三角函数中的参数问题分类例说

合集下载

初二数学中常见的三角函数问题

初二数学中常见的三角函数问题

初二数学中常见的三角函数问题三角函数是初中数学中的重要内容,也是数学建模和高中数学的基础知识。

初二数学涉及的三角函数问题主要包括角度的度数与弧度的转换、基本三角函数的定义与性质、三角函数的图像与性质、解三角函数方程等。

下面将分别对这些问题进行详细的介绍和解答。

一、角度的度数与弧度的转换角度的度数与弧度的转换是初二数学中常见的三角函数问题。

在解决这类问题时,我们需要掌握以下基本原理:1. 角度的度数转换为弧度时,需要用到以下公式:弧度 = 度数× π / 1802. 弧度转换为角度的度数时,需要用到以下公式:度数 = 弧度× 180 / π通过这些公式,我们可以方便地在角度度数与弧度之间进行转换。

二、基本三角函数的定义与性质初二数学中最常见的三个基本三角函数是正弦函数、余弦函数和正切函数。

它们分别记作sinθ、cosθ和tanθ。

这些函数的定义和性质如下:1. 正弦函数的定义与性质:正弦函数sinθ定义为直角三角形中对边与斜边的比值,其中θ为对应的角度。

其性质包括:sin(90°+θ) = cosθ,sin(-θ) = -sinθ,sin(180°-θ) = sinθ等。

2. 余弦函数的定义与性质:余弦函数cosθ定义为直角三角形中邻边与斜边的比值,其中θ为对应的角度。

其性质包括:cos(-θ) = cosθ,cos(180°-θ) = -cosθ,cos(360°+θ) = cosθ等。

3. 正切函数的定义与性质:正切函数tanθ定义为直角三角形中对边与邻边的比值,其中θ为对应的角度。

其性质包括:tanθ = sinθ / cosθ,tan(-θ) = -tanθ,tan(180°+θ) = tanθ等。

了解并掌握这些基本三角函数的定义与性质,可以帮助我们更好地解决与三角函数相关的问题。

三、三角函数的图像与性质初二数学中,还经常涉及到三角函数的图像与性质的问题。

高中三角函数常见题型与解法

高中三角函数常见题型与解法

三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:α=(α+β)-β,β=-等。

(3)降次与升次。

即倍角公式降次与半角公式升次。

(4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

(5)引入辅助角。

asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。

(6)万能代换法。

巧用万能公式可将三角函数化成tan的有理式。

2、证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4、解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思维与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如.也要注意题目中所给的各角之间的关系。

注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等。

熟悉常数“1”的各种三角代换:等。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们来详细归纳一下三角函数的知识点和常见题型。

一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。

按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算公式为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。

4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。

二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。

例如:sin(π +α) =sinα,cos(π α) =cosα 等。

四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。

性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。

2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。

性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。

应用三角函数的性质求解参数

应用三角函数的性质求解参数

问题5应用三角函数的性质求解参数问题一、考情分析利用三角函数的性质求参数取值或范围是往往是高考中的亮点,这类问题一般涉及到值域、单调性及周期性等性质,三角函数因为其函数性质的特殊性,如正弦函数和余弦函数的有界性,往往在确定变量范围,或者最大值最小值有关问题上起着特殊的作用.如果试题本身对自变量的取值范围还有限制,则更应该充分注意. 二、经验分享(1) 三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; ③通过换元,转换成二次函数求值域.(2)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(3)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(4)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. (5)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(6)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(8)求y =A sin(ωx +φ)+B (A >0,ω>0)解析式的步骤①求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.②求ω,确定函数的周期T ,则ω=2πT .③求φ,常用方法如下:i.代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.ii.五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.三、知识拓展 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).3.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.4.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标. 四、题型分析(一) 与函数最值相关的问题 【例1】已知函数.(1)求函数()f x 的最小正周期与单调递增区间; (2)若时,函数()f x 的最大值为0,求实数m 的值.【分析】(1)()f x 化为,可得周期22T ππ==,由可得单调递增区间;(2)因为,所以,进而()f x 的最大值为,解得12m =. 【解析】(1),则函数()f x 的最小正周期T π=, 根据,k Z ∈,得,k Z ∈,所以函数()f x 的单调递增区间为,k Z ∈.(2)因为,所以,则当262x ππ-=,3x π=时,函数取得最大值0,即,解得12m =. 【点评】三角函数的最值问题,大多是含有三角函数的复合函数最值问题,常用的方法为:化为代数函数的最值,也可以通过三角恒等变形化为求y =A sin(ωx +φ)+B 的最值;或化为关于sin x (或cos x )的二次函数式,再利用换元、配方等方法转化为二次函数在限定区间上的最值. 【小试牛刀】【江苏省启东中学2018届高三上学期第二次月考】若方程在[)0,2π上有且只有两解,则实数m 的取值范围_____. 【答案】【解析】所以当时, y m = 与22y t t =+ 只有一个交点,当3m =时1t =,方程解所以要使方程在[)0,2π上有且只有两解,实数m 的取值范围(二) 根据函数单调性求参数取值范围如果解析式中含有参数,要求根据函数单调性求参数取值范围,通常先求出函数的单调区间,然后利用集合间的关系求解.或转化为使得某个等式或不等式(可以、恒)成立,通常分离参数,求出解析式的范围或最值,进而求出参数的范围即可.【例2】已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.【分析】根据y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,列出关于ω的不等式组【解析】 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54.【答案】⎣⎢⎡⎦⎥⎤12,54【点评】求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错;已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.【小试牛刀】【南京市、盐城市2018届高三年级第一次模拟】若函数sin y x ω=在区间[]0,2π上单调递增,则实数ω的取值范围是________. 【答案】10,4⎛⎤ ⎥⎝⎦【解析】由题意得,所以5.(三) 根据函数图象的对称性求参数取值范围【例3】已知函数.(1)若函数)(x f y =的图像关于直线对称,求a 的最小值;(2)若存在使成立,求实数m 的取值范围.【分析】(1)先利用降幂公式进行化简,然后利用辅助角公式将)(x f 化为,最后根据正弦函数的对称性求出对称轴,求出a 的最小值即可; (2)根据的范围求出320π+x 的范围,再结合正弦函数单调性求出函数f(x 0)的值域,从而可求出m=00021)20()sin(2)3x m f x x π-=⇒==+的取值范围.【解析】(1)首先将函数)(x f y =的解析式化简为:,又因为函数)(x f y =的图像关于直线对称,所以,即,又因为0>a ,所以a 的最小值为12π. (2)故.【点评】对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是不是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断. 【小试牛刀】【2018届安徽省亳州市蒙城高三第五次月考】若将函数的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是 【答案】8π【解析】函数的图象向左平移()0ϕϕ>个单位,得到图象关于y 轴对称,即,解得,又0ϕ>,当0k =时, ϕ的最小值为8π. (四) 等式或不等式恒成立问题在等式或不等式恒成立问题中,通常含有参数,而与三角函数相关的恒成立问题,一定要注意三角函数自身的有界性,结合自变量的取值范围,才能准确求出参数的取值或范围. 【例4】已知不等式对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是【答案】22m ≤【解析】因为=,所以原不等式等价于在,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立.因为,所以∈2[,2]2,所以22m ≤,故选B . 【点评】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B .【小试牛刀】【2018届江苏省常熟市高三上学期期中】已知函数,若对任意的实数,都存在唯一的实数[]0,m β∈,使,则实数m 的最小值是__________.【答案】2π【解析】函数,若对任意的实数,则:f (α)∈[﹣32,0],由于使f (α)+f (β)=0,则:f (β)∈[0, 32].,,β=2π,所以:实数m 的最小值是2π.故答案为: 2π(五) 利用三角代换解决范围或最值问题由于三角函数的有界性,往往可以用它们来替换一些有范围限制的变量,再利用三角函数的公式进行变换,得到新的范围,达到解决问题的目的.【例5】已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为__________.A .43 B .23C .3D .2 【解析】设椭圆方程为22221x y a b+=(a >b >0),双曲线方程为222211x y a b -=(a >0,b >0),其中a >a 1,半焦距为c ,于是|PF 1|+|PF 2|=2a ,|PF 1|-|PF 2|=2a 1,即|PF 1|=a +a 1,|PF 2|=a -a 1, 因为,由余弦定理:4c 2=(a +a 1)2+(a -a 1)2-2(a +a 1)(a -a 1)即4c 2=a 2+3a 12,即令ac =2cosθ,13a c=2sinθ 所以【点评】合理使用三角代换,可以使得运算步骤(特别是与求最值相关的运算)变得非常简洁. 【小试牛刀】已知实数,x y 满足221x y +=,则的最小值为【答案】43【解析】由221x y +=,可设,则=.五、迁移运用1.【江苏省常州市2019届高三上学期期末】已知函数是偶函数,点是函数图象的对称中心,则最小值为________.【答案】【解析】∵函数f(x)=sin(ωx+φ)(ω>0,φ∈R)是偶函数,∴φ=,∵点(1,0)是函数y=f(x)图象的对称中心∴sin(ω+φ)=0,可得ω+φ=k2π,k2∈Z,∴ω=k2π﹣φ=(k2﹣k1)π﹣.又ω>0,所以当k2﹣k1=1时,ω的最小值为.故答案为:.2.【江苏省盐城市、南京市2019届高三年级第一次模拟】设函数,其中.若函数在上恰有个零点,则的取值范围是________.【答案】【解析】取零点时满足条件,当时的零点从小到大依次为,所以满足,解得:3.【江苏省苏北四市2019届高三第一学期期末】将函数()的图象向左平移个单位长度后,所得图象关于直线对称,则的最小值为______.【答案】【解析】将函数f(x)=sin(ωx)(ω>0)的图象向左平移个单位后,可得函数y=sin(ωx)的图象,再根据所得图象关于直线x=π对称,可得ωπkπ,k∈Z,∴当k=0时,ω取得最小值为,故答案为:.4.【江苏省徐州市2019届高三上学期期中】已知函数,若,且,则的最大值为______.【答案】【解析】令=1,,则,===,m ,n ,k 都是整数,因为,所以,所以,的最大值为.5.【江苏省常州2018届高三上学期期末】如图,在平面直角坐标系xOy 中,函数的图像与x 轴的交点A , B , C 满足,则ϕ=________.【答案】34π【解析】不妨设0x ωϕ+=, πx ωϕ+=,,得,由,得,解得3π4ϕ=. 6.【江苏省淮安市等四市2018届高三上学期第一次模拟】若函数的图象与直线y m =的三个相邻交点的横坐标分别是6π, 3π, 23π,则实数ω的值为____. 【答案】4 【解析】,所以4ω=。

三角函数基本题型及解题方法

三角函数基本题型及解题方法

三角函数基本题型及解题方法三角函数基本题型及解题方法对于三角函数的问题,特别是一些创新型问题,对大多数同学来说可能会感到陌生。

这些问题主要考查学生对于重要数学思想和方法的掌握以及在考试时对自己心态的调整。

但是,我们可以使用特殊化方法来解决这些问题。

特殊化方法的解题依据是,题目所叙述的一般情形成立,则对特殊情形也应该成立。

若不成立,则必然选项是错误的。

特殊化方法一般有赋特殊值、特殊函数等。

一、单调性类问题例11)若A、B是锐角三角形ABC的两个内角,则点P(cosB-sinA。

sinB-cosA)在哪个象限?选项为A、B、C、D。

2)设α、β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是?选项为A、B、C、D。

分析:这是依托基本的几何图形三角形,创新型的考查三角函数的单调性等重要性质的题目。

常规解法运算繁杂,用特殊化方法则可出奇制胜。

对于(1),赋A=B=60°,可知选B;对于(2),赋α=β=30°,可知选D。

例2若A、B、C是△XXX的三个内角,且A<B<C(C≠π/2),则下列结论中正确的是哪个?选项为A、B、C、D。

分析:赋A=30°,B=70°,C=80°,可知B、D错;赋A=30°,B=50°,C=100°,知C错。

故选A。

例3函数y=xcosx-sinx在下面哪个区间内是增函数?选项为A、B、C、D。

分析:所给函数的定义域显然是R,又令f(x)=xcosx-sinx,则f(π/2)=f(3π/2)=-1,f(π)=-π,f(π/6)=1,f(2π)=2π。

如对选项A,x从π/3到2π/3,y从-1,-π到1,不符合题意,同理可排除C、D。

例4函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是哪个?选项为A、B、C、D。

分析:只需考虑区间端点处的函数值,有①x=0,y=1;②x=π/12,y=√3/2;③x=π/3,y=-2;④x=5π/6,y=1.可知选项B为正确答案。

三角函数与导数实际问题案例

三角函数与导数实际问题案例

三角函数与导数实际问题案例【案例一】建筑物斜坡设计在建筑工程中,斜坡的设计是一个非常重要的环节,它不仅要求斜坡的坡度合理,还需要确保斜坡的稳定性和安全性。

三角函数与导数在斜坡设计中起到了重要的作用。

一般来说,斜坡的设计会参考土壤力学和结构力学的相关知识。

为了使斜坡具有稳定性,我们需要考虑地面的坡度、土壤的性质、周围环境的影响等因素。

而这些因素涉及到三角函数的应用。

首先,我们来看斜坡的坡度。

坡度是指斜坡上升或下降的程度,它通常用斜率来表示。

斜坡的斜率可以通过计算斜坡的高度差与水平距离之比来得到。

在计算过程中,我们需要使用到反三角函数。

其次,我们要考虑土壤的性质。

不同种类的土壤对斜坡的稳定性有不同的影响。

为了评估土壤的稳定性,我们需要研究土壤的切变强度。

而计算土壤的切变强度就需要用到导数,通过对切变强度关于土壤的应力和应变进行微分求导,我们可以得到切变强度的变化率,从而评估土壤的稳定性。

此外,斜坡设计还需要考虑周围环境对斜坡的影响。

例如,附近的地震、洪水等自然灾害会对斜坡的稳定性造成威胁。

在这种情况下,我们可以通过计算斜坡受力情况的导数,分析斜坡在外部力作用下的响应,从而进行相应的设计和加固工作。

综上所述,三角函数与导数在建筑物斜坡设计中具有广泛的应用。

无论是计算斜坡的坡度,还是评估土壤的稳定性,抑或是分析斜坡在外界力作用下的响应,这些问题都需要借助三角函数和导数这两个数学工具来求解。

因此,掌握三角函数和导数的原理和应用,对于建筑工程师来说是非常重要的。

【案例二】物体运动轨迹分析物体的运动轨迹分析是物理学中的一个重要问题,它涉及到运动学和微积分的知识。

而三角函数与导数在物体运动轨迹分析中扮演着关键的角色。

首先,我们来看一个简单的例子:抛体运动。

当我们抛出一个物体时,它会沿着一个特定的轨迹运动。

为了描述这个运动轨迹,我们需要确定物体在不同时间点的位置。

而这个问题可以通过运用三角函数中的正弦函数来解决。

三角函数最值问题的十种常见解法-6.18

三角函数最值问题的十种常见解法-6.18

拼搏的你,背影很美!三角函数最值问题的十种常见解法三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。

解决三角函数的最值问题不仅会用到三角函数的基本定义、单调性、奇偶性、周期性、有界性和三角函数图像,而且还会用到三角函数的多种恒等变化。

同时,在三角函数的最值问题中常常涉及到初等函数、不等式、方程、几何等方面问题;常用公式1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±=。

2. 辅助角公式sin cos ),sin a x b x x ϕφφ+=+==3.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。

4.半角公式sin2α=cos 2α=tan 2α= (sin 1cos tan21cos sin ααααα-==+)5. 万能公式22222tan1tan 2tan222sin ,cos ,tan 1tan 1tan 1tan 222ααααααααα-===++-拼搏的你,背影很美!题型一:sin y a x b =+或cos y a x b =+型函数 策略:转化为一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法,即利用sin 1x ≤或cos 1x ≤便可求解,max min ,y a b y a b =+=-+。

评析:①必须注意字母a 的符号对最值的影响;②必须注意自变量x 对最值的影响。

例1:求函数2cos 1y x =-的值域解析:此为cos y a x b =+型的三角函数求最值问题, 设cos t x =, 由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-巩固:求sin()cos 6y x x π=-,(,)43x ππ∈的值域解析:111sin()cos sin(2)sin sin(2)6266264y x x x x ππππ⎡⎤=-=--=--⎢⎥⎣⎦ ∵(,)43x ππ∈,∴2(,)632x πππ-∈,∴sin(2)(62x π-∈∴11,)44y -∈拼搏的你,背影很美!题型二:sin cos y a x b x =+型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

三角函数最值问题常见解法

三角函数最值问题常见解法

三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。

例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。

()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。

[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。

解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。

专题10 三角函数性质、最值和ω题型归类(解析版)

专题10 三角函数性质、最值和ω题型归类(解析版)

专题10 三角函数性质、最值和ω题型归类一、重点题型目录【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心 【题型】三、图像法求三角函数的最值或值域 【题型】四、换元法求三角函数的最值或值域【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数 【题型】六、五点法求三角函数的解析式 【题型】七、利用图象平移求函数的解析式或参数 二、题型讲解总结【题型】一、整体代入法求三角函数的单调区间对称轴和对称中心 例1.(2023·全国·高三专题练习)已知函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在56x π=时取得最大值,则()f x 在[π,0]-上的单调增区间是( ) A .5ππ6⎡⎤--⎢⎥⎣⎦, B .5ππ66⎡⎤--⎢⎥⎣⎦, C .π03⎡⎤-⎢⎥⎣⎦, D .π06⎡⎤-⎢⎥⎣⎦, 【答案】D【分析】根据题意可得5πsin 16ϕ⎛⎫+= ⎪⎝⎭,则可求出ϕ,由于0A >,所以利用正弦函数的性质可求出答案.【详解】解:因为函数π()sin()(0,0)2f x A x A ϕϕ=+>-<<在5π6x =取最大值所以5πsin 6A A ϕ⎛⎫+= ⎪⎝⎭,则5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5πππ,Z 62k k ϕ+=+∈,得ππ,Z 3k k ϕ=-+∈ 又因为π02ϕ-<< 所以π3ϕ=-, 所以π()sin (0)3f x A x A ⎛⎫=-> ⎪⎝⎭,由πππ2π2π,Z 232k x k k -+≤-≤+∈,得5ππ22,Z 66ππk x k k -+≤≤+∈, 所以()f x 的递增区间为()π5π2π,2πZ 66k k k ⎡⎤-++∈⎢⎥⎣⎦,所以()f x 在[π,0]-上的单调增区间是π06⎡⎤-⎢⎥⎣⎦,, 故选:D .例2.(2022·黑龙江·哈尔滨市剑桥第三高级中学有限公司高三阶段练习)函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的一个对称中心是( )A .,112π⎛⎫⎪⎝⎭B .7,012π⎛⎫⎪⎝⎭ C .,13π⎛⎫ ⎪⎝⎭D .5,012π⎛⎫- ⎪⎝⎭【答案】C【分析】根据余弦型函数,求出其对称中心即可判断作答.【详解】在函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭中,由2,Z 62x k k πππ-=+∈得,,Z 23k x k ππ=+∈, 所以函数()2cos 216f x x π⎛⎫=-+ ⎪⎝⎭的对称中心是(,1)(Z)23k k ππ+∈,显然B ,D 不满足,A 不满足,当0k =是,对称中心为(,1)3π,C 满足.故选:C例3.(2022·湖北·宜都二中高三期中)已知函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()f x 的图象可由()cos g x A x ω=图象向右平移π9个单位长度得到B .()f x 图象的一条对称轴的方程为5π9x =-C .()f x 在区间29π17π,3636⎛⎫-- ⎪⎝⎭上单调递增 D .()2f x ≥的解集为2k π2π2k π,()393k ⎡⎤+∈⎢⎥⎣⎦Z 【答案】ABD【分析】根据函数的振幅、周期、及过点4,49π⎛⎫-⎪⎝⎭可求得π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭, 对于选项A :利用函数图象的平移检验即可;对于选项B :令ππ3π,62x k k +=+∈Z 可解得()f x 图象对称轴的方程,检验是否能取到5π9x =-即可. 对于选项C :求出π9π5π3,644x ⎛⎫+∈-- ⎪⎝⎭,验证正弦函数在9π5π,44⎛⎫-- ⎪⎝⎭是否单调增.对于选项D : 直接解三角不等式π1sin 362x ⎛⎫+≥ ⎪⎝⎭即可获得答案.【详解】由题意知34ππ4,4918A T ⎛⎫==-- ⎪⎝⎭,解得2π3T =,所以2π3T ω==, 所以()4sin(3)f x x ϕ=+.又点4,49π⎛⎫- ⎪⎝⎭在()f x 的图象上, 所以4π4sin 349ϕ⎛⎫⨯+=- ⎪⎝⎭,所以4π3π2π,32k k ϕ+=+∈Z , 解得π2π,6k k ϕ=+∈Z ,又||2ϕπ<,所以ϕ=π6, 所以π()4sin 36f x x ⎛⎫=+ ⎪⎝⎭,将π()4cos34sin 32g x x x ⎛⎫==+ ⎪⎝⎭向右平移π9个单位可得πππ4sin 34sin 3()926y x x f x ⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 正确;令ππ3π,62x k k +=+∈Z ,解得ππ,93k x k =+∈Z ,令2k =-得5π9x =- 所以()f x 图象的对称轴的方程为5π9x =-.故B 正确; 当29π17π,3636x ⎛⎫∈-- ⎪⎝⎭时,π9π5π3,644t x ⎛⎫=+∈-- ⎪⎝⎭,sin y t =在9π5π,44t ⎛⎫∈-- ⎪⎝⎭上不是单调递增的,故C 错误;令()2f x ≥,即π1sin 362x ⎛⎫+≥ ⎪⎝⎭,所以ππ5π2π32π,666k x k k +≤+≤+∈Z ,解得2π2π2π,393k k x k ≤≤+∈Z ,即()2f x ≥的解集为2π2π2π,()393k k k ⎡⎤+∈⎢⎥⎣⎦Z ,故D 正确. 故选:ABD.例4.(2023·全国·高三专题练习)已知函数()[]π4sin 2,π,03f x x x ⎛⎫=-∈- ⎪⎝⎭,则()f x 的单调递增区间是________.【答案】7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【分析】利用正弦函数的单调性以及整体代入的方法,求出()f x 的单调递增区间,结合[]π,0x ∈-,得出答案.【详解】由()πππ2π22πZ 232k x k k -+≤-≤+∈,得()π5πππZ 1212k x k k -+≤≤+∈,当1k =-时,13π7π,1212x ⎡⎤∈--⎢⎥⎣⎦;当0k =时,π5π,1212x ⎡⎤∈-⎢⎥⎣⎦;又因为[]π,0x ∈-,所以()f x 的单调递增区间为7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦故答案为:7ππ,12⎡⎤--⎢⎥⎣⎦和π,012⎡⎤-⎢⎥⎣⎦【题型】二、代入检验判定求三角函数的单调区间对称轴和对称中心例5.(2023·全国·高三专题练习)已知α,β,γ是三个互不相同的锐角,则在sin cos αβ+,sin cos βγ+,sin cos γα+ )个 A .0 B .1C .2D .3【答案】C【分析】先根据辅助角公式得到三个式子的和小于得到在sin cos αβ+,sin cos βγ+,sin cos γα+三个值中,,再举出例子,得到三个值中,有2个值符合要求,故得到答案.【详解】因为α,β,γ是三个互不相同的锐角, 所以sin cos sin cos sin cos αββγγα+++++πππ444αβγ⎛⎫⎛⎫⎛⎫=+++<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以在sin cos αβ+,sin cos βγ+,sin cos γα+若令π3α=,π4β=,π6γ=,则sin cos αβ+=>sin cos βγ+=+>sin cos 1γα+=<的个数最多有2个. 故选:C例6.(2023·全国·高三专题练习)已知()1cos cos 2222x x x f x ⎫=+-⎪⎭,若存在0ππ,33x ⎡⎤∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解,则实数m 的取值范围为( )A .50,2⎡⎤⎢⎥⎣⎦B .(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭C .1,32⎡⎤-⎢⎥⎣⎦D .[)1,3,2⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】B【分析】先化简()f x 的解析式,不等式()205122f x m m ≤--在,33ππ⎡⎤-⎢⎥⎣⎦上能成立等价于()2min 51,22f x m m -≤-求得()f x 的最小值后解不等式即可求解【详解】()21sin cos 2222x x xf x =+-1cos 11cos 222x x x x +=+-=+ cossin sin cos 66xx x π=+. sin 6x π⎛⎫=+ ⎪⎝⎭0π ,33x π⎡⎤∃∈-⎢⎥⎣⎦,使不等式()205122f x m m ≤--有解则 ()2min 51,22f x m m -≤-π,33x π⎡⎤∈-⎢⎥⎣⎦ πππ,662x ⎡⎤∴+∈-⎢⎥⎣⎦1sin 126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 当3x π=-时,()f x 取得最小值,ππ1sin 362f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭. 所以 2511,222m m --≥-解之得:52m或0m m ∴的取值范围是(]5,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭故选:B例7.(2022·湖南·高三开学考试)若函数()22cos f x x x m ++在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为6,则下列结论正确的是( ) A .5π512f ⎛⎫= ⎪⎝⎭B .2π是函数()f x 的一个周期C .当π0,2x ⎡⎤∈⎢⎥⎣⎦时,不等式()4c f x c <<+恒成立,则实数c 的取值范围是[)2,3D .将函数()f x 的图像向左移动6π个单位得到函数()g x 的图像,则函数()g x 是一个偶函数 【答案】BD【分析】先根据三角恒等变换整理得()π2sin 216f x x m ⎛⎫=+++ ⎪⎝⎭,以π26x +为整体,结合正弦函数图像与性质运算求解,并运用图像平移处理求解判断.【详解】()2π2cos cos212sin 216f x x x m x x m x m ⎛⎫++=+++=+++ ⎪⎝⎭,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,则ππ7π2,666x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以当π6x =时,()f x 的最大值为6,即3m =,所以5π412f ⎛⎫= ⎪⎝⎭,选项A 不正确; ∵()f x 的最小正周期2ππ2T ==,则2π是函数()f x 的一个周期,选项B 正确; 当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()36f x ≤≤,所以不等式()4c f x c <<+恒成立,则364c c <⎧⎨<+⎩,解得23c <<,选项C 不正确;函数()f x 的图像向左移动6π个单位得到函数()πππ2sin 242sin 242cos24662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()g x 是一个偶函数,选项D 正确. 故选:BD .例8.(2023·广东·高三学业考试)已知函数22()cossin 22x xf x a =--,R a ∈ (1)求函数()f x 的单调递增区间;(2)若函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,求a 的取值范围.【答案】(1)22[]k k πππ-, ,k ∵Z (2)1,12⎡⎤⎢⎥⎣⎦【分析】(1)利用余弦的二倍角公式化简,再结合余弦函数的单调性求解即可;(2)转化为方程cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解即可.(1)22()cos sin cos 22x xf x a x a =--=- 当22k x k πππ-≤≤ ,k ∵Z 时,()f x 单调递增,∵函数()f x 的单调递增区间为22[]k k πππ-,,k ∵Z . (2)函数()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上有零点,也就是cos x a =在,36ππ⎡⎤-⎢⎥⎣⎦上有解.∵当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,1cos ,12x ⎡⎤∈⎢⎥⎣⎦.∵a 的取值范围是1,12⎡⎤⎢⎥⎣⎦.【题型】三、图像法求三角函数的最值或值域例9.(2023·全国·高三专题练习)若将()sin 214f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移4π个单位长度后得到函数()g x 的图象,则()g x 在0,8π⎡⎤⎢⎥⎣⎦上的最小值为( )A1 B .2C 1D .2【答案】C【分析】先求平移后的函数解析式,再求()g x 在闭区间上的最值【详解】因为()si 1442n g x f x x ππ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭,又因为0,8x π⎡⎤∈⎢⎥⎣⎦,所以2,442x πππ⎡⎤+∈⎢⎥⎣⎦,所以()min 1g x =. 故选:C例10.(2023·全国·高三专题练习)已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .()()f x f x π+=B .6f x π⎛⎫+ ⎪⎝⎭的图象关于原点对称C .若125012x x π<<<,则()()12f x f x < D .对1x ∀,2x ,3,32x ππ⎡⎤∈⎢⎥⎣⎦,有()()()132f x f x f x +>成立【答案】ACD【分析】利用正弦型函数的周期公式求周期判断A ,利用正弦型函数的对称性可判断B ,利用正弦型函数的单调性可判断C ,利用正弦型函数的值域可判断D.【详解】∵函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的周期22T ππ==,所以()()f x f x π+=恒成立, 故A 正确;又2sin 216f x x π⎛⎫+=+ ⎪⎝⎭,所以2sin 11663f πππ⎛⎫+=+= ⎪⎝⎭,2sin 11663f πππ⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,所以6666f f ππππ⎛⎫⎛⎫+≠--+ ⎪ ⎪⎝⎭⎝⎭, 所以6f x π⎛⎫+ ⎪⎝⎭的图象不关于原点对称,故B 错误;当50,12x π⎛⎫∈ ⎪⎝⎭时,2,332x πππ⎛⎫-∈- ⎪⎝⎭,所以函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭在50,12π⎛⎫⎪⎝⎭上单调递增,故C 正确;因为,32x ππ⎡⎤∈⎢⎥⎣⎦ ,所以22,333x πππ⎡⎤-∈⎢⎥⎣⎦sin 213x π⎛⎫≤-≤ ⎪⎝⎭,()1,3f x ⎤∴∈⎦,又)213>,即min max 2()()f x f x >,所以对123,,[,],32x x x ππ∀∈有132()()()f x f x f x +>成立,故D 正确.故选:ACD.例11.(2023·全国·高三专题练习)如图,点D 位于以AB 为直径的半圆上(含端点A ,B ),ABC 是边长为2的等边三角形,则AD CB ⋅的取值可能是( )A .1-B .0C .1D .4【答案】BC【分析】建立坐标系,利用数量积的坐标表示求AD CB ⋅,化简求其范围,由此可得结论. 【详解】如图所示,以AB 所在直线为x 轴,以AB 的垂直平分线为y 轴建立平面直角坐标系,则()1,0A -,()10B ,,(0,C .令()cos ,sin D θθ,其中0θπ≤≤,则()cos 1,sin AD θθ=+,(1,CB =,所以cos 12sin 16AD CB πθθθ⎛⎫⋅=++=++ ⎪⎝⎭.因为0θπ≤≤,所以7666πππθ≤+≤,所以1sin 126πθ⎛⎫-≤+≤ ⎪⎝⎭,所以[]2sin 10,36AD CB πθ⎛⎫⋅=++∈ ⎪⎝⎭.故选:BC.例12.(2023·全国·高三专题练习)函数()ππsin 36f x x x ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭的最大值为______.【答案】2【分析】利用三角诱导公式和恒等变换化简得到()2cos f x x =,从而求出最大值.【详解】()πππππsin cos 36362f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+--=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭πππππcos 2sin 2sin 2cos 33362x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=++=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故函数()f x 的最大值为2 故答案为:2【题型】四、换元法求三角函数的最值或值域例13.(2023·全国·高三专题练习)已知函数()2sin cos f x x x x =,则下列结论中正确的是( )A .函数()f x 的最小正周期为2πB .3x π=时()f x 取得最小值C .()f x 关于3x π=对称 D .512x π=时()f x 取得最大值 【答案】D【分析】结合二倍角正弦公式和辅助角公式化简()f x ,再结合正弦函数性质判断各选项.【详解】因为()2sin cos f x x x x =,所以()sin 2f x x x =,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以函数()f x 的最小正周期22T ππ==,A 错误,2sin 22333f πππ⎛⎫⎛⎫=⨯-=≠- ⎪ ⎪⎝⎭⎝⎭,BC 错误,552sin 2212123f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,D 正确.故选:D.例14.(2023·全国·高三专题练习)函数()sin cos sin 2f x x x x =++的最大值为( ) A.1 B .1C .1D .3【答案】C【分析】利用换元法,令sin cos t x x =+,则原函数可化为21y t t =+-,再根据二次函数的性质可求得其最大值【详解】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[t ∈,则22(sin cos )12sin cos t x x x x =+=+,所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[t ∈,对称轴为12t =-,所以当t =时,21y t t =+-取得最大值,所以函数的最大值为211=,即()sin cos sin 2f x x x x =++的最大值为1 故选:C例15.(2023·全国·高三专题练习)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 B .2C .32D .3【答案】C【分析】先将函数用二倍角公式进行降幂运算,得到1()sin(2)26f x x π=+-,然后再求其在区间[,]42ππ上的最大值.【详解】解:因为2()sin cos f x x x x =,所以1cos 21()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .例16.(2022·广东·汕头市达濠华侨中学高三阶段练习)已知函数()3sin 222f x x x =+,则下列选项正确的有( ) A .()f x 的最小正周期为πB .曲线()y f x =关于点π,03⎛⎫⎪⎝⎭中心对称C .()f xD .曲线()y f x =关于直线π6x =对称 【答案】ACD【分析】化简()πsin 26⎛⎫=+ ⎪⎝⎭f x x .利用周期公式求出周期可判断A ;计算π3⎛⎫⎪⎝⎭f 可判断B ; 利用π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x 可判断C ;计算π6f ⎛⎫⎪⎝⎭可判断D【详解】()3πsin 22sin 226f x x x x ⎛⎫==+ ⎪⎝⎭. 对于A ,()f x 的最小正周期2ππ2T ==,故A 正确;对于B ,πππ20336f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,π1sin 216⎛⎫-≤+≤ ⎪⎝⎭x ,所以()max f x C 正确;对于D ,πππ2666f ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭D 正确.故选:ACD.【题型】五、利用三角函数的单调性、奇偶性、周期性和对称性求参数例17.(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ) A .3 B .4 C .5 D .6【答案】C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,根据三角函数的图象可知,零点与对称轴之间距离为:()1214T k ⨯-,k ∵N *.要求ω最大,则周期最小,∵()12142k T π-⨯=,则T 221k π=-;∵ω=2k ﹣1;当9ω=时,由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭,易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭,易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C .例18.(2023·全国·高三专题练习)若直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,且函数πsin()4y x ω=-在区间[0,π12]上不单调,则ω的最小值为( )A .9B .7C .11D .3【答案】C【分析】根据给定条件,求出ω的关系式,再求出函数πsin()4y x ω=-含有数0的单调区间即可判断作答.【详解】因直线π4x =是曲线πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则πππ,N 442k k ωπ-=+∈,即43,N k k ω=+∈, 由πππ242x ω-≤-≤得π3π44x ωω-≤≤,则函数πsin()4y x ω=-在π3π[,]44ωω-上单调递增, 而函数πsin()4y x ω=-在区间π[0,]12上不单调,则3π412πω<,解得9ω>, 所以ω的最小值为11. 故选:C例19.(2023·江苏南京·高三阶段练习)已知函数()()πsin 026f x x ωω⎛⎫=+<< ⎪⎝⎭,()()π0f x f x ++=,()()()0πf f αβαβ=<<<,则( )A .()()4πf x f x =+B .()()9π0f x f x ++=C .()()12f f αββα+<-= D .()()12f f βααβ-<+=【答案】AB【分析】推导出()()2πf x f x +=,可判断AB 选项;求出2π3αβ+=,并求出()f βα-的取值范围,可判断CD 选项.【详解】对于A 选项,对任意的R x ∈,()()πf x f x +=-,则()()()2ππf x f x f x +=-+=, 所以,()()()4π2πf x f x f x +=+=,A 对;对于B 选项,()()()9ππf x f x f x +=+=-,则()()9π0f x f x ++=,B 对; 对于CD 选项,由题意可知,()f x 的最小正周期为2π,则2π12πω==,则()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,当()0,πx ∈时,ππ7π666x <+<, 由πππ662x <+<可得π03x <<,则函数()f x 在π0,3⎛⎫⎪⎝⎭上单调递增, 由ππ7π266x <+<可得ππ3x <<,则函数()f x 在π,π3⎛⎫ ⎪⎝⎭上单调递减,0παβ<<<,则πππ7π6666αβ<+<+<, 所以,πππ66αβ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,则2π3αβ+=,所以,()2ππ5π1sin sin 3662f αβ⎛⎫+=+==⎪⎝⎭,C 错, 因为πππ7π6666αβ<+<+<,则πππ662α<+<,所以,π03α<<, 则2π2π20,33βαα⎛⎫-=-∈ ⎪⎝⎭,所以,ππ5π,666βα⎛⎫-+∈ ⎪⎝⎭ 故()1,12f βα⎛⎤-∈ ⎥⎝⎦,则()()12f f βααβ->+=,D 错.故选:AB.【题型】六、五点法求三角函数的解析式例20.(2023·全国·高三专题练习)智能主动降噪耳机工作的原理是通过耳机两端的噪声采集器采集周围的噪声,然后通过主动降噪芯片生成与噪声相位相反、振幅相同的声波来抵消噪声(如图).已知噪声的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,周期为2π,初相位为π2,则通过主动降噪芯片生成的声波曲线的解析式为( )A .sin y x =B .cos y x =C .sin y x =-D .cos y x =-【答案】A【分析】由振幅可得A 的值,由周期可得ω的值,由初相位可得ϕ的值,即可得出声波曲线的解析式,进而可得主动降噪芯片生成的声波曲线的解析式.【详解】解:因为噪音的声波曲线()cos y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2)的振幅为1,则1A =, 周期为2π,则2π2π12πT ω===,初相位为π2,π2ϕ=,所以噪声的声波曲线的解析式为πcos sin 2y x x ⎛⎫=+=- ⎪⎝⎭,所以通过主动降噪芯片生成的声波曲线的解析式为sin y x =.故选:A.例21.(2022·福建省连城县第一中学高三阶段练习)函数()()sin()0,f x A x b ωϕωϕπ=++><的部分图象如图所示,下列说法正确的是( )A .函数()f x 的解析式为()2sin 213f x x π⎛⎫=++ ⎪⎝⎭B .函数()f x 的单调递增区间为5,(Z)1212k k k ππππ⎛⎫-++∈ ⎪⎝⎭C .函数()f x 的图象关于点,1(Z)2k k π⎛⎫∈ ⎪⎝⎭对称 D .为了得到函数()f x 的图象,只需将函数()2cos 23g x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位长度,再向上平移一个单位长度 【答案】ABD【分析】由题意求出()f x 的解析式可判断A ;利用正弦函数的单调性和对称性可判断BC ;由三角函数的平移变换可判断D.【详解】对于A ,由图可知,31A b A b +=⎧⎨-+=-⎩,可得21A b =⎧⎨=⎩,由π1sin 425π1sin 122ωϕωϕ⎧⎡⎤⎛⎫⨯-+=-⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,则1122ππ+2π,Z 465π7π+2π,Z126k k k k ωϕωϕ⎧-+=-∈⎪⎪⎨⎪+=∈⎪⎩,两式相减得:()122π4π2π33k k ω=+-, 所以()1223k k ω=+-∵,又因为π2π5ππ33212425ππ2π2π31243T T ωωωω⎧⎧≤≤+⎧⎪⎪≥⎪⎪⎪⇒⇒⎨⎨⎨⎪⎪⎪≤≥+≥⎩⎪⎪⎩⎩,所以332ω≤≤,结合∵,2ω=, 因为π5ππ412212-+=,所以πππ21223ϕϕ⨯+=⇒=, 所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,故A 正确;对于B ,πππ2π22π,Z 232k x k k -+≤+≤+∈,解得:()5ππππ,Z 1212k x k k -+≤≤+∈,故B 正确; 对于C ,令π2ππ,Z 3+=+∈x k k ,解得:ππ,Z 32=+∈k x k , 函数()f x 的图象关于点()ππ,1Z 32k k ⎛⎫+∈ ⎪⎝⎭对称,所以C 不正确;对于D ,将函数π2cos 23x ⎛⎫+ ⎪⎝⎭向右平移π4个单位得到πππ2cos 22sin 2433⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦x x ,向上平移一个单位长度可得π2sin 213y x ⎛⎫=++ ⎪⎝⎭,故D 正确.故选:ABD.例22.(2023·江西·赣州市赣县第三中学高三期中(理))已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<, 因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得 π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.【题型】七、利用图象平移求函数的解析式或参数例23.(2023·全国·高三专题练习)要得到函数π3sin(2)3y x =+的图象,只需要将函数3cos 2y x =的图象( )A .向右平行移动π12个单位 B .向左平行移动π12个单位 C .向右平行移动π6个单位D .向左平行移动π6个单位【答案】A【分析】由三角函数的图象变换求解【详解】π3cos 23sin(2)2y x x ==+,要得到π3sin(2)3y x =+的图象,需要向右平移πππ23212-=个单位.故选:A例24.(2022·湖南省临澧县第一中学高三阶段练习)已知函数π()2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,则下列说法正确的是( )A .将函数2sin 2y x =的图象向右平移π6个单位,再向上平移1个单位得到()=y f x 的图象B .函数()=y f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增C .函数()=y f x 的图象关于直线π12x =-对称 D .函数()=y f x 的图象关于点,06π⎛⎫⎪⎝⎭对称【答案】AC【分析】根据图象平移写出解析式判断A ;利用正弦函数性质,整体法判断()f x 的区间单调性判断B ,代入法判断对称性,判断C 、D. 【详解】A :根据平移过程πππ=()+1=2sin2()+1=2sin(2)+1663y g x x x ---,正确; B :π0,2x ⎛⎫∈ ⎪⎝⎭,则ππ2π2(,)333x -∈-,根据正弦函数性质()f x 在区间内不单调,错误;C :πππ()=2sin()+1=11263f ----,此时ππ2=32x --,故直线π12x =-为对称轴,正确;D :πππ()=2sin()+1=1633f -,故关于点π,16⎛⎫⎪⎝⎭对称,错误.故选:AC例25.(2022·广东·深圳中学高三阶段练习)将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,所得图像关于原点对称.若01ω<<,则下列说法正确的是( ) A .()f x 的最小正周期为4πB .()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭C .对任意的R x ∈,都有()2π=3f x f x -⎛⎫ ⎪⎝⎭D .()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x【答案】AB【分析】利用平移后得函数是奇函数求出12ω=,则()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈判断B 正确;由π=13f -⎛⎫⎪⎝⎭判断C 错误;令()=()f x g x 分析得到公,判断D 错误.【详解】将函数()π=2sin 3f x x ω-⎛⎫ ⎪⎝⎭的图像向左平移2π3个单位,可得2ππ()=2sin (+)33h x x ω-⎡⎤⎢⎥⎣⎦,()h x 为奇函数,则(0)0h =,即2ππ=π33k ω-,13=+,22k k Z ω∈, 因为01ω<<,所以1=0=2k ω,,则()1π=2sin 23f x x -⎛⎫ ⎪⎝⎭,所以()f x 的最小正周期为2π=4π12,故A 正确;令()1π=πZ 23x k k -∈,得2π=2π+3x k ,()f x 的对称中心为()2π2π+,0Z 3k k ∈⎛⎫ ⎪⎝⎭,故B 正确;π1ππ=2sin(?)=13233f --⎛⎫⎪⎝⎭,所以3x π=不是对称轴,故C 错误;令()=()f x g x ,即1π1πsin =sin +2326x x -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,1π1ππ1πsin +=sin +=cos 2623223x x x --⎡⎤⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1π1πsin =sin +=?2326x x ∴-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ ()π=2sin +6g x x ω⎛⎫ ⎪⎝⎭与()f x故D 错误; 故选:AB.。

高考专题资料4三角函数最值问题的几种常见类型

高考专题资料4三角函数最值问题的几种常见类型

三角函数最值问题的几种常见类型1.y=asinx+bcosx 型的函数特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。

应用课本中现成的公式即可:y=22a b +sin(x+φ),其中tan ba φ=例1.已知函数f(x)=2cosxsin(x+3π)-3sin 2x+sinxcosx(1)求函数f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x 的值; 2.y=asin 2x+bsinxcosx+cos 2x 型的函数。

特点是含有sinx, cosx 的二次式,处理方式是降幂,再化为型1的形式来解。

例2.求y=sin 2x+2sinxcosx+3cos 2x 的最小值,并求出y 取最小值时的x 的集合。

3.y=asin 2x+bcosx+c 型的函数 特点是含有sinx, cosx ,并且其中一个是二次,处理方式是应用sin 2x+cos 2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。

例3. 是否存在实数a ,使得函数y=sin 2x+a ·cosx+85a -23在闭区间[0,2π]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由. 4.y=sin cos a x cb x d++型的函数特点是一个分式,分子、分母分别会有正、余弦的一次式。

几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。

例4.求函数y=2sin 2cos xx--的最大值和最小值。

5.含有sinx 与cosx 的和与积型的函数式。

其特点是含有或经过化简整理后出现sinx+cosx 与sinxcosx 的式子,处理方式是应用(sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数的问题。

例5.求y=2sinxcosx+sinx+cosx 的最大值。

利用三角函数的性质求参数

利用三角函数的性质求参数

高一使用 2021年4月三角函数的主要性质有奇偶性、单调性、周期性、对称性及最值等。

利用三角函数的性质可以求参数的值或参数的取值范围。

下面举例分析,供同学们学习与参考。

—、利用三角函数的奇偶性求参数的值例1 函数y = 3 sin 2x 一 cos 2x 的图像向右平移p (oV p Vy )个单位长度后,得到函数g(x )的图像,若函数g(x )为偶函数,)。

则p 的值为(A 1nn B6C -4D3解:因为 2k n + ;C2x + p C2k n +':,解:由函数 y = 3 sin 2x 一 cos 2x2sin (x — 6),可知其图像向右平移pk e Z ,所以 k n + n — p C x C k n + —j- — p ,(o V p v2)个单位长度后,得到函数g(x ) =k ez 。

又因为倚冷)是f (x )的一个单调2sin (2x —2p —6)的图像递增区间, p V n ,所以5n C k n + 3^ — 2,因为g (x )为偶函数,所以2p + n6k e Z ,解得p C :。

同理可知,由n A k n +n n k n-+k n,ez ,可得 p = 6 + w k ez又4一2,k eZ,|p IVn,可得 p #10。

由上可p e (。

,2),所以 p = 6。

应选 b 。

评析:利用三角函数的奇偶性求参数问 题常用下列结论:①函数y =A cos 9x +p )+ B (A H0)为奇函数O p = k n+ n (k e Z )且B = 0 ;②函数 y = A cos(9x + p ) + B (A H0)为偶函数O p = k n(k e Z )。

二、利用三角函数的单调性求参数的取 值范围例 2 已知函数 f (x ) = — 2sin(2x +p )得,0 C p C n 。

应选C评析:解答本题要注意单调区间的给出方式,如"函数f(x )在k 兀—5;,兀+]:]( eZ)上单调递增"与函数f(x )的单调递增区间为[吃n — — , k n + 12](k e Z )是不同的。

(完整)锐角三角函数题型分类总结,推荐文档

(完整)锐角三角函数题型分类总结,推荐文档

锐角=角函数∙知识点一:钦角三角国数的≡x≡ 一、 锐角三角函数定义:在 RiAABC 中,ZC=9O 0, ZAS ZBX ZC 的对边分别为 a 、b 、c, 则ZA 的正弦可表示为;S ilLX= _________ JZA 的余弦可表示为CoSA= _________厶的正切:Tan-A= ________ ,它们弦称为ZA 的锐角三角函数2、取値范围—<¾inA< Co i⅛< __________ tanA>______1例如图所示,在RlA^C 中〉乙C=9Q° .例2.锐角三角函数束值;在 RtΔ,45C 中,ZC= 90° ,若 σ=9, B= 12,则 C= ___________SilL a l — _______ , COSU I f- __________ 9 taiL -l — __________ SSin^= _____ ; CQ ∖B= ____ ; tan.例3∙已知;如图,RI0∙∖M r 中,Z∏I ∖r =90o …⑷丄ZV 于出点,Zy=4, Hv=3• 求:SinZ732KxCOSZrVC?、tanZ∏IK .典型m :类型一:直角三角形求值31 .已知 RtQUBC 中丿 ZC≡90Q 5 taπJ= ,5C≡1⅞ 求.4C ∖∙3 和 8田・② CoSJ = ® tan.4∙=第1题團① sin J( ) 软边 an 5【an 方=ZB 旳对边( )2. 如朗 OO 的半径θA = 16cm, OC 丄貝B 于C 点,an ΛAOC =-.求肋及OC 的长•3. 已知:0。

中,OC 丄朋于 C 点;J5= 16cm ; dnZA0C (1) 求OQ 的半径OA 的长及弦心距& (2) 求 COSz4 OC 及 ta∏ZJθC∙g4. 已知ZJ 是锐角,SitIW=—;求COSA > tan J 的值17对应ill 练二1. 在RtA^C 中7 ZC=90C 7 若5C=1, .15-√5 ;则Ianj 的值为5B.巫5C.丄 2D. 22.在ABC 中,ZC=90o ,S inA=- >那么tanA 的值等于( ).53G 4 C 3 c 4 A.-5 B.— 5 C. 一4D. 一 3类型二利用角度转化求值,2. 如團,直径为10的CU 经过点C(Oo)和点O(Qo);与X 轴的正半釉交于点D, B 是》轴右侧圆弧上一点〉则C O SZ^C 的值为〈)C.-D-I1.已知;如图,RtZUBC 中,ZC= 90o ∙ Q 是Je 边上一点'DE 丄曲于E 点.^≡s⅛E3.如图,角α的顶点为0,它的一边在工轴的正半轴上J另一边Od上有一点Pd 4),则3丄如團,菱形九5CD的边长为IQCm,DE1AB, SinJ =-,则遗个菱形的面积二.5.如國06>是^iBC的外接圆,AD杲©O的直径,AC = I,则sin5的值是(7 \A. -B.-3 26.如图6,沿川E折蠡矩形纸片曲CQ ,c.£⅞□-4B=8, BC =10, AB=⅛ 则tan NEFC 的值为(A.- C.-57.如图7,在等腰直角三角形C中'ZC =90o , JC = 6, Z)为AC±—点,若tan ZDA.! = -,则-Q 的长为()5A・近B・2 C・1 D・2√21 ^rIS.如图S,在RtA-LffC 中,Z090°,AOS, Ad的平分线/D=」一求ZB的度数及边BC. AB的长.类型三化斜三角形为直角三角形例1 如图,在A ABC中,Z A=30C,Z B=45% AC=2√3、求AB 的长.Cn T •353.正方形网格中, ZHoB 如團放乱则tanZJ (95的值是(√L例 2∙已知:如團,在 AABC 中,ZBAC=I 20° , ∠S=10, AC=5 .对应岷1.如图,在RlAABC 中,ZBAC=90=,点D 在BC 边上,且AABD 是等边三甬形.若.43=2, 求AABC 的周长•〈结果保留根号)2. 已知:如虱 AABC 中「3=9, BC=G,厶4恥的面枳尊于9丿求血^3. ABC 中,乙4=60° …4方=6 Cm , AC=4 Clrb 则A-45C 的面积是求:siik^ABC 的值..4 羽 CnrDllcm 2类型四;利用 构造直角三角形例1如图所示,AABC 的顶点杲正方形网格的格点,则SinA 的值为<对应练习:1. ________________________________________________ 如图,AABC 的顶点都在方格纸的格点上,则Sir I A= ____________ .点厘逆吋针旋转得到AC8,则tanF 的值为D∙ 110D.IR特殊角的三角函数值锐角C30s45060。

三角函数各参数的意义

三角函数各参数的意义

三角函数各参数的意义1. 嘿,你知道正弦函数里的那个角度意味着啥不?就好比你在游乐场坐旋转木马,角度就是你转到的位置呀!比如,当角度是 30 度时,就像是你转到了某个特定的地方,能感受到不一样的风景呢!2. 哎呀呀,余弦函数里的参数呀,那可重要啦!就像你走路的方向,决定了你会去到哪里。

比如说,当余弦值是 0.5 时,不就像你朝着一个特定方向走了一段距离嘛!3. 喂喂喂,你想过正切函数的参数是干嘛的吗?这就好比赛车比赛里的速度和角度呀!比如正切值很大的时候,就像赛车在高速过弯,刺激吧!4. 你难道不好奇三角函数里的周期是啥意思吗?这就好像是一首歌曲的节奏呀!比如正弦函数的周期是2π,就如同那首歌不断重复的旋律,让人印象深刻呢!5. 嘿,那个相位又是什么鬼呢?就像是你和朋友约好见面,时间没对上,感觉就完全不一样啦!比如相位差了一些,整个函数的图像就变了呢!6. 哇塞,三角函数的振幅呀,不就是声音的大小嘛!就像你把音响声音调大调小一样。

比如振幅变大了,就像音响声音突然变大,很震撼呢!7. 你知道不,三角函数里的那些参数就像人生的不同阶段呀!每个阶段都有独特的意义。

比如某个特定参数下,就像是你在人生中做出了一个重要决定!8. 哎呀呀,那些参数就像你选择的不同道路呀!有时候走这条,有时候走那条。

比如函数图像根据参数变化而变化,就像你在路上看到的不同风景!9. 喂,想想三角函数的参数,不就像做菜放调料的量嘛!多一点少一点味道都不同。

比如参数变化了,函数的味道也就变啦!10. 嘿,三角函数的各参数呀,简直就是一个神秘的世界!它们决定了函数的样子和性质。

就像一个团队里的每个人,都有着不可或缺的作用呀!我的观点结论:三角函数的各参数真的超级重要,它们赋予了三角函数各种奇妙的性质和意义,值得我们好好去探索和理解呀!。

三角函数最值问题几种常见类型

三角函数最值问题几种常见类型

必修 4《三角函数》最值问题的商议主讲人:吴南寿时间:三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。

其出现的形式,也许是在小题中单纯地观察三角函数的值域问题;也许是隐含在解答题中,作为解决解答题所用的知识点之一;也许在解决某一问题时,应用三角函数有界性会使问题更易于解决(比方参数方程)。

题目给出的三角关系式经常比较复杂,进行化简后,再进行归纳,主要有以下几各种类。

掌握这几各种类后,几乎所有的三角函数最值问题都能够解决。

1.y=asinx+bcosx 型的函数特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转变成只有一种三角函数。

应用课本中现成的公式即可: y= a2b2sin(x+φ),其中tan ba例 1 已知函数f ( x)=2cos x sin( x+ ) - 3 sin2x+sin x cos x3(1)求函数 f ( x)的最小正周期;(2)求 f ( x)的最小值及获取最小值时相应的 x 的值;7]时,f ( x)的反函数为 f -1( x),求 f --1(1)(3)若当 x∈[,1212的值 .解: (1) f ( x)=2cos x sin( x+) -3 sin 2x+sin x cos x3=2cos x(sin x cos+cos x sin) -3 sin 2x+sin x cos x33=2sin x cos x+ 3 cos2x=2sin(2 x+ )3∴ f ( x ) 的最小正周期 T =π(2) 当 2x +=2k π- ,即 x =k π-5( k ∈Z) 时,f ( x ) 获取最小3212值- 2.(3) 令 2sin(2 x +3)=1,又 x ∈[ 2, 7],2∴ 2x + ∈[ , 3 ], ∴2x + = 5,则33 236x = ,故 f - - 1(1)=.442.y=asin 2x+bsinxcosx+cos 2x 型的函数。

常见的三角函数值高中

常见的三角函数值高中

常见的三角函数值高中三角函数是高中数学中重要的内容之一,掌握好三角函数的数值对于解决许多几何和代数问题至关重要。

本文将讨论高中阶段常见的三角函数数值,包括正弦、余弦和正切的取值范围和特点。

正弦函数值正弦函数是三角函数中的一种,表示在直角三角形中对边与斜边的比值。

在高中阶段,我们通常关注的正弦函数值是在0度到360度之间的取值。

在这个范围内,正弦函数的值变化周期为360度,其值从0到1再到0,然后再到-1再到0,反复循环。

具体来说,0度对应的正弦值是0,90度对应的正弦值是1,180度对应的正弦值是0,270度对应的正弦值是-1,360度对应的正弦值又回到0。

余弦函数值余弦函数是三角函数中的另一种,表示在直角三角形中邻边与斜边的比值。

和正弦函数类似,余弦函数值在0度到360度范围内变化也是周期性的。

在这个范围内,余弦函数的值从1开始,随着角度增加逐渐减小到-1,然后再回到1。

具体来说,0度对应的余弦值是1,90度对应的余弦值是0,180度对应的余弦值是-1,270度对应的余弦值是0,360度对应的余弦值又回到1。

正切函数值正切函数是三角函数中的另一个重要函数,表示在直角三角形中对边与邻边的比值。

正切函数的值在不同角度下变化也是周期性的,但是和正弦、余弦不同,正切函数值在某些角度下会不存在或者为无穷大。

例如,当角度为90度或270度时,正切函数的值不存在,当角度为180度时,正切函数的值为0。

在其他角度下,正切函数的值会在正无穷和负无穷之间变化。

总结在高中数学学习中,掌握常见的三角函数值是非常重要的。

正弦函数、余弦函数和正切函数在0度到360度范围内的取值规律可以帮助学生更好地理解三角函数在几何和代数问题中的应用。

通过反复练习和实际运用,学生可以逐渐加深对三角函数数值的认识和理解,为更高级数学学科打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数中的参数问题分类例说作者:杨文金
来源:《中学课程辅导·高考版》2019年第03期
三角函数中的参数取值或范围问题是三角函数中较难的问题,其共同的解决方法是将相位看成整体,结合正弦函数或余弦函数的图象与性质进行求解.
一、已知单调性求参数
二、已知对称性求参数
三、已知最值或值域求参数
四、已知函数零点求参数
点睛:解决恒成立问题的关鍵是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式f(x)>A在区间D上恒成立,则等价于在区间D上f(x)的最小值大于A;若不等式f(x)<B在区间D上恒成立,则等价于在区间D上f(x)最大值小于B.一定要注意三角函数自身的有界性,结合自变量的取值范围,才能准确求出参数的取值或范围.
六、已知函数的性质求参数。

相关文档
最新文档