高中数学三角恒等变换

合集下载

高中数学-简单的三角恒等变换

高中数学-简单的三角恒等变换
4 3
= 1 .
7
4
3.(教材习题改编)若(tan α+1)(tan β+1)=2,则α+β=
教材研读 栏目索引
.
答案 +kπ,k∈Z
4
解析 由(tan α+1)(tan β+1)=2可得,
tan α+tan β=1-tan αtan β,则tan(α+β)= tan α tan β =1,则α+β= +kπ,k∈Z.
1 tan α tan β
4
教材研读 栏目索引
4.(2019江苏无锡高三模拟)已知sin2x+2sin xcos x-3cos2x=0,则cos 2x= .
答案 - 4 或0
5
教材研读 栏目索引
解析
∵sin2x+2sin
xcos
x-3cos2x= sin2
x

2sin x cos x sin2x cos2
7 14 7 14 2
考点突破 栏目索引
因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α< ,
2
又β为锐角,所以- <2α-β< ,所以2α-β= .
2
2
3
考点突破 栏目索引
方法技巧
“给值求角”实质上可转化为“给值求值”,即通过求角的某个三角函 数值来求角(注意角的范围),在选取函数时,遵循以下原则:
(2)1+sin α=③

sin
α 2

cos
α 2
2
;
教材研读 栏目索引
1-sin α=④

高中数学题型全面归纳 三角恒等变换19改

高中数学题型全面归纳 三角恒等变换19改

第三节 三角恒等变换考纲解读会用向量的数量积推导出两角差的余弦公式.能利用两角差的余弦公式导出两角差的正弦,正切公式.能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度.考题以考查三角函数式化简,求值和变形为主.化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲常用三角恒等变形公式 和角公式sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()1tan tan αβαβαβ++=-差角公式sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+tan tan tan()1tan tan αβαβαβ--=+倍角公式sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===半角公式sin22αα==sin 1cos tan.21cos sin a αααα-==+辅助角公式sin cos ),tan (0),ba b ab aαααϕϕ+=+=≠角ϕ的终边过点(,)a b ,特殊地,若sin cos a b αα+=或tan .baα=常用的几个公式sin cos );4πααα±=±sin 2sin();3πααα=±cos 2sin();6πααα±=±题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明(1):cos()cos cos sin sin ;C αβαβαβαβ++=-(2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβαβαβ+++=-变式1 证明:(1):cos()cos cos sin sin ;C αβαβαβαβ--=+ (2):sin()sin cos sin S cos αβαβαβαβ--=- tan tan (3):tan().1tan tan T αβαβαβαβ---=+题型66 化简求值 思路提示三角函数的求值问题常见的题型有:给式求值、给值求值、给值求角等.(1)给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.(3)给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角. 一、化同角同函例4.34 已知3cos()45x π+=则2sin 22sin ()1tan x xx -=-7.25A 12.25B 11.25C 18.25D 解析 解法一:化简所求式评注 解法一运用了由未知到已知,单方向的转化化归思想求解;解法二运用了化未知为已知,目标意识强烈的构造法求解,从复杂度来讲,一般情况下采用构造法较为简单.变式1 若13cos(),cos(),55αβαβ+=-=则tan tan _______.αβ=变式2 若4cos 5α=-,α是第三象限角,则1tan2()1tan 2αα+=- 1.2A - 1.2B .2C .2D -变式3 若1tan 4tan θθ+=,则sin 2().θ= 1.5A 1.4B 1.3C 1.2D二、建立已知角与未知角的联系(通过凑配角建立)将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角的相互关系,并根据这种关系来选择公式.常见的角的变换有:和、差角,辅助角,倍角,降幂,诱导等. 1.和、差角变换如α可变为()αββ+-;2α可变为()()αβαβ++-;2αβ-可变为()αβα-+例4.35 若330,cos ,sin(),255παβπααβ<<<<=+=-则cos β的值为( ). .1A - .1B -或72524.25C - 24.25D ±评注 利用和、差角公式来建立已知角与未知角的联系,常利用以下技巧:();();()()βαβαβααβαβαγβγ=+-=--+=-++等.解题时,要注意根据已知角的范围来确定未知角的范围,从而确定所求三角式的符号. 变式1已知sin ),(0,)2πααβαβ=-=∈则().β=.3B π .4C π .6D π5.12A π变式2 若3335(,),(0,),cos(),sin()44445413πππππαβαβ∈∈-=+=,则sin()______.αβ+=二、辅助角公式变换例4.36 已知cos()sin 6παα-+=,则7sin()6πα+的值为( )..A B 4.5C - 4.5D变式1设6sin14cos14,sin16cos16,,b c α=+=+=则a,b,c 的大小关系为( ).A.a<b<cB.b<c<aC.a<c<bD.b<a<c变式2将函数()cos 22x x f x =-的图象向右平移23π个单位长度得到函数()y g x =的图象,则函数()y g x =的一个单调递减区间是( ) A .(,)42ππ- B .(,)2ππ C .(,)24ππ-- D .3(,2)2ππ变式3 已知sin cos 6παα⎛⎫++= ⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭( )A ..13- D .13变式4 设当x θ=时,函数()2sin cos f x x x =-取得最大值,则cos θ=__________3.倍角,降幂(次)变换例4.37 已知α为第二象限角,sin cos αα+=则cos 2().α=变式1 若1sin()63πα-=则2cos()().3πα+= 7.9A - 1.3B - 1.3C 7.9D变式2 已知4sin cos 3αα-=,则sin 2α=( ). A .79-B .29-C . 29D .79变式3已知312sin(2),sin 513αββ-==-且(,),(,0),22ππαπβ∈∈-求sin α值.变式4若31sin ,(,),tan()522πααππβ=∈-=,则tan(2)().αβ-=24.7A - 7.24B - 24.7C 7.24D变式5已知1sin cos 2αα=+,且(0.)2πα∈,则cos 2_____.sin()4απα=-4.诱导变换例4.38若(sin )3cos 2f x x =-,则(cos )().f x =.3cos 2A x - .3sin 2B x - .3c o s C x +.3s i nD x +变式1 α是第二象限角,4tan(2)3πα+=-,则tan _______.α=变式2 若5sin(),(0,)4132ππαα-=∈,则cos 2_____.cos()4απα=+变式3 2tan sin 2cos ,,42ππααααπ⎛⎫⎛⎫+=+∈ ⎪ ⎪⎝⎭⎝⎭,则()tan πα-=____________.最有效训练题19(限时45分钟)1.已知函数()sin ,f x x x =设(),(),()763a fb fc f πππ===,则,,a b c 的大小关系为( ).A.a<b<cB. c<a<bC.b<a<cD.b<c<a2.函数()1ππsin cos 536f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( ). A .65 B .1 C .35 D .153.若1tan 2α=,则cos(2)().2πα+= 4.5A 4.5B - 1.2C 1.2D - 4.已知11tan(),tan 27αββ-==-,且,(0,)αβπ∈,则2().αβ-= .4A π 3.4B π- 5.,44C ππ 35.,,444D πππ- 5.函数sin()(0)y x πϕϕ=+>的部分图像如图4-33所示,设P是图像的最高点,A,B是图像与x 轴的交点,则tan ().APB ∠= A.10 B.8 8.7C 4.7D6.函数sin 3cos 4x y x -=+的最大值是( ).1.2A - B 4.3C - D 7.已知tan()34πθ+=,则2sin 22cos ______.θθ-=8. 已知π0,2α⎛⎫∈ ⎪⎝⎭,tan 2α=,则πcos 4α⎛⎫-= ⎪⎝⎭ .________.2)sin10= 10.已知113cos ,cos()714ααβ=-=,且02πβα<<<,则tan 2____,____.αβ==11.已知函数2()2cos .2x f x x = (1)求函数()f x 的最小正周期和值域;(2)若α是第二象限角,且1()33fπα-=,求cos21cos2sin2ααα+-的值.12.已知三点3 (3,0),(0,3),(cos,sin),(,).22 A B Cππααα∈(1)若AC BC=,求角α;(2)若1AC BC⋅=-,求22sin sin21tanααα++的值.。

高中数学简单的三角恒等变换

高中数学简单的三角恒等变换

5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。

人教A版高中数学必修一课件 《三角恒等变换》三角函数PPT(第5课时简单的三角恒等变换)

人教A版高中数学必修一课件 《三角恒等变换》三角函数PPT(第5课时简单的三角恒等变换)

应用公式解决三角函数综合问题的三个步骤 运用和、差、倍角公式化简 ↓
统一化成f(x)=asin ωx+bcos ωx+k的形式 ↓
利用辅助角公式化为f(x)=Asin(ωx+φ)+k 的形式,研究其性质
1.已知函数 f(x)=cos2x-1π2+sin2x+1π2-1,则 f(x)(
)
A.是奇函数
=79×-13--4
9
2×2
3
2=13.
本部分内容讲解结束
α =cos
α.
(变条件)若本例中式子变为
(1+sin θ+cos θ)sin
θ2-cos
θ
2
2+2cos θ
(0<θ<π),则化简后的结果是什么?
2sin 解:原式=
θ 2cos
θ2+2cos2
θ
2
sin
θ2-cos
θ 2
4cos2
θ 2
cos =
θ2sin2
θ2-cos2
θ 2
θ
cos
2
2sin2
α 2
α
2sin
2
αα
2 =-
2sin 2cos
sin
α
2
2.
因为 0<α<π,
所以 0<α2<π2.所以 sin α2>0.
所以原式=-2 2cos α2.
与三角函数性质有关的问题
已知函数 f(x)=cos(π+x)cos 32π-x- 3cos2x+ 23. (1)求 f(x)的最小正周期和最大值;
(2)因为 0≤x≤23π, 所以π3≤x+π3≤π. 当 x+π3=π, 即 x=23π时,f(x)取得最小值. 所以 f(x)在区间0,23π上的最小值为 f23π=- 3.

三角恒等变换

三角恒等变换

三角恒等变换什么是三角恒等变换三角恒等变换,又称三角恒等式,是指一类三角函数之间的等式关系。

它们可以将一个三角函数表达式变换为另一个等价的三角函数表达式,从而简化计算和证明过程。

常见的三角恒等变换包括正弦、余弦和正切函数之间的关系。

常见的三角恒等变换公式下面是一些常见的三角恒等变换公式:1. 正弦函数的恒等变换•正弦函数的平方和差恒等式:$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$•正弦函数的倍角恒等式:$$\\sin (2A) = 2\\sin (A)\\cos (A)$$2. 余弦函数的恒等变换•余弦函数的平方和差恒等式:$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$•余弦函数的倍角恒等式:$$\\cos (2A) = \\cos^2 (A) - \\sin^2 (A)$$3. 正切函数的恒等变换•正切函数的平方恒等式:$$\\tan^2 (A) = \\sec^2 (A) - 1$$$$\\tan^2 (A) = \\csc^2 (A) - 1$$•正切函数的相反数恒等式:$$\\tan (-A) = -\\tan (A)$$三角恒等变换的应用三角恒等变换在数学和物理学中有广泛应用。

它们可以用于简化三角函数的计算,证明数学关系,以及解决实际问题。

1. 例题:求解三角方程假设我们需要求解方程 $\\sin (2A) = \\cos (2A)$ 的解集。

利用三角恒等变换公式,我们可以将方程转化为 $\\tan (2A)= 1$。

再进一步,我们可以使用反正切函数来求解 $2A =\\tan^{-1}(1)$,所以 $A = \\frac{\\pi}{4} + k\\frac{\\pi}{2}$,其中k为整数。

高一数学三角恒等变换知识点介绍

高一数学三角恒等变换知识点介绍

高一数学三角恒等变换知识点介绍在高一学生学习的知识点是比较的多,学生需要学好,否则高三的时候会很吃力,下面是店铺给大家带来的有关于高一数学关于三角恒等变化知识点的介绍,希望能够帮助到大家。

高一数学三角恒等变换知识点三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.1.求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.2.三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是α4的二倍角等.(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.(4)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.高一数学期末综合复习题一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后的括号内。

人教A版高中数学必修一课件 《三角恒等变换》三角函数名师授课课件(第5课时简单的三角恒等变换)

人教A版高中数学必修一课件 《三角恒等变换》三角函数名师授课课件(第5课时简单的三角恒等变换)
x+cos
2sin xcos x-1sin
x x-cos
x+1=1+sincoxs
x.
[证明] 左边=2sin2xcos2x-2s2isni2n2xxc2ossinx2xcos2x+2sin22x =4sin222xscinosx2c2xo-s xsin22x
23
=2ssiinn2x2x
2α=右边,
∴原式成立.
21
三角恒等式证明的常用方法 1执因索果法:证明的形式一般化繁为简; 2左右归一法:证明左右两边都等于同一个式子; 3拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它 们之间的差异,简言之,即化异求同; 4比较法:设法证明“左边-右边=0”或“左边/右边=1”; 5分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直 到已知条件或明显的事实为止,就可以断定原等式成立.
=cos x2x=
2cos22x x
x=1+sincoxs
x=右边.
sin2 2sin2cos2
所以原等式成立.
24
恒等变换与三角函数图象性质的综合
【例3】 已知函数f(x)= 3cos2x-π3-2sin xcos x. (1)求f(x)的最小正周期. (2)求证:当x∈-π4,π4时,f(x)≥-12. [思路点拨] 化为fx=Asinωx+φ+b → 由T=|2ωπ|求周期 →
∴sin4θ=-
1-2cos2θ=- 1-2 a.]
(2)[解] 原式=
2csoinsα2α2+-cos2α2s2inα2+ 2csoinsαα22-+cos2α2s2inα2.
12
∵π<α<32π,∴π2<α2<34π,∴cosα2<0,sinα2>0,
∴原式=-si2nα2si+nα2c+oscα2o2sα2+

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。

本文将总结常用的三角恒等变换公式,并介绍其应用技巧。

一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 简单的三角恒等变换
Page
1
知识梳理
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C(α-β))
cos(α+β)=cos αcos β-sin αsin β ,(C(α+β))
sin(α-β)= sin αcos β-cos αsin β ,(S(α-β))
7 - 5
.
答案
解析

2 2 cos α - sin α cos 2α = =cos α-sin α, π 2 2 2sinα+ 2 sin α+ cos α 4 2 2 3 π ∵sin α= ,α∈( ,π), 5 2 4 7 ∴cos α=- ,∴原式=- . 5 5
Page 6
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 答案
2 A.- 2 2 B. 2 1 C. 2 1 D.- 2
解析
由tan Atan B=tan A+tan B+1,
tan A+tan B 可得 =-1,即 tan(A+B)=-1, 1-tan Atan B 3π 又 A+B∈(0,π),所以 A+B= , 4 π 2 则 C= ,cos C= . 4 2
Page 16
引申探究
θ θ 1+sin θ-cos θsin -cos 2 2 化简: (0<θ<π). 解答 2-2cos θ
θ π θ ∵0< < ,∴ 2-2cos θ=2sin , 2 2 2
例2 2 5 A. 25 5 3 (1)设 α、β 都是锐角,且 cos α= ,sin(α+β)= ,则 cos β 等于 5 5
答案 解析
2 5 B. 5
2 5 2 5 C. 或 25 5
5 5 D. 或 5 25
Page
11
4 π 4 7π - (2)已知 cos(α- )+sin α= 3,则 sin(α+ )的值是 5 . 答案 6 5 6
cos 10° -2sin 20° cos 10° -2sin30° -10° cos 10° = -2cos 10° = = 2sin 10° 2sin 10° 2sin 10°
1 3 cos 10° -2 cos 10° - sin 10° 2 2 3sin 10° 3 = = = . 2sin 10° 2sin 10° 2
Page 7
思维升华
(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.
(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.
Page
8
3 跟踪训练1 (1)(2016· 全国丙卷)若tan α= ,则cos2α+2sin 2α等于 答案 4
64 A. 25
48 B. 25
C.1
Page 13
命题点2 三角函数式的变形
θ θ 1+sin θ+cos θsin -cos 2 2 (1)化简: (0<θ<π); 解答 2+2cos θ
例3
Page
14
1+cos 20° 1 (2)求值: -sin 10° ( -tan 5° ). 2sin 20° tan 5°
解答
解析
3 D.- 2
1 sin 40° sin 110° sin 20° sin 70° sin 20° cos 20° sin 20° 2 1 = = = = . 2 2 cos 310° cos 50° sin 40° 2 cos 155° -sin 155°
Page
10
题型二 和差公式的综合应用 命题点1 角的变换
2cos210° cos 5° sin 5° 原式= -sin 10° ( - ) sin 5° cos 5° 2×2sin 10° cos 10°
2 2 cos 5° - sin 5° cos 10° cos 10° cos 10° = -sin 10° · = -sin 10° · 2sin 10° sin 5° cos 5° 2sin 10° 1 sin 10° 2
sin(α+β)= sin αcos β+cos αsin β ,(S(α+β))
tan α-tan β tan(α-β)= ,(T(α-β)) 1+tan αtan β
tan α+tan β tan(α+β)= .(T(α+β)) 1-tan αtan β
Page 2
2.二倍角公式 sin 2α= 2sin αcos α ;
16 D. 25
解析
2 cos α+2sin 2 α 1+4tan α 64 3 2 tan α= , 则 cos α+2sin 2α= = . 2 2 2 = 4 cos α+sin α 1+tan α 25
Page
9
sin 110° sin 20° (2)计算 2 的值为 答案 2 cos 155° -sin 155° 1 A.- 2 1 B. 2 3 C. 2
b 3.辅助角公式: asin x+b cos x= a +b sin(x+φ), 其中 sin φ= 2 2, a +b
2 2
a cos φ= 2 . 2 a +b
Page
4
题型分类
深度剖析
第1课时 两角和与差的正弦、余弦和正切公式
Page
5
题型一 和差公式的直接应用
例 1 = 3 π (1)(2016· 广州 模拟 ) 已 知 sin α = , α∈( , π) ,则 5 2 cos 2α π 2sinα+ 4
cos 2α= cos2α-sin2α = 2cos2α-1 = 1-2sin2α ;
2tan α 2 1 - tan α. tan 2α=
Page
3
知识拓展
1+cos 2α 1-cos 2α 2 1.降幂公式:cos α= ,sin α= . 2 2
2
2.升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
解析
π 4 ∵cos(α- )+sin α= 3, 6 5 3 3 4 ∴ cos α+ sin α= 3, 2 2 5
1 3 4 π 4 3( cos α+ sin α)= 3, 3sin( +α)= 3, 2 2 5 6 5 π 4 ∴sin( +α)= , 6 5
7π π 4 ∴sin(α+ )=-sin( +α)=- . 6 6 5
相关文档
最新文档