信号与系统课件13

合集下载

信号与系统课件(奥本海姆+第二版)+中文课件.pdf

信号与系统课件(奥本海姆+第二版)+中文课件.pdf

解:因为 x[n] = e jω0n = cos ω0n + j sin ω0n (欧拉公式)
则有 e jω0n = 1
∑ ∑ ∞

E∞ = x[n] 2 = 1= ∞
n=−∞
n=−∞
∑ P∞
=
lim
N→∞
1N 2N +1n=−N
x[n] 2
= lim N→∞
1 ×(2N 2N +1
+1)
=1
所以是功率信号
控制
执行机构
网络
图 1 控制系统
R+
uc (t)
x (t)
C
uc (t)
-
t
图 2 RC电路
6 / 94
二、信号的分类 信号的分类方法很多。
1、确定性信号与随机信号 按信号与时间的函数关系来分,信号可分为确定性信号与随
机信号。 1)、确定性信号——指能够表示为确定的时间函数的信号。 当给定某一时间值时,信号有确定的数值。 例如:正弦信号、指数信号和各种周期信号等。 2)、随机信号——不是时间t的确定函数的信号。 它在每一个确定时刻的分布值是不确定的。 例如:电器元件中的热噪声等。
11 / 94
5、连续时间信号和离散时间信号——按自变量的取值是否连续来分。
1、连续时间信号——自变量是连续可变的,因此信号在自变量的连续值上 都有定义。我们用t表示连续时间变量,用圆括号(.)把自变量括在里面。例 如 图一的 x(t)。
x (t)
x [n]
X[1] X[-1]
0
t
图一 连续时间信号
1)、时间特性——波形、幅度、重复周期及信号变化的快慢等。 ω
2)、频率特性——振幅频谱和相位频谱。即从频域 来研究信号的变化情 况。

第13讲 周期信号的频谱及其特点

第13讲 周期信号的频谱及其特点

号的调制与解调等等。
精选版课件ppt
2
本章主要内容
3.1 3.2 3.3 3.4 3.5
周期信号的分解与合成 周期信号的频谱及特点 非周期信号的频谱 傅氏变换的性质与应用(1) 傅氏变换的性质与应用(2)
精选版课件ppt
3
本章主要内容
3.6 周期信号的频谱 3.7 系统的频域分析 3.8 无失真传输系统与理想低通滤波器 3.9 取样定理及其应用 3.10 频域分析用于通信系统
0 0 20 30 40 50
0.15
精选版课件ppt
14
周期信号的单边频谱
已知周期信号 f(t)11c o ts2 1s in t
2 4 3 4 3 6
求其基波周期T,基波角频率0,画出它的单边频谱图。
解:将f(t)改写为: f(t) 1 1 c o t s2 1 c o t s 2 4 3 4 3 62
精选版课件ppt
13
周期信号的单边频谱
画出周期信号 f(t) 的振幅频谱和相位频谱。
f(t) 1 si0 n t 2 co 0 t sco 20 ts ( 4 )
f(t) 1 5 co 0 ts 0 .( 1) 5 c o 20 s t 4
Ak 5
k
0.25
1
1
0
0
20 30 40 50
相位频谱图描述各次谐波的相位与频率的关系。
根据周期信号展开成傅里叶级数的不同形式,频谱图又分 为单边频谱图和双边频谱图。
精选版课件ppt
8
周期信号的单边频谱
周期信号 f ( t ) 的三角函数形式的傅里叶级数展开式为
f(t)A0 Ancos(n1tn) n1
A n 与 n 1 的关系称为单边幅度频谱;

信号与系统课件(奥本海姆+第二版)+中文课件

信号与系统课件(奥本海姆+第二版)+中文课件

t
例1.4:确定以下信号是否为周期信号?
x(t)
=
c
o
s
(
t
)
sin(t)
如 果 t<0 如果t ≥ 0
解:
因为 cos(t&sin(t)
设信号电压或电流为 x(t),则它在电阻为1Ω上的瞬时功率为
∫ p(t) = x(t) 2
t2
2
在 t1 ≤ t ≤ t2内消耗的总能量为 E = t1 x (t ) d t
∫ 平均功率为 P = 1
t2 x(t) 2 dt
t 2 − t1 t1
当 T = (t2 − t1 ) → ∞ 时,总能量E和平均功率P变为
2、离散时间信号——自变量仅取在一组离散值上。我们用n表示离散时间变 量,用方括号[.]来表示,例如图二的x[n]。
注意:信号x[n] 总是在n的整数值上有定义。 <在本书中是按“连续时间信号和离散时间信号”来分的。>
1.2 自变量的变换 ——在信号与系统分析中是极为有用的。
本节讨论的变换只涉及自变量的简单变换(即时间轴的变换):实现信号的 时移、反转、展缩。
2、生仪学院FTP 10.12.41.6 80G硬盘内 “吴坚”文件夹
第一章
信 号与系统
1.0 引言 一、信号和系统的基本概念
1、 信号——广义地说,信号是随时间和空间变化的某 种物理量,是信息的载体。(声、光、电等信号)。 信号的特性可从两个方面来描述:
时 频域 域— —— —自 自变 变量 量为 为: :ωt
1
-2
-1
0
1
2
t
x (3t/2)
1
-2
x (3/2*2/3) = x(1) x (3/2*4/3) = x (2)

信号与系统三大变换PPT课件

信号与系统三大变换PPT课件

拉普拉斯变换
拉普拉斯变换可以将时域信 号转换为复频域,能够分析 系统的动态特性,是分析线 性时不变系统的重要工具。
Z变换
Z变换可以将离散时间信号 转换为复频域,广泛应用于 数字信号处理、数字滤波器 设计等领域。
信号与系统分析的一般流程
信号建模
1
根据实际问题,建立合适的数学模型
系统分析 2
对系统的输入输出关系进行分析
信号与系统分析实例
频域分析
运用傅里叶变换将时域信号转换到频域,分析信号的频谱特性,如频带、主频、谐波等。
时域分析
利用时域函数描述信号的波形、幅值、时间特性,如上升时间、延迟时间、衰减特性等。
系统建模
建立信号传输系统的数学模型,运用拉普拉斯变换或Z变换分析系统的响应特性。
滤波设计
利用频域分析结果设计合适的滤波器,如低通、高通、带通滤波器,优化系统性能。
系统
系统指由相互关联的元素组成的 整体,对输入信号进行处理并产 生输出信号的装置或过程。
输入输出
系统接受外界信号作为输入,经 过一系列的处理过程后产生输出 信号。输入输出是系统的基本特 性。
为什么要学习信号与系统
理解现代技术的 基础
信号与系统是现代技 术的基础之一,涉及 电子、通信、控制、 信息处理等诸多领域 。学习这门课程可以 帮助我们深入理解这 些技术的工作原理变换F(s)的收敛性 由实部大于某个门限值的s 决定。即当Re(s) > σ₀时, 拉普拉斯变换收敛。
拉普拉斯变换的性质
线性性
拉普拉斯变换满足线 性性质,即对任意常 数a和b以及信号x(t) 和y(t),有 L{ax(t)+by(t)}=aL{ x(t)}+bL{y(t)}。这 使得拉普拉斯变换在 信号分析中有很强的 适用性。

《信号与系统》郑君里教学课件讲义

《信号与系统》郑君里教学课件讲义

(4)19世纪末,人们研究用电磁波传送无线电信号。 赫兹(H.Hertz)波波夫、马可尼等作出贡献。1901年 马可尼成功地实现了横渡大西洋的无线电通信。
(5)光纤通信 从此,传输电信号的通信方式得到广泛应用和迅速发展。 如今:(1)卫星通信技术为基础“全球定位系统(Global Positioning System, 缩写为GPS)用无线电信号的传输, 测定地球表面和周围空间任意目标的位置,其精度可达 数十米之内。 (2)个人通信技术:无论任何人在任何时候和任何地方 都能够和世界上其他人进行通信。 (3)“全球通信网”是信息网络技术的发展必然趋势。 目前的综合业务数字网(Integrated Services Digital Network,缩写为ISDN),Internet或称因特网,以及其他各 种信息网络技术为全球通信网奠定了基础。
信号与系统
郑君里
教学课件
1、教材:信号与系统 郑君里 杨为理 应启珩编 2、信号与系统 Signals & Systems ALAN V.OPPENHEIM ALANS. WILLSKY 清华大学出版社(英文影印版) (中译本)刘树棠 西安交通大学出版社 3、信号与系统例题分析及习题 乐正友 杨为理 应启珩编 4、信号与系统习题集 西北工业大学
5. 系统的分类
系统可分为物理系统与非物理系统,人工系统以及自 然系统。 物理系统:包括通信系统、电力系统、机械系统等; 非物理系统:政治结构、经济组织、生产管理等; 人工系统:计算机网、交通运输网、水利灌溉网以及 交响乐队等; 自然系统:小至原子核,大如太阳系,可以是无生命 的,也可是有生命的(如动物的神经网络)。
4.信号、电路(网络)与系统的关系
离开了信号,电路与系统将失去意义。

信号与系统_郑君里_第三版_课件

信号与系统_郑君里_第三版_课件

2016/5/9
9
1.2.2 典型信号 一、指数信号 指数信号的表达式为
f (t ) Ke t
f (t )
Ke t ( 0)
Ke t ( 0)
K
Ke t ( 0)
0
t
2016/5/9
10
二、正弦信号
正弦信号和余弦信号二者仅在相位上相差 2 ,统称为正 弦信号,一般写作
1、确定性信号与随机性信号
对于确定的时刻,信号有确定的数值与之对应,这样的信号称为 确定性信号。不可预知的信号称为随机信号。
2、周期信号与非周期信号
在规则信号中又可分为周期信号与非周期信号。所谓周期信号 就是依一定时间间隔周而复始,而且是无始无终的信号。时间上不 满足周而复始特性的信号称为非周期信号。
2016/5/9
(t t0 )
(1) 0
t0
t
21
(2) 用极限定义
(t ) 。 我们可以用各种规则函数系列求极限的方法来定义
例如:(a)用矩形脉冲取极限定义

2
δ(t)

1
0
(1)
2

4
4
2
t
1
t

(t ) lim [u(t ) u(t )] 0 2 2
2016/5/9
演示
22
(b)用三角脉冲取极限定义

2
δ(t)

1
0
(1)
2
2

t
t
t 1 (t ) lim (1 )[u (t ) u (t )] 0
2016/5/9

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

信号与系统_王明泉_课件第1章

信号与系统_王明泉_课件第1章
1
O
f t 1 O
通常把 称为指数信号的时间常数,记作,代表信 号衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
t
信号与系统
第1章 信号与系统概述
22 /48
衰减正弦信号:
K e t sint f (t ) 0
重要特性:同指数信号
f (t )
应用数学知识较多,用数学工具分析物理概念; •常用数学工具: 微分、积分(定积分、无穷积分、变上限积分) 线性代数 微分方程、差分方程 傅里叶级数、傅里叶变换、拉氏变换、z 变换
•经典教材:信号与系统 奥本海姆著 信号与系统 郑君里
信号与系统
第1章 信号与系统概述
5 /48
学习方法
•注重物理概念与数学分析之间的对照,不要盲 目计算; •注意分析结果的物理解释,各种参量变动时的 物理意义及其产生的后果; •同一问题可有多种解法,应寻找最简单、最合 理的解法,比较各方法之优劣; •在学完本课程相当长的时间内仍需要反复学习 本课程的基本概念。
t
2
f t
E
0.78 E
E e
O

2
t
钟形脉冲(高斯)信号最重要的性质是其傅立 叶变换也是钟形脉冲(高斯)信号,在信号分析中 占有重要地位。
返回
信号与系统
第1章 信号与系统概述
28 /48
1.4 奇异信号ቤተ መጻሕፍቲ ባይዱ其基本特性
1.4.1 单位斜变信号
单位斜变信号
0 t 0 f (t ) t t 0
????ttt???jjeej21sin???????ttt???jjee21cos???第1章信号与系统概述2448信号与系统1322复指数信号为复数称为复频率j????????s均为实常数??????tktktktfttst????sinejcosee????????讨论??????????????????????衰减指数信号升指数信号直流衰减指数信号升指数信号直流000000????????????振荡衰减增幅等幅振荡衰减增幅等幅????????????????????????????????000000????????????均为实常数??第1章信号与系统概述2548信号与系统133矩形脉冲和三角脉冲矩形脉冲信号的表示式为????????2021??tttf?三角脉冲信号的表示式为?????????20221???ttttf第1章信号与系统概述2648信号与系统134抽样信号tttsinsa?t??tsa123o?性质

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。

信号与系统PPT课件

信号与系统PPT课件
f(t) 1
-2 o
2 t t → 0.5t 扩展
f (2 t ) 1
-1 o 1
t
f (0.5 t )
1
-4
o
4t
对于离散信号,由于 f (a k) 仅在为a k 为整数时才有意义, 进行尺 度变换时可能会使部分信号丢失。因此一般不作波形的尺度变换。
平移与反转相结合举例
例 已知f (t)如图所示,画出 f (2 – t)。 解答 法一:①先平移f (t) → f (t +2)
结论
由上面几例可看出: ①连续正弦信号一定是周期信号,而正弦序列不一定是 周期序列。 ②两连续周期信号之和不一定是周期信号,而两周期序 列之和一定是周期序列。
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E (2)信号的功率P
def
E
f(t )2 d t
P
def
lim
T
1
T
T
2
T
f(t )2 d t
2
若信号f (t)的能量有界,即 E <∞ ,则称其为能量有限信号, 简称能量信号。此时 P = 0
若信号f (t)的功率有界,即 P <∞ ,则称其为功率有限信号, 简称功率信号。此时 E = ∞
解 (1)sin(3πk/4) 和cos(0.5πk)的数字角频率分别为 β1 = 3π/4 rad, β2 = 0.5π rad 由于2π/ β1 = 8/3, 2π/ β2 = 4为有理数,故它们的周期 分别为N1 = 8 , N2 = 4,故f1(k) 为周期序列,其周期为 N1和N2的最小公倍数8。 (2)sin(2k) 的数字角频率为 β1 = 2 rad;由于2π/ β1 = π为无理数,故f2(k) = sin(2k)为非周期序列 。

信号与系统课件

信号与系统课件

例1
0-和0+初始值举例 和 初始值举例1 初始值举例
例1:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)= 0,f(t)=ε(t),求y(0+)和y’(0+)。 已知 , , , 和 。 解:将输入f(t)=ε(t)代入上述微分方程得 将输入 代入上述微分方程得 y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6ε(t) 1) (1) 利用系数匹配法分析 上式对于t=0-也成立,在0-<t<0+ 分析: 也成立, 利用系数匹配法分析:上式对于 也成立 区间等号两端δ(t)项的系数应相等。 项的系数应相等。 区间等号两端 项的系数应相等 由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而 应包含冲激函数, 由于等号右端为 , 应包含冲激函数 y’(t)在t= 0处将发生跃变,即y’(0+)≠y’(0-)。 在 处将发生跃变, 。 处将发生跃变 不含冲激函数, 将含有δ’(t)项。由于 但y’(t)不含冲激函数,否则 不含冲激函数 否则y”(t)将含有 将含有 项 y’(t)中不含 中不含δ(t),故y(t)在t=0处是连续的。 处是连续的。 中不含 , 在 处是连续的 ■ ▲ 第 24 页 y(0+) = y(0-) = 2 故 第 24 页
例1
例2
当微分方程右端含有冲激函数时,响应y(t)及其各阶导数中,有些在t=0处将发生跃变。 否则不会跃变。
三.零输入响应和零状态响应 零输入响应和零状态响应
y(t) = yzi(t) + yzs(t) ,也可以分别用经典法求解。 注意:对t=0时接入激励f(t)的系统,初始值 yzi(j)(0+), yzs(j)(0+) (j = 0,1,2,…,n-1)的计 算。 y(j)(0-)= yzi(j)(0-)+ yzs(j)(0-) y(j)(0+)= yzi(j)(0+)+ yzs(j)(0+) 对于零输入响应,由于激励为零,故有 yzi(j)(0+)= yzi(j)(0-) = y (j)(0-) 对于零状态响应,在t=0-时刻激励尚未接入,故应有 yzs(j)(0-)=0 yzs(j)(0+)的求法下面举例说明。

《信号与系统》课件讲义

《信号与系统》课件讲义

《信号与系统》课件讲义一、内容描述首先我们将从信号的基本概念开始,大家都知道,无论是听音乐、看电视还是打电话,背后都离不开信号的存在。

那么什么是信号呢?信号有哪些种类?我们又如何描述它们呢?这一部分我们会带领大家走进信号的世界,一起探索信号的奥秘。

接下来我们将探讨信号与系统之间的关系,信号在系统中是如何传输、处理和变换的?不同的系统对信号有何影响?我们将通过具体的例子和模型,帮助大家理解这个复杂的过程。

此外我们还会深入学习信号的数学描述方法,虽然这部分内容可能会有些难度,但我们会尽量使用通俗易懂的语言,帮助大家更好地理解。

通过这部分的学习,我们将学会如何对信号进行量化分析,从而更好地理解和应用信号。

我们将探讨信号处理的一些基本方法和技术,如何对信号进行滤波、调制、解调等处理?这些处理技术在实际中有哪些应用?我们将通过实例和实践,帮助大家掌握这些基本方法和技术。

1. 介绍信号与系统的基本概念及其重要性首先什么是信号?简单来说信号就像是我们生活中的各种信息传达方式,想象一下当你用手机给朋友发一条短信,这条信息就是一个信号,它传递了你的意图和情感。

在更广泛的层面上,信号可以是任何形式的波动或变化,比如声音、光线、电流等。

它们都有一个共同特点,那就是携带了某种信息。

这些信息可能是我们想要传达的话语,也可能是自然界中的物理变化。

而系统则是接收和处理这些信号的装置或过程,它像是一个加工厂,将接收到的信号进行加工处理,然后输出我们想要的结果。

比如收音机就是一个系统,它接收无线电信号并转换成声音让我们听到。

这样描述下来,你会发现信号和系统真的是无处不在。

无论是在学习还是在日常生活中都能见到他们的影子,他们对现代通信、计算机技术的发展都有着不可替代的作用。

因此我们也需要对这一概念进行透彻的了解与学习才能更好地服务于相关领域为社会贡献力量!2. 简述本课程的学习目标和主要内容《信号与系统》这门课程无论是对于通信工程、电子工程还是计算机领域的学生来说,都是一门极其重要的基础课程。

《信号与系统》课件

《信号与系统》课件

系统的稳定性评估
了解如何评估系统的稳定性,包括绝对稳定性和相对稳定性,以及其对信号 处理和通信系统的影响。
应用示例
通过实际的应用示例,展示信号与系统在通信、音频处理、图像处理等领域中的重要性和应用。
《信号与系统》PPT课件
欢迎来到《信号与系统》PPT课件!这个课程将带你深入了解信号与系统的定 义、概述以及应用示例。让我们开始这个令人兴奋的学习之旅吧!
信号与系统的定义与概述
在本节中,我们将介绍信号与系统的基本概念和定义,以及它们在不同领域 中的应用。深入了解信号与系统的重要性和用途。
信号的分类与特性
连续信号与离散信号
了解连续信号和离散信号之间的区别以及它们 的应用场景。
能量信号与功率信号
学习能量信号和功率信号的不同,并了解它们 在通信系统中的应用。
周期信号与非周期信号
探索周期信号和非周期信号的特性和重要性。
模拟信号与数字信号
介绍模拟信号与数字信号之间的区别,并探究 的基本原理和方 法,并探索不同类型的滤波器。
系统的定义与分类
线性系统与非线性系统
了解线性系统和非线性系统 的特性和区别,并掌握它们 在实际应用中的概念。
因果系统与非因果系统
探索因果系统和非因果系统 之间的差异,并了解它们在 信号处理中的重要性。
时变系统与时不变系统
学习时变系统和时不变系统 的特性和应用,以及它们如 何影响信号处理结果。
时域分析
1
时域表示
学习如何使用时域来表示信号及其特性。
时域运算
2
了解信号在时域中的运算及其在系统分
析中的重要性。
3
卷积与相关
深入了解卷积和相关运算,并探索它们 在信号处理中的应用。

信号与系统-课件(陈后金)

信号与系统-课件(陈后金)

f2(t) 0.5
0
t
y(t)=f1(t)+f2(t) 1
t 0
5 . 信号的相乘
f(t)=f1(t)·f2(t) ·…… ·fn(t)
f1(t) 1
t
-1
1
f (t) f1(t) f1(t) 1
f2(t) 1
t
-1
1
t
-2
2
6 . 信号的微分
y(t)=df(t)/dt=f '(t)
f (t) 1
0 t0
t
sin w0 (t - t0 ) u(t - t0 )
t 0 t0
2. 冲激信号
1)冲激信号的引出
单位阶跃信号加在电容两端,流过电容的电流 i(t)=C du(t)/dt可用冲激信号表示。 2)冲激信号的定义
狄拉克定义式:
(t)=0 , t0
+
(t) dt = 1 -
3) 冲激信号的图形表示
dt
性质:
'(t)dt 0
- t
'( )d (t)
-
f (t) ' (t) f (0) ' (t) - f ' (0) (t)
f (t) '(t)dt - f '(0)
-
'(t) (1)
t 0
冲激偶信号图形表示
•四种奇异信号具有微积分关系
'(t) d (t)
dt
t) du(t)
e j0k 的振荡频率不随角频率0的增加而增加。
e e e e j(0 +n2 )k
j0k j 2nk
j0k
周期性:
若e j0N 1

信号与系统 系统框图ppt课件

信号与系统 系统框图ppt课件
7
Mason公式
Mason公式为
M
H (s)
Y (s)
Pk (s)k (s)
k 1
X (s)
(s)
其中
H (s) (s) Pk (s) k (s)
从输入节点到输出节点之间的系统函数
特征式 (s) 1 Li Li Lj Li Lj Lk L
从输入节点到输出节点的第k条前向通路增益
在(s) 中,将与第k条前向通路相接触
通过设系统输入函数X(S)=1,求输出的单位脉冲响应的 拉普拉斯变换而确定系统函数的方法,称为脉冲响应法。
9
1 + ×+ ×
_+
H2Y(S)
_
H2
G1
+
×
X1(s)
G2
×
×
G3
Y(S)
×
H1
H1X1(s)
Y(S)
1.将反馈环节于信号引出点处切断,并且在引出点处用某变量标明。 2.将反馈环挪开,但在比较器(加法器)的输入端保留反馈信号,并且将各反馈信号 用引出点处信号与反馈通道传递函数之乘积表示。
4.令X(S)=1,按信息流向从左向右写出输出与输入之间的函数关系式。
{
(
1-Y(S)+
Y(S ) H1(S ) G2G3
) G1- H2Y(S) } G2 G3=Y(S)
11
X(S) + × + × _+
_ G1 + ×
H1
H2
G2
G3
Y(S)
4.{
(
Байду номын сангаас
1-Y(S)+
Y(S ) H1 G2G3

1.1节-信号的描述与分类 《信号与系统》课件

1.1节-信号的描述与分类 《信号与系统》课件
例s如 itnsint
非周期信号
准周期(频率无 之理 比数 值) 为 瞬态(脉冲,) 衰减函数
瞬态信号:除准周期信号外的一切可以 用时间函数描述的非周期信号。
3 连续时间信号与离散时间信号
f(t)
连续时间信号:信号存在的时间范
围内,任意时刻都有定义(即都可
以给出确定的函数值,可以有有限
个间断点)。 用t表示连续时间变量。
,信号的平均功率为有限值而信 号的总能量为无限大,则此信号 称为功率信号。
信号的能量定义为在时
间区间内信号的能量,
记为
T/2
Elim
f
t
2dt
T T/2
信号的功率定义为在时 间区间内信号的平均功 率,记为
Plim1 T/2 f t 2dt
T T T/2
5 模拟信号,抽样信号,数字信号
•模拟信号:时间和幅值均为连续
信道(channel): 信号传输的通道
1 确定信号与随机信号
•确定性信号 对于指定的某一时刻t,可确定一相应的函 数值f(t)。若干不连续点除外。
•随机信号 具有未可预知的不确定性
•伪随机信号 貌似随机而遵循严格规律产生的信号(伪随 机码)。
2 周期信号与非周期信号
周期信号
正弦周期信号(号 简) 谐信 复杂周期信号(信 除号 简外 谐的周期信
t O
f(n)
离散时间信号:在时间上是离散的,
只在某些不连续的规定瞬时给出函
数值,其他时间没有定义。
用n表示离散时间变量。
n O 12
4 能量信号与功率信号
能量信号(energy signal) 如果在无限大的时间间隔内
,信号的能量为有限值而信号平 均功率为零,则此信号称为能量 信号。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 13
+
R = 2Ω
L = 1H
C = 1F

e(t )
vc(t) = ?
例2.电路如图所示.求: 1.冲激响应h(t)=?
− − i ( 0 ), v ( 0 ) ,使得零输入响应 2.求系统的起始状态 L c 与h(t)相等.
s +5 H(s) = 2 s + 5s + 6
求系统的响应r(t),并标出受迫分量与自然分量;瞬 态分量与稳态分量。
解: (1)求零输入响应。由系统转移函数的表达式可知系统 的特征方程为
s2 + 5s + 6 = 0
有两个单根: s1 = −2, s2 = −3
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 24
代入参数值,得
1 R1 = Ω 5 R 2 = 1Ω C = 1F 1 L = H 2
− 2s Y21 ( s ) = 2 s + 7 s + 12
而 故
3 E1 ( s ) = L{e1 (t )} = s +1 − 2s 3 I 21 ( s ) = Y21 ( s ) E1 ( s ) = 2 s + 7 s + 12 s + 1 1 9 8 = − + s +1 s + 3 s + 4
R1 H ( s ) = Y21 ( s ) = −Y11 ( s ) R1 + R2 + Ls R1 ( R2 + Ls) 1 1 Z11 ( s ) = = + Y11 ( s ) Cs R1 + R2 + Ls
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 20
− CR1s Y21 ( s ) = R1 + R2 + Ls + CR1R2 s + LCR1s 2
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 16
1 Cs
2.求系统的起始状态,使得零输入响应= h(t). 2. 1 E ( s ) − vC (0− ) + iL (0− ) 1 1 s VC ( s ) = + vC (0− ) 1 s s 2+s+ s E ( s) ( s + 2)vC (0− ) + iL (0− ) + = 2 2 s + 2s + 1 s + 2s + 1
4. 系统函数 H(s)
联系s域中零状态响应与激励间的运算关系称为s域系统函 数,简称为系统函数或系统转移函数H(s)。其定义如下:
R( s ) H ( s) = E ( s)
H ( jω )
h(t )
H ( s)
H ( p)
r ' ' (t ) + 5r ' (t ) + 4r (t ) = 2e' (t ) + e(t ) H ( p) = ? H ( s) = ?
∑i(t) = 0 → ∑I (s) = 0
K.V.L-沿任意闭合回路,各段电压的代数和恒等于零, 即
∑u(t) = 0 → ∑V (s) = 0
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统
11
3. 用拉氏变换分析电路的步骤
a.将已知的电动势、恒定电流进行拉氏变换。 b.根据原电路图画出运算等效电路图。 c.用计算线性系统或电路稳定状态的任何方法解运 算电路,求出待求的象函数。 d.将求得的象函数变换为原函数。 注意:
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 8
电容,电感初始储能看成是等效源 iL(0−)
+
e(t )
R
L
C

uc(0−)
i (t )
t
di (t ) 1 L + Ri (t ) + ∫ i (τ )dτ = e(t ) dt C −∞
设 e(t ) ↔ E ( s ), i (t ) ↔ I ( s ) ,则 − I ( s ) u ( 0 ) − c LsI ( s ) − LiL (0 ) + RI ( s ) + + = E ( s) Cs s
17
3.求系统的起始状态,使系统对u(t)的激励时的 完全响应仍为u(t). 激励信号e(t)=u(t)时,可以得到:
1 ( s + 2)vC (0 ) + iL (0 ) VC ( s ) = + 2 2 s( s + 2 s + 1) s + 2s + 1
1 ( s + 2)vC (0 ) + iL (0 ) −s−2 = + 2 + 2 s s + 2s + 1 s + 2s + 1
求其零状态响应 i2 ( t ) .
1 Cs
R2 R 1 V C (s)
+ e1(t )

i1(t )
i 2(t )

+
Ls
1 R1 = Ω 5 R 2 = 1Ω
e 2(t )
C = 1F 1 L = H 2
19
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统
解:先求 e1( t ) 单独作用下系统的响应 i 21 ( t ) 。此时
Z.S.R

Z.I.R

( s + 2)vC (0 ) + iL (0 ) 1 依题意有 = 2 2 s + 2s + 1 s + 2s + 1
从而得到
( s + 2 ) vc ( 0 ) + iL ( 0 ) = 1
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统


vC ( 0 − ) = 0 iL ( 0 − ) = 1
−2 t
− 4e
−3 t
+ e )u ( t )
−t −2t −3t −4t
−4 t
从而总的零状态响应为
i2 (t) = i21(t) + i22(t) = (e + 3e − 13e + 9e )u(t)
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 23
−t e ( t ) = e u ( t ) ,初始条件 例5-14(P249) 已知输入 为 r ( 0 ) = 2 , r ' ( 0 ) = 1 ,系统转移函数为:
运算阻抗:(p243)
/相量模型:
Z R ( s) = R Z L ( s ) = Ls 1 ZC ( s) = Cs
R jωL 1 jωC
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统
6
U R ( s ) = RI R ( s ) U L ( s ) = sLI L ( s ) − LiL (0 − ) 1 1 U C ( s) = I C ( s ) + uC ( 0 − ) sC s
3.求系统的起始状态,使系统对激励为u(t)时的全响 应仍为u(t).
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 14
+
R = 2Ω
L = 1H
C = 1F
+
vc(t)

e(t )
R
Ls
+
s域模型


E (s)
+ 1 − vc (0 ) s −

LiL (0− ) +1 Cs
要使全响应等于激励信号,则应有
− −


( s + 2)vC (0 ) + iL (0 ) − s − 2 = 0
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统


vC (0 ) = 1 iL ( 0 − ) = 0
18

练习:例5-11,5-12(P241-246)
−t −2 t e ( t ) = 3 e u ( t ), e ( t ) = e u ( t ), 例5-13(P247)已知输入 1 2
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统
9
− I ( s ) u ( 0 ) − c + = E ( s) LsI ( s ) − LiL (0 ) + RI ( s ) + Cs s 整理,得 − ( 0 ) u − c E ( s ) + LiL (0 ) − s I ( s) = 1 Ls + R + Cs
2( s + 5) = 2 s + 7 s + 12
1 E2 ( s ) = L{e2 (t )} = s+2
2008-11-11 Lecture 16-用拉普拉斯变换法分析线性系统 22
2( s + 5) 1 I 22 ( s ) = Y22 ( s ) E2 ( s ) = 2 s + 7 s + 12 s + 2 3 4 1 = − + s+2 s+3 s+4 i22 (t ) = (3e

对于具体的电路,只有给出的初始状态是电感电流和电容电压时, 才可方便地画出s域等效电路模型,否则就不易直接画出,这时不如 先列写微分方程再取拉氏变换较为方便; 不同形式的等效s域模型其电源的方向是不同的, 不要弄错; 在作s域模型时应画出其所有内部象电源,并特别注意其参考方向。
相关文档
最新文档