答案】C【解析】上下同时除以,得到:,解得.【考点】同角三角函数基本关系式5.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A.B.C.0D.-【答案】B【解析】平移个单位得到,令知满足,故选B.【考点】三角函数的图像与性质.6.(本小题满分12分)已知.(1)若且=l时,求的最大值和最小值,以及取得最大值和最小值时x的值;(2)若且时,方程有两个不相等的实数根,求b的取值范围及的值.【答案】(1)(2),或【解析】第一问首先利用数量积的坐标运算公式以及倍角公式,两角和的正弦公式化简f(x),再利用得,结合三角函数的图像性质得,第二问要使方程有两个不相等的实数根,须满足,,试题解析:解:当且=l时,当且时,且而,要使方程有两个不相等的实数根,须满足----12分又【考点】向量的数量积公式,倍角公式,两角和的正弦公式,三角函数的图像性质.7.计算的值是.【答案】【解析】【考点】两角和与差的正弦公式8.把函数的图像经过变化而得到的图像,这个变化是()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】B【解析】,与比较可知:只需将向右平移个单位即可【考点】三角函数化简与平移9.已知角的终边过点,则的值是()A.1B.C.D.-1【答案】C【解析】,,,所以原式等于.【考点】三角函数的定义10.的最大值为()A.B.C.1D.2【答案】C【解析】函数可化为,显然最大值为1,故选C【考点】•辅助角公式 三角函数求最值11.(本小题满分12分)已知,.(1)求及的值;(2)求满足条件的锐角.【答案】(1),;(2)【解析】(1)由同角三角函数的基本关系及角的范围即可求出,再由倍角公式及角的范围即可求出。
高一数学 三角函数 三角恒等变化 解三角形 专题练习及答案精析版(76页)
高一数学 三角函数 三角恒等变化 解三角形 专题练习1.在ABC ∆中,内角,,A B C 对边的边长分别是,,a b c ,若()()(),a c a c b b +-=+则cos A = A.2-B.2 C .12D.3- 2.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )3.已知角α的终边上一点的坐标为(12,则角α的正弦值为( )A.-2B.2 C .-12 D.124.在ABC ∆中,若20sin A sin BcosC -=,则ABC ∆必定是 ( )A 、钝角三角形B 、等腰三角形C 、直角三角形D 、锐角三角形 5.把函数sin(2)6y x π=+的图象向右平移6π个单位长度得到函数 A .sin 2y x =B .sin(2)6y x π=-C .sin(2)3y x π=+ D .cos 2y x = 6.= 2010sin ( )A.21 B.21- C. 23- D.2377..已知m =αtan 化简αα22sin 2cos 1+得结果为:( )A. 22211m m ++ B.m m 211++C.m 211+ D. 211m+ 8. 将分针拨快10分钟,则分针转过的弧度数是( )xxA .B .C .D .A .3π B .3π- C .6π D .6π- 9.在ABC ∆中,若sinA ︰sinB ︰sinC=1:2:3,则::a b c 等于( )A.1:2:3B.3:2:1C.2D.2 10.要得到一个偶函数,只需将函数)3sin()(π-=x x f 的图象A.向左平移3π个单位 B.向右平移3π个单位 C.向左平移6π个单位 D.向右平移6π个单位 11.设0)3cos )(sin sin cos 2(=++-x x x x ,则xxx tan 12sin cos 22++的值为( )A .52 B .85 C .58 D .25 12.函数1sin 6cos 22++=x x y 的最大值为( ) A . 10 B .9 C .8 D . 713.半径为5cm ,面积为252cm 的扇形中,弧所对的圆心角为 A . ︒2 B.π2弧度 C .2弧度 D .4弧度 14.化简sin()2απ+等于( ). A.cos α B.sin α C.cos α- D.sin α-15.函数y =sin(ωx +ϕ)(x ∈R,ω>0,0≤ϕ<2π)的部分图象如右图,则 ( ) A.ω=π2,ϕ=π4 B.ω=π3,ϕ=π6C.ω=π4,ϕ=π4D.ω=π4,ϕ=π5416.为了得到函数sin(2)6y x π=-的图像,可以将函数cos 2y x =的图像A 、向右平移6π个单位 B 、 向左平移3π个单位 C 、向左平移6π个单位 D 、向右平移3π个单位17.在ABC ∆中,120A =︒5AB =,7BC =,则sin sin BC的值为 A .85 B .58 C .53 D .3518. △ABC 中,若030C =,8a =,b =S ABC 等于( )A.19.已知tan x =x 的集合为( )A .4{|2,}3x x k k Z ππ=+∈B .{|2,}3x x k k Z ππ=+∈C .4,33ππ⎧⎫⎨⎬⎩⎭D .{|,}3x x k k Z ππ=+∈20.已知α为锐角,2cos sin m=αα,则ααcos sin +的值是 ( ) A .1-m B .1+m C .1-±m D .1+±m21.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m 的范围是( )A.(1,2)B.(2,+∞)C.[3,+∞)D.(3,+∞) 22.求0sin 600的值是 ( )A 、12 B、D 、12-23.下列关系式中正确的是( )A .sin11cos10sin168︒<︒<︒B .sin168sin11cos10︒<︒<︒C .sin11sin168cos10︒<︒<︒D .sin168cos10sin11︒<︒<︒ 24.若2π-≤x ≤2π,则()cos f x x x =+的取值范围是 ( ) A .[1,2]- B .[1,1]- C.[2] D.[ 25.已知x x x tan 1tan 14tan -+=⎪⎭⎫⎝⎛+π⎪⎭⎫⎝⎛+≠4ππk x ,那么函数x y tan =的周期为π。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.(12分)(1)求的值.(2)若,,,求的值.【答案】(1)1(2)【解析】(1)原式……6分(2),①②①-②得,. ……12分【考点】本小题主要考查利用和差角公式、同角三角函数基本关系式等求三角函数值,考查学生的运算求解能力.点评:解决给值求值问题时,要尽量用已知角来表示未知角.2.设-3π<α<-,则化简的结果是()A.sin B.cosC.-cos D.-sin【答案】C【解析】∵-3π<α<-π,∴-π<<-π,∴cos<0,∴原式==|cos|=-cos.3.已知cos2α-cos2β=a,那么sin(α+β)·sin(α-β)等于()A.-B.C.-a D.a【答案】C【解析】法一:sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a,故选C.法二:原式=-(cos2α-cos2β)=-(2cos2α-1-2cos2β+1)=cos2β-cos2α=-a.4.若cos2α=m(m≠0),则tan=________.【答案】【解析】∵cos2α=m,∴sin2α=±,∴tan===.5.求sin42°-cos12°+sin54°的值.【答案】【解析】sin42°-cos12°+sin54°=sin42°-sin78°+sin54°=-2cos60°sin18°+sin54°=sin54°-sin18°=2cos36°sin18°=====.6.给出下列三个等式f(xy)=f(x)+f(y),f(x+y)=f(x)·f(y),f(x+y)=,下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin xC.f(x)=logx D.f(x)=tan x2【答案】B【解析】对选项A,满足f(x+y)=f(x)·f(y),对选项C,满足f(xy)=f(x)+f(y),对选项D,满足f(x+y)=,故选B.7.的值为()A.2+B.C.2-D.【答案】C【解析】sin6°=sin(15°-9°)=sin15°cos9°-cos15°sin9°,cos6°=cos(15°-9°)=cos15°cos9°+sin15°sin9°,∴原式=tan15°=tan(45°-30°)==2-,故选C.8.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为()A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.9.已知sinα=,α为第二象限角,且tan(α+β)=1,则tanβ的值是() A.-7B.7C.-D.【答案】B【解析】由sinα=,α为第二象限角,得cosα=-,则tanα=-.∴tanβ=tan[(α+β)-α]===7.10.若a=tan20°,b=tan60°,c=tan100°,则++=()A.-1B.1C.-D.【答案】B【解析】∵tan(20°+100°)=,∴tan20°+tan100°=-tan60°(1-tan20°tan100°),即tan20°+tan60°+tan100°=tan20°·tan60°·tan100°,∴=1,∴++=1,选B.11.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.12.若π<α<,化简+.【答案】-cos【解析】∵π<α<,∴<<,∴cos<0,sin>0.∴原式=+=+=-+=-cos.13. cos75°cos15°-sin255°sin15°的值是()A.0B.C.D.-【答案】B【解析】原式=cos75°·cos15°+sin75°sin15°=cos(75°-15°)=cos60°=.14.已知0<α<<β<π,cosα=,sin(α+β)=-,则cosβ的值为() A.-1B.-1或-C.-D.±【答案】C【解析】∵0<α<, <β<π,∴<α+β<π,∴sinα=,cos(α+β)=-,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=-,故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.=________.【答案】【解析】=cos cos-sin sin=cos cos+sin sin=cos=cos=.17.已知α、β为锐角,且tanα=,tanβ=,则sin(α+β)=________.【答案】【解析】∵α为锐角,tanα=,∴sinα=,cosα=,同理可由tanβ=得,sinβ=,cosβ=.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.18.函数y=cos x+cos的最大值是________.【答案】【解析】法一:y=cos+cos=cos·cos+sin sin+cos=cos+sin==cos=cos≤.法二:y=cos x+cos x cos-sin x sin=cos x-sin x==cos,当cos=1时,y=.max19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。
高一数学三角恒等变换试题
高一数学三角恒等变换试题1.已知,,则.【答案】【解析】由题意可得:,因为所以舍去,所以,所以,.【考点】三角变换及求值.2.若,则,则的值为()A.B.C.D.【答案】D【解析】,因为,所以,平方得:,故选择D.【考点】三角恒等变换中的求值.3.已知=2,则的值为;的值为【答案】.【解析】由倍角的正切公式得,,.【考点】二倍角的正切公式.4.已知求证:【答案】见解析【解析】本题是证明的关系,故需将拆分开,即;同时不含有单独的,故需将其转为,即,然后恒等变化.试题解析:因为所以 4分8分10分即 12分【考点】两角和与差三角函数公式,角的拆分.5.().A.B.C.D.【答案】D.【解析】因为,所以原式=.【考点】两角和的正弦公式,特殊角的三角函数.6.设等差数列满足:,公差.若当且仅当时,数列的前项和取得最大值,则首项的取值范围是(). A.B.C.D.【答案】D.【解析】由,则,因此有,又,则,又因为当且仅当时,数列的前项和取得最大值,可知:,则当时,有,故选D.【考点】同角三角函数的基本关系:平方关系,平方差公式,两角和与差的正弦公式,等差数列的下标和性质,等差数列前N项和的最值问题,转化思想.7._________.【答案】.【解析】.【考点】三角恒等变形.8.化简:= .【答案】【解析】,;,,则.【考点】二倍角公式及其变形.9..【答案】【解析】,故答案为.【考点】三角函数和与差公式.10.若,,则A.B.C.D.【答案】C【解析】∵,∴,又∵,∴,∴=,∴,故选C.先由结合不等式性质,求出,由得,所以=,所以.【考点】特殊角的三角函数;不等式性质;简单三角方程11.= .【答案】【解析】=.【考点】两角和的余弦公式,诱导公式.12. (cos- sin) (cos+sin)= ()A.B.C.D.【答案】【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.13.在分别是角A、B、C的对边,,且.(1)求角B的大小;(2)求sin A+sin C的取值范围.【答案】(1)(2)【解析】(1)根据可得,从而得到边角的关系,而后要求角,所以利用正弦定理将边化角,可求角.(2)要求的值,但是有两个角,根据(1)可将其中一个用另一个表示出来,利用正余弦和差公式化简,通过角的范围确定最终的范围.(1)由,得,即由正弦定理得又又又(2),.,,.所以.【考点】向量垂直的应用;正余弦和差角公式.14.已知,且.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)由的值及为第二象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值;(2)利用三角函数有关知识,化简,再由(1)可得没代入即可(1)因为,且,所以.所以.(2)因为.所以.【考点】同角三角函数的基本关系,二倍角公式,两角和与差的三角函数15.已知那么.【答案】【解析】,∵,∴,∴,∴.【考点】二倍角公式的变形.16.已知的值。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,则【答案】【解析】由,因此,.【考点】(1)诱导公式的应用;(2)同角三角函数的基本关系.2.已知0<β<<α<π,且,,求cos(α+β)的值.【答案】.【解析】(1)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围;(2)利用两角和正弦公式和降幂公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(3)求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围.试题解析:解:,,∴==,sin==,∴==+sin sin=×+×=,∴(α+β)=2-1=2×-1=-.【考点】根据三角函数值求值.3.若,则,则的值为()A.B.C.D.【答案】D【解析】,因为,所以,平方得:,故选择D.【考点】三角恒等变换中的求值.4.已知,,且为锐角,则___________.【答案】【解析】由,两式平方相加得:,即有,由为锐角,且,知,从而得,因此,所以,观察式子的结构特点,注意解题技巧的积累.【考点】三角恒等变换之一:求值.5.设且则()A.B.C.D.【答案】C【解析】由,又,,故,即.故选C.【考点】二倍角公式的应用.6.已知,且.(1)求的值;(2)求的值.【答案】(1);(2)【解析】(1)=;(2)因为,由已知易求出,,则.试题解析:(1)原式=,则【考点】1.三角恒等变换;2.三角函数的和角公式与差角公式7.已知向量,,,.(Ⅰ)若,求函数的值域;(Ⅱ)若关于的方程有两个不同的实数解,求实数的取值范围.【答案】(Ⅰ)函数的值域为;(Ⅱ)实数的取值范围为.【解析】(Ⅰ)将向量语言进行转换,将问题转化为三角问题,通过换元进一步将问题转化为二次函数在给定区间上的值域问题,从而得以解决;(Ⅱ)通过换元将问题转化为一元二次方程根的分布问题,通过数形结合,最终归结为解一个不等式组的问题.试题解析:(Ⅰ) 1分,,, 2分,,, 3分,, 4分,又,, 6分(Ⅱ)由得,令,,则,关于的方程有两个不同的实数解,,在有两个不同的实数解, 8分令,则应有11分解得 14分【考点】三角恒等变换及三个二次的综合应用.8.设a=(sin56°-cos56°), b=cos50°·cos128°+cos40°·cos38°,c= (cos80°-2cos250°+1),则a,b,c的大小关系是 ( ).A.a>b>c B.b>a>c C.c>a>b D.a>c>b【答案】B.【解析】因为,,,又因为在内余弦函数单调递减,所以,即c<a<b.【考点】辅助角公式(化一公式),诱导公式,两角和的余弦公式,二倍角的余弦公式,余弦函数单调性.9.求值: ___________.【答案】.【解析】.【考点】三角恒等变形.10. (cos- sin) (cos+sin)= ()A.B.C.D.【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.11. 4 sin.cos =_________.【答案】1【解析】根据正弦二倍角公式,可得.【考点】正弦二倍角公式.12.已知,(1)求;(2)求。
高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版
高一数学(必修一)《第五章 三角恒等变换》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知2tan 5α=-,则1sin 2cos 2αα+=( ) A .1318B .522 C .37-D .372.若1sin 84x π⎛⎫-= ⎪⎝⎭,则sin 24x π⎛⎫+= ⎪⎝⎭( )A .14-BC .78D .3.已知sin cos αβ+=cos sin αβ+sin()αβ+=( )A .12B C .12- D .4.sin cos 44ππαβ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭化为和差的结果是( )A .11sin()cos()22αβαβ++-B .11cos()sin()22αβαβ++-C .11sin()sin()22αβαβ++- D .11cos()cos()22αβαβ++-5.已知()11cos 3cos cos 42πππαα⎛⎫⎛⎫+=-+ ⎪⎪⎝⎭⎝⎭,则cos2=α( )A B .13- C .23- D .136.0000cos80cos130sin100sin130-等于A B .12C .12-D .7.已知25cos2cos αα+=,()4cos 25αβ+=与0,2πα⎛⎫∈ ⎪⎝⎭和3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A .45- B .44125C .44125-D .458.已知π2cos()33α+=,则πsin()6α-=( )A B . C .23-D .139.图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =二、填空题10.数列{}n a 的通项公式为[]2log n a n n =+,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为__________.11.已知,2παπ⎛⎫∈ ⎪⎝⎭,且()23cos sin 210απα++=,则tan α=__________.12.已知1sin 3α=,cos()1αβ+=-则sin(2)αβ+=______.13.已知sin 2πααπ<<,则tan α=______________. 14.已知角0,2πθ⎛⎫∈ ⎪⎝⎭对任意的x ∈R ,()()2213cos 4sin 122x x x θθ+≥⋅恒成立,则θ的取值范围是_____.三、解答题15.已知函数()()1tan cos f x x x =+⋅(1)若44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,求tan x ;(2)若,02πα⎛⎫∈- ⎪⎝⎭时,则()f α=,求cos2α.16.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2A C =.(1)若a c =,求cos B 的大小; (2)若1b =,3c =求sin A .17.已知函数22π()sin 2cos sin ,6f x x x x x ⎛⎫=+-+∈ ⎪⎝⎭R .(1)求()f x 求函数的最小正周期及对称中心. (2)求函数()y f x =在π0,2x ⎡⎤∈⎢⎥⎣⎦值域.18.ABC 的内角,,A B C 的对边分别为,,a b c ,已知()sin sin cos cos 2cos a A B c A a A b B +=+ (1)求B ;(2)若6b AB CB =⋅=,求ABC 的周长19.已知向量(sin ,cos 1)a x x =-,(3cos ,cos 1)b x x =+和1()2f x a b =⋅+. (1)求函数的最小正周期T 及单调递增区间; (2)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域.四、双空题 20.已知4sin 5α,且α是第二象限角,则cos α=______;sin 2α=_______. 参考答案与解析1.D【分析】结合二倍角公式,将所求表达式转化为只含tan α的式子,由此求得正确答案. 【详解】原式222222cos sin 2sin cos 1tan 2tan cos sin 1tan ααααααααα++++==-- 4491932552542121712525+-====-. 故选:D 2.C【分析】利用诱导公式和二倍角公式可得解.【详解】1sin 84x π⎛⎫-= ⎪⎝⎭sin 2sin 2cos 2cos 244248x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=-+=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦2712sin 88x π⎛⎫=--= ⎪⎝⎭故选:C . 3.A【分析】将两个已知等式两边平方相加,再根据两角和的正弦公式可求出结果.【详解】由sin cos αβ+=225sin cos 2sin cos 4αβαβ++⋅=由cos sin αβ+=227cos sin 2cos sin 4αβαβ++⋅=两式相加得22(sin cos cos sin )3αβαβ++=,得1sin()2αβ+=.故选:A 4.B【分析】利用积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤=++-⎣⎦化简即可. 【详解】解:原式1sin sin()22παβαβ⎡⎤⎛⎫=+++- ⎪⎢⎥⎝⎭⎣⎦11cos()sin()22αβαβ=++-. 故选:B .【点睛】本题考查积化和差公式的应用,属于基础题. 5.B【分析】首先根据诱导公式以及同角三角函数的基本关系求得tan α=再根据二倍角公式以及“1”的代换求得cos2α.【详解】由诱导公式化简原式,得cos 2αα-=,故tan α=所以22222222cos sin 1tan 1cos 2cos sin sin cos tan 13ααααααααα--=-===-++. 故选:B . 6.D【详解】试题分析:原式3cos80cos130sin 80sin130cos(80130)cos(18030)2=-=+=+=-. 考点:三角恒等变换. 7.B【解析】先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果.【详解】2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B【点睛】本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题. 8.C【分析】利用诱导公式化简变形可得结果【详解】解:因为π2cos()33α+=所以π2sin()sin cos cos 662633ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=---=-+=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 故选:C 9.A【分析】从特殊的函数(0)f 为最大值排除两个选项,再由余弦函数性质确定函数值的正负排除一个选项后得正确结论.【详解】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C . 故选:A . 10.631【分析】由[]22log [log ]n a n n n n =+=+,分析n 的不同取值对应的2[log ]n 的取值情况,分组求和即得解 【详解】由题意[]22log [log ]n a n n n n =+=+ 当1n =时,则2[log ]0n =; 当2,3n =时,则2[log ]1n =; 当4,5,6,7n =时,则2[log ]2n =; 当8,9,10,...,15n =时,则2[log ]3n =; 当16,17,18,...,31n =时,则2[log ]4n =; 当32n =时,则2[log ]5n =; 故{}n a 的前32项和为:3212...32102142831645S =++++⨯+⨯+⨯+⨯+⨯+(132)321035281036312+⨯=+=+= 故答案为:631 11.-7【详解】22221tan 131cos 232tan 31tan cos sin(2)sin 21021021tan 10αααααπααα-+++++=∴-=∴-=∴+ tan 7,tan 1αα=-= (舍).12.13-【分析】先由cos()1αβ+=-,得sin()0αβ+=,再由sin(2)sin()sin cos()+cos sin()αβααβααβααβ+=++=⋅+⋅+即可求出结果.【详解】因cos()1αβ+=-,得sin()0αβ+=所以1sin(2)sin()sin cos()+cos sin()3αβααβααβααβ+=++=⋅+⋅+=-.【点睛】本题主要考查三角函数的两角和差化积公式,熟记公式即可,属于常考题型. 13.-2【分析】利用同角的三角函数中的平方和关系求出cos α,再利用同角的三角函数关系中的商关系求出tan α即可.【详解】2sin sin cos tan 22cos παααπααα=<<∴===-. 【点睛】本题考查了同角三角函数关系中的平方和关系和商关系,考查了角的余弦值的正负性的判断,考查了数学运算能力. 14.5,1212ππ⎡⎤⎢⎥⎣⎦【分析】根据题意转化为22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立,利用基本不等式求得2234()cos ()sin sin 243x x θθθ+≥,得到1sin 22θ≥,结合三角函数的性质,即可求解.【详解】由()()2213cos 4sin 122x x x θθ+≥⋅,即()()2213cos 4sin 324x xx x θθ+≥⋅⋅即22341()cos ()sin 432x x θθ+≥在0,2πθ⎛⎫∈ ⎪⎝⎭上恒成立又由2234()cos ()sin 2sin cos sin 243x x θθθθθ+≥=所以1sin 22θ≥又因为0,2πθ⎛⎫∈ ⎪⎝⎭,可得()20,θπ∈,所以5266ππθ≤≤,解得51212ππθ≤≤即θ的取值范围是5[,]1212ππ.故答案为:5[,]1212ππ.15.(1)tan 1x =(2)9【分析】(1)根据同角三角函数的关系、两角和正弦公式、诱导公式化简即可求解; (2)根据角的变换及两角差的正弦公式,二倍角的余弦公式计算即可求解. (1) ()sin cos 4f x x x x π⎛⎫=++ ⎪⎝⎭由44f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭2x x π⎛⎫=+ ⎪⎝⎭即有sin cos x x =,所以tan 1x =. (2)由()43f παα⎛⎫=+= ⎪⎝⎭1sin 43πα⎛⎫+= ⎪⎝⎭∵,02πα⎛⎫∈- ⎪⎝⎭∴,444πππα⎛⎫+∈- ⎪⎝⎭∴cos 4πα⎛⎫+= ⎪⎝⎭∴4sin sin 446ππαα⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦故22cos 212sin 12αα=-=-⨯=⎝⎭16.(1;(2. 【分析】(1)由正弦定理求出cos C ,进而求得sin C 、sin A 及cos A ,再利用和角公式即可得解;(2)由(1)结合余弦定理求得a ,进而求得cos C 及sin C 即可得解. 【详解】(1)ABC 中由正弦定理可得sin sin 22cos sin sin a A CC c C C===所以cos C =,sin C =和sin 2sin cos A C C ==221cos cos sin 3A C C =-=-所以cos cos()B A C =-+cos cos sin sin A C A C =-+13= (2)由(1)可知2cos aC c=,所以2cos 6cos a c C C ==由余弦定理可知222cos 2a b c C ab +-=282a a -=,于是2862a a a a -=⋅⇒=则cos C =,sin C =所以sin 2sin cos A C C =2==17.(1)π ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)由三角恒等变换可得正弦型三角函数,据此求周期、对称中心即可; (2)利用整体代换法求正弦函数的值域即可. (1)1()2co πs 2cos 2sin 226f x x x x x ⎛⎫=+-=- ⎪⎝⎭ 所以函数的最小正周期为2ππ2= ()sin 26πf x x ⎛⎫=- ⎪⎝⎭,令π2π6x k -=解得ππ212k x =+ ∴()f x 的对称中心是ππ,0,Z 212k k ⎛⎫+∈ ⎪⎝⎭(2)令π26t x =-由π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,666t x ⎡⎤=-∈-⎢⎥⎣⎦则1()12f x ≤-≤所以()y f x =的值域是1,12⎡⎤-⎢⎥⎣⎦.18.(1)3B π=;(2)【分析】(1)根据()sin sin cos cos 2cos a A B c A a A b B +=+,利用正弦定理结合两角和与差的三角函数化简为2sin cos sin B B B =求解;(2)利用余弦定理得到()2312a c ac +-=,然后由6AB CB ⋅=求得ac 代入即可. 【详解】(1)因为 ()sin sin cos cos 2cos a A B c A a A b B +=+ 所以()sin sin cos cos cos 2cos a A B A B c A b B -+= 所以cos()cos 2cos a A B c A b B -++= 所以cos cos 2cos a C c A b B +=由正弦定理得sin cos sin cos 2sin cos A C C A B B += 整理得()sin 2sin cos sin A C B B B +== 因为在ABC 中所以sin 0B ≠,则2cos 1B = 所以3B π=(2)由余弦定理得 2222cos b a c ac B =+-即()2312a c ac +-=因为1cos 62AB CB BA BC ac B ac ⋅=⋅=== 所以12ac = 所以()23612a c +-=解得a c +=所以ABC 的周长是【点睛】方法点睛:在解有关三角形的题目时,则要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则则考虑用正弦定理;以上特征都不明显时,则则要考虑两个定理都有可能用到. 19.(1)πT = πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)根据平面向量数量积的坐标表示公式,结合降幂公式、辅助角公式、二倍角公式、正弦型函数的最小正周期公式以及单调性进行求解即可;(2)利用换元法,结合正弦型函数的最值性质进行求解即可. (1)由211()3sin cos cos 22f x a b x x x =⋅+=+-1π2cos 2sin 226x x x ⎛⎫=+=+ ⎪⎝⎭ 故函数()f x 的最小正周期πT = 当πππ2π22π(Z)262k x k k -≤+≤+∈时,则函数单调递增 解得ππππ36k x k -+≤≤+ Z k ∈函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦Z k ∈;(2)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭,ππ,63x ⎡⎤∈-⎢⎥⎣⎦令π26t x =+,则sin y t =,π5π,66t ⎡⎤∈-⎢⎥⎣⎦所以当π6t =-即π6x =-时,则min 1()2 f x =-当π2t =即π6x =时,则min ()1 f x =故函数()f x 的值域为1,12⎡⎤-⎢⎥⎣⎦.20.352425-【分析】根据正余弦恒等式求出cos α,再利用二倍角的正弦公式求出sin 2α. 【详解】因为4sin 5α,且α是第二象限角所以3cos 5α==-4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故答案为:352425-。
高一数学三角恒等变换-名校试题(答案)
三角恒等变换习题详解一、选择题1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π4),x ∈R ,则函数f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数[答案] A[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π2=π.2.(2010·重庆一中)设向量a =(cos α,22)的模为32,则cos2α=( ) A .-14B .-12C.12D.32[答案] B[解析] ∵|a |2=cos 2α+⎝⎛⎭⎫222=cos 2α+12=34,∴cos 2α=14,∴cos2α=2cos 2α-1=-12.3.已知tan α2=3,则cos α=( )A.45B .-45C.415D .-35[答案] B[解析] cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2=1-91+9=-45,故选B.4.(2010·揭阳市模考)若sin x +cos x =13,x ∈(0,π),则sin x -cos x 的值为( )A .±173B .-173C.13D.173[答案] D[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-89<0,∴x ∈⎝⎛⎭⎫π2,π, ∴(sin x -cos x )2=1-sin2x =179且sin x >cos x , ∴sin x -cos x =173,故选D. 5.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( ) A .x ≤y B .x <y C .x ≥yD .x >y[答案] D[解析] ∵π>A +B >π2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选D.6.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )A .向左平移π2个单位长度B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度[答案] D[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π4个单位得,sin2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos2x ,故选D. 7.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( )A .-2cos α2B .2cos α2C .-2sin α2D .2sin α2[答案] C[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π4.∴1+sin α+1-sin α=1+2sin α2cos α2+1-2sin α2cos α2=(sin α2+cos α2)2+(sin α2-cos α2)2 =-(sin α2+cos α2)-(sin α2-cos α2)=-2sin α2.二、填空题8.(2010·广东罗湖区调研)若sin ⎝⎛⎭⎫π2+θ=35,则cos2θ=________. [答案] -725[解析] ∵sin ⎝⎛⎭⎫π2+θ=35,∴cos θ=35, ∴cos2θ=2cos 2θ-1=-725.9.(2010·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.10. (理)3tan12°-3(4cos 212°-2)sin12°=________.[答案] -4 3 [解析] 3tan12°-3(4cos 212°-2)sin12°=3(sin12°-3cos12°)2cos24°sin12°cos12°=23sin (12°-60°)12sin48°=-4 3.三、解答题11.(文)(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π3)的值;(2)求f (x )的最大值和最小值.[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-73,x ∈R因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73. 12.(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b . (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2⎝⎛⎭⎫22cos2x +22sin2x=2sin ⎝⎛⎭⎫2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π4,∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π2时,f (x )有最小值-1.13.(文)设函数f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x . (1)求函数f (x )的最大值和最小正周期;(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-14,且C 为锐角,求sin A 的值.[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-32sin2x , 所以函数f (x )的最大值为1+32,最小正周期为π.(2)f (C 2)=12-32sin C =-14,所以sin C =32,因为C 为锐角,所以C =π3,在△ABC 中,cos B =13,所以sin B =223,所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+36.。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.如图,在中,是边的中点,且,.(1)求的值;(2)求的值.【答案】(1);(2)【解析】本题主要考察学生对三角函数的理解,根据三角形余弦定理其中的一个式子,带入对应条件即可求出∠A的余弦;根据上问得出的结论,先求出∠A的正弦值,再根据题中所给条件求出未知线段的长度,最后根据正弦定理,带入数据,进行求解,即可得出结果。
试题解析:(1)在中,,,;(2)由(1)知,,且,.是边的中点,.在中,,解得.由正弦定理得,,.【考点】正弦定理,余弦定理的综合运用2.已知的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为.【答案】【解析】设三边为,且所对的角为,由余弦定理得【考点】余弦定理与三角形面积公式3.已知,求的值.【答案】-3【解析】本题考察的是三角函数齐次式的化简求值,观察后可以发现需先通过诱导公式化简然后分子分母同时除以化成跟相关的式子,代入化简后的式子即可得到答案.试题解析:原式=,又原式【考点】三角函数化简求值4.在中的内角所对的边分别为,若,则的形状为A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】由正弦定理得,故选A.【考点】正弦定理,两角和的正弦公式.5.函数的值域是()A.B.C.D.【答案】B【解析】,又,所以原式的值域为【考点】(1)二倍角公式(2)二次函数的性质6.若且是,则是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C【解析】由于,故可能是第三或者第四象限角;由于,故可能是第一或者第三象限角.由于且,故是第三象限角,故选C.【考点】象限角7.已知,且是第三象限角,则的值为()A.B.C.D.【答案】D【解析】,,因为是第三象限角,,【考点】(1)两角和与差的正弦函数公式(2)同角三角函数的基本关系8.已知△的三个内角满足,则△是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】D【解析】由的三个内角满足,利用正弦定理可得,设,故为最大角,由余弦定理得,可得为钝角,故是钝角三角形,故选D。
高一数学三角恒等变换试题
高一数学三角恒等变换试题1.已知,则【答案】【解析】由,因此,.【考点】(1)诱导公式的应用;(2)同角三角函数的基本关系.2.已知,则的值是()A.B.C.D.【答案】C【解析】,得,即,而故选择C.【考点】三角恒等变换中的求值.3.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.4.已知,,则()A.B.C.D.【答案】B【解析】由已知可知,又,所以,答案选B.【考点】两角差的正切公式5.若,则的值等于A.B.C.D.【解析】由于不易计算,且已知函数中含有,故需对原函数变形(变为所求函数形式).,所以,故选D.【考点】三角函数倍角公式,半角公式应用.6.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.7.已知求证:【答案】见解析【解析】本题是证明的关系,故需将拆分开,即;同时不含有单独的,故需将其转为,即,然后恒等变化.试题解析:因为所以 4分8分10分即 12分【考点】两角和与差三角函数公式,角的拆分.8.若α、β为锐角,且cosα=,sinβ=,则α+β= .【答案】【解析】∵,α是锐角,,又,β是锐角,,∴cos(α+β)=cosαcosβ-sinαsinβ=,∵0<α<90°,0<β<90°,∴0<α+β<180°,∴α+β=135°故应填入: 135°.【考点】1.同角三角函数的基本关系式;2.两角和与差的三角函数.9.求值()A.B.C.D.【解析】.【考点】三角恒等变形.10.如图,在半径为2,中心角为的扇形的内接矩形OABC(只有B在弧上)的面积的最大值= .【答案】2【解析】连接BO,设,则在矩形中,,矩形的面积;当,即,取到最大值2.【考点】二倍角公式.11.已知为锐角,且有,,则的值是 .【答案】.【解析】∵,∴①,又∵,∴②,联立①,②可得,∴,又∵为锐角,∴.【考点】1.诱导公式;2同角三角函数基本关系.12.设θ为第二象限角,若tan=,则sin θ+cos θ=________.【答案】【解析】∵,∴tanθ=,∵θ为第二象限角,∴则sinθ+cosθ=.故答案为:【考点】同角三角函数间的基本关系;两角和与差的正切函数公式.13.在中,已知,则是( )A.直角三角形B.钝角三角形C.锐角三角形D.最小内角大于45°的三角形【解析】因为,所以在三角形中,都是锐角.且,因为,所以,即,所以,则为锐角.【考点】切化弦;余弦和角公式;角的判断.14.设当时,函数取得最大值,则.【答案】【解析】根据辅助角公式化简原函数得,其中.①显然当时,原函数的最大值为.此时.所以,即,所以.【考点】辅助角公式;诱导公式.15.已知中,分别为的对边,,则为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】根据三角函数正弦定理,由题可知:又根据二倍角公式得:,所以或即选D.【考点】三角函数和与差公式,二倍角公式.16.已知函数在区间上的最大值为2,则常数a的值为 .【解析】,又,,则。
高中数学三角函数及三角恒等变换精选题目(附解析)
高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,化简+=A.-2cos B.2cos C.-2sin D.2sin【答案】C【解析】因为,所以,,从而===--()=-2sin,故选C。
【考点】本题主要考查二倍角的正弦公式。
点评:此类问题是高考考查的重点内容之一。
本题中注意“1”的代换,讨论角的范围,确定得到是化简的关键。
2.已知sin=,cos=-,则角是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】因为sin=,cos=-<0,所以是第二象限角,且,所以,角是第四象限角,选D。
【考点】本题主要考查任意角的三角函数、象限角。
点评:的终边所在位置与的终边所在位置,存在一定结论,根据函数值进一步缩小角的范围,是解题的关键。
3.若是方程的两个根,则之间的关系是( )A.B.C.D.【答案】B【解析】由题意可知:所以选B。
【考点】本题主要考查两角和的正切公式。
点评:首先利用韦达定理将表示出来,再由两角差的正切公式对其进行化简,从而得出结论。
4.求【答案】【解析】。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意“1”的代换,配凑公式。
5.求【答案】【解析】由两角和的正切公式可得,,所以=。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。
6.已知,求证:【答案】【解析】1.解:,在区间内正切值为的角只有1个即,所以【考点】本题主要考查两角和的正切公式。
点评:应用两角和的正切公式先求,结合角的范围及正切函数单调性进一步求角。
此类问题,要特别注意角的范围。
7.若,则_________;=___________.【答案】3,【解析】因为,所以,,所以3【考点】本题主要考查“倍半公式”的应用点评:解题过程中,注意观察已知与所求的差异,灵活选用公式,通过变名、变角、变式,达到解题目的。
8.已知为第四象限角,求的值.【答案】(1)当为第二象限角时,,,(2)当为第四象限角时,,,.【解析】由为第四象限角,得为第二或第四象限角.(1)当为第二象限角时,(2)当为第四象限角时,,,.【考点】本题主要考查“倍半公式”的应用点评:牢记公式是灵活地将进行三角恒等变形的基础。
(完整版)高一必修4三角恒等变换测试题及答案
5山东省莱州一中高一数学试题-三角恒等变换测试题第I 卷、选择题(本大题共 12个小题,每小题5分,共60分)4.已知 tan 3,tan44A-B — C775.,都是锐角,且sin513 3316 A 、 B— 65651 3A 0,1B 1,1C 丄,32 21、cos 24 cos36 cos66 cos54 的值为(3 2. cos 5 ,,sin 212 13是第三象限角,则 cos (33 6563 6556 6516 653. tan 20 tan 40 • 3tan20 tan 40 的值为(5,则 tan 2的值为()11— D — 8 4 8则sin 的值是(55663 C 、 D 、 — 6565C - 3D .3)6., x (34 ,)且 cos x 3 —则cos2x 的值是 54 472424A 、 —B 、 —C 、25 2525251,144 7.函数y sin x cos x 的值域是(8.已知等腰三角形顶角的余弦值等于4,则这个三角形底角的正弦值为()J10 V10 3J10 3J10AB C D10 10 10 109.要得到函数y 2sin 2x的图像,只需将y , 3sin 2x cos2x的图像()A、向右平移一个单位B、向右平移一个单位C向左平移—个单位D向左平移—个单位6 12 6 12 10. 函数y .x sin 、3 cos的图像的一条对称轴方程是( )2 2A、1 5 5x B 、x C 、x D 、x —3 3 3 311. 已知1cosx sin x2,则tanx的值为( )1 cosx sin xA、4B4 3 3、-- C 、 D 、3 34 412若0,—0, 且ta n 「tan -,则2 ( )4 2 7A、5 2 7 3B 、C 、D 、6 3 12 4二、填空题(本大题共 4 小题,每小题5分,共20分.请把答案填在题中的横线上)13. .在ABC中,已知tanA ,tanB是方程3x2 7x 2 0的两个实根,则tanC _______________3sin 2x 2cos 2x 砧14. 已知tanx 2,贝U 的值为_____________________cos2x 3sin 2x15. 已知直线IJ/12, A是"J之间的一定点,并且A点到「J的距离分别为0山2 , B是直线I?上一动点,作AC AB,且使AC与直线|1交于点C,则ABC面积的最小值为___________________ 。
2023-2024学年高一上数学必修一:三角恒等变换(附答案解析)
一、选择题(每小题 5 分,共 40 分)
1.cos2π-1的值为( B ) 84
A. 2-1 B. 2+1 C. 2 D. 2
4
4
4
2
解析:cos2π-1=1+cosπ4-1= 2+1.
84
2
44
2.若sinα+cosα=1,则 tan2α等于( B ) sinα-cosα 2
第3页共6页
9.化简 cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°)=0.
解析:原式=cos[(36°+α)-(α-54°)]=cos90°=0.
10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆
交于
A,B
两点,如果点
A
的纵坐标为3,点 5
B
的横坐标为 5 ,则 13
3- 2. 2
解析:由题可得
f(x)=
22sin
2x-π4
+3,所以最小正周期 2
T=π,
最小值为3- 2. 2
三、解答题(共 45 分)
12.(15 分)求证:ta1ncαo-s2tαanα2=14sin2α. 2
第4页共6页
cos2α
cos2α
cos2α
证明:左边=
1 sinα
-1-cosα sinα
2sin10°cos10°
1cos10°- 3sin10°
2
2
=
4sins3in02°-0°10°=14.
4.tan13°+tan32°+tan13°tan32°等于( D )
A.- 2 B. 2 C.-1 D.1 22
第1页共6页
(完整版)高一必修4三角恒等变换测试题及答案
17. 已知 0
, tan
2
2
1 tan
2
5 ,试求 sin
2
的值.( 12 分)
3
3 tan120 3
18. 求 sin120 (4 cos2 120
的值.( 12 分)
2)
3
19. 已知α为第二象限角,且
sinα = 15 ,求
sin(
) 4
的值 .(12分)
4 sin 2 cos2 1
20.已知函数 y sin2 x sin 2x 3cos 2 x ,求 ( 1)函数的最小值及此时的 x 的集合。
65
56
C、
65
16
D、
65
3. tan 20 tan 40 3 tan 20 tan 40 的值为(
)
)( )
A1
3
B
3
C -3
D3
4. 已知 tan
3,tan
5 ,则 tan 2 的值为(
)
4
A
7
4
B
7
1
C
8
1
D
8
5. , 都是锐角,且 sin
5 , cos
13
4
,则 sin 的值是(
)
5
33
A、
3 cos x 的图像的一条对称轴方程是 2
()
A 、 x 11 3
B 、x 5
C 、x
5
D 、x
3
3
3
1 cos x sin x
11. 已知
1 cos x sin x
2 ,则 tan x 的值为
()
A、 4 3
B
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.已知是第二象限的角,,则▲.【答案】【解析】略2.的值为 ( )A.B.C.D.【答案】D【解析】略3.已知,求的值。
【答案】解:……………………………5分……10分【解析】略4.在中,边分别为角的对边,若,,则当取最大值时,的面积为 .【答案】【解析】,所以,当时,即时,取得最大值,此时三角形是一直角三角形,,所以三角形的面积【考点】1.正弦定理;2.三角形面积公式5.在中,角、、的对边分别是、、,若,,,则角的大小为【答案】【解析】sinB+cosB=,整体平方可得=2,可推2sinBcosB=sin2B=1得∠B=45度,则sinB=,在三角形ABC中,已知角A,B,C所对边分别为a,b,c,且a=,b=2和∠B=45度,求∠A用正弦定理,,sinA===,A=30°【考点】三角形正弦定理6.(本题12分)已知△ABC的内角A、B、C的对边分别为,向量,且满足.(1)若,求角;(2)若,△ABC的面积,求△ABC的周长.【答案】(1);(2).【解析】(1)首先根据向量数量积的坐标表示出,化简后得到角,然后根据正弦定理,计算出角;(2)第一步,根据面积公式,计算出,第二步,根据余弦定理,,结合,计算出,最后得到周长.试题解析:(1)(2)【考点】1.向量数量积的坐标表示;2.正弦定理;3.余弦定理.7.已知tan α=2,则=____.【答案】【解析】根据诱导公式原式等于,然后再上下同时除以,得到【考点】1.诱导公式;2.同角基本关系式8.已知函数f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,则ω=.【答案】【解析】【考点】三角函数化简及性质9.(本小题满分12分)已知在ABC中,内角A,B,C的对边分别为.且.(Ⅰ)求的值;(Ⅱ)若=,b=2,求的面积S。
【答案】(Ⅰ)2(Ⅱ)【解析】(Ⅰ)中首先利用正弦定理将已知中的边化为角,利用基本的三角函数公式整理出的值;(Ⅱ)中由余弦定理得到的关系式,与(Ⅰ)中得到的关系式结合可求得的值,代入公式求面积试题解析:(Ⅰ)由正弦定理,设则所以即,化简可得又,所以因此 (6)(Ⅱ)由得由余弦定理解得a=1。
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版
高一数学(必修一)《第五章 三角恒等变换》练习题附答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知sin(α+45°)sin2α等于( ) A .-45B .-35C .3 5D .4 52.已知13a =,4log 3b =和sin 210c =︒,则( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<3.()sin cos f x x x =最小值是 A .-1B .12-C .12D .14.关于函数sin cos y x x =+,以下说法正确的是( ) A .在区间0,2π⎛⎫⎪⎝⎭上是增函数B .在区间0,2π⎛⎫⎪⎝⎭上存在最小值C .在区间,02π⎛⎫- ⎪⎝⎭上是增函数D .在区间,02π⎛⎫- ⎪⎝⎭上存在最大值5.函数()22f x cos x sinx =+ 的最小值和最大值分别为( ) A .3,1-B .2,2-C .332-,D .322-,6.将函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,则()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围是A .[2,2]-B .[3,4]C .[0,3]D .[0,4]7.sin15sin 75的值为( )A .14B .12C D 8.已知tan α和tan 4πα⎛⎫- ⎪⎝⎭是方程20ax bx c ++=的两个根,则,,a b c 的关系是( )A .b a c =+B .2b a c =+C .c b a =+D .c ab =9.设sin18cos44cos18sin 44a =︒︒︒+︒,2sin 29cos29b =︒︒和cos30c =︒,则有( ) A .c a b <<B .b c a <<C .a b c <<D .b a c <<二、填空题10.若sin 2α=()sin βα-=π,π4α⎡⎤∈⎢⎥⎣⎦和3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是________.11.已知角α的终边经过点(3,1)P t ,且3cos()5πα+=,则tan α的值为_________.12.函数44cos sin y x x =-的最小正周期是______ 13.22sin 20cos 50sin 20cos50︒+︒+︒︒=______.14.已知α为第二象限角,sinα+cosαcos2α=________. 15.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin(2)12πα+的值为____________.16.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,其图象的对称轴与对称中心之间的最小距离为4π,3x π=-是函数()f x 的一个极小值点.若把函数()f x 的图象向右平移()0t t >个单位长度后,所得函数的图象关于点,03π⎛⎫⎪⎝⎭对称,则实数t 的最小值为___________.三、解答题17.已知函数()()sin 2(0),,04f x x πϕϕπ⎛⎫=+<< ⎪⎝⎭是该函数图象的对称中心(1)求函数()f x 的解析式;(2)在ABC 中角,,A B C 的对边分别为,,a b c ,若()1,23f C C π=->和1c =,求2+a b 的取值范围.18.函数()cos()f x A x ωφ=+(其中 0A >,0>ω和||2ϕπ<)的部分图象如图所示,先把函数 ()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),把得到的曲线向左平移4π个单位长度,再向上平移1个单位,得到函数()g x 的图象.(1)求函数()g x 图象的对称中心.(2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则求 ()g x 的值域.(3)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则方程 ()()2()230g x m g x m +-+-=有解,求实数m 的取值范围.19.在ABC 中角A ,B ,C 所对边分别为a ,b ,c ,且1b c -=,2cos 3A =和ABC S =△(1)求边a 及sinB 的值;(2)求cos 26C π⎛⎫- ⎪⎝⎭的值.20.求444sin 10sin 50sin 70︒︒︒++的值.21.已知函数()222cos 36f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ x ∈R .(1)求()6f π的值及()f x 的最小正周期;(2)当[0,]x π∈时,则求函数()f x 的零点所构成的集合.参考答案与解析1.B【分析】利用两角和的正弦函数化简已知条件,利用平方即可求出所求结果.【详解】sin(α+45°)=(sin α+cos α∴sin α+cos α. 两边平方,得1+sin2α=25,∴sin2α=-35.故选B【点睛】本题目是三角函数正弦函数的题目,掌握同角三角函数的二倍角公式是解题的关键. 2.A【分析】根据诱导公式求出c ,再根据对数函数的单调性比较,a b 的大小,即可得出答案. 【详解】解:()1sin 210sin 18030sin 302c =︒=︒+︒=-︒=-113244441log 4log 4log 2log 33a ==<=<所以c a b <<. 故选:A. 3.B【详解】试题分析:∵()sin cos f x x x =1sin 22x =,∴当sin2x=-1即x=()4k k Z ππ-∈时,则函数()sin cos f x x x =有最小值是12-,故选B考点:本题考查了三角函数的有界性点评:熟练掌握二倍角公式及三角函数的值域是解决此类问题的关键,属基础题 4.C【分析】将原式化简为)4y x π=+,再结合正弦函数的性质,即可求解.【详解】解:sin cos )4y x x x π=++∴令22,242k x k k Z πππππ-+++∈ ∴322,44k x k k Z ππππ-++∈即函数的单调递增区间为32,2,44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦故选项A 错误,选项C 正确 当2,42x k k Z πππ+=-+∈,即32,4x k k Z ππ=-+∈时,则y 取得最小值,故在区间(0,)2π上不存在最小值,故选项B 错误 当2,42x k k Z πππ+=+∈,即2,4x k k Z ππ=+∈时,则y 取得最大值,故在区间(,0)2π-上不存在最大值,故选项D 错误. 故选:C . 5.C 【详解】()112sin22sin 2sin 2f x x x x ⎛⎫- ⎪⎝⎭=-+=-232+. ∴当1sin 2x =时,则()3max ?2f x =,当1sinx =- 时则()3min f x =- ,故选C. 6.D【分析】按照图象的平移规律,写出()g x 的表达式,利用正弦函数的图象,求出()g x 在20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【详解】因为函数()2sin(2)26f x x π=-+向左平移6π个单位后得函数()g x ,所以()2sin[2()]22sin(2)2666g x x x πππ=+-+=++230,(2)[,]sin((2)[1,1]3662)[0,4]6x x x g x πππππ∈⎡⎤∴+∈∴+∈-∴⎢⎥⎣⎦∈,故本题选D. 【点睛】本题考查了正弦型函数的平移、以及闭区间上正弦型函数的最值问题,正确求出平移后的函数解析式,是解题的关键. 7.A【分析】利用诱导公式结合二倍角的正弦公式化简可得结果.【详解】()11sin15sin 75sin15sin 9015sin15cos15sin 3024=-===.故选:A. 8.C【分析】根据根与系数的关系以及两角和的正切公式可得结果. 【详解】由题意可知,tan tan ,tan tan 44b ca aππαααα⎛⎫⎛⎫+-=--= ⎪ ⎪⎝⎭⎝⎭tantan 44ππαα⎛⎫∴=+- ⎪⎝⎭tan tan 4111tan tan 4b a ca πααπαα⎛⎫+--⎪⎝⎭===⎛⎫--- ⎪⎝⎭1b ca a∴-=- b a c ∴-=- c a b ∴=+. 故选:C .【点睛】本题考查了根与系数的关系,考查了两角和的正切公式,属于基础题. 9.B【分析】先利用两角和的正弦公式对a 化简,利用二倍角公式对b 化简,然后利用正弦函数的单调性即可比较大小【详解】解:sin18cos 44cos18sin sin(1844)sin 4624a ︒︒=︒+︒==︒︒+︒ 2sin 29cos29sin58b =︒︒=︒ cos30sin60c =︒=︒ 因为sin y x =在(0,90)︒︒上为增函数,且586062︒<︒<︒ 所以sin58sin60sin62︒<︒<︒,即可b c a << 故选:B【点睛】此题考查两角和的正弦公式和二倍角公式的应用,考查正弦函数的单调性,属于基础题 10.74π【分析】依题意,可求得ππ,42α⎡⎤∈⎢⎥⎣⎦,进一步可知π5,π24βα⎡⎤-∈⎢⎥⎣⎦,于是可求得()cos βα-与cos2α的值,再利用两角和的余弦公式及角βα+的范围即可求得答案. 【详解】因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦因为sin 2α=π2,π2α⎡⎤∈⎢⎥⎣⎦,即ππ,42α⎡⎤∈⎢⎥⎣⎦所以cos 2=α因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦所以π5,π24βα⎡⎤-∈⎢⎥⎣⎦因为()sin βα-=所以()cos βα-==所以()()cos cos 2βαβαα+=-+()()=cos cos2sin sin 2βααβαα---=⎛⎛⨯ ⎝⎭⎝⎭因为ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,所以5π,24βαπ⎡⎤+∈⎢⎥⎣⎦所以7=4παβ+. 故答案为:74π 11.43-【解析】先计算出3cos 5α=-,再点的坐标特征可得角的终边的位置,从而可求tan α的值.【详解】因为3cos()5πα+=,故3cos 5α=-,故角α的终边在第二象限或第三象限又P 的纵坐标为1,故角α的终边在第二象限,所以sin 0α>所以sin 4tan cos 35ααα====--. 故答案为:43-【点睛】方法点睛:(1)角的终边的位置可根据三角函数值的正负来确定,也可以根据终边上的点的坐标特征来确定;(2)三个三角函数值,往往是“知一求二”,这里利用方程的思想. 12.π【分析】逆用二倍角公式将原式降幂,原式化简为cos()y A x ωϕ=+形式,利用2T ωπ=即可求得函数最小正周期. 【详解】()()442222cos sin cos sin o s =c s +in y x x x x x =--22cos sin cos 2x x x =-=22==2T πππω=T π∴=故答案为:π.【点睛】本题考查二倍角的余弦公式的应用、余弦三角函数最小正周期公式2T ωπ=,属于基础题. 13.34【分析】)(1cos 203020sin 202︒+︒︒-︒,化简计算即可得出结果. 【详解】原式)()(22sin 20cos 2030sin 20cos 2030=︒+︒+︒+︒︒+︒2211sin 2020sin 20sin 2020sin 2022⎫⎫=︒+︒-︒+︒︒-︒⎪⎪⎪⎪⎭⎭⎝⎝2222311sin 20cos 20sin 20sin 20442=︒+︒+︒-︒34=. 故答案为:3414【详解】∵sinα+cosα∴(sinα+cosα)2=13∴2sinαcosα=-23,即sin2α=-23.∵α为第二象限角且sinα+cosα∴2kπ+2π<α<2kπ+34π(k ∈Z),∴4kπ+π<2α<4kπ+32π(k ∈Z),∴2α为第三象限角,∴cos2α15【分析】利用二倍角公式,同角三角函数的基本关系式、两角差的正弦公式求得所求表达式的值.【详解】α为锐角2663πππα<+<3sin 65πα⎛⎫+== ⎪⎝⎭.sin(2)sin(2)22123433πππππαααα⎛⎫⎛⎫+=+-=++ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1666πππααα⎤⎛⎫⎛⎫⎛⎫=+++- ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎣⎦234421555⎤⎛⎫=⨯⨯-⎥ ⎪⎝⎭⎢⎥⎣⎦.16.512π##512π 【分析】对称轴与对称中心之间的最小距离为4π,可求得函数的周期,从而可求出2ω=,再由3x π=-是一个极小值点,可求得6π=ϕ,从而可得()sin 26f x x π⎛⎫+ ⎝=⎪⎭,进而可得()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,再由()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,可得5212k t ππ=-+,从而可求出实数t 的最小值【详解】因为对称轴与对称中心之间的最小距离为4π,所以44T π=,所以T π= 22πωπ== 因为3x π=-是一个极小值点所以()2232k k z ππϕπ-+=-+∈,又因为02πϕ<<,所以6π=ϕ()sin 26f x x π⎛⎫+ ⎝=⎪⎭.把函数()f x 的图象向右平移()0t t >个单位长度后得函数()sin 226g x x t π⎛⎫=-+ ⎪⎝⎭,()g x 图象关于点,03π⎛⎫⎪⎝⎭对称,则()2236t k k z πππ-+=∈ 5212k t ππ=-+ 因为0t >,当0k =时,则实数t 的最小值为512π. 故答案为:512π17.(1)()cos2f x x = (2)()1,2【分析】(1)由题意得2,Z 4k k πϕπ⨯+=∈,则可求出2ϕπ=,从而可求出函数()f x 的解析式;(2)由()12f C =-可求出23C π=,由正弦定理得,a A b B ==,从而可表示出2+a b ,化简后利用三角函数的性质可求得结果 (1) 由题知2,Z 4k k πϕπ⨯+=∈因为0ϕπ<<,所以2ϕπ=所以函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭即为()cos2f x x =. (2)由题知()12f C =-,即1cos22C =-因为3C ππ<<,所以2223C ππ<<,所以423C π= 即21,33C A B ππ=+=.所以由正弦定理得sin sin sin a b c A B C === 所以,a Ab B == 2a b A B +=+)sin 2sinA B =+sin 2sin3B B π⎤⎛⎫=-+ ⎪⎥⎝⎭⎦sin cos cos sin 2sin33B B B ππ⎫=-+⎪⎭3sin2B B ⎫=+⎪⎪⎭2sin 6B π⎛⎫=+ ⎪⎝⎭因为10,3B π<<所以662B πππ<+<所以1sin 126B π⎛⎫<+< ⎪⎝⎭,所以12sin 26B π⎛⎫<+< ⎪⎝⎭ 所以2+a b 取值范围为()1,2.18.(1)(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z ;(2)30,2⎡⎤⎢⎥⎣⎦;(3)3310⎡⎤⎢⎥⎣⎦.【分析】(1)观察图象,由函数最值求出A ,由周期求出ω,再将7,112π⎛⎫- ⎪⎝⎭代入得出 ϕ,即可求出函数()f x 的解析式,进而得出函数()g x 的解析式以及对称中心; (2)由x 的范围结合余弦函数的性质可得()g x 的值域;(3)将已知方程参变分离,利用对勾函数的性质求出值域,可得实数m 的取值范围. 【详解】(1)根据图象可知1A = 174123T ππ=- ∴T π=,∴22Tπω== ()()cos 2f x x φ=+ 将7,112π⎛⎫-⎪⎝⎭代入得 7cos 16πϕ⎛⎫+=- ⎪⎝⎭ 即726k πϕππ+=+,解得 26k πϕπ=- k Z ∈ ∵2πϕ<,∴0k = 6πϕ=-∴()cos 26f x x π⎛⎫=- ⎪⎝⎭.函数()f x 的图象上的各点的横坐标缩短为原来的12(纵坐标不变),可得 cos 46y x π⎛⎫=- ⎪⎝⎭,曲线再向左平移4π个单位长度,再向上平移1个单位得()5cos 416g x x π⎛⎫=++ ⎪⎝⎭令54,62x k k Z πππ+=+∈,解得 124k x ππ=-+ ∴此函数图象的对称中心为(),1124k k ππ⎛⎫-+∈ ⎪⎝⎭Z . (2)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,则 54514,cos 41,63362x x ππππ⎡⎤⎛⎫⎡⎤+∈⇔+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦()53cos 410,62g x x π⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦,即 ()g x 的值域为30,2⎡⎤⎢⎥⎣⎦. (3)()()()2230g x m g x m +-+-=()()()2231g x g x m g x ⇔++=+⎡⎤⎣⎦()()()2231g x g x m g x ++⇔=+令()1s g x =+,由(2)知51,2s ⎡⎤∈⎢⎥⎣⎦2223310s m s s s +⎡⎤==+∈⎢⎥⎣⎦因此m 的取值范围为3310⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:本题考查三角函数图象的应用,考查余弦函数的性质,考查有解问题的应用,解决本题的关键点是将已知方程化简,参变分离,利用对勾函数的性质求出对应函数的值域,进而得出参数的取值范围,考查学生计算能力,属于中档题.19.(1)a = sin 1B =【分析】(1)先由cos A 求得sin A ,结合三角形面积公式可得6bc =,根据条件可得b ,c 的值,再利用余弦定理求得a ,利用正弦定理求得sin B ;(2)由(1)可知2B π=,则2sin cos 3C A == cos sin C A ==. (1)因为2cos 3A =,()0,A π∈所以sin A =因为1sin 2ABCS bc A =6bc = 又1b c -=,所以3b = 2c =所以a ==因为sin sin a b A B =3sin B =,所以sin 1B =. (2)在ABC 中由(1)可知2B π=,则2A C π+=所以2sin cos 3C A == cos sin C A ==则sin 22sin cos C C C ==221cos 2cos sin 9C C C =-=所以cos 2cos 2cos sin 2sin 666C C C πππ⎛⎫-=+= ⎪⎝⎭20.98【分析】先将题中正弦值利用诱导公式转化为余弦值,再用降次公式将式子中高次转化为1次,再观察题中角度与特殊角的联系,再用两角和差公式展开化简求值.【详解】444sin 10sin 50sin 70︒︒︒++444cos 80cos 40cos 20︒︒︒=++2221cos1601cos801cos40222︒︒︒⎛⎫⎛⎫⎛⎫+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222132cos1602cos802cos40cos 160cos 80cos 404︒︒︒︒︒︒=++++++ ()3111cos401cos1601cos80cos20cos80cos40424222︒︒︒︒︒︒⎛⎫+++=+-+++++ ⎪⎝⎭ ()95cos80cos40cos2088︒︒︒=++- ()()95cos 6020cos 6020cos2088︒︒︒︒︒⎡⎤=+++--⎣⎦ ()952cos60cos20cos2088︒︒︒=+-98=. 【点睛】本题考查了三角恒等变换,运用降次公式,两角和与差公式进行化简求值,注意观察角度间的联系及与特殊角的联系,还考查了学生的分析观察能力,运算能力,难度较大.21.(1)()16f π=,最小正周期为π; (2)0,,3ππ⎧⎫⎨⎬⎩⎭【分析】(1)利用三角恒等变换化简函数()f x 的解析式,利用正弦函数的性质即可求解;(2)令()0f x =,可得266x ππ+=或56π或136π,即可求解x 的值.(1)解:因为()222cos 2cos 213633f x x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2sin 212sin 21366x x πππ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以2sin 1162f ππ⎛⎫=-= ⎪⎝⎭,最小正周期为 22T ππ==. (2)令()0f x =,则1sin 262x π⎛⎫+= ⎪⎝⎭,因为[0,]x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以266x ππ+=或56π或136π,即0x =或3π或π,所以函数()f x 的零点所构成的集合为0,,3ππ⎧⎫⎨⎬⎩⎭.。
2023-2024学年高一上数学《三角函数、三角恒等变换、解三角形》测试卷及答案解析
2023-2024学年高一数学《三角函数、三角恒等变换、解三角形》一.选择题(共12小题)
1.(2021秋•鼓楼区校级期末)已知a=cos1,b=sin2,c=tan4,则()
A.c>b>a B.a>b>c C.b>a>c D.b>c>a 2.(2022春•马尾区校级月考)已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()
A .
B .
C .
D .
3.(2022
•鼓楼区校级三模)若,且,则=()
A .
B .C.2D.−2 4.(2022春•福州期中)已知α为锐角,且sin(α﹣)=,则cos (﹣α)=()
A .B
.﹣C .D
.﹣
5.(2021秋•鼓楼区校级期末)已
知,tanα=3,
,则tan(α﹣β)=()
A .
B .C.2D .
6.(2017春•马尾区校级期中)在△ABC中,已知,则△ABC的形状为()A.正三角形B.等腰三角形
C.直角三角形D.等腰直角三角形
7.(2016秋•福州月考)已知tan(α
﹣)=
,则的值为()
A .B.2C.
2D.﹣2
8.(2021秋•鼓楼区校级期中)已知sin (+α
)=,则sin
(+2α)=()
A .B
.﹣C
.±D
.﹣
9.(2022春•仓山区校级期中)在锐角△ABC中,角A,B,C的对边分别为a,b,c,△
ABC的面积为S,若sin(A+C
)=,则tan C +的取值范围()
第1页(共32页)。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知函数,,且求的值;设,,,求的值.【答案】(1);(2).【解析】(1)利用公式化简,要熟练掌握公式,不要把符号搞错,很多同学化简不正确;(2)求解较复杂三角函数的时,寻求角与角之间的关系,化非特殊角为特殊角;正确灵活运用公式,通过三角变换消去或约去一些非特殊角的三角函数值,注意题中角的范围;;(3)要注意符号,有时正负都行,有时需要舍去一个;(4)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:解:(1),解得. 5分(2),即,,即. 8分因为,所以,,所以. 12分【考点】(1)三角函数给值求值,(2)诱导公式的应用.2.化简得到()A.B.C.D.【答案】A【解析】【考点】三角函数的诱导公式和倍角公式.3.【答案】【解析】本题为由切求弦,由已知利用两角差的正切公式计算可得的值,并将已知化为正切的形式,考虑恒等变化故在原式填一分母,然后弦化切(分子分母同除以).试题解析:因为所以所以 3分故 7分10分【考点】由切求弦.4.已知、、是△的三内角,向量,且,,求.【答案】.【解析】首先运用内角和定理将问题转化为,这样只要研究、的三角函数值即可,由条件可以建立两个关于、的方程,可解出关于、的三角函数值,进而求出的值.试题解析:由,得,即 1分而∴∴, 3分7分∴ 9分∴为锐角,∴ 10分13分【考点】三角恒等变换中的求值问题.5.已知,则 .【答案】【解析】两式平方相加并整理得,所以.注意公式的结构特点,从整体去解决问题.【考点】三角恒等变换.6. (cos- sin) (cos+sin)= ()A.B.C.D.【答案】【解析】显然上式满足平方差公式,所以其等于,发现符合余弦二倍角公式,所以等于.【考点】三角化简.7.已知=2,则的值为;的值为_____.【答案】【解析】,又,,。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换习题详解
一、选择题
1.(文)(2010·山师大附中模考)设函数f (x )=cos 2(x +π4)-sin 2(x +π
4),x ∈R ,则函数f (x )
是( )
A .最小正周期为π的奇函数
B .最小正周期为π的偶函数
C .最小正周期为π
2的奇函数
D .最小正周期为π
2的偶函数
[答案] A
[解析] f (x )=cos(2x +π2)=-sin2x 为奇函数,周期T =2π
2=π.
2.(2010·重庆一中)设向量a =(cos α,22)的模为3
2
,则cos2α=( ) A .-1
4
B .-1
2
C.12
D.3
2
[答案] B
[解析] ∵|a |2=cos 2α+⎝⎛
⎭
⎫222
=cos 2α+12=34,
∴cos 2α=14,∴cos2α=2cos 2α-1=-1
2.
3.已知tan α
2=3,则cos α=( )
A.45
B .-45
C.4
15
D .-35
[答案] B
[解析] cos α=cos 2α2-sin 2α
2=cos 2α2-sin 2
α2cos 2α2+sin 2
α
2
=1-tan 2
α
21+tan 2
α2
=1-91+9=-4
5
,故选B.
4.(2010·揭阳市模考)若sin x +cos x =1
3,x ∈(0,π),则sin x -cos x 的值为( )
A .±
17
3
B .-
173
C.13
D.
173
[答案] D
[解析] 由sin x +cos x =13两边平方得,1+2sin x cos x =19,∴sin2x =-8
9<0,∴x ∈⎝⎛⎭⎫π2,π, ∴(sin x -cos x )2=1-sin2x =17
9
且sin x >cos x , ∴sin x -cos x =
17
3
,故选D. 5.(文)在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x ,y 的大小关系是( ) A .x ≤y B .x <y C .x ≥y
D .x >y
[答案] D
[解析] ∵π>A +B >π
2,∴cos(A +B )<0,即cos A cos B -sin A sin B <0,∴x >y ,故应选
D.
6.(2010·吉林省调研)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =sin 4x -cos 4x 的图象,只需将函数y =f (x )的图象( )
A .向左平移π
2个单位长度
B .向左平移π
4个单位长度
C .向右平移π
2个单位长度
D .向右平移π
4个单位长度
[答案] D
[解析] y =sin 4x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos2x ,
将f (x )=a ·b =2sin x cos x =sin2x ,向右平移π
4个单位得,sin2⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭
⎫π
2-2x =-cos2x ,故选D. 7.(2010·湖北黄冈模拟)若5π2≤α≤7π2,则1+sin α+1-sin α等于( )
A .-2cos α
2
B .2cos α
2
C .-2sin α
2
D .2sin α
2
[答案] C
[解析] ∵5π2≤α≤7π2,∴5π4≤α2≤7π
4.
∴1+sin α+1-sin α
=1+2sin α2cos α
2+
1-2sin α2cos α
2
=
(sin α2+cos α2
)2+
(sin α2-cos α2
)2 =-(sin α2+cos α2)-(sin α2-cos α
2)
=-2sin α
2.
二、填空题
8.(2010·广东罗湖区调研)若sin ⎝⎛⎭⎫π2+θ=3
5,则cos2θ=________. [答案] -725
[解析] ∵sin ⎝⎛⎭⎫π2+θ=35,∴cos θ=35, ∴cos2θ=2cos 2θ-1=-7
25
.
9.(2010·浙江杭州质检)函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________. [答案] 1
[解析] y =sin x cos10°+cos x sin10°+cos x cos40°-sin x sin40°=(cos10°-sin40°)sin x +(sin10°+cos40°)cos x ,其最大值为
(cos10°-sin40°)2+(sin10°+cos40°)2 =2+2(sin10°cos40°-cos10°sin40°) =2+2sin (-30°)=1.
10. (理)3tan12°-3(4cos 212°-2)sin12°=________.
[答案] -4 3 [解析] 3tan12°-3(4cos 212°-2)sin12°=3(sin12°-3cos12°)
2cos24°
sin12°cos12°
=
23sin (12°-60°)
1
2
sin48°=-4 3.
三、解答题
11.(文)(2010·北京理)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f (π
3
)的值;
(2)求f (x )的最大值和最小值.
[解析] (1)f (π3)=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-9
4.
(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1 =3(cos x -23)2-7
3
,x ∈R
因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =2
3时,f (x )取最小值
-73
. 12.(2010·广东罗湖区调研)已知a =(cos x +sin x ,sin x ),b =(cos x -sin x,2cos x ),设f (x )=a ·b . (1)求函数f (x )的最小正周期;
(2)当x ∈⎣⎡⎦⎤0,π
2时,求函数f (x )的最大值及最小值. [解析] (1)f (x )=a ·b =(cos x +sin x )·(cos x -sin x )+sin x ·2cos x =cos 2x -sin 2x +2sin x cos x =cos2x +sin2x =2⎝⎛⎭
⎫22cos2x +22sin2x
=2sin ⎝⎛⎭⎫2x +π4. ∴f (x )的最小正周期T =π. (2)∵0≤x ≤π2,∴π4≤2x +π4≤5π
4
,
∴当2x +π4=π2,即x =π8时,f (x )有最大值2;当2x +π4=5π4,即x =π
2时,f (x )有最小值
-1.
13.(文)设函数f (x )=cos ⎝⎛⎭⎫2x +π
3+sin 2x . (1)求函数f (x )的最大值和最小正周期;
(2)设A 、B 、C 为△ABC 的三个内角,若cos B =13,f (C 2)=-1
4,且C 为锐角,求sin A 的
值.
[解析] (1)f (x )=cos ⎝⎛⎭⎫2x +π3+sin 2x =cos2x cos π3-sin2x sin π3+1-cos2x 2=12-3
2sin2x , 所以函数f (x )的最大值为1+3
2,最小正周期为π.
(2)f (C 2)=12-32sin C =-14,所以sin C =32,
因为C 为锐角,所以C =π3
,
在△ABC 中,cos B =13,所以sin B =22
3,
所以sin A =sin(B +C )=sin B cos C +cos B sin C =223×12+13×32=22+3
6
.。