九年级数学上册第四章图形的相似3相似多边形典型例题素材北师大版解析

合集下载

北师大版九年级数学《相似多边形》典型例题(含答案)

北师大版九年级数学《相似多边形》典型例题(含答案)

《相似多边形》典型例题例题1在如图所示的相似四边形中,求未知边x、y的长度和角 的大小.例题2所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?例题3 所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?例题4 已知下图中的两个四边形相似,找出图中的成比例线段,并用比例式表示.例题5图中的两个多边形相似吗?说说你的理由.例题6下面给出的两个四边形是相似的,请写出它们的对应角和对应边.例题7 已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.例题8 在如图所示的相似四边形中,求未知边x 、y 的长度和角α的大小.参考答案例题1 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==, ∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.例题2 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.例题3 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.例题4 解答 HEDA GH CD FG BC EF AB === 例题5 解答 不相似.︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等”.例题6 解答 F A ∠→∠ E B ∠→∠ H C ∠→∠ G D ∠→∠FE AB → EH BC → HG CD → GF DA →例题7 分析 解题中要充分利用相似多边形的特征和梯形的性质. 解答 由于对应边成比例,所以232.38.45.442====z y x . 所以3,6,3===z y x .由于对应角相等,所以 ︒=∠-︒=∠=∠118180A D α,︒='∠-︒='∠=∠70180C B β.例题8 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==,∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.。

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

2024-2025学年北师版初中数学九年级上册教案第四章图形的相似与整理4.3相似多边形

第四章图形的相似3 相似多边形教学目标教学反思1.了解相似多边形的定义,掌握相似多边形的性质.2.在探索相似多边形的性质时掌握类比的方法.3.体会相似多边形与相似三角形的区别与联系.教学重难点重点:相似多边形的判定.难点:两个多边形相似性质的简单应用.教学过程导入新课教师用多媒体出示几个图形,让学生找出形状相同的图形,并连线.然后教师提出问题形状相同的两个图形有什么样的关系?由这一问题来引入本节课要研究的课题.探究新知一、预习新知下图中的两个多边形分别是幻灯片上的多边形ABCDEF和银幕上的多边形A1B1C1D1E1F1.它们的形状相同吗?教学反思师:它们的形状相同吗?生:六边形ABCDEF和六边形A1B1C1D1E1F1形状相同.师:在上面的两个多边形中,是否有相等的内角?设法验证你的猜测.生:∠A与∠A1,∠B与∠B1,∠C与∠C1,∠D与∠D1,∠E与∠E1,∠F与∠F1分别对应相等.师:这样的角我们称为对应角,在上面的两个多边形中,夹相等内角的两边是否成比例?生:通过测量AB与A1B1,BC与B1C1,CD与C1D1,DE与D1E1,EF与E1F1,F A与F1A1的比相等.师:这样的边我们称为对应边.师:从上面的讨论结果来看,大家能否猜到相似多边形的定义呢?生:可以,各角分别相等、各边成比例的两个多边形叫做相似多边形.师:相似怎样表示呢?请同学们认真看书.生:六边形ABCDEF和六边形A1B1C1D1E1F1相似,记作六边形ABCDEF∽六边形A1B1C1D1E1F1.师:相似多边形对应边的比叫做相似比,一般用字母k表示,“∽”读作“相似于”.在记两个多边形相似时,需要注意什么?生:要把表示对应顶点的字母写在对应的位置上.二、合作探究观察下面两组图形.(1)(2)师:(1)中的两个图形相似吗?生:(1)中的两个图形不相似.师:为什么?教学反思生:虽然这两个图形的对应边成比例,但是对应角不相等,所以这两个图形不相似.师:(2)中的两个图形相似吗?生:也不相似.师:这又是为什么呢?生:虽然这两个图形的对应角相等,但是对应边不成比例,所以这两个图形不相似.教师补充:两个多边形不相似,它们的对应角可能相等,如上面的(2);两个多边形不相似,它们的对应边可能成比例,如上面的(1).师:任意两个等边三角形相似吗?生:相似,因为它们的对应角都为60°,对应边成比例.师:任意两个正方形呢?生:也是相似的师:那任意两个正n边形呢?生:两个正n边形的对应角相等,对应边成比例,所以它们都是相似的.师:任意两个菱形相似吗?生:不一定相似师:为什么?生:虽然对应边成比例,但是菱形对应角不一定相等,所以不一定相似.巩固练习在矩形ABCD中,AB=4,BC=3,下列四个矩形中与矩形ABCD相似的是()答案:A典型例题【例1】如图,四边形ABCD与四边形A′B′C′D′相似,求∠A的度数与x 的值.【问题探索】此题考查相似多边形的性质,如何用相似多边形的性质求∠A 的度数与x 的值?【解】由相似图形的性质,知∠A =∠A ′=107°,4x =52,x =85.【总结】相似多边形的对应边成比例,对应角相等. 【例2】在宽为20 m ,长为30 m 的矩形花坛四周修筑小路.(1)如果四周的小路的宽均相等,都是x ,如图1,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似吗?请说明理由;(2)如果相对着的两条小路的宽均相等,宽度分别为x ,y ,如图2,试问小路的宽x 与y 的比值为多少时,能使得小路四周所围成的矩形A′B ′C ′D ′和矩形ABCD 相似?请说明理由.图1 图2【问题探索】判断两个矩形是否相似要从边出发,求小路的宽x 与y的比值,要运用相似图形的性质.【解】(1)如果四周的小路的宽均相等,那么小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似.理由:设四周的小路的宽为x m.30230x +=1515x +,20220x +=1010x+. ∵ 30230x +20220x+≠, ∴ 小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 不相似. (2)∵ 当20220y +=30230x+时,小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似,解得xy=32, 教学反思∴路的宽x与y的比值为3∶2时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.【总结】相似多边形的对应边成比例,对应角相等,两个边数相同的多边形,如果各边对应边成比例,各角对应相等,那么它们就相似.课堂练习1.放大镜中的多边形与原多边形的关系是()A.形状不同,大小不同B.形状相同,大小相同C.形状相同,大小不同D.形状不同,大小相同2.给出下列命题:①所有的正方形都相似;①所有的矩形都相似;①所有的三角形都相似;①所有的等腰直角三角形都相似;①所有的正五边形都相似.其中,正确命题为()A.①①①B.①①①C.①①①D.①①①3.若△ABC①△A′B′C′,且AB︰A′B′=1∶2,则△ABC与△A′B′C′相似比是,△A′B′C′与△ABC的相似比是.4.如图,ABCD∽AEFB,且AB=3 cm,BC=6 cm.求AE的长.参考答案1.C2.C3.1224.解:∵ABCD∽AEFB,∴ABAE =BCEF.又∵AB=3 cm,BC=6 cm,EF=AB=3 cm,∴AE=3×36=32.课堂小结(学生总结,老师点评)1.相似多边形的定义2.相似多边形的性质3.相似比的定义布置作业习题4.4第1题、第2题板书设计第四章图形的相似3 相似多边形1.相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.2.相似比:相似多边形对应边的比叫做相似比.。

九年级数学上册第四章图形的相似3相似多边形相似形问题常见错解素材北师大版讲解

九年级数学上册第四章图形的相似3相似多边形相似形问题常见错解素材北师大版讲解

相似形问题常见错解剖析相似形是初中几何的重要内容之一,现将同学们在学习相似形的过程中经常出现判定定理、性质定理混淆不清及思考问题不周全等各种原因所造成的错解列举如下,供同学们借鉴.一.审题不细造成失误例1.已知线段AB=2mm,CD=6cm,则AB∶CD= .错解:∵AB=2,CD=6,∴AB∶CD=2∶6=1∶3.剖析:要根据比的有关定义统一两线段的长度单位,解题中应注意首先统一长度单位.正解:∵AB=2mm,CD=6cm=60mm,∴AB∶CD=2∶60=1∶30.二. 用定义考虑不全造成失误例2 如图,在四边形ABCD与四边形EFGH中,∠A=80°,∠B=90°,∠C=120°,∠F=90°,∠G=120°,∠H=70°,四边形ABCD与四边形EFGH相似吗?错解:在四边形ABCD中,由∠A=80°,∠B=90°,∠C=120°,得∠D=70°;在四边形EFGH中,由∠F=90°,∠G=120°,∠H=70°,得∠E=80°.∴ ∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H.∴ 四边形ABCD与四边形EFGH相似.剖析:不能准确地由相似形的定义判定相似.要判定两个图形是否相似,要看对应角是否相等,对应边是否成比例,二者缺一不可.正解:在四边形ABCD中,由∠A=80°,∠B=90°,∠C=120°,得∠D=70°;在四边形EFGH中,由∠F=90°∠G=120°,∠H=70°,得∠E=80°.∴ ∠A=∠E,∠B=∠F,∠C=∠G,∠D=∠H,但是根据已知条件无法判定对应边是否成比例.∴ 四边形ABCD与四边形EFGH不一定相似.三.应用性质解题时出现的失误例3 如图,在△ABC 中,DE∥BC,4:1:=∆BCED AD E S S 梯形,求AD∶DB. 错解1:∵4:1:=∆BCED AD E S S 梯形,∴ AD∶DB=1∶2.错解2:∵4:1:=∆BCED AD E S S 梯形,∴5:1:=∆∆ABC AD E S S .∴ AD ∶ AB=1∶25.∴ AD ∶ DB=1∶24.剖析:(1) 忽略相似三角形的面积比等于相似比的平方;(2)有时错认为在由面积求相似比时,不开方反而平方;(3) 不相似的图形也用了相似的性质进行推导.正解:∵4:1:=∆BCED AD E S S 梯形,∴5:1:=∆∆ABC AD E S S .∵ △ADE∽△ABC,∴.512==⎪⎭⎫ ⎝⎛∆∆ABC ADE S S AB AD ∴415151,51+=-==DB AD AB AD 四. 对应关系考虑不清出现的失误例4 在△ABC 和△A′B′C′中,∠A=∠A′=45°,∠B=26°,∠B′=109°,它们是否相似?错解:∵∠B≠∠B′,∠A=∠A′,∴△ABC 与△A′B′C′不相似.剖析:三角形的对应关系考虑不清.正解:∵∠A=45°,∠B=26°,∴∠C=180°-∠A -∠B=109°.∴∠C=∠B′.又∵∠A=∠A′,∴△ABC∽△A′C′B′.五.对应关系考虑不全面造成失误例5 如图(1),已知∠C=90°,D是AB上一点,在AC或BC上找一点E,使新形成的三角形与Rt△ABC相似,则满足条件的点E有几个?错解:如图(2),过D作DE⊥AC于E,则△ADE∽△ABC,或过D作DE⊥BC于E则△BDE∽△BAC.满足条件的点E共有2个.剖析:本题错误的原因主要是考虑不全面,遇到此类问题一定要认真分析,多加思考.正解:除上述两种情况外,过D做AB的垂线,满足条件的DE与AC也有一个交点E,如图(3),满足条件的点E共有3个.。

九年级数学上册第四章图形的相似3相似多边形相似图形与相似多边形重难点突破素材(新版)北师大版

九年级数学上册第四章图形的相似3相似多边形相似图形与相似多边形重难点突破素材(新版)北师大版

九年级数学上册第四章图形的相似3相似多边形相似图形与相似多边形重难点突破素材(新版)北师大版
相似图形的概念,相似多边形的概念与性质.
突破建议
本节课从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形,接着再把研究对象聚焦到相似多边形.也就是说,是在让学生感受实物模型所具有的“形状相同的形象”的基础上,直接将相似图形定义为形状相同的图形,进而将相似图形特殊化为相似多边形,从相似多边形的概念出发得到相似多边形的性质.在整个教学过程中,教师应该帮助学生从已有的生活经验出发,结合所学数学知识,类比全等图形与全等多边形的知识进行合情推理,将概念和性质有机的结合在一起.
对于概念的理解,可以通过课本的练习题来深化.对于相似多边形的性质,教材上配备了一道应用相似多边形的性质求相似多边形中某些边角的例题,教师应引导学生观察图形,确定相似多边形的对应边与对应角,利用对应角相等和对应边成比例进行求解.
1。

北师版初三数学(上册)第四章相似图形知识点讲解

北师版初三数学(上册)第四章相似图形知识点讲解

九年级(上)第四章图形的相似(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2) 相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比.一.成比例线段(1)线段的比如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)成比例线段在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a ,d c b ,,成比例,那么应得比例式为:b a =dc . ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项,如果b=c ,即 a b bd =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

③判断给定的四条线段是否成比例的方法:第一排:现将四条线段的长度统一单位,再按大小顺序排列好;第二算:分别算出前两条线的长度之比与后两条线段的长度之比;第三判:若两个比相等,则这四条线段是成比例线段,否则不是(3)比例的性质(注意性质立的条件:分母不能为0) 基本性质:① a:b=c:d 则有 ad=bc (两外项之积等于两内向之积);② ②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)合、分比性质:a c a b c d b d b d ±±=⇔=. (4)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③ 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . (4)比例题常用的方法有:比例合分比法,比例等比法,设参法,连等设k 法,消元法二,平行线分线段成比例(1)平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 注意:是所截的线段成比例,而跟平行线无关,所以比例线段中不可能 有AD,BE,CF 的比例关系(2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即AC BC AB AC == 简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

北师大版初三数学上册《图形的相似及相似图形的性质》知识讲解及例题演练

北师大版初三数学上册《图形的相似及相似图形的性质》知识讲解及例题演练

北师大版初三数学上册《图形的相似及相似图形的性质》知识讲解及例题演练【学习目标】1、了解比例线段的概念及有关性质,明确相似比的含义并能灵活运用比例的性质进行运算求值;2、能通过生活中的实例认识图形的相似,能通过观看直观地判定两个图形是否相似以及相似图形的性质.【要点梳理】要点一、相似图形1.定义:具有相同形状的图形称为相似图形.要点诠释:(1) 相似图形对应线段的比叫相似比;(2) 相似图形的周长比等于相似比;(3)相似图形的面积比等于相似比的平方.要点二、比例线段1.两条线段的比:在使用同一长度单位的情形下,表示两条线段长度的数值的比,叫做这两条线段的比.2.成比例线段:关于四条线段a 、b 、c 、d ,假如其中两条线段的比与另两条线段的比相等,如a:b=c:d ,我们就说这四条线段是成比例线段,简称比例线段.3.比例的差不多性质:假如b c ,a d=那么ad=bc.要点诠释:(1)a ,b ,c ,d 叫做那个比例的项,a ,b 叫做比例外项,b ,c 叫做比例内项.(2)若a:b=b:c ,则b2=ac (b 称为a,c 的比例中项)4.比例的性质:(1)合分比性质:假如ac ,bd =那么a b c d b d ±±=;(2)等比性质:假如a c m ......b d n ===(b+d+……+n ≠0),那么a c ......m a .b d ......n b +++=+++ 【典型例题】类型一、比例线段1. 下列四组线段中,成比例线段的有( )A .3cm 、4cm 、5cm 、6cmB .4cm 、8cm 、3cm 、5cmC .5cm 、15cm 、2cm 、6cmD .8cm 、4cm 、1cm 、3cm【答案】C.【解析】四个选项中只有,故选C. 【总结升华】依照成比例线段的定义. 举一反三:【变式】判定下列线段a 、b 、c 、d 是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=,c=,d=. 【答案】(1) ∵ ,, ∴ ,∴ 线段a 、b 、c 、d 不是成比例线段.(2) ∵ ,,∴ 线段a 、b 、c 、d 是成比例线段. 2. 已知线段a 、b 、c 满足a :b :c=3:2:6,且a+2b+c=26.(1)求a 、b 、c 的值;(2)若线段x 是线段a 、b 的比例中项,求x 的值.【答案】解:(1)∵a :b :c=3:2:6,∴设a=3k ,b=2k ,c=6k ,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;(2)∵x 是a 、b 的比例中项,∴x2=ab ,∴x2=4×6,∴x=62或x= -62(不合题意,舍去), 即x 的值为62.【总结升华】本题考查了比例线段及其相关运算,注意利用代数的方法解决较为简便.3. 已知32=y x ,则y x y x 32+-= . 【思路点拨】由32=y x,则可设x=2k ,y=3k ,然后把x=2k ,y=3k 代入原式进行分式的运算即可.【答案与解析】解:∵32=y x ,∴设x=2k ,y=3k ,∴原式=1119234=+-k k k k . 故答案为111. 【总结升华】本题考查了比例性质:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.举一反三:【变式】已知xyz ≠0且x y z x y z z y x+++===k ,求k 的值. 【答案】解:∵xyz ≠0∴x ≠0,y ≠0,z ≠0,①当x+y+z ≠0时,∵x y z x y z z y x+++===k , ∴k=2;②当x+y+z=0时,x+y=-z,z+x=-y,y+z=-x,∴k=-1.综上所述,k=2或-1.类型二、相似图形4. 指出下列各组图中,哪组确信是相似形__________:(1)两个腰长不等的等腰三角形(2)两个半径不等的圆(3)两个面积不等的矩形(4)两个边长不等的正方形【思路点拨】要注意:(1)相似图形确实是指形状相同,但大小不一定相同的图形;(2)假如两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.【答案】(2) (4).【解析】 (1)等腰三角形的形状不一定相同,因此两个腰长不等的等腰三角形不一定相似;(3)中面积不等的两个矩形,尽管它们的边数相同,对应角相等,但对应边的比不一定相等,因此无法确定它们一定相似;(2)(4)中两个半径不等的圆与两个边长不等的正方形差不多上形状完全相同的图形,是相似形.【总结升华】识别两个图形是否是相似形,能够从形状来识别,关于多边形,也能够用“对应角相等,对应边的比相等”来识别.举一反三:【变式】如图,左边是一个横放的长方形,右边的图形是把左边的长方形各边放大两倍,并竖立起来以后得到的,这两个图形是相似的吗?【答案】这两个图形是相似的,这两个图形形状是一样,对应线段的比差不多上1:2,尽管它们的摆放方法、位置不一样,但这并可不能阻碍到它们相似性.类型三、相似多边形5.如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD .(1)求证:EB=GD ;(2)若∠DAB=60°,AB=2,AG=3,求GD 的长.【思路点拨】(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD 交AC 于点P ,则BP ⊥AC ,依照∠DAB=60°得到112BP AB ==,然后求得EP=32,最后利用勾股定理求得EB 的长即可求得线段GD 的长即可.【答案与解析】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,【总结升华】本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.。

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。

北师大九年级上第四章图形的相似4.3相似多边形(教案)

北师大九年级上第四章图形的相似4.3相似多边形(教案)
然而,我也注意到,在小组讨论中,部分学生依赖性较强,需要我进一步引导他们独立思考和解决问题。在接下来的教学中,我打算增加一些开放性问题,鼓励学生们自主探索和发现几何图形之间的关系。
对于教学难点,我觉得可以采取分步骤讲解的方式,将复杂的性质分解成简单的部分,让学生一步一步地掌握。同时,我计划在下一节课中增加一些针对性的练习题,特别是那些能够帮助学生巩固相似多边形判定和性质应用的题目。
c.实际应用:设计一些综合应用题,如求相似多边形中未知边长或面积,指导学生如何识别问题中的相似关系,并运用性质进行计算。
d.证明过程:引导学生通过几何画板或实际操作,体验相似多边形证明的过程,理解证明的每一步逻辑,从而能够独立完成相似多边形的证明。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似多边形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似的图形?”比如,两张不同大小的照片,它们的长宽比是一样的。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似多边形的奥秘。
二、核心素养目标
1.培养学生的几何直观:通过观察、操作、推理等过程,让学生掌握相似多边形的判定方法,提高学生对几何图形的认识和理解能力。
2.提升学生的逻辑推理能力:引导学生运用已知条件,通过严密的逻辑推理证明相似多边形的性质,培养学生分析问题和解决问题的能力。
3.增强学生的空间观念:通过研究相似多边形的性质,让学生体会几何图形在空间中的相互关系,培养学生的空间想象力和创造力。
4.培养学生的数学应用意识:将相似多边形的知识应用于解决实际问题,使学生认识到数学与现实生活的紧密联系,提高学生的数学应用能力。

北师大版九年级上册数学第四章图形的相似第三节相似多边形

北师大版九年级上册数学第四章图形的相似第三节相似多边形
. 边框的内边缘所成的
矩形ABCD与边框的外边缘所成的矩形EFGH 相似吗?
为什么?
解题秘方:紧扣“相似多边形的
定义”进行说明.
感悟新知
解:不相似. 理由如下:
知1-练
∵在矩形ABCD 中,AB=1.5m,AD=3m,镶在其外围的
木质边框宽7.5cm=0.075m,
知1-练
感悟新知
知1-练
2-1. 如图, 正方形EFGH 的四个顶点分别在正方形ABCD
的四条边上,若正方形EFGH 与正方形ABCD 的相似
比为
35,则ABEE
1 (AE<BE)的值为____2_____
.
感悟新知
知1-练
2-2. 如图是两个相似四边形,求未知边x的长度和角α的大小. 解:∵两个四边形相似, ∴148=x7,解得 x=31.5, α=360°-(77°+83°+117°)=83°.
∴ EF=1.5+2×0.075=1.65(m),EH=3+2×0.075=3.15(m).
∴AEBF
=
1.5 1.65
=
1101,EAHD
=
3 3.15
=
2201.∵
10 11
≠2201,
∴边框的内边缘所成的矩形ABCD与边框的外边缘所成的
矩形EFGH 不相似.
感悟新知
1-1. 图中的三个矩形相似的是( A ) A.甲和丙 B.甲和乙 C.乙和丙 D.甲、乙和丙
知1-练
感悟新知
知1-练
例2 如图4-3-2, 梯形ABCD∽梯形A ′B ′C ′D ′,AD∥BC, A′D′∥B′C′,∠ A= ∠ A′,AD=4,A′D′=6,AB=6, B′C′=12,∠ C=60°.

九年级数学上册 第四章 图形的相似 3 相似多边形 思路点拨 相似三角形的性质用处多素材 (新版)北师大版

九年级数学上册 第四章 图形的相似 3 相似多边形 思路点拨 相似三角形的性质用处多素材 (新版)北师大版

相似三角形的性质用处多学完了相似三角形后,同学们都知道,若两个三角形相似,则这两个三角形的对应边成比例、对应角相等.根据相似三角形的这两个性质,我们可以解决许多数学问题,现举例说明如下.一、说明两个角相等例1 如图,BD ,CE 是△ABC 的高,试说明:∠AED=∠ACB.分析:要说明∠AED=∠ACB,而∠AED 和∠ACB 分别在△ADE 和△ABC 中,从而可以考虑说明△ADE∽△ABC.因为∠A=∠A,则需要说明AC AB AE AD =,要得到这个条件只需说明△ABD∽△ACE 即可.解:由已知可得∠ADB=∠AEC=90°,∠A=∠A,所以△ABD∽△ACE. 所以AC AB AE AD =,即ACAE AB AD =, 又∠A=∠A,所以△ADE∽△ABC.所以∠AED=∠ACB.跟踪训练1 如图,△ABC 中,E ,F 分别是AB ,AC 边上的两点,且AE =1 cm ,AF=2 cm ,EB=2 cm ,FC=4 cm ,试说明:∠AFE=∠C.二、说明线段的积相等例2 如图,在平行四边形ABCD 中,E 是CB 延长线上一点,DE 交AB 于F ,试说明:AD·AB=AF·CE.分析:要说明AD·AB=AF·CE,即说明ADCE AF AB =,这时由?荀ABCD 的对边相等,对边平行,既可以寻找到相似三角形,又可以找到等线段的代换,从而问题得以解决.解:在 ABCD 中,因为AB//DC ,所以∠CDE=∠BFE=∠AFD.又∠A=∠C,所以△ECD∽△DAF.所以AD CE AF CD =.又CD=AB ,所以ADCE AF AB =.所以AD·AB=AF·CE. 跟踪训练2 如图,∠ABC=∠ADE,试说明:AB·AE=AC·AD.答案1.解:因为31=AB AE ,3162==AC AF ,所以ACAF AB AE =.又因为∠EAF=∠BAC,所以△AEF∽△AB C.所以∠AFE=∠C. 2.解:因为∠ABC=∠ADE,∠A 是公共角,所以△ABC∽△ADE.所以AE AC AD AB =.所以AB·AE=AC·AD.。

九年级数学上册第四章图形的相似3相似多边形相似图形与相似多边形教材分析素材北师大版解析

九年级数学上册第四章图形的相似3相似多边形相似图形与相似多边形教材分析素材北师大版解析

相似图形与相似多边形教材分析
本节课的教材分为两部分,主要介绍了相似图形和相似多边形的概念,并给出了相似多边形的性质.
教材首先列举了生活中具有形状相同形象的物体,紧接着把形状相同的图形定义为相似图形,然后指出放大和缩小这两种操作与相似图形之间的关系.接下来,教材给出了特殊的相似图形──相似多边形的定义,并由定义得到判定两个变数相同的多边形是相似多边形的方法,以及相似多边形的性质——对应角相等、对应边成比例.
相似是生活中常见的现象,日常生活中到处都存在着相似的例子,相似图形的性质在实际中也有着广泛的应用.为了让学生认识到这一点,并增强学生发现问题、解决问题的能力,教科书结合具体内容融入了大量实际背景和问题.如在概念引入的环节,为了让学生建立对相似图形的直观认识,教材不仅在章头图呈现了两张不同尺寸同底版的万里长城照片,还在本节给出了汽车和它的模型、大小不同的足球等形象,并通过放映电影、复印机复印等实例让学生感受相似图形与放大、缩小两种操作的关系.所以在本节课的教学过程中,应该紧密结合实际,让学生充分体会数学与实际生活的联系.
本节课的教学,首先要充分利用教材所提供的实际生活中的实例,使学生能够理解相似图形的概念;其次以描述图形特征的方式给出相似多边形的概念,让学生从概念出发自主的探究出相似多边形的性质.
本节课的教学重点是:相似图形与相似多边形的概念.
本节课的教学难点是:相似多边形的性质.
1。

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版数学九年级上册第四章图形的相似知识点归纳及例题

北师大版九年级上册第四章图形的相似知识点归纳及例题【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方;3、探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;4、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标变化;5、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识点网络】【知识点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 知识点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等; 2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多形. 知识点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 知识点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 知识点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 知识点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 判定方法(三):两边成比例且夹角相等的两个三角形相似.2b知识点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.知识点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。

九年级数学上册 第四章 图形的相似 3 相似多边形典型例题素材 北师大版(2021年整理)

九年级数学上册 第四章 图形的相似 3 相似多边形典型例题素材 北师大版(2021年整理)

九年级数学上册第四章图形的相似3 相似多边形典型例题素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第四章图形的相似3 相似多边形典型例题素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第四章图形的相似3 相似多边形典型例题素材(新版)北师大版的全部内容。

《相似多边形》典型例题例题1在如图所示的相似四边形中,求未知边x、y的长度和角 的大小.例题2所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?例题3 所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?例题4 已知下图中的两个四边形相似,找出图中的成比例线段,并用比例式表示.例题5图中的两个多边形相似吗?说说你的理由.例题6下面给出的两个四边形是相似的,请写出它们的对应角和对应边.例题7 已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.例题8 在如图所示的相似四边形中,求未知边x 、y 的长度和角α的大小.参考答案例题1 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==, ∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.例题2 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.例题3 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.例题4 解答 HEDA GH CD FG BC EF AB === 例题5 解答 不相似.︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等".例题6 解答 F A ∠→∠ E B ∠→∠ H C ∠→∠ G D ∠→∠FE AB → EH BC → HG CD → GF DA →例题7 分析 解题中要充分利用相似多边形的特征和梯形的性质.解答 由于对应边成比例,所以232.38.45.442====z y x . 所以3,6,3===z y x .由于对应角相等,所以︒=∠-︒=∠=∠118180A D α,︒='∠-︒='∠=∠70180C B β.例题8 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴67418y x ==,∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.。

九年级数学上册 第四章 图形的相似 3 相似多边形 相似多边形的性质的应用素材 (新版)北师大版

九年级数学上册 第四章 图形的相似 3 相似多边形 相似多边形的性质的应用素材 (新版)北师大版

相似多边形的性质的应用1、相似多边形的性质(1)相似多边形中,对应的三角形相似,其相似比等于原相似多边形的相似比. (2)相似多边形中,对应线段的比等于相似比.(3)相似多边形周长的比等于相似比;面积的比等于相似比的平方. 2、重要方法相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便.性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用.如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根.例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为 ( )A .12B .18C .24D .30【思路与技巧 由相似多边形对应边成比例,设最长边为x.∴x662 ,∴2x=36,x=18. 答案 B点评 本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错.例2 如图在□ABCD 中,AB=6,AD=4,EF∥AD,若□ABCD∽□EFDA ,求AE 的长.2思路与技巧(1)图形中有几对相似的平行四边形?为什么?对应边分别是什么?(2)AE 的对应边应是哪条线段?为什么? (3)试一试:求S □ABCD∶S □EFDA 的值.解 ∵EF∥AD,四边形ABCD 是平行四边形,AD=4 ∴EF=AD=4, ∵□ABCD∽□EFDA ,∴(相似多边形对应边成比例),又∵AB=6,∴∴.点评 由相似的条件,可知AE 的对应边是DA ,一般的在条件中,若使用的是相似符号,则对应边则是确定的,因此书写相似多边形时,对应的字母要写在对应的位置上.例3 已知:如图,正方形ABCD 中,E 是AC 上一点,EF⊥AB 于F ,EG⊥AD 于G ,AB=6,AE∶EC=2∶1,求S 四边形AFEG .思路与技巧 (1)四边形AFEG 是什么图形?为什么?(2)AE∶EC 的值与哪两条线段的比相等?为什么?如何求出AF 的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解 ∵正方形ABCD ,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DCAS 1 D ES 2F G S 3B C∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG 是正方形,∴正方形ABCD∽正方形AFEG ,∴S 正ABCD ∶S 正AFEG =AB 2∶AF 2(相似多边形的面积比等于相似比的平方),在△ABC 中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又AB=6 ∴AF=4 ∴S 正ABCD ∶S 正AFEG =36∶16,∴.点评 本题中的正方形是特殊的多边形,但在一般的多边形中,一定要注意对应关系.(1)相似多边形的对应边的比,等于相似比的平方;(2)所有的正方形都是相似的,此题中只须证出四边形AFEG 是正方形,即可得到它与正方形ABCD 相似例4 已知:如图所示,△ABC 中,DE//FG//BC . (1)若AD=DF=FB ,求S 1:S 2:S 3; (2)若S 1:S 2:S 3=1:8:27,求AD:DF:FB .思路与技巧 注意在(2)中,不能由S 1:S 2=1:8,就得出AD:DF=1:8,因为此处不能直接运用面积的比等于相似比的平方,S 1,S 2不是两个相似三角形的对应面积.解 BC FG DE //// ABC AFG ADE ∆~∆~∆∴ (1)FB DF AD ==9:4:1::3:2:1::=∴=∴∆∆∆A B C A F G A D E S S S AB AF AD4AD E F GB C令k S ADE =∆,则k S k S ABC AFG94==∆∆,,k S =∴1 k k k S S S AD EA F G342=-=-=∆∆k k k S S S AF GAB C5493=-=-=∆∆5:3:1::321=∴S S S(2)27:8:1::321=S S S∴可设k S =1,则k S k S 27832==,k S S AD E==∴∆1k S S S S kS S S AB CAF G 36932121=++==+=∆∆36:9:1::=∴∆∆∆ABC AFG ADE S S S∴AD:AF:AB=1:3:6 AD:DF:FB=1:2:3.点评 根据相似形,实施比例转化,应用面积比等于相似比的平方.例5 如图所示,△ABC 的面积为16,4=AB ,D 为AB 上任一点,F 为BD 的中点,DE//BC ,FG//BC ,分别交AC 于E 、G ,设AD=x .(1)把△ADE 的面积S 1,用含x 的代数式表示; (2)把梯形DFGE 的面积S 2,用含x 的代数式表示. 思路与技巧 转化为相似三角形,利用其性质解决. 解答:(1)BC DE //ABC ADE ∆~∆∴21⎪⎭⎫ ⎝⎛=∴∆AB AD S S ABC,即21416⎪⎭⎫ ⎝⎛=x S21x S =∴ (2)BC FG //2⎪⎭⎫ ⎝⎛=∴∆~∆∴∆∆AB AF S S ABC AFG ABC AFG ∵F 为BD 的中点,)4(21x BF DF -==∴)4(21)4(21+=-+=+=∴x x x DF AD AF242416⎪⎪⎪⎪⎭⎫⎝⎛+=∴∆x S AFG41682++=∴∆x x S AFG22124168x x x S S S AFG-++=-=∴∆42434168322++-=++-=x x x x .例6 如图所示,已知O 是四边形ABCD 的一边AB 上的任意一点,EH//AD ,HG//DC ,GF//BC .试说明四边形EFGH 与四边形ABCD 是否相似,并说明你的理由.思路与技巧 证明两个四边形的对应边成比例,对应角相等. 解答:四边形~EFGH 四边形ABCD .理由:因为AD EH //,所以321∠=∠∠=∠,A , 所以OAD OEH ∆~∆,所以OD OHAD EH OA OE ==又因为CD HG //,所以7654∠=∠∠=∠,,所以ODC OHG ∆~∆,所以OC OGDC HG OD OH ==. 而5342∠+∠=∠+∠,所以ADC EHG ∠=∠. 因为BC GF //,所以98∠=∠,B ∠=∠10所以OB OFBC FG OC OG ==. 而9786∠+∠=∠+∠,所以DCB HGF ∠=∠.设kAD EH OB OF OA OE ===,所以OB k OF OA k OE ⋅=⋅=,,6所以AD EHk OB OA OB OA k OB OA OF OE ==++=++)(, 所以AD EHAB EF =因此B DCB HGF ADC EHG A ∠=∠∠=∠∠=∠∠=∠101,,,,BC GFDCHG AD EH AB EF === 所以四边形~EFGH 四边形ABCD .点评 通过图形的分割,转化为三角形问题加以研究.例7 已知:ABCD 是梯形,AB//DC ,对角线AC ,BD 交于E ,ΔDCE 的面积与ΔCEB 的面积比为1∶3. 求:ΔDCE 的面积与ΔABD 的面积比.分析:题目中已知条件是面积比,要求的也是面积比,因此根据图形找到面积之间的关系是很重要的.ΔDCE 与ΔCEB 是等高三角形,因此面积比为底的比,而ΔDCE 与ΔABE 是相似三角形,面积的比等于相似比的平方,又可证出ΔADE 与ΔBCE 的面积相等,这样ΔDCE 与ΔABD 的面积比就可求了. 解 ∵S Δ DCE ∶S ΔCEB =1∶3,而ΔDCE 与ΔCEB 是等高三角形, ∴DE∶EB=1∶3,∵DC//AB, ∴ΔDCE∽ΔBAE , ∴S ΔDCE ∶S ΔBAE =(DE∶EB)2=1∶9, ∵ΔADC 与ΔBDC 为等底、等高三角形, ∴S ΔADC =S ΔBDC ,∴S ΔADC -S ΔDCE =S ΔBDC -S ΔDCE , ∴S ΔAED =S ΔBEC设S ΔDCE =k, 则S ΔAED =S ΔBEC =3k, S ΔBAE =9k, ∴S ΔABD =S ΔABE +S ΔADE =12k, ∴S ΔDCE ∶S ΔABD =1∶12.点评 相似三角形的面积比等于相似比的平方,计算时不要丢掉平方;若从面积比求相似三角形的相似比,则要注意开平方.例8 如图,有一边长为5cm 的正方形ABCD 和等腰△PQR,PQ=PR=5cm ,QR=8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2,解答下列问题: (1)当t=3秒时,求S 的值; (2)当t=5秒时,求S 的值;思路与技巧 本题考点有等腰三角形;正方形;相似三角形. 第一问,思路,作PE QR ,E 为垂足,运用相似三角形的性质,面积比第于相似比的平方,可求出面积.第二问方法与第一问类似,但是要注意图形的位置. 解 (1):作PE⊥QR,E 为垂足 ∵PQ=PR, ∴QE=RE=21QR=4. ∴PE=4522-=3.当t=3时,QC=3.设PQ 与DC 交于点G. ∵PE∥DC, ∴△QCG∽△QEP,∴SQEPS∆=(43)2. ∵S △QEP =21×4×3=6, ∴S=(43)2×6=827(cm 2).(2)当t=5时,QC =5,B 、C 两点重合,CR=3,设PR 与DC 交于G. 由△RCG∽△REP,可求出S △RCG =827. S=12-827=869 (cm 2). 点评 本题是代数,几何综合问题,等腰三角形,正方形等多种知识,解答本题的基本思想是数形结合,构造函数,用运动观点考虑.每种情况画一图形,结合图形,认真分析,实现数形结合的思想.。

九年级数学上册 第四章 图形的相似 3相似多边形习题课件 北师大版

九年级数学上册 第四章 图形的相似 3相似多边形习题课件 北师大版
3 相似多边形
1.相似多边形的定义: (1)各角分别_相__等__,各边_成__比__例__的两个多边形叫做相似多边形. (2)相似符号为:_∽__,读作:_相__似__于__. (3)相似多边形的对应边的比叫做_相__似__比__,通常用_k_来表示.
2.性质:相似多边形的对应角_相__等__,对应边_成__比__例__. 3.判定:如果两个多边形的对应角_相__等__,对应边的比 _相__等__,那 么这两个多边形相似.
知识点二 相似多边形的判定与性质 【示范题2】如图:矩形ABCD的长AB=45,宽BC=30. (1)如图(1),若沿矩形ABCD四周有宽为2的环形区域,图中所形 成的两个矩形ABCD与A′B′C′D′相似吗?请说明理由. (2)如图(2),x为多少时,图中的两个矩形ABCD与A′B′C′D′ 相似?
【思维诊断】(打“√”或“×”) 1.各角分别相等的两个多边形是相似多边形. ( × ) 2.各边成比例的两个多边形是相似多边形. ( × ) 3.两个等腰梯形相似. ( × ) 4.两个正方形相似. ( √ ) 5.相似多边形的角都相等,边都成比例. ( × )
知识点一 相似多边形的定义及相关计算 【示范题1】如图,两个四边形ABCD和A′B′C′D′是相似四边 形,根据图中的数据求未知边x,y的长度和∠α的值.
【解题探究】1.两个多边形相似,如何找对应边和对应角? 提示:两个多边形中最长的边为对应边,最短的边为对应边,最大 的角为对应角,最小的角为对应角,对应边所对的角为对应角,对 应角所对的边为对应边. 2.相似多边形中,对应角有怎样的特征,对应边呢? 提示:对应角相等,对应边成比例.
【尝试解答】根据图形可知,AD与A′D′、AB与A′B′、BC与 B′C′是对应边, ∴ 18 x 解y得,x=31.5,y=27.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似多边形》典型例题
例题1 在如图所示的相似四边形中,求未知边x 、y 的长度和角α的大小.
例题2 所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?
例题3 所有的正方形都相似吗?为什么?所有的矩形都相似吗?为什么?
例题4 已知下图中的两个四边形相似,找出图中的成比例线段,并用比例式表示.
例题5 图中的两个多边形相似吗?说说你的理由.
例题6 下面给出的两个四边形是相似的,请写出它们的对应角和对应边.
例题7 已知图中的两个梯形相似,求出未知边x 、y 、z 的长度和βα∠∠、的度数.
例题8在如图所示的相似四边形中,求未知边x、y的长度和角 的大小.
参考答案
例题1 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴6
7418y x ==, ∴27,5.31==y x .
︒=︒+︒+︒-︒=83)1178377(360α.
例题2 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.
所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.
例题3 解答:所有的正方形都相似,因为正方形的每个角都是90°,因此对应角都相等,而每一个正方形的边长都相等,因此对应边成比例.
所有的矩形不一定相似,虽然所有的矩形的角都相等,但对应的边不一定成比例,因此,矩形不一定相似.
例题4 解答 HE
DA GH CD FG BC EF AB === 例题5 解答 不相似.
︒=︒-︒-︒-︒=∠587295135360D ,而︒=︒-︒-︒-︒=∠715995135360E ,不可能有“对应角相等”.
例题6 解答 F A ∠→∠ E B ∠→∠ H C ∠→∠ G D ∠→∠
FE AB → EH BC → HG CD → GF DA →
例题7 分析 解题中要充分利用相似多边形的特征和梯形的性质.
解答 由于对应边成比例,所以
2
32.38.45.442====z y x . 所以3,6,3===z y x .
由于对应角相等,所以 ︒=∠-︒=∠=∠118180A D α,
︒='∠-︒='∠=∠70180C B β.
例题8 解答 ∵两个四边形相似,它们的对应边成比例,对应角相等. ∴6
7418y x ==,∴27,5.31==y x .︒=︒+︒+︒-︒=83)1178377(360α.。

相关文档
最新文档