比较(真题含答案详解)

合集下载

形容词比较级最高级中考真题汇编含答案

形容词比较级最高级中考真题汇编含答案

16、 9、 10、 (2016?青岛)as bori ng as (2016?天津)The tale nt show isI like both .11、 more relax ing (2016?河南)the game show . B . not so bored as C.as in teresti ng as A jour ney by tra in is _____ tha n by coach .(B . relaxi ngC . most relaxi ngD . I have been to quite a few restaurants , ( )D . not so in terestedasthe most relaxi ngbut I can say this one is12、 good B . better C . the better D . the best(2016?海南)-Who will you ask to help with the workcareful B . more careful,Lucy or Lily ? -Lily . She is muchC . most careful(2016?黑龙江)-Do you know Shanghai is one of-Yes , it's bigger than ______ city in China .()13、in the world ?A . the biggest city ; anyB . the biggest cities ; anyC . the biggest cities ; any other 14、( 2016?深圳)-Good news! Metro Line 11will be open on June 30in our city .-Great! It will make our lives more convenient .()15、 richer B . easier C.faster(2016?广东)Among the four seas off the coast of China , East China Sea is the second.deep B . deeperC . deepest(2016?黔东南州)---Who do you think.D . the deepestin your Drago n Boat race team ?形容词的比较级和最高级中考真题中考真题一:1、( 2016?西宁)-Many boy students think math is -I agree . I'm weak in English .()smaller and smaller B . worse and worsebetter and better D . ni cer and nicer-I can't agree more . There are ___ meaningful things to do . A . the most B . the least C . more D . less 8、( 2016?达州)---Roy never likes junk food .---Neither do I . That's probably why I'm becoming ___ nowhealthy and weak weaker and weaker A . much difficult tha n B . so difficult as C . less difficult tha n 2、( 2016?荆州)-How was your in terview for the work ? -Oh , I couldn ' t feel any _」hardly understood most of the questions they asked . A . 3、 harder (2016?张家界) B . happier C . better D . worse No mountain in the world is as as Qomolangma .( D . more difficult than high B . higher A . 4、( 2016?呼和浩特)A . an expe nsive 5、( 2016?滨州)C . highest He is very rich but that day he bought B . a more expensive C . the more cheaper bike to save money for the poor childre n the cheapest "Food Safety"problem is beco ming ______ thesedays .) -I think so . The government must do something to deal with it .(6、 today tha n last month (2016?重庆)---This kind of watch is much ---Really ? I'll take one .( ) A . the most expe nsive B . the cheapest C . more expe nsive (2016?苏州)-Playing video games is a waste of time .7、 . Would you like to have onecheaperEn glishB . healthier and healthier D . more and more healthily---Da Liu , I think .()A . is a good playerB . a good player is C. is the best player D. the best player is17、(2016?威海)---Is Tom ____ boy in your class ?---Yes . Nobody is taller than him .()A . the tallestB . the stro ngestC . the cleverest18、(2016?株洲)As our children get bigger , our house seems to get ___ .A . the smallerB . smallerC . smallest19、(2016?漳州)-Shall I wear the pink evening dress or the white one ?-They both look beautiful , but I think the white one is _____ .()A . suitableB . more suitableC . the most suitable20、(2016?泰州)-The service is very wonderful and the weather is quite fine-Yes, this holiday is so great , we have never had _ before .()A . the better oneB .a good oneC .a better oneDthe best one21、(2016?南充)Molly is girl of the three .()A . most outgo ingB . more outgo ingC .the most outgo ingD . outgoing22、(2016?宿迁)---What do you thi nk of the movie Zootopia ?---It is ______ one I've ever seen .()A . more excitedB . more excitingC . the most excitedD . the most exciting23、(2016?陕西)_______ you speak, ________ your English will be .()A . The less;the moreB . The more ;the betterC . The less;the betterD . The more ;24、(2016?宜昌)---Home is _______ place wherever you go .---East or west , home is the best .()A . warmB . warmerC . warmestD . the warmest25、(2016?新疆)He is a little ______ than you , but he is as ____ as you .()A. thin ;strongerB.thinner ;strongerC.thinner ;strong D . thin ;strong26、(2016?盐城)The rich were —one of the four main classes in the Aztec society.A . the most powerfulB . the more powerfulC . more powerfulD . powerful27、(2016?泸州)As we know , the Yangtze River is one of ____ rivers in the world .A . longB . longerC . longestD . the longest28、(2016?厦门)---Have you seen the movie Zootopia ?---Yes , rve seen it twice . Of all the movies I've ever seen , It's the _____ one .A . in terest ingB . more in terest ingC . most in teresti ng29、(2016?绥化)He is ________ at English than me .()A . goodB . betterC . best30、(2016?齐齐哈尔)Jimmy is growing fast . He is — taller than his mother .A . farB . quiteC . very31、(2016?临沂)Mr. Wang is very frie ndly to us . He is__of all the perso ns I know .A . patientB . less patientC . more patientD . the most patient32、(2016?临沂)Mr . Wang is very friendly to us . He is__of all the persons I know .A . patie ntB . less patie ntC . more patie ntD . the most patie nt33、(2016?济南)-When is the _______ time to visit Brazil ?-In August and September , I think . Not too cold , not too hot .()A . hottestB . hotterC . bestD . better34、(2016?云南)The 一kids learn to be independent , the ___ it is for their future .the lessA . early ; goodB . early ; betterC . earlier ; betterD . earlier ; good 35、 ( 2016?荆门)----What do you think of your English teacher ? ----He is great . No one teaches ___ in our school .( )A . bestB . betterC . wellD . good36、 ( 2016?阜康市)--I don't think history is more useful than physics . --I disagree . In my opinion , history is _____ physics .( ) A . as useful asB . not so useful asC . less useful thanD . the most useful of37、 ( 2016?德州) As the ___ girl in our class , Mary was chosen to take part in the running race A . kin dest B . fastestC . strictestD . cleverest38、 ( 2016?东营)-Why did n't you cry for help when you were robbed (被抢劫)?-If I opened my mouth , they might find my four gold teeth . That would be _______ !A . badB . much worseC . worstD . the worst参考答案:CDADB?DCBCA?DBCBC?CABBC?CDBDC?ADCBA?DDCCB?ABBCB 中考真题二:1. --The cake is too expe nsive. Would you like to show me a _____ o ne? --Sure. Here you are.A.cheapB.cheaper C . cheapest2. — Yummy!The coffee is good. --That ' s right 」t will taste __________ w ith some milk.A.goodB.betterC.bestD.the best3. — What ' the low-carb on life style like ? --Save _________ energy,produce ______ carb on.A.more;moreB.l ess;moreC.l ess;lessD.more;less4. What a nice picture of a house .It would be______ w ith some gree n trees arou nd it.A.goodB..betterC.worse5. Tom is not good at math.He always feels ____ before her takes a math test.A.i nterestedfortableC.n ervousD.proud6. — I ' moi ng to a job in terview. I feeI a IittIe _____ . — Take it easy. Liste ning to music can heIp youreIax.A . comfortable B. nervousC. excited7.It is--- to teach a kid the way to solve a problem tha n tell him the soluti on directlyA.helpfulB.more helpfulC. the most heipfui8. -\re you scared of the flight? --No, just a little ________ .A. angryB. seriousC. an xiousD. calm9. -Waiter, $ 20 for dinner, right? -- I ' m afraid $25, sir, for drinks are _________ . A. extraB. freeC. highD. spare10. — Excuse me , sir. The shoes are a bit small for me. — Don ' t worry I ' ll change them for a 一sizeA smallerB smallestC largerD largest11. Tak ing buses in Beiji ng is __ than tak ing a taxi.A.more cheapB.much cheaperC.a little cheapD.l ess cheaper12. — Which prov ince is the ______ o ne in win ter? — It should be Hainan Prov in ce, I think.A . coldestB . hotterC . warmestD . cooler13.1 don ' t think looking after children is jst 一work.39、 (2016?成都)AlphaGo has beaten the top professional go in the world .( A . a good 40、 ( 2016?桂林) A . tallB . (围棋)player . So many people think it's. go player)B . a betterC . the best Lingling is ___taller C . tallestthan her sister .(A. womanB. woman ' sC. womenD. women 's14.Sometimes walking is even ____ than driving during the busy traffic time. A. fast B. faster C. slow D. slower 15. _______ mothers can' t go to the meeting ,because they have gone to New York on bie s s. A.Alice and Lily B.S lice ' s and Lily 'Alice ' s and Lily16. Tak ing buses in Beiji ng is ______ than tak ing taxies.A.more cheaperB.much cheaperC.l ess cheaper17. — Peter has good grades in all his subjects,but he n ever shows off. --I agree.He is very ______A.easy-goi ngB.imagi nativeC.modestD.ge nerous18. Liste ning is just as _____ as speak ing in lan guage lear ning. A.important B.more important C.most important D.the most important19. My dog is gentle and never bites.So you n eedn ' t be _______ . A.excitedB.frighte nedC.satisfiedD.i nterested19. — Our teacher wants us to be ______ when we talk with the foreig ners. --Yes,we should believe in ourselves. fortableB.con fide ntC.un usual20. — Which do you like _____ ,tea,coffee or juice?--Coffee.A.goodB.betterC.best21. The ___ frie nds you have ,the ______ y ou will be.A.more;happyB.ma ny ;happyC.more;happier22. _________ ---l'm , mum. Can I have someth ing to dr ink? ---OK. Here's some cola.A . fullB . heavyC . hungryD . thirsty 23. ________________ Which is the w ay to Qin gdao, by pla ne, bus or tra in? A. goodB. wellC. betterD. best24.Study hard! ___ you study,_____ results you ' ll get.A. Harder; betterB. The harder; better.C. The harder; the betterD.Harder;the better.25. -Let ' s buy some cards for our teachers on Teachers ' Day.--Why not make some by hand?lt ' s much _________ .A.i nterest ingB.more in teresti ngC.the most in teresti ng26. — Lin Tao ,why are you so ______ ?--Because Wang Meng got three gold medals at the Win ter Olympics.A.excitedB.a ngryC.disappo in ted27. Lucy didn ' t make my mistakes in the math exam. She is ________ t han any other student.29. — Why are you un happy , Ben ?—I was late for class aga in ,1 afraid Miss Lmwill be _________ m e .A. frie ndly toB. angry withC. busy withD. proud of30. — Claudia, your han dwriti ng is much ____ t ha n before.—Thank you.A. beautifulB. more beautifulC. most beautiful31. -Which color do you like _____ , blue or green?-Blue.A. goodB. betterC. bestD. the bestD.energeticD.wellD.ma ny;happierA. the most carefulB. more carelessC. more carefulD. much careful 28. — What do you thi nk of thesweater ?—It ' s too ___________ , and I donA. n iceB. lovely t have eno ugh money to buy it .C. popularD. expe nsive32. --- Jack?Jack?Can you come? ---- I ______ my homework.A.doB. will doC. am doingD. was doing33. --- What is your favourite sport? --- Swim min g, I t hin k. It ' s _________ of all.A. earsierB. more difficultC. the most in teresti ngD. the most bori ng34. All of us want to do more work with ________ t ime and _______ workers. A. fewer, lessB. less, fewerC. more, muchD. less, more35. — What do you think of the en terta inment show you saw last ni ght? --It ' s so _______ that I want to see it again.B.bori ng C .tiri ngmarks in English , Wang Lin , Zhang Fang or Li Hong? 一 Li Hong .A . goodB . betterC . bestD . the best37.---Andy, you were the only person that was late for the meeting, why? ---Sorry, sir. But I really had athat most of the audie nee kept scream ing in fear while watch ing it last ni ght. A. excit ingB. frighte ningC. bori ngD. amaz ing41. — Congratulations! Your English teacher told me you got an A this time.—Thank you. She is very ___________ .A. won derful en ough; boredC. won derful en ough; bor ingB. eno ugh won derful; bori ngD. eno ugh won derful; boredA. impressedB. embarrassedC. terrifiedD. frustrated42. --How can I get well along with others, father? ---Try to smile to others, boy. That will make _ A. them, easier B. them, more easy 43. --- Mum, I ' m really much C. it, easy D. it, easier about the result of the exam.---Cheer up. I believe you can be successful. D.pleased A.patie nt B.satisfied C.un happy 44. We will have a field trip this after noon. The n ews makes every one. A.excited B.frighte ned C.happily D.luckily 45. Dear students, please read every sentence carefully. __ you are, ____ mi stakes you ' ll make. A. The more carefully, the fewer B. The more careful, the less C. The more carefully, the less D. The more careful, the fewer 46.Ma ny Chin ese stude nts think scie nee subjects are ____ foreig n lan guages. C. much difficult tha n D. so difficult as A. more difficult as B. less difficult tha n47.--- What do you think of the lecture of Li Yang ---I thi nk it ' s, but some one thi nks it's Crazy English?'s much tooA.excit ing 36. — Who has time finding the meeting hall. A. enjo yable 38. — Health is money.—But I think it isB. funnyC. difficultD. pleasa ntA. as importa nt as 39.Mr Brow n alwaysmakes______ money.B. more importa nt tha n his class _________ and keeps his stude ntsC. so importa nt tha nD. the same as in class.A. alive; in teresti ngC. alive; in terested B. lively; in terestingD. lively; in terested 4O.That film was so48.34. Beiji ng, the capital of Chin a, is one of ________ cities in the world.A. the biggestB. biggerC. much biggerD. big49. He finds watching English movies frustrating because the people speak too quickly.A.bori ngB.difficultC.disappo inting50. Julia is very clever . In fact , I doubt whether anyone in the class has _____ IQ .A . a highB . a higher C. the higher D. the highest51. How can you study in the livi ng room whe n other people are watch ing TV?I think you need a ______ place.A.clea nerB.quieterC.saferD.smaller52. Marsha thought her friends would do something ______ to celebrate her birthday, but they just gave her a birthday card.A. correctB.h on estC. quickD.special53.ln this five-person game, the one who finds ______ hidden balls will win the last free ticket for the movieA Born Player.A.ma nyB.someC. the moreD.the most54. —Why don ' t you like winter in Beijing?—Because it is _______ w in ter in Guan gzhou.A. as cold asB. much colder tha nC. not so cold asD. not colder tha n。

中考语文复习文言文对比阅读真题《与朱元思书》《入蜀记》与《饯别王十一南游》含答案

中考语文复习文言文对比阅读真题《与朱元思书》《入蜀记》与《饯别王十一南游》含答案

中考语文复习文言文对比阅读真题《与朱元思书》《入蜀记》与《饯别王十一南游》阅读下面的古诗文,完成下面小题。

【甲】夹岸高山,皆生寒树,负势竞上,互相轩邈,争高直指,千百成峰。

泉水激石,泠泠作响;好鸟相鸣,嘤嘤成韵。

蝉则千转不穷,猿则百叫无绝。

鸢飞戾天者,望峰息心;经纶世务者,窥谷忘反。

横柯上蔽,在昼犹昏,疏条交映,有时见日。

(节选自吴均《与朱元思书》)【乙】八日,五鼓尽,解船,过下牢关①。

夹江千峰万嶂:有竞起者,有独拔②者,有崩欲压者,有危欲坠者,有横裂者,有直坼③者,有凸者,有洼者,有罅④者,奇怪不可尽状。

初冬,草木皆青苍不凋,西望重山如阙江出其间则所谓下牢溪也。

欧阳文忠公有《下牢津》诗云:“入峡山渐曲,转滩山更多。

”即此也。

(节选自陆游《入蜀记》)〖注〗①下牢关,今湖北宜昌市西北。

本文写于陆游从汉江平原行船首次入西陵峡之时。

②独拔,孤峰耸立。

③坼,裂开。

④罅,缝隙。

【丙】饯别王十一南游刘长卿望君烟水阔,挥手泪沾巾。

飞鸟没何处,青山空向人。

长江一帆远,落日五湖春。

谁见汀洲上,相思愁白蘋。

215.小麦对下面加点的字不太理解,请你帮她解释。

(1)负.势竞上( )(2)猿则百叫无绝.( )(3)有崩欲.压者( )(4)即.此也( )216.海涛对乙文画线处不知该怎样断句,你用“/”帮他标注。

(断两处)西望重山如阙江出其间则所谓下牢溪也。

217.小麦不会翻译下面的句子,你写出你的答案。

(1)横柯上蔽,在昼犹昏。

(2)奇怪不可尽状。

218.对【丙】这首律诗,海涛指出其中不正确...的一项是()A.首联叙事,从诗人拉着友人的手不忍离开的场景写起。

B.颔联承接首联,借“飞鸟”“青山”点出友人踪迹已远。

C.颈联写景,且对仗工整,有“孤帆远影碧空尽”的意境。

D.尾联抒情,借“汀洲”“白蘋”抒发感情,结束全诗。

219.这三则材料在写“山”时,都用了相同的手法,却表达不同的感情。

你做了分析归纳。

【答案】215.依仗,凭靠断,停止要就是216.西望重山如阙 /江出其间/ 则所谓下牢溪也。

2008年考研英语真题答案及解析

2008年考研英语真题答案及解析

2008年全国硕士研究生招生考试英语(一)答案详解Section I Use of English一、文章总体分析这是一篇议论文。

文章主要介绍了个别民族群体智商高于人类平均水平。

文章首段第一句话点明了中心论点。

第二段则分析了产生这一现象的原因——进化的结果。

第三段通过“进化”的纽带把高智商与遗传疾病联系起来,说明高智商的人更容易患上一些遗传疾病。

二、试题具体解析1.[A]selected挑选,选拔[B]prepared准备,打算,愿意(做某事)[C]obliged迫使,责成[D]pleased高兴【答案】B【考点】词义辨析【难度系数】0.236【解析】该空的前后语境为“有些群体的人可能比其他群体更加聪明,这是人们一直不敢明说的假说之一。

但是,不管怎么样,Gregory Cochran说出来”。

显然,从语义上应该可以看出Gregory Cochran表述这一观点是一种主动行为,从而排除A和C;而从第一句可以看出他所研究的这一课题也不应该是一个让人高兴的主题,故排除D。

因此答案只有B。

2.[A]unique独一无二的[B]particular特殊的,独特的[C]special特殊的,特别的[D]rare罕见的,珍贵的【答案】D【考点】固定搭配【难度系数】0.160【解析】从文章内容看,显然该空填入的词应该是用来形容Cochran是一个什么样的人的。

从上文我们可以看到,他总是做一些常人不敢做的事情,显然这个词既要表现他这类人很少,同时要表达出作者对Cochran正面评价,突出其优秀性,四个词中只有D能表达这种语义,故答案为D。

本题从另一个角度来说,a rare bird是一固定搭配,指一类人。

其他三个词与bird搭配都不能指人,同样得出答案为D。

3.[A]of[B]with[C]in[D]against【答案】A【考点】介词搭配【难度系数】0.106【解析】independently只能与选项A介词of搭配,意思是“不依赖于,独立于”。

2018年3月10日发改委面试真题(题后含答案及解析)

2018年3月10日发改委面试真题(题后含答案及解析)

2018年3月10日发改委面试真题(题后含答案及解析) 题型有:1.1.对于在基层发展,有人说,基层条件差、辛苦;有人说,基层是青年人的春天。

请问你怎么看?正确答案:基层条件的确差些,也比较辛苦,但确实是青年人的春天。

对此,我有以下几点看法。

首先,基层工作条件比较差,但我认为,对于青年人来说,在复杂的工作环境中工作更能得到锻炼。

比如,在农村工作,接触的大多数是农民,和他们打交道多了,自然就会对他们比较了解,就能真正了解群众的困难,从而可以有针对性地解决。

至于苦,我想对于年轻人来说,多吃点苦是件好事。

孟子说过:天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为也,所以动心忍性,增益其所不能。

我们在基层工作,虽不算什么大任,但经历过困难的磨炼,才能得到提高和成长。

青年人通过在基层的锻炼,各方面的能力得到提升,且可以积累丰富的基层工作经验,综合素质自然得到很大的提高。

基层对于青年人来说,就像一片沃土,而青年人就像一棵正在蓬勃生长的小树,在春天到来之时,充分汲取养分,快速成长。

2.单位计划建立一个微信公众号供员工学习,并要选拔一个负责管理公众号的人员。

请说出两种选拔的方式,并选择其中一种方式详细阐述你如何组织?正确答案:如果要选拔一个负责公众号的人员,我会采用以下两种选拔方式。

第一种是现场操作,现场考核。

第二种是轮流负责,试运作后考核。

考虑到第一种方式存在一定的偶然性,不一定准确,所以我会选择第二种方式。

我会按以下步骤组织。

首先,我会制定简单的选拔计划、参选条件、测试内容及测评标准,提交领导审阅同意后,发布选拔报名通知,并做好报名审核工作,初步筛选。

其次,报名结束后,开展第一轮测试,可以采取笔试的方式进行,主要考查参选人员的理论知识水平,通过这轮测试,再次筛选出合适的人员。

笔试结束后,如果合格的人数较多,还可以增加一轮现场操作考核,由参选人员按照要求制作一篇公众号文章,并模拟发布,最后甄选出3~5个制作效果优秀的人员,由他们轮流负责运作管理公众号,试运作时间为期一个月,一个月后根据测评标准进行考核打分,并可设置用户投票这一功能,评选出最优秀的负责人。

2023年河北中考数学真题+答案详解

2023年河北中考数学真题+答案详解

2023年河北中考数学真题+答案详解(真题部分)一、选择题1. 代数式-7x 的意义可以是( )A. 7−与x 的和B. 7−与x 的差C. 7−与x 的积D. 7−与x 的商 2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的( )A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( ) A. 6xy B. 5xy C. 25x y D. 26x y4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D. 5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 56. 若k 为任意整数,则22(23)4k k +−的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除7. 若27a b ==,2214a b=( ) A. 2 B. 4 C. 7 D. 28. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =; (3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较 10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =( )A. 43B. 83C. 12D. 1612. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒ 14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB有交点,写出一个符合在条件的k 的数值:_________.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______. x结果代数式 2 n31x +7 b 21x x + a 119. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区 脱靶 一次计分(分) 3 1 2−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定直线上.设这条直线为3l ,在图中直接画出3l 的图象; (3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26. 如图1和图2,平面上,四边形ABCD 中,8,211,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).的2023年河北中考数学真题+答案详解(答案详解)一、选择题1. 代数式-7x的意义可以是()A. 7−与x的和B. 7−与x的差C. 7−与x的积D. 7−与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.−的意义可以是7−与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( )A. 6xyB. 5xyC. 25x yD. 26x y【答案】A 【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭, 故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.【答案】B 【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张, ∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃, 故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解. 【详解】解:在ACD 中,2AD CD ==, ∴2222AC −<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去; 若3AC AB ==时,ABC 为等腰三角形, 故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题. 6. 若k 为任意整数,则22(23)4k k +−的值总能( ) A. 被2整除 B. 被3整除C. 被5整除D. 被7整除【答案】B 【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式. 【详解】解:22(23)4k k +−(232)(232)k k k k =+++− 3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +−的值总能被3整除, 故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b −=−+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7. 若27a b ==,2214a b=( ) A. 2 B. 4 C.7 D.2【答案】A 【解析】 【分析】把27a b ==,【详解】解:∵27a b ==,()()2222142141424277ab ⨯⨯====, 故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是( ) A. 两组对边分别平行 B. 两组对边分别相等 C. 对角线互相平分 D. 一组对边平行且相等【答案】C 【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断. 【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =, 可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分, 故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理. 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较【答案】A 【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +−=−,根据123PP P 的三边关系即可得解. 【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+, ∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++122313PP P P PP =−+在123PP P 中有122313PP P P PP >+ ∴1223130b a PP P P PP −=+>− 故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数【答案】D 【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答. 【详解】解:A. 12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意; B. 12129.46100.46910⨯−≠⨯,故该选项错误,不符合题意; C. 129.4610⨯是一个13位数,故该选项错误,不符合题意; D. 129.4610⨯是一个13位数,正确,符合题意. 故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABCS=( )A. 43B. 83C. 12D. 16【答案】B 【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解. 【详解】解:∵16AMEF S =正方形, ∴164AM ==,∵Rt ABC △中,点M 是斜边BC 的中点, ∴28BC AM ==, ∴22224438AC BC AB =−=−=∴114438322ABCSAB AC =⨯⨯=⨯⨯= 故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个, 故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒【答案】C 【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢, ∵306B B AB A B '''∠=∠=︒==,, ∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==, ∴()Rt Rt HL ACD A C D '''≌△△, ∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒−∠=︒−︒; 综上,C '∠的值为n ︒或180n ︒−︒. 故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D 【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发, 设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++, ∵两个人机器人速度相同, ∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C , 故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒【答案】C 【解析】【分析】如图,由平角的定义求得18034ADB ADE ???,由外角定理求得,16AHDADBα???,根据平行性质,得16GIFAHD???,进而求得44EGFGIFβ???.【详解】如图,∵146ADE ∠=︒ ∴18034ADB ADE ????∵ADB AHD α???∴503416AHD ADBα??????∵12l l ∥∴16GIF AHD??∵EGF GIF β?? ∴601644EGFGIFβ?????故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( ) A. 2 B. 2m C. 4D. 22m【答案】A 【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可. 【详解】解:令0y =,则220x m x −+=和220x m −=, 解得0x =或2x m =或x m =−或x m =, 不妨设0m >,∵()0m ,和()0m −,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =−的对称轴为0x =,抛物线22y x m x =−+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2, 故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可) 【解析】【分析】先分别求得反比例函数(0)ky k x=≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)ky k x=≠图像过(3,3)A 时,339k =⨯=; 当反比例函数(0)ky k x=≠图像过(3,1)B 时,313k =⨯=; ∴k 的取值范围为39k << ∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键. 18. 根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7 b 21x x+ a1【答案】 ①. 52②. 2− 【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==, 当x n =时,211x x +=,即211n n+=, 解得1n =−,经检验,1n =−是分式方程的解, ∴()3112b =⨯−+=−, 故答案为:52;2− 【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中 (1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】 ①. 30 ②. 23【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒−︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,3DE PE == 由图1知223AG BF PE === 由正六边形的结构特征知:12332OM =⨯=, ()1312BC BF CH =−=−,333tan 33BC AB BAC ∴===∠ 231BD AB ∴=−=,又1212DE =⨯=,3BE BD DE ∴=+= 23ON OM BE ∴=+=故答案为:3【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置 A 区 B 区 脱靶一次计分(分)312−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分; (2)6k =. 【解析】【分析】(1)根据题意列式计算即可求解; (2)根据题意列一元一次方程即可求解.解:由题意得()4321426⨯+⨯+⨯−=(分), 答:珍珍第一局的得分为6分; 【小问2详解】解:由题意得()()3311032613k k +⨯+−−⨯−=+, 解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析 【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=; 【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a −=++−+=−+=−∵1a >,∴()21210S S a −=−>, ∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可; (2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解. 【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分; ∴客户所评分数的中位数为:343.52+=(分) 由统计图可知,客户所评分数的平均数为:11233645553.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分, ∴该部门不需要整改. 【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档, ∴监督人员抽取的问卷所评分数为5分, ∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分, 即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =−,1c =; (2)符合条件的n 的整数值为4和5. 【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【小问1详解】解:∵抛物线21:(3)2C y a x =−+,∴1C 的最高点坐标为()32,, ∵点(6,1)A 在抛物线21:(3)2C y a x =−+上, ∴21(63)2a =−+,解得:19a =−, ∴抛物线1C 的解析式为21(3)29y x =−−+,令0x =,则21(03)219c =−−+=; 【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171,,, 当经过()51,时,211551188n=−⨯+⨯++, 解得175n =; 当经过()71,时,211771188n=−⨯+⨯++,解得417n =; ∴174157n ≤≤ ∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥. 计算:在图1中,已知48cm MN =,作OC MN ⊥于点C . (1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小. 【答案】(1)7cm ;(2)11cm 2;(3)3cm 3EF =,25π=cm 6EQ ,EF EQ >. 【解析】【分析】(1)连接OM ,利用垂径定理计算即可;。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

2017年12月英语六级真题答案及解析(卷二)

2017年12月英语六级真题答案及解析(卷二)

2017年12月大学英语六级考试真题答案与详解(第2套)Part I Writing审题思路:这是一篇一句话点评类作文,要求针对引言“试着理解他人,你就会被理解”给出自己的观点。

显然,这篇作文需要论述的是“相互理解的重要性”。

分析引言的含义之后,考生应该将写作重点放在阐述相互理解的重要性上。

结合实际可知,相互理解在学习、工作和生活等各领域都非常重要,做到了相互理解,我们就能齐心协力做好生活中的每件事,并促使人际关系的和谐。

高分范文:The Power of Mutual UnderstandingA host of facts in our daily life have proved that lack of understanding is a critical factor leading to disagreement among people,which makes it difficult for people to be on friendly terms with others.That’s why the phrase“mutual understanding”is emphasized.Just as the remark goes,“Seek to understand others,and you will be understood.”The significance of mutual understanding cannot be understanding.On the one hand,mutual understanding serves as a prerequisite for learning progress,career success and happy life.If we understand each other and are willing to reach agreement,we can be empowered to summon multi-forces to grease the wheels of everything.On the other hand,mutual understanding is the lubricant of human relations.For those who wish to build lasting relationships and achieve civilized intercourse,mutual understanding is a foolproof strategy.To sum up,mutual understanding is the basis of our relationships with others and we would be socially idiotic without it.To avoid this,all we need is our utmost effort to seek to understand others.全文翻译:我们日常生活中大量的事实已经证明,缺乏了解是导致人与人之间出现分歧的至关重要的因素,使得人们很难与他人友好相处。

2014年10月全国自考教育类(比较教育)真题试卷(题后含答案及解析)

2014年10月全国自考教育类(比较教育)真题试卷(题后含答案及解析)

2014年10月全国自考教育类(比较教育)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 多项选择题 3. 名词解释 4. 简答题 5. 论述题单项选择题1.比较教育诞生的标志是( )A.马可.波罗的《马可.波罗游记》B.康德尔的《比较教育》C.柏拉图的《理想国》D.朱利安的《关于比较教育的工作纲要和初步意见》正确答案:D解析:1817年朱利安在《教育杂志》上发表《关于比较教育的工作纲要和初步意见》。

“比较教育”这一术语在这部书中首次被正式使用。

朱利安因此被称为“比较教育之父”。

2.比较教育的因素分析法的主要创造者是( )A.萨德勒B.康德尔C.汉斯D.卡诺伊正确答案:A解析:萨德勒是比较教育的因素分析法的主要创作者,他关于比较教育方法论的思想表现出“因素分析时代”的特质。

3.英国著名比较教育学家金倡导的比较教育研究方法是( )A.哲学研究法B.民族志研究法C.教育决策五层次研究法D.比较四步法正确答案:C解析:在比较教育发展史上,尤其是进入社会科学方法时代以后,很多比较教育研究者都提出了独特而有效的比较教育研究方法,如贝雷迪的比较四步法、金的教育决策五层次研究法等。

4.“国际教育”的观念基础主要是( )A.历史主义B.国际主义C.世界主义D.普世主义正确答案:B解析:国际教育的观念基础主要是国际主义的理念,其目的在于通过协调各国教育文化关系、推进国际相互理解的教育和以教育共同创造人类美好未来等,在尊重民族国家主权的前提下,积极促进国际友好关系的发展,谋求永久的世界和平。

5.为了回击苏联人造卫星的挑战,美国国会于1958年通过了( ) A.《莫雷尔法》B.《国防教育法》C.《退伍军人重新适应法》D.《史密斯一休士法》正确答案:B解析:1958年为了回击苏联人造地球卫星的挑战,美国国会通过了《国防教育法》。

其核心内容是增加教育经费,进行教育改革,提高教育质量,培养英才,资助贫困青年的学习,加强科技研究,以确保美国的国防力量在全世界处于绝对优势的地位。

部编数学七年级上册专题09压轴大题分类练(三大考点)(期末真题精选)(解析版)含答案

部编数学七年级上册专题09压轴大题分类练(三大考点)(期末真题精选)(解析版)含答案

专题09 压轴大题分类练(三大考点)一.新定义(热点题型)1.在数轴上,把原点记作点O ,表示数1的点记作点A .对于数轴上任意一点P (不与点O ,点A重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作P ,即P =PO PA,例如:当点P 是线段OA 的中点时,因为PO =PA ,所以P =1.(1)如图,点P 1,P 2,P 3为数轴上三个点,点P 1表示的数是−14,点P 2与P 1关于原点对称.①P 2= 13 ;②比较P 1,P 2,P 3的大小 P 1<P 2<P 3 (用“<”连接);(2)数轴上的点M 满足OM =13OA ,求M ;(3)数轴上的点P 表示有理数p ,已知P <100且P 为整数,则所有满足条件的p 的倒数之和为 198 .试题分析:(1)①根据定义求出线段P 2A 与P 2O 的值即可解答;②根据定义分别求出P 1,P 3的值即可比较;(2)分两种情况,点M 在原点的右侧,点M 在原点的左侧;(3)根据题意可知,分两种情况,点P 在点A 的右侧,点P 在OA 之间.答案详解:解:(1)①∵点P 1表示的数是−14,点P 2与P 1关于原点对称,∴点P 2表示的数是14,∵点A 表示的数是1,∴P 2A =1−14=34,P 2O =14,∴P 2=P 2O P 2A =1434=13,②∵点P 1表示的数是−14,∴P 1A =1﹣(−14)=54,P 1O =14,∴P 1=P 1O P 1A =1454=15,∵1<P 3<2,∴1<P 3O <2,0<P 3A <1,∴P 3=P 3O P 3A >1,∴P 1<P 2<P 3,所以答案是:①13,②P 1<P 2<P 3;(2)分两种情况:当点M 在原点的右侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:13,∴MO =13,MA =1−13=23,∴M =MO MA =1323=12,当点M 在原点的左侧,∵OM =13OA ,∴OM =13,∴点M 表示的数为:−13,∴MO =13,MA =1﹣(−13)=43,∴M =MO MA =1343=14,∴M 的值为:12或14;(3)∵P <100且P 为整数,PA∴PO >PA 且PO 为PA 的倍数,当P =PO PA=1时,∴PO =PA ,即点P 为OA 的中点,∴p =12,∴当P =1时,p 的值为12,当P =PO PA=2时,∴PO =2PA ,当点P 在OA 之间,∴p =2(1﹣p ),∴p =23,当点P 在点A 的右侧,∴p =2(p ﹣1),∴p =2,∴当P =2时,p 的值为:2或23,当P =PO PA=3时,∴PO =3PA ,当点P 在OA 之间,∴p =3(1﹣p ),∴p =34,当点P 在点A 的右侧,∴p =3(p ﹣1),∴p =32,∴当P =3时,p 的值为:34或32,PA∴PO=4PA,当点P在OA之间,∴p=4(1﹣p),∴p=4 5,当点P在点A的右侧,∴p=4(p﹣1),∴p=4 3,∴当P=4时,p的值为:45或43,…当P=POPA=99时,∴PO=99PA,当点P在OA之间,∴p=99(1﹣p),∴p=99 100,当点P在点A的右侧,∴p=99(p﹣1),∴p=99 98,∴当P=99时,p的值为:99100或9998,∴所有满足条件的p的倒数之和为:2+32+12+43+23+54+34+...+10099+9899=2+(32+12)+(43+23)+(54+34)+...+(10099+9899)=2+2+2+2+...+2=2×99=198,所以答案是:198.2.对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 12 倍分点,点C 是点B 到点A 的 23 倍分点;(2)点B 到点C 的3倍分点表示的数是 1或4 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的2倍分点,写出x 的取值范围.试题分析:(1)通过计算BA BC ,CB CA的值,利用题干中的定义解答即可;(2)设这点为E ,对应的数字为a ,利用分类讨论的思想方法根据EB EC=3分别列出方程,解方程即可得出结论;(3)分两种情况:①点D 在点B 的左侧,②点D 在点C 的右侧,分别计算出x 的两个临界值即可得出结论.答案详解:解:(1)∵点A ,B ,C 分别表示﹣4,﹣2,2,∴BA =﹣2﹣(﹣4)=2,BC =2﹣(﹣2)=4,CA =2﹣(﹣4)=6.∵BA BC =24=12,∴点B 是点A 到点C 的12倍分点,∵CB CA =46=23,∴点C 是点B 到点A 的23倍分点.所以答案是:12;23;(2)设这点为E ,对应的数字为a ,则EB EC=3.当点E 在B ,C 之间时,∵EBEC=3,∴x−(−2)2−x=3,解得:x=1.当点E在C点的右侧时,∵EBEC=3,∴x−(−2)x−2=3,解得:x=4.综上,点B到点C的3倍分点表示的数是1或4.所以答案是:1或4.(3)①点D在点B的左侧,∵−2−(−4)−2−x=2,解得:x=﹣3.∴x的最小值为﹣3.∴x的取值范围为﹣3≤x≤﹣2;②点D在点C的右侧,∵2−(−4)x−2=2,解得:x=5,∴x的最大值为5,∴x的取值范围2≤x≤5,综上,线段BC上存在点A到点D的2倍分点,则x的取值范围为:﹣3≤x≤﹣2或2≤x≤5.3.知识背景:已知a,b为有理数,规定:f(a)=|a﹣2|,g(b)=|b+3|,例如:f(﹣3)=|﹣3﹣2|=5,g(﹣2)=|﹣2+3|=1.知识应用:(1)若f(a)+g(b)=0,求3a﹣5b的值;(2)求f(a﹣1)+g(a﹣1)的最值;知识迁移:若有理数a,b,c满足|a﹣b+c+3|=a+b+c﹣3,且关于x的方程ax﹣2c=2a﹣cx有无数解,f(2b﹣4)≠0,求|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|的值.试题分析:(1)根据题中的新规定列出等式,再利用非负数的性质求出a与b的值,代入原式计算即可得到结果;(2)根据题中的新规定列出等式,根据数轴上两点间的距离公式及绝对值的代数意义求出最小值即可;知识迁移:求出a+c=0,b>3,再计算绝对值即可.答案详解:解:(1)∵f(a)=|a﹣2|,g(b)=|b+3|,∴f(a)+g(b)=|a﹣2|+|b+3|=0,∴a=2,b=﹣3,∴3a﹣5b=3×2﹣5×(﹣3)=6+15=21;(2)f(a﹣1)+g(a﹣1)=|a﹣3|+|a+2|,∵|a﹣3|+|a+2|表示点a到3和﹣2的距离之和,∴|a﹣3|+|a+2|≥5,∴f(a﹣1)+g(a﹣1)有最小值5;知识迁移:整理ax﹣2c=2a﹣cx得(a+c)x=2(a+c),∵方程有无数解,∴a+c=0,∵|a﹣b+c+3|=|(a+c)﹣(b﹣3)|,当a+c≥b﹣3时,|a﹣b+c+3|=a+c﹣b+3=a+b+c﹣3,∴b=3,∴a+c≥0;当a+c≤b﹣3时,|a﹣b+c+3|=b﹣3﹣a﹣c=a+b+c﹣3,∴a+c=0,∴b≥3;∵f(2b﹣4)≠0,∴|2b﹣4﹣2|≠0,∴b≠3,∴b>3,∴|a+2b+c+5|﹣|a+b+c+7|﹣|﹣3﹣b|=|2b+5|﹣|b+7|﹣|﹣3﹣b|=2b +5﹣(b +7)﹣(3+b )=﹣5.4.如图,点A 、O 、C 、B 为数轴上的点,O 为原点,A 表示的数是﹣8,C 表示的数是2,B 表示的数是6.我们将数轴在点O 和点C 处各弯折一次,弯折后CB 与AO 处于水平位置,线段OC 处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O 为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记AB 为“折坡数轴”拉直后点A 和点B 的距离:即AB =AO +OC +CB ,其中AO 、OC 、CB 代表线段的长度.(1)若点T 为“折坡数轴”上一点,且TA +TB =16,请求出点T 所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P 从点A 处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O ,再上坡移动,当移到点C 时,立即掉头返回(掉头时间不计),在点P 出发的同时,动点Q 从点B 处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C ,再下坡到点O ,然后再沿OA 方向移动,当点P 重新回到点A 时所有运动结束,设点P 运动时间为t 秒,在移动过程中:①点P 在第 212 秒时回到点A ;②当t = 2或225或315或345 时,PQ =2PO .(请直接写出t 的值)试题分析:(1)首先判断出点T 的位置,设T 表示的数为x ,根据T 的位置分两种情况列出方程求解即可;(2)①分别根据“时间=路程÷速度”求出点P 运动的时间,再求和即可;②分别求出点Q 在运动时间,结合点P ,点Q 的不同位置,根据PQ =2PO 列出方程求解即可. 答案详解:解:(1)∵AB =AO +OC +CB =|﹣8|+6=14,而TA +TB =16,16>AB ,∴T 不在AB 内,设T 表示的数为x ,当T 在点A 的左侧时,TA +TB =TA +TA +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =﹣9;当T 在点B 的右侧时,TA +TB =TB +TB +AB =(﹣8﹣x )+(﹣8﹣x )+14=16,解得:x =7,所以答案是:﹣9和7;(2)①∵AO =8,∴点P 从A 到O 所需时间为:t 1=AO 2=82=4,∵OC =2,∴点P 从O 到C 所需时间为:t 2=OC12×2=2,返回时,点P 从C 到O 所需时间为:t 3=OC 2×2=24=12,点P 从O 到A 所需时间为:t 4=t 1=4,∴点P 运动的总时间t =t 1+t 2+t 3+t 4=212,故点P 在212秒时回到了点A ,所以答案是:212;②(Ⅰ)当点P 在AO 上,点Q 在BC 上时,PQ =PO +OC +CQ =(8﹣2t )+2+(4﹣t )=14﹣3t ,PO =8﹣2t ,∵PQ =2PO ,∴14﹣3t =2(8﹣2t ),解得:t =2;(Ⅱ)当P 在OC 上,此时Q 在OC 上,设点Q 在OC 上的时间为t ′,a )当OP +QC =OC ,即t ′+2t ′=2,即t ′=23时,P 、Q 相遇,PQ =OC ﹣OP ﹣QC =2﹣t ′﹣2t ′,PO =t ′,由PQ =2PO 得:2﹣t ′﹣2t ′=2t ′,解得:t ′=25,∴t =4+25=225;b )当Q 到达点O 时,点P 刚到OC 的中点,并继续向上走2﹣1=1(秒),PQ =OP +OQ =t ′+(t ′﹣1),PO =t ′,由PQ =2PO 得:2t ′﹣1=2t ′,此时无解;c )当Q 在OA 上,P 在OC 向下移动时,PQ =OQ +OP =(t ′﹣1)+[2﹣2×2(t ′﹣2)],PO =2﹣2×2(t ′﹣2),由PQ =2PO 得,(t ′﹣1)+[2﹣2×2(t ′﹣2)]=2[2﹣2×2(t ′﹣2)],解得:t ′=115,此时,t =4+t ′=315;(Ⅲ)当点P 重新回到OA 上,设P 回到O 点后运动时间为t ″,在t ″之间,点P 、Q 已经运动了4+2+12=132(秒),此时,Q 在OA 上走了132−4﹣1=32,即OQ =32×1=32,1)PQ =OQ ﹣OP =(32+t ″)﹣2t ″,PO =2t ″,由PQ =2PO 得:(32+t ″)﹣2t ″=2t ″,解得,t ″=310,此时,t =132+310=345;2)当P 在Q 右侧,超过Q 后,PQ =OP ﹣OQ =2t ″﹣(32+t ″),PO =2t ″,由PQ =2PO 得:2t ″﹣(32+t ″)=4t ″,解得,t ″=−12(舍去),综上所述,当t =2或225或315或345秒时,PQ =2PO .所以答案是:2或225或315或345.5.对数轴上的点和线段,给出如下定义:点M是线段a的中点,点N是线段b的中点,称线段MN 的长度为线段a与b的“中距离”.已知数轴上,线段AB=2(点A在点B的左侧),EF=6(点E在点F的左侧).(1)当点A表示1时,①若点C表示﹣2,点D表示﹣1,点H表示4,则线段AB与CD的“中距离”为3.5,线段AB与CH的“中距离”为 1 ;②若线段AB与EF的“中距离”为2,则点E表示的数是 1或﹣3 .(2)线段AB、EF同时在数轴上运动,点A从表示1的点出发,点E从原点出发,线段AB的速度为每秒1个单位长度,线段EF的速度为每秒2个单位长度,开始时,线段AB、EF都向数轴正方向运动;当点E与点B重合时,线段EF随即向数轴负方向运动,AB仍然向数轴正方向运动.运动过程中,线段AB、EF的速度始终保持不变.设运动时间为t秒.①当t=2.5时,线段AB与EF的“中距离”为 3.5 ;②当线段AB与EF的“中距离”恰好等于线段AB的长度时,求t的值.试题分析:(1)①先由点A和AB的长求得点B表示的数,然后求得AB的中点所表示的数,再求得CH的中点所表示的数,即可得到线段AB与CH的“中距离”;②先由①得到AB的中点所表示的数,然后设点E表示的数为x,则点F表示的数为x+6,进而求得EF的中点的所表示的数,最后由线段AB与EF的“中距离”为2列出方程求得x的值;(2)①先用含有t的式子分别表示点A、点B、点E、点F所表示的数,然后得到t=2.5时点A、B、E、F所表是的数,进而求得线段AB与EF的“中距离”;②分情况讨论,分为点E向数轴正方向和向数轴负方向运动两种情况讨论,然后根据条件列出方程求得t的值.答案详解:解:(1)①∵AB=2(点A在点B的左侧),点A表示1,∴点B表示3,∴线段AB的中点表示2,∵点C表示﹣2,点H表示4,∴线段CH的中点表示1,∴线段AB与CH的“中距离”为2﹣1=1,所以答案是:1.②由①得,线段AB的中点表示2,设点E表示x,则点F表示x+6,∴线段EF的中点表示x+3,∵线段AB与EF的“中距离”为2,∴|x+3﹣2|=2,解得:x=1或x=﹣3,∴点E表示的数是1或﹣3,所以答案是:1或﹣3.(2)由题意得,点A表示的数为1+t,点B表示的数为3+t,当点E向数轴正方向运动时,点E表示的数为2t,点F表示的数为2t+6,当点E与点B重合时,3+t=2t,解得:t=3,∴当点E向数轴负方向运动时,点E表示的数为6﹣2(t﹣3)=12﹣2t,点F表示的数为12﹣2(t﹣3)=18﹣2t,①当t=2.5时,点E向数轴正方形运动,点A表示的数为3.5,点B表示的数为5.5,点E表示的数为5,点F表示的数为11,∴线段AB的中点表示的数为4.5,线段EF的中点表示的数为8,∴线段AB与EF的“中距离”为8﹣4.5=3.5;所以答案是:3.5.②当点E向数轴正方向运动,即0<t≤3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为2t+3,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|2t+3﹣(2+t)|=2,解得:t=1或t=﹣3(舍);当点E向数轴负方向运动,即t>3时,线段AB的中点表示的数为2+t,线段EF的中点表示的数为15﹣2t,∵线段AB与EF的“中距离”恰好等于线段AB的长度,∴|15﹣2t﹣(2+t)|=2,解得:t =113或t =5,∴当线段AB 与EF 的“中距离”恰好等于线段AB 的长度时,t 的值为1或113或5.6.我们将数轴上点P 表示的数记为x P .对于数轴上不同的三个点M ,N ,T ,若有x N ﹣x T =k (x M ﹣x T ),其中k 为有理数,则称点N 是点M 关于点T 的“k 星点”.已知在数轴上,原点为O ,点A ,点B 表示的数分别为x A =﹣2,x B =3.(1)若点B 是点A 关于原点O 的“k 星点”,则k = −32 ;若点C 是点A 关于点B 的“2星点”,则x C = ﹣7 ;(2)若线段AB 在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB 的中点D .是否存在某一时刻,使得点D 是点A 关于点O 的“﹣2星点”?若存在,求出线段AB 的运动时间;若不存在,请说明理由;(3)点Q 在数轴上运动(点Q 不与A ,B 两点重合),作点A 关于点Q 的“3星点”,记为A ',作点B 关于点Q 的“3星点”,记为B '.当点Q 运动时,QA '+QB '是否存在最小值?若存在,求出最小值及相应点Q 的位置;若不存在,请说明理由.试题分析:(1)由“k 星点”的定义列出方程可求解;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,由“k 星点”的定义列出方程可求解;(3)先求出A ',B '表示的数,可求QA '+QB '=|﹣6﹣3y |+|9﹣3y |,由绝对值的性质可求解. 答案详解:解:(1)∵点B 是点A 关于原点O 的“k 星点”,∴3﹣0=k (﹣2﹣0),解得:k =−32,∵点C 是点A 关于点B 的“2星点”,∴x C ﹣3=2×(﹣2﹣3),∴x C =﹣7,所以答案是:−32,﹣7;(2)设点表示的数为a ,点B 表示的数a +5,则线段AB 的中点D 表示的数为2a 52,∵点D 是点A 关于点O 的“﹣2星点”,∴2a 52−0=﹣2×(a ﹣0),∴a =−56,∴t =−61=76,∴当t =76,使得点D 是点A 关于点O 的“﹣2星点”;(3)当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,理由如下:设点Q 表示的数为y ,∵点A '是点A 关于点Q 的“3星点”,∴点A '表示的数为﹣6﹣2y ,∵点B '是点B 关于点Q 的“3星点”,∴点B '表示的数是9﹣2y ,∴QA '+QB '=|﹣6﹣2y ﹣y |+|9﹣2y ﹣y |=|﹣6﹣3y |+|9﹣3y |,当y <﹣2时,QA '+QB '=3﹣6y >15,当﹣2<y <3时,QA '+QB '=15,当y >3时,QA '+QB '=6y ﹣3>15,∴当点Q 在线段AB (点Q 不与A ,B 两点重合)上时,QA '+QB '存在最小值,最小值为15.7.【阅读理解】射线OC 是∠AOB 内部的一条射线,若∠COA =12∠BOC ,则我们称射线OC 是射线OA 的伴随线.例如,如图1,∠AOB =60°,∠AOC =∠COD =∠BOD =20°,则∠AOC =12∠BOC ,称射线OC 是射线OA 的伴随线;同时,由于∠BOD =12∠AOD ,称射线OD 是射线OB 的伴随线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的伴随线,则∠AOM= 40 °,若∠AOB的度数是α,射线ON是射线OB的伴随线,射线OC是∠AOB的平分线,则∠NOC的度数是 α6 .(用含α的代数式表示)(2)如图3,如∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒3°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒5°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止.①是否存在某个时刻t(秒),使得∠COD的度数是20°,若存在,求出t的值,若不存在,请说明理由.②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.试题分析:(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.答案详解:解:(1)40°,α6;(2)射线OD与OA重合时,t=1805=36(秒)①当∠COD的度数是20°时,有两种可能:若在相遇之前,则180﹣5t﹣3t=20,∴t=20;若在相遇之后,则5t+3t﹣180=20,∴t=25;所以,综上所述,当t=20秒或25秒时,∠COD的度数是20°.②相遇之前:(i)如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=12×3t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=907,36019,1807,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.8.如图1,对于线段AB和∠A′OB′,点C是线段AB上的任意一点,射线OC′在∠A′OB′内部,如果ACAB=∠A′OC′∠A′OB′,则称线段AC是∠A′OC′的伴随线段,∠A′OC′是线段AC的伴随角.例如:AB=10,∠A′OB′=100°,若AC=3,则线段AC的伴随角∠A′OC′=30°.(1)当AB=8,∠A′OB′=130°时,若∠A′OC′=65,试求∠A′OC′的伴随线段AC的长.(2)如图2,对于线段AB和∠A′OB′,AB=6,∠A′OB′=120°.若点C是线段AB上任一点,E,F分别是线段AC,BC的中点,∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,则在点C从A运动到B的过程中(不与A,B重合),∠E′OF′的大小是否会发生变化?如果会,请说明理由;如果不会,请求出∠E′OF′的大小.(3)如图3,已知∠AOC是任意锐角,点M,N分别是射线OA,OC上的任意一点,连接MN,∠AOC的平分线OD与线段MN相交于点Q.对于线段MN和∠AOC,线段MP是∠AOD的伴随线段,点P和点Q能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.试题分析:(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF=12AB,再利用伴随角和伴随线段的定义列出等式,可得出结论;(3)由伴随角和伴随线段的定义可得,点P和点Q重合时,是MN的中点,画出图形,测量即可.答案详解:解:(1)由伴随角和伴随线段的定义可知,ACAB =∠A′OC′∠A′OB′,∴AC8=65°130°=12,∴AC=4.(2)不会,∠E′OF′=60°.理由如下:∵点E,F分别是线段AC,BC的中点,∴EC=12AC,CF=12BC,∴EF=12AB=3.∵∠A′OE′,∠A′OC′,∠A′OF′分别是线段AE,AC,AF的伴随角,∴AEAB=∠A′OE′∠A′OB′,ACAB=∠A′OC′∠A′OB′,AFAB=∠A′OF′∠A′OB′,∵EF=AF﹣AE,∴EFAB=AFAB−AEAB=∠A′OF′∠A′OB′−∠A′OE′∠A′OB′=∠E′OF′∠A′OB′=12,∵∠A′OB′=120°,∴∠E′OF′=60°.(3)能,理由如下:∵OD是∠AOC的平分线,∴∠AOD=12∠AOC,∵线段MP是∠AOD的伴随线段,∴MPMN=∠AOD∠AOC=12.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.二.数形结合之数轴与方程(经典题型)9.我们知道数轴上两点间的距离等于这两点所表示数的差的绝对值,例如:点A,B在数轴上分别对应的数为a,b,则A,B两点间的距离表示为AB=|a﹣b|.根据以上知识解决问题:(1)如图1所示,在数轴上点E,F表示的数分别为﹣5,3,则EF= 8 ;(2)①如图2所示,点P表示数x,点M表示数﹣2,点N表示数2x+14,且MN=2PM,求:点P和点N表示的数.②在上述①的条件下,数轴上是否存在点Q.使PQ+QN=52QM?若存在,请直接写出点Q所表示的数;若不存在,请说明理由.试题分析:(1)由点E ,F 表示的数分别为﹣5,3,可得EF =|﹣5﹣3|=8;(2)①由点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,得MN =2x +16,PM =﹣2﹣x ,即得2x +16=2(﹣2﹣x ),可解得P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,分四种情况:当Q 在P 左侧时,(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q 在M 、N 之间,(m +5)+(4﹣m )=52(m +2),解得m =85,当Q 在N 右侧,(m +5)+(m ﹣4)=52(m +2),解得m =﹣8(不合题意,舍去).答案详解:解:(1)∵点E ,F 表示的数分别为﹣5,3,∴EF =|﹣5﹣3|=8,所以答案是:8;(2)①∵点P 表示数x ,点M 表示数﹣2,点N 表示数2x +14,∴MN =(2x +14)﹣(﹣2)=2x +16,PM =﹣2﹣x ,∵MN =2PM ,∴2x +16=2(﹣2﹣x ),解得x =﹣5,∴2x +14=2×(﹣5)+14=4,答:P 表示的数是﹣5,N 表示的数是4;②设Q 表示的数是m ,当Q 在P 左侧时,PQ =﹣5﹣m ,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(﹣5﹣m )+(4﹣m )=52(﹣2﹣m ),解得m =﹣8,当Q 在P 、M 之间,PQ =m +5,QN =4﹣m ,QM =﹣2﹣m ,∵PQ +QN =52QM ,∴(m +5)+(4﹣m )=52(﹣2﹣m ),解得m =−285(不合题意,舍去),当Q在M、N之间,PQ=m+5,QN=4﹣m,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(4﹣m)=52(m+2),解得m=8 5,当Q在N右侧,PQ=m+5,QN=m﹣4,QM=m+2,∵PQ+QN=52 QM,∴(m+5)+(m﹣4)=52(m+2),解得m=﹣8(不合题意,舍去),综上所述,Q表示的数是﹣8或8 5.10.如图,数轴上A,B两点对应的数分别是﹣20和10,P,Q两点同时从原点出发,P以每秒2个单位长度的速度沿数轴向左匀速运动,Q以每秒5个单位长度的速度沿数轴向右匀速运动,当点Q到达点B后立即返回,以相同的速度沿数轴向左运动.点P到达点A时,P,Q两点同时停止运动.设运动时间为t秒.(1)当t=1时,线段PQ= 7 ;(2)当PQ=5时,求t的值;(3)在P,Q两点运动的过程中,若点A,点P,点Q三点中的一个点是另外两个点为端点的线段的中点,直接写出t的值.试题分析:(1)根据数轴上两点间距离公式可得;(2)分两种情况:当0≤t≤2或2<t≤10时,分别列出方程可得答案;(3)分两种情况:当0≤t≤2或2<t≤10时,再根据线段中点的定义可得答案.答案详解:解:(1)t=1时,点P表示的数是﹣2,点Q表示的数是5,∴PQ=5﹣(﹣2)=7,所以答案是:7;(2)当0≤t≤2时,点P表示的数是﹣2t,点Q表示的数是5t,则5t ﹣(﹣2t )=5,解得t =57;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,则|(20﹣5t )﹣(﹣2t )|=5,解得t =5或253;所以当PQ =5时,t 的值是57或5或253;(3)当0≤t ≤2时,点P 表示的数是﹣2t ,点Q 表示的数是5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=5t +2t ,解得t =209>2,故不存在此情况;当2<t ≤10时,点P 表示的数是﹣2t ,点Q 表示的数是10﹣(5t ﹣10)=20﹣5t ,点A 表示的数是﹣20,若点P 是线段AQ 的中点,则PA =PQ ,﹣2t +20=20﹣5t +2t ,解得t =0,故不存在此情况;若点Q 是线段AP 的中点,则QA =PQ ,20﹣5t +20=﹣2t ﹣20+5t ,解得t =7.5.当A 是PQ 的中点时,2t ﹣20=30﹣5(t ﹣2),t =607,综上,t 的值是7.5或607.11.规定:A ,B ,C 是数轴上的三个点,当CA =3CB 时我们称C 为[A ,B ]的“三倍距点”,当CB =3CA 时,我们称C 为[B ,A ]的“三倍距点”.点A 所表示的数为a ,点B 所表示的数为b 且a ,b 满足(a +3)2+|b ﹣5|=0.(1)a = ﹣3 ,b = 5 ;(2)若点C 在线段AB 上,且为[A ,B ]的“三倍距点”,则点C 所表示的数为 3 ;(3)点M 从点A 出发,同时点N 从点B 出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t 秒.当点B 为M ,N 两点的“三倍距点”时,求t 的值.试题分析:(1)根据非负性的性质.即可求得a ,b 的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可.答案详解:解:(1)∵(a+3)2+|b﹣5|=0,∴a+3=0,b﹣5=0,∴a=﹣3,b=5,所以答案是:﹣3;5;(2)∵点A所表示的数为﹣3,点B所表示的数为5,∴AB=5﹣(﹣3)=8,∵点C为[A,B]的“三倍距点”,点C在线段AB上,∴CA=3CB,CA+CB=AB=8,∴CB=2,∴点C所表示的数为5﹣2=3,所以答案是:3;(3)根据题意可知:点M所表示的数为3t﹣3,点N所表示的数为t+5,∴BM=|5﹣(3t﹣3)|=|8﹣3t|,BN=|t+5﹣5|=t,(t>0),当点B为[M,N]的“三倍距点”时,即BM=3BN,∴|8﹣3t|=3t,∴8﹣3t=3t或8﹣3t=﹣3t,解8﹣3t=3t,得:t=4 3,而方程8﹣3t=﹣3t,无解,当点B为[N,M]的“三倍距点”时,即3BM=BN,∴3|8﹣3t|=t,∴24﹣9t=t或24﹣9t=﹣t,解得:t=125或t=3,综上所述,当t=125或t=3或t=43时,点B为M,N的“三倍距点”.12.已知,C,D为线段AB上两点,C在D的左边,AB=a,CD=b,且a,b满足(a﹣120)2+|4b ﹣a|=0.(1)a = 120 ,b = 30 ;(2)如图1,若M 是线段AD 的中点,N 是线段BC 的中点,求线段MN 的长;(3)线段CD 在线段AB 上从端点D 与点B 重合的位置出发,以3cm /s 的速度沿射线BA 的方向运动,同时点P 以相同速度从点A 出发沿射线AB 的方向运动,当点P 与点D 相遇时,点P 原路返回且速度加倍,线段CD 的运动状态不变,直到点C 到达点A 时线段CD 和点P 同时停止运动,设运动时间为ts ,在此运动过程中,当t 为多少s 时线段PC =10cm ?试题分析:(1)由绝对值及偶次方的非负性可求出a ,b 的值;(2)由中点的定义得AM =12AD =12(AC +CD )=12(AC +30)=12AC +15)、CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,由MN =CN ﹣CM 即可求解;(3)分两种情况:①点P 与点D 相遇前,②点P 与点D 相遇后,每种情况再分点P 在点C 左边,点P 在点C 右边解答即可.答案详解:解:(1)∵a ,b 满足(a ﹣120)2+|4b ﹣a |=0,∴a ﹣120=0,4b ﹣a =0,∴a =120,b =30.所以答案是:120;30;(2)∵M 是线段AD 的中点,N 是线段BC 的中点,∴AM =12AD =12(AC +CD )=12(AC +30)=12AC +15,CN =12BC =12(AB ﹣AC )=12(120﹣AC )=60−12AC ,∴CM =AM ﹣AC =12AC +15﹣AC =15−12AC ,∴MN =CN ﹣CM )=60−12AC ﹣(15−12AC )=﹣60−12AC ﹣15+12AC =45(cm );(3)由题意得:点P 与点D 相遇的时间为120÷(3+3)=20(s ),点C 到达点A 的时间为(120﹣30)÷3=30(s ),①点P 与点D 相遇前,即t <20时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3+3)t =120﹣40,解得:t =403,Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3+3)t =120﹣20,解得:t =503,②点P 与点D 相遇后,即20≤t ≤30时,Ⅰ点P 在点C 左边,线段PC =10cm ,∴PD =PC +CD =10+30=40(cm ),由题意得:(3×2﹣3)(t ﹣20)=40,解得:t =1003>30(不合题意,舍去),Ⅱ点P 在点C 右边,线段PC =10cm ,∴PD =CD ﹣PC =30﹣10=20(cm ),由题意得:(3×2﹣3)(t ﹣20)=20,解得:t =803,综上,当t 为403s 或503s 或803s 时线段PC =10cm .13.如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,数轴上有一点C ,且AC =2CB ,a 、b 满足|a +4|+(b ﹣11)2=0.(1)a = ﹣4 ,b = 11 ;(2)求点C 表示的数;(3)点P 从点A 出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动,若AP +BQ =2PQ ,求t 的值.试题分析:(1)根据非负数的性质列方程,分别求出a 、b 的值即可;(2)设点C 表示的数为x ,分三种情况进行讨论,一是点C 在点A 与点B 之间,二是点C 在点B 的右侧,三是点C 在点A 的左侧,对符合题意的情况列方程求出x 的值,对不符合题意的情况直接舍去即可;(3)先根据题意得AP =4t ,BQ =3t ,则点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,再按点P 在点Q 左侧和点P 在点Q 右侧分别列方程求出t 的值即可.答案详解:解:(1)∵|a +4|≥0,(b ﹣11)2≥0,且|a +4|+(b ﹣11)2=0,∴|a +4|=0,(b ﹣11)2=0,∴a =﹣4,b =11,所以答案是:﹣4,11.(2)设点C 表示的数为x ,若点C 在A 、B 两点之间,则x +4=2(11﹣x ),解得x =6;若点C 在点B 的右侧,则x +4=2(x ﹣11),解得x =26;若点C 在点A 的左侧,则CA <CB ,∴不存在CA =2CB 的情况,综上所述,点C 表示的数是6或26.(3)由题意可知,AP =4t ,BQ =3t ,∴点P 表示的数是﹣4+4t ,点Q 表示的数是11﹣3t ,当点P 在点Q 左侧时,则4t +3t =2[11﹣3t ﹣(﹣4+4t )],解得t =107;当点P 在点Q 右侧时,则4t +3t =2[﹣4+4t ﹣(11﹣3t )],解得t =307,综上所述,t 的值为107或307.三.数形结合之角的动边与方程(超难题型)14.如图,∠AOD =130°,∠BOC :∠COD =1:2,∠AOB 是∠COD 补角的13.(1)∠COD = 60° ;(2)平面内射线OM 满足∠AOM =2∠DOM ,求∠AOM 的大小;(3)将∠COD 固定,并将射线OA ,OB 同时以2°/s 的速度顺时针旋转,到OA 与OD 重合时停止.在旋转过程中,若射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,当∠POQ +∠AOD =50°时,求旋转时间t (秒)的取值范围.试题分析:(1)设∠BOC =α,则∠COD =2α,由此可表达∠AOB 的度数,最后根据角度的和差计算建立方程,求解即可;(2)需要分两种情况,一种是射线OM 在∠AOD 的内部,一种是射线OM 在∠AOD 的外部,根据角度的和差关系建立方程,求解即可;(3)本题需要分类讨论,当射线OB 与射线OQ 重合前,射线OP 与射线OQ 重合前,射线OA 与射线OP 重合前,射线OP 与射线OD 重合后,由此得出t 的取值范围分别是0≤t ≤40,40<t ≤45,45<t ≤50,50<t ≤55,55<t ≤65.画出图形分别表示∠AOD 和∠POQ ,建立方程求出t 的值.答案详解:解:(1)设∠BOC =α,则∠COD =2α,∵∠AOB 是∠COD 补角的13,∴∠AOB =13(180°﹣2α)=60°−23α,∵∠AOB +∠BOC +∠COD =∠AOD ,即60°−23α+α+2α=130°,解得α=30°,∴∠COD =2α=60°;所以答案是:60°;(2)由于射线OM 的位置不确定,所以需要分两种情况:①射线OM 在∠AOD 的内部,如图1:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =∠AOD ,即3∠DOM =130°,∴∠DOM =(1303)°,∴∠AOM =2∠DOM =(2603)°;②射线OM 在∠AOD 的外部,如图2:∵∠AOM =2∠DOM ,∠AOD =130°,∴∠AOM +∠DOM =360°﹣∠AOD ,即3∠DOM =360°﹣130°,∴∠DOM =(2303)°,∴∠AOM =2∠DOM =(4603)°;综上,∠AOM 的度数为:(2603)°或(4603)°;(3)由(1)知,∠AOB =40°,∠BOC =30°,∠COD =60°;∵射线OP 为∠AOB 的平分线,OQ 为∠COD 的平分线,∴∠AOP =∠BOP =20°,∠COQ =∠COQ =30°,当射线OA ,OB 同时以2°/s 的速度顺时针旋转时,∠AOD =130°﹣2°t ,当射线OB 与射线OQ 重合前,即0≤t ≤30,如图3,此时∠POQ =∠AOD ﹣∠AOP ﹣∠DOQ =130°﹣2°t ﹣20°﹣30°=80°﹣2°t ,∴∠POQ +∠AOD =80°﹣2°t +130°﹣2°t =210°﹣2°t ,不是50°,不符合题意;射线OB 与射线OQ 重合后,射线OP 与射线OQ 重合前,即30<t ≤40时,如图4,此时∠BOD =90°﹣2°t ,∴∠BOQ =∠DOQ ﹣∠BOD =30°﹣(90°﹣2°t )=2°t ﹣60°,∴∠POQ =∠BOP ﹣∠BOQ =20°﹣(2°t ﹣60°)=80°﹣2°t ;此时∠POQ+∠AOD=80°﹣2°t+130°﹣2°t+=210°﹣4°t,不是50°,不符合题意;射线OP与射线OQ重合后,射线OB与射线OD重合前,即40<t≤45时,如图5,此时∠BOD=90°﹣2°t,∴∠BOQ=∠DOQ﹣∠BOD=30°﹣(90°﹣2°t)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OB与射线OD重合后,射线OA与射线OQ重合前,即45<t≤50时,如图6,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OA与射线OQ重合后,射线OP与射线OD重合前,即50<t≤55,如图7,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;射线OP与射线OD重合后,射线OA与射线OD重合前,即55<t≤65时,如图8,此时∠BOD=2°t﹣90°,∴∠BOQ=∠DOQ+∠BOD=30°+(2°t﹣90°)=2°t﹣60°,∴∠POQ=∠BOQ﹣∠BOP=2°t﹣60°﹣20°=2°t﹣80°;此时∠POQ+∠AOD=2°t﹣80°+130°﹣2°t=50°,符合题意;综上可知,当∠POQ+∠AOD=50°时,旋转时间t(秒)的取值范围为40≤t≤65.15.如图①,已知∠AOB=100°,∠BOC=60°,OC在∠AOB外部,OM、ON分别是∠AOC、∠BOC的平分线.(1)求∠MON的度数.(2)如果∠AOB=α,∠BOC=β,其它条件不变,请直接写出∠MON的值(用含α,β式子表示).(3)其实线段的计算与角的计算存在着紧密的联系.如图②,已知线段AB=a,延长线段AB 到C,使BC=m,点M、N分别为线段AC、BC的中点,求线段MN的长(用含a,m的式子表示).试题分析:(1)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(2)由已知条件求∠AOC的度数,再利用角平分线的定义可求解∠BOM,∠BON的度数,结合∠MON=∠BOM+∠BON可求解;(3)由已知条件求AC的长,再利用中点的定义可求解BM,BN的度数,结合MN=BM+BN可求解;答案详解:解:(1)∵∠AOB =100°,∠BOC =60°,∴∠AOC =∠AOB +∠BOC =100°+60°=160°,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =80°,∴∠BOM =∠AOB ﹣∠AOM =100°﹣80°=20°,∵ON 平分∠BOC ,∴∠BON =∠CON =30°,∴∠MON =∠BOM +∠BON =20°+30°=50°;(2)∵∠AOB =α,∠BOC =β,∴∠AOC =∠AOB +∠BOC =α+β,∵OM 平分∠AOC ,∴∠MOC =∠MOA =12∠AOC =12(α+β),∴∠BOM =∠AOB ﹣∠AOM =α−12(α+β)=12α−12β,∵ON 平分∠BOC ,∴∠BON =∠CON =12β,∴∠MON =∠BOM +∠BON =12α−12β+12β=12α,故∠MON =α2;(3)∵AB =a ,BC =m ,∴AC =AB +BC =a +m ,∵M 是AC 中点,∴MC =12AC =a m 2,∵N 是BC 中点,∴NC =12BC =m 2,∴MN =MC ﹣NC =a m 2−m 2=a 2.16.如图,∠AOB =90°,∠COD =60°.(1)若OC 平分∠AOD ,求∠BOC 的度数;(2)若∠BOC=114∠AOD,求∠AOD的度数;(3)若同一平面内三条射线OT、OM、ON有公共端点O,且满足∠MOT=12∠NOT或者∠NOT=12∠MOT,我们称OT是OM和ON的“和谐线”.若射线OP从射线OB的位置开始,绕点O按逆时针方向以每秒12°的速度旋转,同时射线OQ从射线OA的位置开始,绕点O按顺时针方向以每秒9°的速度旋转,射线OP旋转的时间为t(单位:秒),且0<t<15,求当射线OP为两条射线OA和OQ的“和谐线”时t的值.试题分析:(1)利用角平分线的定义解答即可;(2)设∠AOD=x,利用角的和差列出关于x的方程,解方程即可求得结论;(3)利用分类讨论的思想方法,根据题意画出图形,用含t的代数式表示出∠AOP和∠QOP的度数,依据“和谐线”的定义列出方程,解方程即可求得结论.答案详解:解:(1)OC平分∠AOD,∴∠COD=∠AOC=12∠AOD.∵∠COD=60°,∴∠AOD=2∠COD=120°;(2)设∠AOD=x,则∠BOC=114x.∵∠AOD=∠AOB+∠BOD,∠BOD=∠COD﹣∠BOC,∴∠AOD=∠AOB+∠COD﹣∠BOC,∵∠AOB=90°,∠COD=60°,∴∠AOD=150°﹣∠BOC.∴x=150−114x.解得:x=140°.∴∠AOD的度数为140°.(3)当射线OP与射线OQ未相遇之前,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=90°﹣∠AOQ﹣∠BOP=90°﹣21t.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP.∴90°﹣21t=12(90°﹣12t).解得:t=3.当射线OP与射线OQ相遇后且均在∠AOB内部时,如图,由题意得:∠AOQ=9t,∠BOP=12t.∴∠AOP=90°﹣∠BOP=90°﹣12t,∠QOP=∠BOP﹣∠BOQ=∠BOP﹣(90°﹣∠AOQ)=21t﹣90°.∵射线OP为两条射线OA和OQ的“和谐线”,∴∠QOP=12∠AOP或∠AOP=12∠QOP.∴21t﹣90°=12(90°﹣12t)或90°﹣12t=12(21t﹣90).解得:t=5或t=6.当射线OP在∠AOB的外部,射线OQ在∠AOB的内部时,如图,。

2024年北京市高考化学真题卷(含答案与解析)_6407

2024年北京市高考化学真题卷(含答案与解析)_6407

绝密★本科目考试启用前2024年普通高中学业水平等级性考试(北京卷)化 学本试卷满分100分,考试时间90分钟。

可能用到的相对原子质量:H-1 C-12 N-14 O-16第一部分本部分共14题,每题3分,共42分。

在每题列出的四个选项中,选出最符合题目要求的一项。

1. 我国科研人员利用激光操控方法,从Ca 原子束流中直接俘获41Ca 原子,实现了对同位素41Ca 的灵敏检测。

41Ca 的半衰期(放射性元素的原子核有半数发生衰变所需的时间)长达10万年,是14C 的17倍,可应用于地球科学与考古学。

下列说法正确的是A. 41Ca 的原子核内有21个中子B. 41Ca 半衰期长,说明41Ca 难以失去电子C.41Ca 衰变一半所需的时间小于14C 衰变一半所需的时间D. 从Ca 原子束流中直接俘获41Ca 原子的过程属于化学变化 2. 下列化学用语或图示表达不正确的是A. 22H O 的电子式:B. 4CH 分子的球棍模型:C. 3+Al 的结构示意图:D. 乙炔的结构式:H C C H ——的3. 酸性锌锰干电池的构造示意图如下。

关于该电池及其工作原理,下列说法正确的是A. 石墨作电池的负极材料B. 电池工作时,+4NH 向负极方向移动 C. 2MnO 发生氧化反应 D. 锌筒发生的电极反应为-2+Zn-2e Zn =4. 下列说法不正确的是A. 葡萄糖氧化生成2CO 和2H O 的反应是放热反应B. 核酸可看作磷酸、戊糖和碱基通过一定方式结合而成的生物大分子C. 由氨基乙酸形成的二肽中存在两个氨基和两个羧基D. 向饱和的NaCl 溶液中加入少量鸡蛋清溶液会发生盐析 5. 下列方程式与所给事实不相符的是A. 海水提溴过程中,用氯气氧化苦卤得到溴单质:--222Br +Cl Br +2Cl =B. 用绿矾(42FeSO 7H O ⋅)将酸性工业废水中的2-27Cr O 转化为3+2+2-+3+3+272Cr :6Fe +Cr O +14H 6Fe +2Cr +7H O =C. 用245% Na SO 溶液能有效除去误食的2+2-2+44Ba :SO +BaBaSO =↓D. 用23Na CO 溶液将水垢中的4CaSO 转化为溶于酸的3CaCO :2+2-33Ca +CO CaCO =↓ 6. 下列实验的对应操作中,不合理的是眼睛注视锥形瓶中溶液A .用HCl 标准溶液滴定NaOH 溶液B .稀释浓硫酸C .从提纯后的NaCl 溶液获得NaCl 晶体D .配制一定物质的量浓度的KCl 溶液A. AB. BC. CD. D7. 硫酸是重要化工原料,工业生产制取硫酸的原理示意图如下。

中考语文复习文言文对比阅读真题《答谢中书书》与《与施从事书》含答案

中考语文复习文言文对比阅读真题《答谢中书书》与《与施从事书》含答案

中考语文复习文言文对比阅读真题《答谢中书书》与《与施从事书》文言文阅读。

【甲】山川之美,古来共谈。

高峰入云,清流见底。

两岸石壁,五色交辉。

青林翠竹,四时俱备。

晓雾将歇,猿鸟乱鸣;夕日欲颓,沉鳞竞跃。

实是欲界之仙都。

自康乐以来,未复有能与其奇者。

(《答谢中书书》陶弘景)【乙】故鄣①县东三十五里,有青山,绝壁干天②,孤峰入汉;绿嶂百重,清川万转。

归飞之鸟,千翼竞来;企水之猿,百臂相接。

秋露为霜,春罗③被径。

“风雨如晦,鸡鸣不已。

”信足荡累颐物,悟衷散赏④。

(《与施从事书》吴均)【注释】①故鄣:古县名,在今浙江安吉县西北。

②干天:直插云霄。

③罗:一种地衣类植物。

④散赏:散心,欣赏。

322.解释下面加点的词语。

(1)古来共谈..( )(2)沉鳞..竞跃( )(3)春罗被.径( )(4)风雨如晦.( )323.翻译文中句子。

(1)晓雾将歇,猿鸟乱鸣(2)归飞之鸟,千翼竞来324.甲文结尾说:“自康乐以来,未复有能与其奇者”,细细品读,你觉得其中有什么言外之意吗?325.陶弘景和吴均都是南朝梁时期的文学家,这两封书信在很多方面有相同之处。

请从艺术手法方面,选一个共同点,简要分析。

【答案】322.共同谈赏的指水中潜游的鱼覆盖(同“披”)昏暗、不明323.(1)清晨的薄雾将要消散的时候,猿、鸟的叫声此起彼伏。

(2)还巢的鸟儿,千翼相连,竞相飞来324.结尾一句,含有三层言外之意:其一,康乐是“能与其奇者”,表现出作者对谢灵运的钦慕;其二,自谢灵运之后,不再有人能“与其奇”,惋惜于世人对秀美山水的无动于衷;其三,“我”是继谢灵运之后又一“与其奇者”,为自己的审美情趣而自许,期与谢公比肩之意溢于言表。

(写出其中一点即可)325.示例一:艺术手法方面,两篇短文都运用了夸张手法,如《答谢中书书》中“高峰入云”,《与施从事书》中“绝壁干天”,都写出了山之高峻。

示例二:两文都运用借景抒情的写法。

甲文描写自然美景,表现了自己欣赏美景的愉悦与自得之情。

《孙权劝学》对比阅读练习(含答案)

《孙权劝学》对比阅读练习(含答案)

08 《孙权劝学》对比阅读中考真题|文言文+文言文|文言群文|古诗词+文言文(2023·青海·中考真题)班级举办“畅游诗文”活动,请你参与。

登飞来峰北宋·王安石飞来山上千寻塔,闻说鸡鸣见日升。

不畏浮云遮望眼,自缘身在最高层。

初,权谓吕蒙曰:“卿今当涂掌事,不可不学!”蒙辞以军中多务。

权曰:“孤岂欲卿治经为博士邪!但当涉猎,见往事耳。

卿言多务,孰若孤?孤常读书,自以为大有所益。

”蒙乃始就学。

及鲁肃过寻阳,与蒙论议,大惊曰:“卿今者才略,非复吴下阿蒙!”蒙曰:“士别三日,即更刮目相待,大兄何见事之晚乎!”肃遂拜蒙母,结友而别。

(选自《资治通鉴》)①子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”(《学而》)②子曰:“温故而知新,可以为师矣。

”(《为政》)③子曰:“学而不思则罔,思而不学则殆。

”(《为政》)④子曰:“知之者不如好之者,好之者不如乐之者。

”(《雍也》)⑤子曰:“三人行,必有我师焉。

择其善者而从之,其不善者而改之。

”(《述而》)⑥子夏曰:“博学而笃志,切问而近思,仁在其中矣。

”(《子张》)(选自《论语》)1.明语气:以下语句该用什么语气读呢?请你帮小华选择其中的一句,帮他解决朗读的困惑。

朗诵的语气:激扬悲伤恳切感叹劝勉①不畏浮云遮望眼,自缘身在最高层。

②卿今当涂掌事,不可不学!③学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?我选择的句子是:朗诵的语气是:2.析字义:请根据示例,参考表格中出示的字的释义,给句中加点字选择恰当的解释并将序号填写到横线上。

文言词句字典中的释义列举恰当的解释示例:见往事耳①朝见②了解选择②(1)不舍昼夜①停②房屋选择(2)士别三日①太阳②天选择(3)温故而知新①学过的知识②所以选择3.赏文本:为了更好地读懂文本,明确作品内涵,同学们展开了讨论,请你结合以上诗文,将下列对话补充完整。

中考语文复习文言文对比阅读真题《答谢中书书》与《与元微之书》含答案

中考语文复习文言文对比阅读真题《答谢中书书》与《与元微之书》含答案

中考语文复习文言文对比阅读真题《答谢中书书》与《与元微之书》阅读下面文言语段,完成下面小题。

【甲】山川之美,古来共谈。

高峰入云,清流见底。

两岸石壁,五色交辉。

青林翠竹,四时俱备。

晓雾将歇,猿鸟乱鸣;夕日欲颓,沉鳞竞跃。

实是欲界之仙都。

自康乐以来,未复有能与其奇者。

(陶弘景《答谢中书书》)【乙】仆去年秋始游庐山,到东西二林①间香炉峰下,见云水泉石,胜绝第一,爱不能舍。

因置草堂,前有乔松十数株,修竹千余竿。

青萝为墙援②,白石为桥道,流水周于舍下,飞泉落于檐间,红榴白莲,罗生池砌。

大抵若是,不能殚记。

每一独往,动弥旬日③。

平生所好者,尽在其中。

不唯忘归,可以终老。

此三泰④也。

计足下久不得仆书,必加忧望,今故录三泰以先奉报,其余事况,条写如后云云。

微之微之!作此书夜,正在草堂中山窗下,信手把笔,随意乱书。

封题之时,不觉欲曙。

举头但见山僧一两人,或坐或睡。

又闻山猿谷鸟,哀鸣啾啾。

平生故人,去我万里,瞥然⑤尘念,此际暂生。

(白居易《与元微之书》)(写作背景)元和十年(815年)八月,宪宗听信谗言,将白居易贬为江州司马。

这封书信体散文写于元和十二年(817 年),白居易47岁,在江州司马任上已经度过了三个年头,也是他进士及第后从政的第十八年。

(注释)①东西二林:指庐山的东林寺和西林寺。

②墙援:篱笆墙。

③动弥旬日:常常满十天。

④泰:安适。

⑤瞥然:形容时间短暂。

220.用“/”给下列句子标注朗读停顿。

(限一处)飞泉落于檐间221.解释下列加点的词语。

(1)晓雾将歇.__________________(2)未复有能与.其奇者_____________________(3)随意乱书.__________________(4)去.我万里________________________222.下列各项中加点词意义和用法相同的一项是()A.自.三峡七百里中/自.非亭午夜分B.沿溯阻绝./哀转久绝.C.或.坐或.睡/或.王命急宣D.夕日欲.颓/不觉欲.曙223.用现代汉语翻译下列句子。

比的解决问题练习题

比的解决问题练习题

比的解决问题练习题一、简答题1. 请解释什么是比的解决问题方法?2. 比的解决问题方法有什么特点?二、选择题1. 下列哪个不是比的解决问题方法?A. 试错法B. 创新法C. 分析法D. 演绎法2. 比的解决问题方法的本质是什么?A. 寻找问题的根源B. 找出多个解决方案进行比较C. 通过实践不断试错D. 分析问题的关键因素三、案例分析某公司为了提高员工的工作效率,经过研究发现了以下三个问题:问题一:公司内部的沟通效率低下,导致信息传递不及时,决策缓慢。

问题二:员工的工作动力不足,缺乏积极性。

问题三:工作任务分配不合理,造成部分员工心理压力过大。

请使用比的解决问题方法,为该公司解决以上三个问题,并进行比较评价。

四、论述题1. 请分析比的解决问题方法在日常生活中的应用场景。

2. 比的解决问题方法与其他解决问题方法相比,有哪些优势和不足之处?五、应用题随着信息技术的发展,人们越来越依赖智能手机。

假设你是一家智能手机厂商的市场经理,请使用比的解决问题方法,找出并解决智能手机市场竞争对手已经优化的问题,并提出创新的解决方案。

六、总结题请总结比的解决问题方法的核心思想和应用步骤。

在进行比的解决问题练习时,需要注意以下几点:1. 审题要准确,确保理解题目的要求。

2. 选择适当的解题方法,注意对比不同方法的优缺点。

3. 论述要清晰,逻辑严密,语言流畅。

4. 提供具体案例或数据支持论述。

5. 结论要明确,总结核心思想。

以上是比的解决问题练习题的相关要点和指导,请根据题目需求进行详细论述,加入个人思考和创新见解,使文章内容丰富且有说服力。

2024年河南高考数学真题(含答案) (2)

2024年河南高考数学真题(含答案) (2)

2024年河南高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m- B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >> D. (2)0.8P Y ><的的10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).的则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.为19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只的有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2-B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin C ===的的又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.小问2详解】由(1)可得π3B =,cos C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 12462A ⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin 1234a b c==,从而,a b ====,由三角形面积公式可知,ABC的面积可表示为211sin 22ABC S ab C === ,由已知ABC面积为323=+,所以c =16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;【的(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP 沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C=或18C=-,当6C=时,联立221129260x yx y⎧+=⎪⎨⎪++=⎩,解得3xy=⎧⎨=-⎩或332xy=-⎧⎪⎨=-⎪⎩,即()0,3B-或33,2⎛⎫--⎪⎝⎭,当()0,3B-时,此时32lk=,直线l的方程为332y x=-,即3260x y--=,当33,2B⎛⎫--⎪⎝⎭时,此时12lk=,直线l的方程为12y x=,即20x y-=,当18C=-时,联立2211292180x yx y⎧+=⎪⎨⎪+-=⎩得22271170y y-+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l的方程为3260x y--=或20x y-=.法二:同法一得到直线AP的方程为260x y+-=,点B到直线AP的距离d=设()00,B x y22001129x y⎪+=⎪⎩,解得332xy=-⎧⎪⎨=-⎪⎩或03xy=⎧⎨=-⎩,即()0,3B-或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP的方程为260x y+-=,点B到直线AP的距离d=设(),3sinBθθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d =,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

中考语文复习文言文对比阅读真题《与朱元思书》与《记承天寺夜游》含答案

中考语文复习文言文对比阅读真题《与朱元思书》与《记承天寺夜游》含答案

中考语文复习文言文对比阅读真题《与朱元思书》与《记承天寺夜游》比较阅读下列两则文言文,完成下面小题。

(甲)风烟俱净,天山共色。

从流飘荡,任意东西。

自富阳至桐庐,一百许里,奇山异水,天下独绝。

水皆缥碧,千丈见底。

游鱼细石,直视无碍。

急湍甚箭,猛浪若奔。

夹岸高山,皆生寒树。

负势竞上,互相轩邈;争高直指,千百成峰。

泉水激石,泠泠作响;好鸟相鸣,嘤嘤成韵。

蝉则千转不穷,猿则百叫无绝。

鸢飞戾天者,望峰息心;经纶世务者,窥谷忘反。

横柯上蔽,在昼犹昏;疏条交映,有时见日。

(《与朱元思书》)(乙)元丰六年十月十二日夜,解衣欲睡,月色入户,欣然起行。

念无与为乐者,遂至承天寺寻张怀民。

怀民亦未寝,相与步于中庭。

庭下如积水空明,水中藻、荇交横,盖竹柏影也。

何夜无月?何处无竹柏?但少闲人如吾两人者耳。

(《记承天寺夜游》)151.解释下列加点词的含义(1)风烟俱净.(2)窥谷忘反.(3)念.无与为乐者(4)水中藻、荇交横..152.下列与“相与步于中庭”一句“于”字用法相同的一项是()A.霜叶红于.二月花B.闻之于.宋君C.其一犬坐于.前D.于.我如浮云153.将下列句子翻译成现代汉语。

(1)急湍甚箭,猛浪若奔。

(2)但少闲人如吾两人者耳。

154.两则文言文都是写景,但表达的心境各有不同,甲文表达作者___________________,乙文表达作者___________________。

【答案】151.(1)没有,消失(2)同“返”,返回(3)考虑,想到(4)交错其中152.C 153.(1)水流比箭还快,汹涌的浪头像飞奔的快马。

(2)只是缺少像我们两这样的有闲人罢了。

154.甲文表达作者寄情山水,厌弃世俗的思想感情。

乙文表达作者随缘自适、自我排遣的特殊心境。

【解析】151.本题考查重点文言词语在文中的含义。

解释词语要注意理解文言词语在具体语言环境中的用法,如通假字、词性活用、古今异义等现象。

①句意为:没有一丝儿风,烟雾也完全消散了。

历届中考真题汇编:文言文比较阅读(2021-2023年)【含答案】

历届中考真题汇编:文言文比较阅读(2021-2023年)【含答案】

【答案】1.B2.A3.(1)邹忌仔细地看着他,自己认为不如徐公美。

(2)这就像秋天的蓬草。

4.示例:三次询问,邹忌询问妻、妾、客自己与徐公谁更美。

三次回答,妻、妾、客都说邹忌要比徐公美。

5.示例:甲文,齐王接纳邹忌的建议,广开言路,最终使“燕、赵、韩、魏闻之,皆朝于齐”,启发我们要善于接纳正确的建议及时改正自身的问题。

乙文,鲁哀侯不听从劝告,最终逃亡齐国,启发我们做人不能固执己见。

【解析】1.本题考查一词多义。

A.名词,这里指身高/动词,修建;B.名词,早晨/名词,早晨;C.连词,表修饰,可不译/连词,表转折,但是、却;D.结构助词,的/代词,他,指卖油翁;故选B。

2.本题考查内容理解。

A.根据甲文“今齐地方千里,百二十城,宫妇左右莫不私王,朝廷之臣莫不畏王,四境之内莫不有求于王:由此观之,王之蔽甚矣”可知,齐威王受到蒙蔽是因为“宫妇左右”偏爱大王,“朝廷之臣”惧怕大王,“四境之内”有求于大王;“原因在于身边的人都有求于他”分析有误;故选A。

3.本题考查学生对句子翻译能力。

我们在翻译句子时要注意通假字、词类活用、一词多义、特殊句式等情况。

重点词有:(1)孰:同“熟”,仔细;视:看;以为:认为;(2)是:这;犹:像;秋蓬:秋天的蓬草。

4.本题考查内容理解。

根据甲文“谓其妻曰:‘我孰与城北徐公美?’”“而复问其妾曰:‘吾孰与徐公美?’”“问之客曰:‘吾与徐公孰美?’”可知,这是三问,邹忌询问妻、妾、客自己与徐公谁更美;根据“其妻曰:‘君美甚,徐公何能及君也?’”“妾曰:‘徐公何能及君也?’”“客曰:‘徐公不若君之美也。

’”可知,这是三答,妻、妾、客都说邹忌要比徐公美;根据“吾妻之美我者,私我也;妾之美我者,畏我也;客之美我者,欲有求于我也”可知,这是三思,思考妻、妾、客说自己比徐公美的原因;根据“臣诚知不如徐公美。

臣之妻私臣,臣之妾畏臣,臣之客欲有求于臣,皆以美于徐公。

今齐地方千里,百二十城,宫妇左右莫不私王,朝廷之臣莫不畏王,四境之内莫不有求于王:由此观之,王之蔽甚矣”可知,这是三比,将邹忌自己的生活经历(“妻之私”“妾之畏”“客之有求”)与威王所处的环境(“宫妇左右”之私、“朝廷之臣”之畏、“四境之内”之求)相比;根据“群臣吏民能面刺寡人之过者,受上赏;上书谏寡人者,受中赏;能谤讥于市朝,闻寡人之耳者,受下赏”可知,这是三赏,齐王根据不同的情况制定了三条赏赐的规定;根据“令初下,群臣进谏,门庭若市;数月之后,时时而间进;期年之后,虽欲言,无可进者”可知,这是三变,展现了随着时间的推移进谏情况的变化。

中考语文复习文言文对比阅读真题《游洞庭将归再赋》《与朱元思》与《吴均集校注》含答案

中考语文复习文言文对比阅读真题《游洞庭将归再赋》《与朱元思》与《吴均集校注》含答案

中考语文复习文言文对比阅读真题《游洞庭将归再赋》《与朱元思》与《吴均集校注》阅读古诗文,完成问题。

【材料一】游洞庭将归再赋【明】文征明①城中遥指一螺苍,到此依然自一乡。

晓鼓②隔溪渔作市,秋风吹枳橘连墙。

名山更倚湖增胜,清赏刚临月有光。

正尔会心空又去,不如僧住竹间房。

(文征明《甫田集•卷一》)【注释】①文征明:明代书画家,文学家,短暂入仕,后辞官。

②渔市报讯的鼓声。

【材料二】与朱元思书【南朝•梁】吴均泉水激石,泠泠..作响;好鸟相鸣,嘤嘤成韵。

蝉则千转不穷,猿则百叫无绝.。

鸢飞戾天者,望峰息心;经纶世务者,窥谷忘反。

横柯上蔽,在昼犹昏;疏条交映,有时见日。

(节选自《吴均集校注》)【材料三】芙蓉渡①【明】祁彪②自草阁达瓶隐③,有曲廊。

俯槛临流,见奇石兀起,石畔筼筜寒玉④,瑟瑟秋声。

小沼澄碧照人如翠鸟穿弄枝叶上。

吾园长于旷,短于幽,得此地一啸一咏,便可终日。

廊及半,东面有小径,自此而台、而桥、而屿,红英⑤浮漾,绿水斜通,都不是主人会心处。

唯.是冷香数朵,想象秋江寂寞时,与远峰寒潭共作知己,遂.以芙蓉字吾渡。

(节选自《祁彪佳集》,有删改)【注释】①芙蓉:木芙蓉,秋日开花,耐寒不落。

②祁彪佳,为人刚正不阿,性情孤傲,因朝廷腐败,晚年归隐,仍一身正气,凛然自若。

③草阁,瓶隐:地名。

④筼筜(yún dāng)寒玉:均指竹。

筼筜,指大竹;寒玉,指玉质清凉之物,有时代指竹。

⑤红英:红花。

(1)下列对《游洞庭将归再赋》分析不正确...的一项是()A.本诗为七言律诗,全诗通押一个韵,颔联上下句是对偶句。

B.诗歌颔联描绘了深秋时节渔家晚归、寂静冷清的湖边图景。

C.诗人夜观洞庭,视角多样,动静相宜,月下山水更具美感。

D.“清赏”“僧住”体现了作者退居林壑、流连泉石的闲情。

(2)展开合理想象,用自己的语言描绘“秋风吹枳橘连墙”的画面。

(3)请用“/”为下面句子划分节奏。

(限1处)小沼澄碧照人如翠鸟穿弄枝叶上(4)解释下列加点的词。

2009年考研英语真题答案及解析

2009年考研英语真题答案及解析

这是一篇科技类文章,文章谈到培养新习惯对思维创新的作用。文章首段回顾了传统观点的看法,文章第二段
通过一项最新的研究引出了对习惯的最新研究观点。后四个段落则从不同方面鼓励人们培养新习惯。
二、试题具体分析
21. 根据 Wordsworth 的观点,习惯具有 特征。
[A] 偶然的
[B] 熟悉的
[C] 机械的
[B] 控制
[C] 跟踪
[D] 指导Байду номын сангаас
【答案】 D
3
淘宝店铺:https:/// 掌柜旺旺:新一文化
【考点】事实细节
【解析】文章第二段第二句谈到这方面的内容,“大脑的研究者发现,当我们有意识的形成新习惯时,我们创
造了平行突触神经元,甚至产生完全新的脑细胞,这能使我们的思考路径进入一种新的创新轨道”,从该句我
[B] unless 除非
[C] as 与……一样 [D] lest 以免
【答案】 A
【考点】逻辑搭配
【解析】空所在的语境为:我们认为 动物在进行这种实验,他们会……。显然我们知道动物是不可能去做实验
的,那么这种情况只能是一种假设,四个选项中,表示假设只有 A,故本题答案为 A。
16.[A] moderate 缓和 [B] overcome 克服 [C] determine 决定 [D] reach 达到
并列句,而最后一句的语义显然强于前面两句,表示强调的只有选项 A,故本题答案为 A。
19.[A] fundamental 基本的
[B] comprehensive 全面的
[C] equivalent 相等的
[D] hostile 敌对的
【答案】 A
【考点】逻辑搭配
【解析】从 18 题我们已经分析出本句是作为一种强调的语义,能突出这一点的只有 A,故本题答案为 A。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较(答案详解)1. Which of the following italicized phrases is INCORRECT? (2011, 56)[ A ] The city is now ten times its original size.[ B ] 1 wish 1 had two times his strength.[ C ] The seller asked for double the usual price.[D] They come here four times every year.Key: [ B]。

【译文】下列哪个句子中的斜体部分是错误的?【精解】倍数表达题。

用time:表示倍数,一般限于三倍或者以上的数,表示两倍通常用twice,因此[B]错误。

2. A new laptop costs about ______ of a second-hand one. (2009, 55)[ A ] the price of three times [ B ] three times the price[ C ] as much as the three times price [ D ] three times more than the priceKey: [ B ]。

【译文】一台新笔记本的价格是一台二手笔记本的三倍。

【精解】倍数表达题。

英语中常用的倍数表示法有(1)主语+谓语+倍数(或分数)+as+adj+as。

例如:I have three times as many as you.(我有你三倍那么多。

)(2)主语+谓语+倍数(分数)+the size (amount,length…)of…。

例如:The earth is 49 times the size of the moon.(地球是月球的49倍大。

)(3)主语+谓语+倍数(分数)+形容词(副词)比较级+than…。

例如:The grain output is 8 pereent higher this year than that 0f last year.(今年比去年粮食产量增加8%。

)(4)还可以用by+倍数,表示增加多少倍。

例如:The production of grain has been increased by four times this year.(今年粮食产量增加了4倍。

)本句是第二种表示倍数关系的用法。

3. There are as good fish in the sea ______ ever came out of it. (2007, 51)[A] than [B] like [C] as [D] soKey: [C]。

【译文】纵然失去一个机会,但不愁没有其他机会。

【精解】比较结构题。

本句改自爱尔兰谚语:Therea is as good fish in thesea as ever came out of it.原意为:海里的好鱼是取之不尽的。

这里考查的是as…as...这一结构,故本题[C]正确。

4. It is not ______ much the language as the background that makes the book difficult to understand. (2007, 57)[A] that [B] as [C] so [D] veryKey: [C]。

【译文】与其说是语言还不如说是背景让这本书难以理解。

【精解】比较结构题。

这里考查not so.much...as…的用法,这一结构意为“与其说……不如说……”。

例如:He is not so much a player as a coach.(与其说他是个队员,不如说他是个教练。

)5. Overpopulation poses a terrible threat to the human race. Yet it is probably_____ a threat to the human race than environmental destruction. (2007, 62)[ A ] no more [ B ] not more [ C ] even more [ D ] much moreKey: [B]。

【译文】人口过剩对人类造成严重威胁。

但是人口过剩与其说可能威胁人类,还不如说是可能威胁环境。

【精解】比较结构题。

本句考查not more…than…这一结构,意为“与其说是……,不如说是……”,这里隐含的是后者好于/强于前者之意。

注意yet常用于否定句和疑问句,因此可立即排除[ C ]和[D]。

而no more…than…的意思是“两者都不……”。

例如:’He's no more fit to be a minister than a schoolboy would be.(他和一个小学生一样都不适合当部长。

)6. It was ______ we had hoped. (2006, 64)[ A ] more a success than [ B ] a success more than[ C ] as much of a success as [ D ] a success as much asKey: [ C ]。

【译文】这和我们预期的成功一样。

【精解】形容词同级比较题。

结构of a+n.相当于一个形容词,即of a success相当于successful,用于同级比较句型as…as,因此as much of a success as为正确答案。

7. Do you know Tim's brother? He is ______ than Tim. (2005, 59)[ A ] much more sportsman [ B ] more of a sportsman[ C ] more of sportsman [ D ] more a sportsmanKey: [B]。

【译文】你认识蒂姆的兄弟吗?他比蒂姆更擅长运动。

【精解】形容词比较级题。

结构of a+n相当于一个形容词,表示具有后面那个名词的性质;它的比较级和形容词一样,也要用more来修饰,因此more of a sportsman为正确答案。

8. That trumpet player was certainly loud. But I wasn't bothered by his loudness______ by his lack of talent. (2004, 41)[ A ] so much as [ B ] rather than [ C ] as [ D ] thanKey: [A]。

【译文】那个喇叭手的确吹得很响。

但是,让我厌烦的倒不是他吹得太响,而是他缺乏这方面的才能。

【精解】比较结构题。

not…so much…as引导一个否定性比较结构,表示“与其……不如……”的意思;其中的much是副词,表示程度。

因此本题应该选择[A]。

9. The less the surface of the ground yields to the weight of a fully-loaded truck,______ to the truck. (2004,44)[ A ] the greater stress is [ B ] greater is the stress[ C ] the stress is greater [ D ] the greater the stressKey: [ D ]。

【译文】地面在载满货物的卡车的重压下,塌陷得越少,它给卡车的应力也就越大。

【精解】比较结构题。

“The+比较级,the+比较级”结构表示“越……越……”;前后两个部分都应该使用自然语序。

例如:The more I learn, the more I master.有时第二部分可以使用省略形式,本句的完整形式为the greater the stress it yields to truck is,其省略形式为theGreater the stress,因此[D]为正确答案。

10. Issues of price, place, promotion and product are ______ conventional concerns in planning marketing strategies. (2004, 49)[ A ] these of the most [ B ] most of those[ C ] among the most [ D ] among the many ofKey: [ C ]。

【译文】价格、地点、宣传和产品等问题都属于营销策划时最常见的一些考虑因素。

【精解】最高级题。

这里among与形容词最高级形式连用,表示“在最……的一类中”,因此本题应该选择[ C ]。

11. John is ______ hardworking than his sister, but he failed in the exam.( 1998, 41)[ A ] no less [ B ] no more [ C ] not less [ D ] no soKey: [A]。

【译文】约翰并不比妹妹少用功,但还是没有通过考试。

【精解】比较级题。

no less…than...表示“在……方面不比……差”。

no more…than表示“和……一样,都不……”。

因此,[A]为本题的正确答案。

12. The children prefer camping in the mountains ______ an indoor activity.(1998, 46)[A] to [B] than [C] for [D] withKey: [A]。

【译文】孩子们更喜欢在山里野营,而不是在室内做活动。

【精解】比较句型题。

prefer A t0 B表示“与B相比起来,更喜欢A”。

因此,本题的正确答案应该是[A]。

13. Language belongs to each member of the society, to the cleaner ______ to theprofessor. (1998, 47)[ A ] as far as [ B ] the same as [ C ] as much as [ D ] as long asKey: [ C ]。

【译文】语言属于社会里的每一个成员,对于清洁工和教授而言,没有什么两样。

相关文档
最新文档