射线数字成像技术的应用
dr成像的基本原理和应用

DR成像的基本原理和应用1. DR成像的基本原理DR成像(Direct Radiography Imaging,直接数字成像)是一种用于数字化X 射线成像的技术,与传统的胶片成像相比,DR成像具有许多明显优势。
DR成像的基本原理如下:• 1.1 X射线的产生X射线是一种通过高速电子与原子碰撞而产生的电磁辐射。
在DR成像中,通过X射线发射装置产生高能X射线。
• 1.2 X射线的传播高能X射线由X射线管产生后,会通过人体或其他物体,其中的骨骼和组织对X射线有不同的吸收能力。
• 1.3 X射线的探测DR成像中采用的探测器是一种能够将X射线能量转化为电子信号的装置。
常见的DR探测器主要有闪烁体探测器和平板探测器。
• 1.4 信号的数字化DR成像中探测器所获得的电子信号被转化为数字信号,并通过数字处理器进行处理和分析。
• 1.5 影像的生成经过数字化处理后的信号,可以通过图像重建算法生成高质量的X 射线影像。
2. DR成像的应用DR成像由于其数字化的特性,广泛应用于医学影像学和工业检测等领域。
以下是DR成像的一些主要应用:• 2.1 医学影像学–临床诊断:DR成像可以用于检测和诊断各种疾病,如骨科疾病、肺部疾病等。
其高质量的图像可以提供医生准确的诊断依据。
–手术导航:DR成像可以在手术中提供实时的X射线图像,帮助医生定位和操作,提高手术的精确性和安全性。
–放射治疗:DR成像可以用于放射治疗计划的制定和评估,确保放射治疗的准确性和有效性。
• 2.2 工业检测–材料分析:DR成像可以用于材料的质量检测、缺陷分析和结构表征等方面,对材料的成分和性能进行分析。
–焊接检测:DR成像可以帮助检测焊接接头的质量和缺陷,确定焊接的完整性和稳定性。
–零件检测:DR成像可以用于检测零部件的尺寸、形状和结构,确保产品的质量和可靠性。
• 2.3 安全检查–行李检查:DR成像可用于机场和火车站的行李检查,快速且准确地检测到可疑物品。
X 射线数字成像检测技术在航空产品上的应用

《装备维修技术》2021年第8期—263—X 射线数字成像检测技术在航空产品上的应用陈明飞(中国航发哈尔滨东安发动机有限公司,黑龙江 哈尔滨 150066)X 射线成像检测技术,本质上属于无损检测的主要方式,能够动态性从多个角度对飞机零部件缺陷实施全方位的观察。
而X 射线检测技术在航空制造企业方面的具体应用,主要是使用胶片法,实施检查焊接件,铸件等材料的专业化结构,该方法存在着检测效率偏低,检测成本比较高、会污染到环境等相关问题,所以在很大程度上无法适应航空制造企业迅速发展的基本需求。
随着科学技术的日益发展,X 射线数字成像检测技术作为新兴方法广泛被应用于航空领域。
很多飞机配件制造商开始重视高效性的检测工作,并与负责射线检测设备制造的企业展开深度友好的合作。
X 射线数字成像检测技术,能够高效准确的完成图像的优质化采集,以及图像的处理,达到信息传递的良好效果。
但数字检测这种技术,所获得的检测图像同常规胶片射线照相检测技术呈现出来的图像相比较而言,其特点明显有空间分辨率不够高,动态范围大的基本情况存在,致使在工业领域应用该技术受到不同程度的限制。
1 X 射线数字成像检测与传统胶片法检测能力对比1.1试验方案 X 射线检测技术是无损检测型技术,该技术不同于以往传统意义上的胶片法,可以全面提供铸件检测部位有没有缺陷存在,还能检测出缺陷的尺寸。
为进一步对比分析出X 射线成像检测技术和传统胶片法之间检测能力的差异性,可以选择不同检测系统,对X 射线数字成像检测技术与传统胶片法进行全方位检测,根据不同厚度下的钢,钛、铝合金试块,试验两种方法的灵敏度和不清晰度,从而更好的实施有效分析和深入性研究。
1.2试验情况分析 1.2.1灵敏度试验分析 依据钢、钛、铝合金灵敏度试验结果来看,以下几点是比较关键性的内容。
第一,利用胶片法实施检测灵敏度要比国军标A 级高出1级。
第二,数字成像检测系统灵敏度,整体上比国军标A 级高1~2级。
x射线成像技术的原理与应用

x射线成像技术的原理与应用1. 引言•x射线成像技术是一种非常重要的医学和工业检测方法。
•本文将介绍x射线成像技术的原理和应用。
2. x射线成像技术的原理•x射线是一种电磁辐射,具有较高的穿透能力。
•x射线成像技术利用x射线穿透物体并与物体内部的不同组织或材料发生相互作用,进而形成影像。
•x射线成像技术的原理主要包括:–x射线源:产生x射线的设备,通常是由高能电子束轰击金属靶发生器产生。
–物体:被检测的对象,可以是人体内部组织、工业产品等。
–探测器:用于捕捉和测量x射线通过物体后的剩余辐射。
–影像处理系统:将探测器捕捉到的剩余辐射转化为图像。
3. x射线成像技术的应用3.1 医学领域•普通x射线检查:用于骨折、腹部钙化、肺部结核等疾病的诊断。
•CT扫描:通过旋转式x射线源和探测器,获得物体的三维图像,用于帮助诊断和手术规划。
•放射治疗:利用x射线的高能量特性,对肿瘤进行放射性治疗。
3.2 工业领域•无损检测:用于检测工业产品的内部缺陷,如焊接缺陷、材料疏松等。
•安全检查:用于检测安全隐患或非法物品,如行李箱、货物等。
•原材料分析:通过x射线的特征谱线,分析物体的成分和结构。
4. x射线成像技术的优势•高分辨率:x射线成像技术可以获得高分辨率的图像,可以清晰地显示物体的细节。
•高穿透能力:x射线可以穿透一部分物质,能够检测和观察物体内部的结构。
•非侵入性:x射线成像技术对被检测对象没有伤害。
•快速:x射线成像技术可以在短时间内获得图像。
5. x射线成像技术的发展趋势•数字化:x射线成像技术越来越多地采用数字化处理,可以实现图像的存储、传输和分析。
•多模态成像:将x射线成像技术与其他成像技术结合,可以获得更全面和准确的信息。
•低剂量成像:针对x射线辐射对人体的潜在危害,研究人员正在努力降低x射线成像的辐射剂量。
•自动化:利用计算机和人工智能等技术,实现x射线成像的自动化处理和分析。
6. 结论•x射线成像技术是一种重要的医学和工业检测方法,应用广泛且不断发展。
X射线数字成像检测原理及应用

(1)焊缝检测
焊接接头x射线成像
焊缝裂纹测量:利用灰度测量方法,可以 对焊缝缺陷进行测量
未焊透深度的测量
(2)壁厚、外径检测
管子测厚、测径:采用双能量曝光模式,便于测量管径、壁厚和管 道保护层厚度
基于灰度级进行外径测量 基于灰度级进行测量外径
基于灰度级进行壁厚测量 基于灰度级变化对试件壁厚进行测量图
n 高温管线在线不停机残余厚度测量:可在线不停机测量高温管线的残余厚度,最高应用温度可达 600℃;
EMA超声技术工作原理
EMA设备图谱
2
1
3
4
5
7
6
8
1-EMA-传感器;2-探测脉冲发生器;3-测量放大器和自动增益放大器;4. 模拟-数字转换(ADC)部件;5-微处理器部件;6-内存部件;7-指示部 件;8-键盘。
测量注意事项
1、金属受热膨胀; 2、温度对声速的影响。 一般来讲,碳钢膨胀系数为10-13 ×10ˉ6/℃;
不锈钢膨胀系数为14.4-16 ×10ˉ6/℃; 合金钢受成分影响,膨胀系数的变化范围较大。 温度的提高致使构建内部发生变化,因此声波的传递速度也随之变化。 电磁超声是反射的纵波,而普通超声一般采用的横波,高温腐蚀检测仪采用是纵波,声速受材料影 响较小。 通过高温状态下的多次实验,同种材料受温度的影响,每升高55℃测量数据比实际值增加1%
85%以上的焊口均存在根部未焊透
4、X射线数字成像检测检测案例
3、X射线数字成像检测检测案例 液化石油气管线三通马鞍焊缝检测
高温腐蚀测厚仪原理及应用
提纲
一、高温腐蚀测厚原理 二、高温腐蚀测厚检测特点
三、应用范围 四、案例
高温管线的腐蚀失效
高温管线被广泛应用于石油化工、石油精炼、化学工业、冶炼工业、电力工业及食品和造纸工
射线数字成像检测原理及应用

EMA超声技术工作原理
EMA设备图谱
2
1
3
4
5
7
6
8
1-EMA-传感器;2-探测脉冲发生器;3-测量放大器 和自动增益放大器;4.模拟-数字转换(ADC)部件; 5-微处理器部件;6-内存部件;7-指示部件;8-键 盘。
高温EMA高温腐蚀检测仪设备
EMA高温探头
EMA探头主要由三部分组成:
X射线数字成像检测原理及应用
中国特检院压力管道部
2015-7-31
提纲
一、X射线数字成像检测 二、X射线数字成像检测特点 三、应用范围 四、案例
1、X射线数字成像检测
X射线数字成像(DR)检测原理
射线透照被检工件,衰减后的射 线光子被数字探测器接收,经过一 系列的转换变成数字信号,数字信 号经放大和A/D转换,通过计算机处 理,以数字图像的形式输出在显示 器上。
最大提离为6毫米; 可应用于600℃高温管线残余厚度测量等; 材质:碳钢、合金钢、不锈钢、铜、钛、铝等一切导体材料; 检测速度快:800检测点/天; 测量精度高:0.01mm;
测量注意事项
1、金属受热膨胀; 2、温度对声速的影响。 一般来讲,碳钢膨胀系数为10-13 ×10ˉ6/℃;
不锈钢膨胀系数为14.4-16 ×10ˉ6/℃; 合金钢受成分影响,膨胀系数的变化范围较大。 温度的提高致使构建内部发生变化,因此声波的传递速度也随之变化。 电磁超声是反射的纵波,而普通超声一般采用的横波,高温腐蚀检测仪采用 是纵波,声速受材料影响较小。 通过高温状态下的多次实验,同种材料受温度的影响,每升高55℃测量数据 比实际值增加1%
(1)焊缝检测
焊接接头x射线成像
焊缝裂纹测量:利用灰度 测量方法,可以对焊缝缺 陷进行测量
射线数字成像技术发展

射线数字成像技术发展摘要:射线数字成像是一种先进辐射成像技术,是辐射成像技术的重要发展方向,该技术利用射线观察物体内部的技术。
这种技术可以在不破坏物体的情况下获得物体内部的结构和密度等信息,并且通过计算机进行图像处理和判定。
目前已经广泛应用于医疗卫生、国民经济、科学究等领域。
关键词:辐射成像射线数字成像1引言自德国物理学家伦琴1895年发现X射线以来,射线无损探伤作为一种常规的无损检测方法在工业领域应用已有近百年的历史,人们一直使用胶片记录X(γ)射线穿过被检物件后的影像,其中60多年来,则一直使用增感屏配合胶片来获取高品质的影像,曝光过后的胶片经过化学处理,产生可视的影像后,在观片灯上显示出来以供读取、分析及判断。
胶片-增感屏系统可使射线检测人员实现对影像的采集、显示和存储。
这种方法操作简单,产生的图像质量优异,功能效用全面,因此该技术在包括核工业在内的工业、医疗领域一直被广泛使用。
胶片照相法的不足在于检测周期长,因为需要暗室处理,检测周期在3~20个小时不等;大量底片造成保存上的困难,查阅不便;胶片成本高;曝光时间长;在大量的检测工作面前,需要大量人力资源;底片难以共享,某些焊缝底片在需要专家共同研讨评定时,该弊端特别明显;不利于环境保护等。
无法满足目前工业化生产和竞争日益激烈的需要。
随着科学技术和设备制造能力的进步,例如电子技术、光电子技术、数字图像处理技术的发展;高亮度高分辨率显示器的诞生;高性能计算机/工作站的广泛应用;计算机海量存储、宽带互联网的发展,使得数字成像技术挑战传统胶片成像方式在技术上形成可能。
以射线DR、CR和CT为代表的数字射线成像技术,结合远程评定技术将是无损检测技术领域的一次革命。
数字射线照相技术具有检测速度快,图像保存方便,容易实现远程分析和判断,是未来射线检测发展的方向[1]。
2 射线数字化图像基本概念2.1 数字图像概念数字图像[2](digital image)是传统X射线与现代计算机技术结合的产物。
《数字化x射线成像》课件

数字化X射线成像可以覆盖更大 的动态范围,从而捕捉到更多 细节信息。
易于存储和传输
数字化格式的图像方便存储, 并且可以通过网络进行远程传 输,便于医生异地诊断。
低辐射剂量
相对于传统X射线,数字化X射 线成像技术通常使用较低的辐 射剂量,减少对患者的潜在伤
害。
挑战与问题
设备成本高 技术更新快 操作技能要求高 数据安全风险
射辐射的影响。
实时监测设备
医疗机构应配备辐射剂量监测设 备,对工作人员和患者的辐射剂 量进行实时监测,确保在安全范
围内操作。
辐射安全管理与培训
01
安全管理规定
医疗机构应制定辐射安全管理规定,明确各岗位人员的职责和工作要求
,确保操作规范、安全可靠。
02 03
培训计划
医疗机构应对从事数字化X射线成像的工作人员进行专业培训,提高其 操作技能和安全意识,确保工作人员能够熟练掌握各种防护措施和应对 突发情况的处置能力。
解决方案与未来发展
加强技术培训
为医生提供数字化X射线成像技术的培训 课程,提高他们的专业知识和操作技能。
A 降低设备成本
通过技术创新和规模化生产,降低 数字化X射线成像设备的成本,使其
更广泛地应用于医疗机构。
B
C
D
持续研发与创新
鼓励科研机构和企业持续研发数字化X射 线成像技术,提高图像质量、降低辐射剂 量,并拓展其在其他领域的应用。
近年来,随着平板探测器技术的成熟 ,数字化X射线成像在清晰度、分辨 率和便携性等方面得到显著提升。
数字化进程
随着计算机技术的进步,20世纪80年 代开始出现数字化X射线设备,逐步 取代传统胶片式X射线机。
技术原理及应用领域
X射线数字成像技术在钢管检测中的应用

相 关技 术 方案进 行 不 断的调 整和 完善 , 最 终 实现 了将 D R技 术应 用 于钢 管 的质量检 测 中。与传 统射
线检 测 的对 比结果表 明 , D R技 术 的检 测灵敏 度 和 空 间分 辨 率 明显优 于 图像增 强 器 ,接 近 于传 统胶 片 的拍 片效 果 , 而且 成像 过 程所 需时 间及 图像 后 期 处理 时 间较 短 , 提 高 了检 测效 率 , 降低 了安全 风
险。 完全 可 以满足相 关标 准 的技 术要 求。
关 键 词 :钢 管 ;DR数 字成像 ;动 态灵敏度 ;静 态抓 图灵敏度 :动 态检 测速度
中图 分类号 : T E 9 7 3 . 6
文献 标 志码 : B
文章 编号 : 1 0 0 1 — 3 9 3 8 ( 2 0 1 3 ) 1 0 — 0 0 4 7 — 0 4
App l i c a t i o n o f X- r a y Di g i t a l Ra di o g r a p hy Te c hno l o g y i n S t e e l Pi p e De t e c t i o n
Q I N K e l i , Z HU S h a o h u a '
( 1 . Q u a l i t y D e p a r t m e n t o fS c i e n c e a n d T e c h n o l o g y , B a o j i P e t r o l e u m S t e e l p i p e C o . , L t d . , B a o j i 7 2 1 0 0 8 , S h a a n x i , C h i n a ; 2 . N a t i o n a l P e t r o l e u m nd a G a s T u b u l a r G o o d s E n g i n e e r i n g T e c h n o l o g y R e s e r a c h C e n  ̄ r , B a o j i 7 2 1 0 0 8 , S h a a n x i , C h i n a ; 3 . S t e e l 脚 e R e s e rc a h I n s t i t u t e , B a o j i P e t r o l e u m S t e e l P i p e C o . , L t d . , B a o j i 7 2 1 0 0 8 , S h o a n x i , C h i n a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射线数字成像技术的应用
在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。
长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。
近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。
数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。
同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。
过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。
1 射线数字成像技术的应用背景
随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。
目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技
术,检测周期长、效率低下。
“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。
2 国内外管道焊缝数字化检测的现状
2.1 几种主要的射线数字检测技术
1)CCD型射线成像(影像增强器)
2)光激励磷光体型射线成像(CR)
3)线阵探测器(LDA)成像系统
4)平板探测器(FPD)成像系统
几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。
2.2 国内研发情况
国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。
通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴
定。
2.3 国外研发情况
国外对数字化射线图像信息获取和无损检测方面的实验室研究工作开展较早,并进行了深入的研究,国外文献对数字X射线平板探测系统的工作原理、典型结构、参数优化、应用领域等诸多方面有少量的公开资料报道,其中美国、日本等国对该技术的研究已比较成熟,有些技术还申请了专利保护,并已有实用产品用于实际领域的报道,但关键制造技术则未见详细报道。
3 数字成像系统的的工程应用可行性
3.1 系统主要组成
RDEES系统主要由数字平板探测器(FPD)、X射线源(或爬行器)、工装夹具、系统软件、便携式计算机、GPS 定位器等部分组成。
3.2 检测布置
根据不同管道环焊缝特点可选择源在外的双壁透照方式或源在内的中心透照方式。
3.3 应用可行性
1)实时性
现场施工中可立即得到实时的检测结果,迅速评判焊缝的质量,对有缺陷的焊缝可以立即采取返修等相应措施,对无缺陷的焊缝则可以立即进行后续工程作业,如热处理、防腐作业等,减少延迟裂纹的出现。
2)检测灵敏度要求
从射线数字成像与传统胶片成像现场对比试验结果分析,系统对各类缺陷的检出率不应低于传统X射线胶片成像,像质灵敏度达到标准要求。
3)数字化管理
数字图像便于储存、归档且不能随意修改,有利于工程资料的安全保存;同时为地面建设数字化管道的推行提供了建设过程中的大量数字信息,并可结合GPS系统对每道焊口进行精确定位,便于工程质量监督。
4)节能环保安全
数字成像系统的应用符合目前国家提倡的节能环保的政策方针。
与传统X射线胶片成像相比,不但可节约大量的胶片而且没有化学污染物的排放。
数字成像板需要的射线剂量值低于传统胶片成像,可减少对员工及公众的辐射危害。
4 工程应用的标准介绍
4.1 国外现有标准
ASTM/E 1000-98 射线实时成像检测技术导则
ASTM/E 1255-96(2002) X射线荧光实时成像检测方法
ASTM E 1416-2004 焊接件射线实时成像检验
4.2 国内现有标准
GB/T19293-2003 对接焊缝Χ射线实时成像检测法
GB/T17925-1999 气瓶对接焊缝X射线实时成像检测
GJB 5364-2005 射线实时成像检测方法
JB/T10185-2007 射线检测图像分辨力测试计
4.3 国内在编标准
JB/T 4730.11 承压设备无损检测第11部分:X射线数字成像检测
GB ××-2010 《无损检测射线实时成像》,无损检测射线实时成像准编制工作组(SAC/TC56/WG1)正在编制。
5工程实践中主要解决的问题
5.1由于管道规格各异,施工现场地形条件复杂,要实现射线数字成像的自动化和半自动化,重点要制作一系列的工装夹具来满足检测需求,提高检测功效。
5.2 工程实践要求
数字成像检测与胶片成像检测同时进行,并对结果进行了对比。
射线源:便携式X射线机;胶片:AGFA C7;数字平板探测器主要技术参数:空间分辨率3lp/mm,探元尺寸127μm,A/D转换14bit,闪烁体DRZ+,探测器尺寸250mm ×200mm,采集速度1-30帧/秒,图像叠加32-128帧。
参加影像采集和影像评定人员资格均为射线Ⅱ级及以上人员,为保证检测结果准确无误、真实可靠,对参加射线数字成像检测的无损检测人员均进行了技术培训和技术交底。
数字成像检测程序为焊缝外观检查,系统现场布置,机电一体化数字影像采集,以焊口为单位存储影像,逐张评定。
5.3工程应用案例一
管子规格:Φ711×8
数字影像采集数量:数字化检测φ711×8焊口10个,单口采集影像20张,采集影像总数200张。
成像速度:单张成像时间8秒。
数字实时成像影像质量:像质计灵敏度达到AB级要求。
安全距离:使用RAD-60R个人计量仪测试,射线胶片周向曝光管电压220kV、管电流5.0mA、安全距离35m,射线数字实时成像管电压180kV、管电流3.0mA、安全距离25m。
发现典型缺欠类型:柱孔、单侧未焊透、未熔合、内凹。
5.4在应用过程中解决的主要问题
1)改变了由于胶片照相技术存在冲洗环节使得工程不连续的现状,在碰头时尤其适用。
2)不需要设置暗室,不使用胶片及化学药水,避免洗液等污染物的排放,特别是在淡水缺乏的地方尤其适用。
3)具备实时性,可根据实际情况及时改变透照参数以取得
最佳的检测图像,避免胶片照相各个环节中由于意外或者人为因素造成的补拍。
4)计算机辅助评定,改善了评片人员的工作环境和降低了评片人员的劳动强度。
5)数字图像便于存储、查询和分类管理,改变了胶片保存时间短、保存环境要求高不便于查询的现状。
6)配合自动化检测工装,提高了数字射线成像技术的检测效率。
7)检测影像加密,提高了数字射线成像技术的检测结果的真实性。
8)将GPS定位装置应用于野外数字射线检测系统,进一步提高检测结果的真实性。
5.5 胶片成像与数字成像现场配置对比
胶片成像与数字成像现场配置对比见表1。
表1 胶片成像与数字成像现场配置
5.6检测工艺及结论对比
检测工艺及结论对比情况见表2。
表2 检测工艺及结论对比
对比胶片和数字图像缺陷细节,几乎所有胶片上出现的缺陷数字图像上都可识别,通过工程应用未发现漏检的情况。
但缺陷的对比度和边缘清晰程度有所差别,数字影象的锐度和对比度可调。
熟练使用后在平坦地段现场检测速度大致与胶片相当,数字检测在实际检测中实时性明显。
管道壁厚改变,数字成像能够及时的从图像上发现壁厚的变化,现场进行参数调整,避免不必要的浪费。
5.7工程应用总结
1)射线成像技术优势
平板探测器射线探测效率高,可降低辐射剂量。
即拍即评,可保证工程连续性,缩短施工工期。
不使用胶片及化学药水,不存在暗室处理,避免洗液等污染物的排放,节能环保。
计算机辅助评定,提高缺陷检出率,降低评片人员劳动强度。
数字化管理,便于检测影像和工程信息资料存储、分析、查询。
2)射线成像技术局限性
空间分辨率不如胶片。
对射线机射线能量、强度的波动较敏感,需要配备高频恒压的射线机。
市场上现有的平板探测器尺寸较为固定,且不可弯曲,不适合角焊缝等射线检测。
由于成像板不能弯曲,为控制两端焊缝影像畸变和清晰度,需要采取增加成像次数及控制散射线等措施。
3)还需要解决的问题
探测器、射线机等国产化。
设备小型化。
进一步提高系统灵敏度和空间分辨率。
扩展数字射线检测系统使用范围。
改进工装,提高工作效率。
6 结论
随着计算机数字图像处理技术的发展,经过工程应用验证,X射线数字成像检测系统已能满足钢质管道焊缝检测的需要,其图像质量已达到相关标准要求。
同胶片X射线检测相比较,数字化检测具备更高的即时性、准确性和可靠性。
由于数字图像所特有的采集和保存方式,使得数字图象更便于储存、归档,实现了远程图像传输和远程专家会诊,在经济性方面也优于传统胶片成像。
数字成像检测在工程中的应用,顺应了钢质管道数字化无损检测的发展要求。
希望射线数字成像技术能够在石油管道行业检测领域得到较好的推广运用,并得到不断发展。