测量平差知识点
测量平差概要
测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差基础
§1—1观测误差当对某量进行重复观测时,就会发现,这些观测值之间往往存在一些差异。
例如,对同一段距离重复丈量若干次,量得的长度通常是互有差异。
另一种情况是,如果已经知道某几个量之间应该满足某一理论关系,但当对这几个量进行观测后,也会发现实际观测结果往往不能满足应有的理论关系。
例如,从几何上知道一平面三角形三内角之和应等于180。
,但如果对这三个内角进行观测,则三内角观测值之和常常不等于180。
,而有差异。
在同一量的各观测值之间,或在各观测值与其理论上的应有值之间存在差异的现象,在测量工作中是普遍存在的。
为什么会产生这种差异呢?不难理解,这是由于观测值中包含有观测误差的缘故。
观测误差的产生,原因很多,概括起来有以下三方面:1.测量仪器测量工作通常是利用测量仪器进行的。
由于每一种仪器只具有一定限度的精密度,因而使观测值的精密度受到了一定的限制,例如,在用只刻有厘米分划的普通水准尺进行水准测量时,就难以保证在估读厘米以下的尾数时完全正确无误;同时,仪器本身也有一定的误差,例如,水准仪的视准轴不平行于水准轴,水准尺的分划误差等等。
因此,使用这样的水准仪和水准尺进行观测,就会使水准测量的结果产生误差。
同样,经纬仪、测距仪等的仪器误差也使三角测量、导线测量的结果产生误差。
2.观测者由于观测者的感觉器官的鉴别能力有一定的局限性,所以在仪器的安置、照准、读数等方面都会产生误差。
同时,观测者的工作态度和技术水平,也是对观测成果质量有直接影响的重要因素。
3.外界条件观测时所处的外界条件,如温度、湿度、风力、大气折光等因素都会对观测结果直接产生影响;同时,随着温度的高低,湿度的大小,风力的强弱以及大气折光的不同,它们对观测结果的影响也随之不同,因而在这样的客观环境下进行观测,就必然使观测的结果产生误差。
上述测量仪器、观测者、外界条件三方面的因素是引起误差的主要来源。
因此,我们把这三方面的因素综合起来称为观测条件。
测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要容,阐述这种关系的公式称为协方差传播律。
测量平差——精选推荐
测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。
人们把这一数据处理的整个过程叫测量平差。
测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。
2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。
①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。
权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。
()n i iiP ,...,2,1220==σσ i P 为观测值i L 的权,20σ是可以任意选定的比例常数。
②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。
确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。
凡是方差等于20σ的观测值,其权必等于1。
权为1的观测值,称为单位权观测值。
无论2σ取何值,权之间的比例关系不变。
③测量中常用的定权方法 ⅰ.水准测量的权NC P h =式中,N 为测站数。
SC P h =式中,S 为水准路线的长度。
ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。
ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。
测量平差概要
测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
最新测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论➢✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
新测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差知识大全
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差重点内容个人总结
绪论第一节观测误差本章主要介绍偶然误差的规律性、衡量精度的指标、协方差传播律、权的定义及测量中常用的定权方法等例子回顾:导线计算表一、观测值中为什么存在观测误差?观测条件对观测成果产生影响,不可避免产生观测误差。
有观测就有误差的结论。
测量仪器、观测者、外界条件三方面的因素是引起误差的主要来源。
通常把这三方面的因素合起来称为观测条件。
观测条件的好坏与观测成果的质量有着密切的联系。
二、观测误差的计算给出观测误差计算的纯量表达式和矩阵表达式。
三、观测误差的分类及其处理1、分类给出误差分类的表达式,粗差、系统误差和偶然误差的定义。
◆系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、符号上表现出系统性,或者在观测过程中按一定的规律变化,或者为某一常数,那么,这种误差称为系统误差。
简言之,符合函数规律的误差称为系统误差。
◆偶然误差:在相同的观测条件下作一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差。
简言之,符合统计规律的误差称为偶然误差。
2、处理在测量学里,偶然误差处理是按照边长比例分配或直接平均分配。
平差里则用平差的方法来处理,所处理的是一系列带有偶然误差的观测值,不包括系统误差的影响。
四、测量平差的任务根据一系列含有观测误差的观测值求待定量的最佳估值。
第二节测量平差学科的研究对象研究对象为含有观测误差的各类观测值。
举例说明。
第三节测量平差的简史和发展一、测量平差理论的发展1、经典平差理论的发展主要介绍高斯创立最小二乘原理和马尔可夫创立高斯-马尔可夫平差模型的历史背景和过程。
2、近代平差理论的发展主要介绍二十世纪四十年代以后出现的近代平差理论,结合导线网平差和我国南极考察、建站,重点介绍方差分量估计和秩亏网平差的理论、方法及其用途。
二、平差计算方法的发展1、手算阶段2、半自动平差阶段3、全自动平差阶段第四节测量平差的任务和内容一、任务讲授测量平差的基本理论和基本方法,为进一步学习和研究测量平差打下深入的基础。
测量平差资料
测量平差资料第⼀章绪论⼀、观测误差1、为什么要进⾏观测必要观测、多余观测2、误差存在的现象3、误差产⽣的原因观测条件:观测仪器、观测者、外界条件4、误差的分类粗差、系统误差、偶然误差5、误差的处理办法⼆、测量平差的简史和发展三、测量平差的两⼤任务及本课程的主要内容第⼆章误差分布与精度指标⼀、偶然误差的规律性1、随机变量2、偶然误差的分布正态分布3、偶然误差的统计特性由统计分析可以看出,偶然误差具有下列特性:1、在⼀定的观测条件下,偶然误差的绝对值有⼀定的限值,即超过⼀定限值的偶然误差出现的概率为零;2、绝对值较⼩的偶然误差⽐绝对值较⼤的偶然误差出现的概率⼤;3、绝对值相等的正负偶然误差出现的概率相同;4、偶然误差的理论平均值为零⼆、随机变量的数字特征(1)反映随机变量集中位置的数字特征---数学期望(2)反映随机变量偏离集中位置的离散程度----⽅差(3)映两两随机变量x、y相关程度的数字特征---协⽅差3、协⽅差(a) 定义相关系数三、衡量精度的指标1、⽅差和中误差2、平均误差3、或然误差4、极限误差5、相对(中、真、极限)误差四、随机向量的数字特征1、随机向量2、随机向量的数学期望3、随机向量的⽅差-协⽅差阵协⽅差阵的定义协⽅差阵的特点4、互协⽅差阵协⽅差阵的定义协⽅差阵的特点五、精度准确度精确度观测值的质量取决于观测误差(偶然误差、系统误差、粗差)的⼤⼩。
1、精度:描述偶然误差,可从分布曲线的陡峭程度看出精度的⾼低。
2、准确度:描述系统误差和粗差,可⽤观测值的真值与观测值的数学期望之差来描述,即:3、精确度:描述偶然误差、系统误差和粗差的集成,精确度可⽤观测值的均⽅误差来描述,即:即观测值中只存在偶然误差时,均⽅误差就等于⽅差,此时精确度就是精度。
七、⼩结第三章协⽅差传播律⼏个概念1、直接观测量2、⾮直接观测量---观测值的函数⽔准测量导线测量三⾓形内⾓平差值3、独⽴观测值4、⾮独⽴观测值----相关观测值独⽴观测值各个函数之间不⼀定独⽴5、误差传播律6、协⽅差传播律⼀、观测值线性函数的⽅差设观测向量L及其期望和⽅差为:若观测向量的多个线性函数为三、两个函数的互协⽅差阵四、⾮线性函数的情况五、多个观测向量⾮线性函数的⽅差—协⽅差矩阵设观测向量的t个⾮线性函数为:对上式求全微分,得六、协⽅差传播律的应⽤1、⽔准测量的精度2、距离丈量的精度3、同精度独⽴观测值算术平均值的精度七、应⽤协⽅差传播律时应注意的问题(1)根据测量实际,正确地列出函数式;(2)全微分所列函数式,并⽤观测值计算偏导数值;(3)计算时注意各项的单位要统⼀;(4)将微分关系写成矩阵形式;(5)直接应⽤协⽅差传播律,得出所求问题的⽅差-协⽅差矩阵。
测量平差
一、名词解释:1、观测值:用测量仪器、工具等多种测量手段和方法对观测对象进行测量所获得并以数字形式表示的结果;2、观测误差:即是观测值与理论值之间的差值;3、系统误差:在相同的观测条件下作一系列的观测,如果在大小、符号上表现出系统性,或者在观测过程中按一定的规律变化,或者保持一常数;4、偶然误差:在相同的观测条件下做一系列的观测,如果误差在大小和符号上都表现出偶然性,即从单个误差上来看,该误差的大小和符号没有规律性,但就大量误差总体而言,具有一定的统计规律;5、真值:任何一个被观测的量,客观上存在着一个能代表其真正值大小的数值,这一数值被称为该量的真值;6、精度:就是指误差分布的密集或离散程度,即离散度的大小;7、准确度:在一定的实验条件下,多次测定的平均值与其真值相等符合的程度,即测量结果与测量真值的一直程度;8、中误差:在测量中,方差的算数平方根用于衡量精度的标准,中误差不是代表个别具体误差大小,而是代表一组同精度观测值真误差的代表;9、必要观测及多余观测:为确定网中位置而必须观测的观测值个数成为必要观测,凡超过必要观测的观测称为多余观测;10、独立观测值:在测量工作中,直接观测得到的高差、距离、角度和方向等都是独立观测值;11、直接观测平差法:就是针对只有一个未知数的测量问题,根据这些观测值,球的该问题中未知数最或染指的一种方法;12、条件平差法:根据条件方程式按最小二乘原理求观测值的最或是值;13、间接平差法:根据观测量与未知量的函数关系,列出误差方程式,然后再按最小二乘原理求未知量的最或是值;14、起算数据:为了确定控制网的大小和位置所必须的已知数据;15、独立网及非独立网:等于或少于起算数据的网成为独立网,多余起算数据的网成为非独立网;16、极条件:17、基线条件:18、固定边条件:19、坐标方位角条件:20、平差值函数:就是平差中某些量是通过平差值计算出来的21、误差椭圆:常以长短半轴老绘制标准的椭圆来代替相应的误差曲线,用来计算待定点在各方向上的位差。
平差知识点总结
平差知识点总结一、平差的基本概念1.平差的定义平差是指利用数学方法对一组测量数据进行处理和分析,消除或减小测量误差,从而得到比较准确的测量结果的过程。
平差是保证测量精度的重要手段,它通过对测量数据的处理,能够提高测量结果的准确性和可靠性。
2.平差的分类根据不同的处理方法和目的,平差可以分为几何平差、最小二乘平差、参数平差、条件平差、闭合平差等多种类型。
其中,最小二乘平差是平差技术中应用最广泛的一种,它通过最小化残差的平方和来确定未知参数的估计值,是一种较为常用的平差方法。
3.平差的应用平差技术在工程测量、地形测绘、地质勘探、地球物理探测等领域都有着广泛的应用。
在实际测量中,由于测量仪器、环境等因素的影响,测量数据往往会存在一定的误差,平差技术可以通过对测量数据进行处理,消除或减小这些误差,从而得到准确的测量结果。
二、平差的基本原理和方法1.平差的基本原理平差的基本原理是利用数学方法对测量数据进行处理和分析,通过建立数学模型和求解未知参数的估计值,最终得到较为准确的测量结果。
平差的核心是通过最小化残差来确定未知参数的估计值,使得观测值和计算值之间的差异达到最小,从而提高测量结果的准确性。
2.平差的基本方法平差的基本方法包括观测数据的处理、数学模型的建立、参数的求解以及结果的检查和评定等几个步骤。
在实际平差中,需要根据具体的测量任务和条件选择合适的平差方法,对测量数据进行适当的处理和分析,最终得到满足精度要求的测量结果。
三、平差的要素和步骤1.平差的要素平差的要素包括观测数据、数学模型、未知参数、观测方程、法方程、权矩阵等几个方面。
其中,观测数据是进行平差的基础和原始资料,数学模型是求解未知参数的理论基础,未知参数是待求解的目标,观测方程和法方程是平差计算的基本方程,权矩阵则是对观测值的权重进行考虑和处理。
2.平差的步骤平差的一般步骤包括数据预处理、误差分析、参数估计、残差分析等几个方面。
在进行平差计算之前,首先需要对观测数据进行预处理,包括数据的加工、筛选、检查等工作;然后通过误差分析求解未知参数的初始值,并进行参数估计;最后进行残差分析,检查和评定结果的精度和可靠性。
(完整版)测量平差知识大全汇总
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差知识点
测量平差知识点1、测量学的研究内容:测定和测设。
2、测定:将地⾯上客观存在的物体通过测量的⼿段将其测成数据或图形。
3、测设:就是将测量的⼿段标定在地⾯上。
4、⽔准⾯:静⽌的⽔⾯。
5、⼤地⽔准⾯:⽔准⾯与静⽌的平均海⽔⾯相重合的闭合⽔准⾯。
6、铅垂线:重⼒⽅向线,是测量⼯作的基准线。
7、地球椭球⾯是测量⼯作的基准⾯。
8、地物:地⾯上⼈造或天然固定的物体:地貌:地⾯⾼低起伏形态。
9、测量上常⽤坐标系:天⽂、⼤地、⾼斯平⾯直⾓、独⽴平⾯直⾓。
10、绝对⾼程:地⾯点沿铅垂线到⼤地⽔准⾯的距离。
相对⾼程:某点到任意⽔准⾯的距离。
11、⾼差:地⾯上两点之间⾼程差。
12、半径为10km范围内⾯积为320km2之内可以⽤⽔平⾯代替⽔准⾯时距离产⽣的误差可忽略不计;测距范围的100km2时,⽤平⾯代替⽔准⾯时对⾓度的影响可忽略不计;在⾼程测量中即使很短的距离也不可忽略。
13、测量⼯作的原则:a由整体到局部、由控制到碎部;b步步检核。
14、测量的基本⼯作:测⾓、量边、测⾼程。
15、测绘的基本⼯作:确定地⾯点的基本位置。
16、施⼯测量包括:建筑物施⼯放样、建筑物变形监测、⼯程竣⼯测量。
17、⾼程测量:测量地⾯上各点⾼程的⼯作。
18、⽔准测量的实质:测量地⾯上两点之间的⾼差,是利⽤⽔准仪所提供的⼀条⽔平视线来实现的。
19、⾼差计算⽅法:⾼差法、仪⾼法。
20、⽔准仪按构造可分为:微倾式、⾃动安平、数字⽔准仪,及⽔准尺和尺垫。
21、DS3构造:望远镜、⽔准器,基座。
22、⽔准仪轴线之间的⼏何条件:a圆⽔准器轴平⾏于竖轴b⼗字丝横丝垂直于竖丝c ⽔准管轴平⾏于视准轴。
23、尺垫的作⽤:减少⽔准尺下沉和标志转点。
24、⽔准尺的使⽤:粗平、瞄准、精平、读数。
24、⽔准点的分类:永久性和临时性。
25、测站的检核⽅法:双⾯尺法和双仪⾼法。
26、⽔准路线检核⽅法:闭合⽔准路线、附合⽔准路线、⽀⽔准路线、⽔准⽹。
27、误差:仪器误差,观测误差、外界条件的影响。
测量平差方法及误差分析技巧
测量平差方法及误差分析技巧引言:测量平差在各个领域中都起到了至关重要的作用,无论是土地测量、工程测量还是地理测量都离不开精确的测量平差。
本文将介绍测量平差的基本原理、方法以及误差分析技巧,以帮助读者更好地理解和应用这些知识。
一、测量平差的基本原理1.1 测量平差的定义测量平差是指在测量中,通过对测量数据进行处理和分析,用数学方法将观测值修正为比较可靠的数值,并确定其精度和可靠度的过程。
1.2 测量平差的基本原理测量平差的基本原理是以观测数据为基础,通过适当的计算和修正方法,使测量结果达到满足一定精度要求的条件。
二、测量平差的方法2.1 误差的分类误差是指由于种种原因导致观测值与真值之间的差异。
根据产生误差的原因,可将误差分为系统误差和随机误差两类。
2.2 测量平差的方法2.2.1 最小二乘法最小二乘法是一种常用的测量平差方法,其基本原理是通过构建误差方程,使误差的平方和最小化,从而得到最优的修正数值。
2.2.2 加权最小二乘法加权最小二乘法是在最小二乘法的基础上,引入权重因子,对观测值进行加权处理,以更好地反映各个观测值的可靠性。
2.2.3 置信椭圆法置信椭圆法是一种通过误差椭圆的几何性质,结合观测弥散矩阵,进行测量平差的方法。
通过确定椭圆的长轴、短轴和倾斜角度,可对误差进行合理的修正和分析。
三、误差分析技巧3.1 误差的传递规律误差在测量过程中具有传递性,即观测结果的误差会随着计算过程的推进而逐渐增大。
因此,在进行误差分析时,需要考虑不同环节中误差的传递规律,以准确评估测量结果的可靠性。
3.2 概略误差与精确误差概略误差是指由于设备精度、人为操作等因素导致的测量误差,通过一些常见的公式和方法可以进行较为粗略的估计。
精确误差是在概略误差的基础上,通过更加精细的计算和分析得到的误差值,更贴近实际测量结果的误差。
3.3 误差理论和误差估计误差理论是关于误差发生的规律的理论体系,包括误差分类、误差分布等。
测量平差(误差理论基础知识)
mA mB
说明A组的观测精度比B组高
第二章 测量误差理论及其应用
2.允许误差:在一定观测条件下规定的测量误差的限值,也 称为极限误差或限差。 以3倍中误差作为偶然误差的极限值 3m
限
要求较高时,也常采用2倍中误差作为极限误差
限 2m
第二章 测量误差理论及其应用
例题:分别丈量了1000m和200m两段的距离,中误差 均为 0.2m,试问哪个测量的精度高?
3.相对误差:观测值中误差的绝对值 与观测值之比。 K m 1 1
D D m M
K1
0.2 1 1000 5000
5
1
4
11 12 13 a ( 1 ) M a ( 1 ) M a ( 1 ) M13 1 11 11 12 12 13
3 2 2 0
2
补充知识——线性代数
习题
1 2 3
0 0 0
3 0 1 0 0 1
0 1 0 2
补充知识——线性代数
★行列式的转置 把矩阵A的行换成相应的列,得到的新矩 阵称为A的转置矩阵,记作AT 。
第二章 测量误差理论及其应用
第二章 测量误差理论及其应用
1.偶然误差的统计特性
有限性
一定观测条件下有限次 观测值中,其绝对值不 超过一定界限
显小性
绝对值小的误差比绝对 值大的误差出现的机会 多
对称性
偶然 误差
抵消性
观测次数无限增多时,偶然 误差的算术平均值趋近于零
绝对值相等的正、负误差出 现的机会大致相等
cos sin sin cos
1、测量平差基础知识复习
2、按照平差准则求解 最小二乘准则; 极大验后、极大似然等准则; 广义最小二乘准则。
测量平差
由含有误差的观测值按一定准则 求未知参数X的估值 求未知参数 的估值 参数分为: 参数分为: 非随机参数 最小二乘估计、 最小二乘估计、极大似然估计 这类平差即经典平差 随机参数 极大验后估计、 极大验后估计、最小方差估计等 这类平差称“滤波、推估“ 这类平差称“滤波、推估“ 随机参数和非随机参数 广义最小二乘原理 这类平差称”配置“ 这类平差称”配置“
θ = lim
[ ∆] n
n→ ∞
极限误差:二倍或三倍中误差。 极限误差:二倍或三倍中误差。
相对误差:相对中误差,是中误差与观测值比, 相对误差:相对中误差,是中误差与观测值比, 例:衡量距离测量误差,土石方测量误差等。表示 为1/N,1/10000。 1/N,1/10000。 方差:中误差的平方,统计学用语,中误差的统 方差:中误差的平方,统计学用语,中误差的统 计学用语为标准差。 或然误差ρ 或然误差ρ 误差出现在区间(ρ 误差出现在区间(ρ,-ρ)的概率为0.5。 )的概率为0.5。 各精度指标的关系: 各精度指标的关系:
平差原理(准则)--平差原理(准则)---最小二乘估计 平差模型
条件平差:AV= 条件平差:AV=W 间接平差:L 间接平差:L+V=BX 附有未知数的条件平差:AV+BX= 附有未知数的条件平差:AV+BX=W 附有约制条件的间接平差: L+V=BX CX-W=0 CX-
原理
按准则V PV= 按准则VTPV=min 确定未知数(最小二乘估计), 估计过程称参数估计。 估计过程称参数估计。
误差的概念或理论 误差的定义
观测值与理论值之间的差异(现象:重 复观测,理论关系的满足)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、测量学的研究内容:测定和测设。
2、测定:将地面上客观存在的物体通过测量的手段将其测成数据或图形。
3、测设:就是将测量的手段标定在地面上。
4、水准面:静止的水面。
5、大地水准面:水准面与静止的平均海水面相重合的闭合水准面。
6、铅垂线:重力方向线,是测量工作的基准线。
7、地球椭球面是测量工作的基准面。
8、地物:地面上人造或天然固定的物体:地貌:地面高低起伏形态。
9、测量上常用坐标系:天文、大地、高斯平面直角、独立平面直角。
10、绝对高程:地面点沿铅垂线到大地水准面的距离。
相对高程:某点到任意水准面的距离。
11、高差:地面上两点之间高程差。
12、半径为10km范围内面积为320km2之内可以用水平面代替水准面时距离产生的误差可忽略不计;测距范围的100km2时,用平面代替水准面时对角度的影响可忽略不计;在高程测量中即使很短的距离也不可忽略。
13、测量工作的原则:a由整体到局部、由控制到碎部;b步步检核。
14、测量的基本工作:测角、量边、测高程。
15、测绘的基本工作:确定地面点的基本位置。
16、施工测量包括:建筑物施工放样、建筑物变形监测、工程竣工测量。
17、高程测量:测量地面上各点高程的工作。
18、水准测量的实质:测量地面上两点之间的高差,是利用水准仪所提供的一条水平视线来实现的。
19、高差计算方法:高差法、仪高法。
20、水准仪按构造可分为:微倾式、自动安平、数字水准仪,及水准尺和尺垫。
21、DS3构造:望远镜、水准器,基座。
22、水准仪轴线之间的几何条件:a圆水准器轴平行于竖轴b十字丝横丝垂直于竖丝c水准管轴平行于视准轴。
23、尺垫的作用:减少水准尺下沉和标志转点。
24、水准尺的使用:粗平、瞄准、精平、读数。
24、水准点的分类:永久性和临时性。
25、测站的检核方法:双面尺法和双仪高法。
26、水准路线检核方法:闭合水准路线、附合水准路线、支水准路线、水准网。
27、误差:仪器误差,观测误差、外界条件的影响。
28、角度测量:水平角和竖直角测量。
29、经纬仪:光学和电子经纬仪。
30、DJ6:基座、水平度盘、照准部(望远镜、竖直度盘、水准管、读数显微镜)31、经纬仪的使用步骤:对中、整平、瞄准、读数。
32、水平角测量方法:测回法,方向观测法。
33、距离测量常用的方法:钢尺直接、视距法、电磁波、卫星测距。
34、钢尺量距的误差:定线、尺长、温度测定、钢尺倾斜、拉力不均、钢尺对准、读数。
35、视距测量:利用望远镜内的视距装置配合视距尺根据几何光学和三角测量原理,同时测定距离高差的方法。
36、全站仪功能:角度测量、距离测量、坐标及高程测量、特殊测量功能。
37、直线定向:选择一个标准方向再根据直线与标志方向之间的关系确定该直线方向。
38、测量常用的标准方向线:真子午线、磁子午线、坐标纵轴方向。
39、误差来源:测量仪器、观测者、外界环境条件。
40、测量误差的种类:粗差、系统误差、偶然误差。
41、系统误差:在相同条件下,在某量进行的一系列观测中,数值大小和正负符号固定不变,或按一定规律变化的误差。
42、偶然误差:在相同条件下,在某量进行的一系列观测中,单个误差的出现没有一定的规律性,其数值的大小和符号都不固定,表现出偶然性,但大量的误差却具有一定统计规律。
43、偶然误差的特性:a在一定观测条件下,偶然误差的绝对值不会超过一定限度,即偶然误差是有界的;b绝对值小的误差比绝对值大的误差出现的机会大;c绝对值相等的正负误差出现的个数大致相等;d偶然误差的算术平均值随着观测次数的无限增加趋与零。
44、控制测量:在一定区域内为地形测图和工程测量建立控制网,所进行的测量工作。
45、平面控制网建立的方法:三角测量、三边测量、边角测量、导线、全球定位系统测量。
46、高程控制网建立方法:水准、三角高程、GNSS高程测量。
47、控制网布设原则:由整体控制,局部加密和高级控制,低级加密。
48、导线布设形式:附合导线、闭合导线、支导线。
49、导线测量的外业工作:踏勘选点、边长测量、角度测量、连接测量。
50、三角高程测量的原理:测站的照准点所观测的竖直角和两点间的水平距离来计算两点间的高差。
51、全球定位系统构成:空间卫星部分,地面监控部分(监测站、主控站、注入站)用户设备部分。
测量平差1、观测量的真值:任何观测量,客观上总存在一个能反映其真正大小的数值。
2、观测误差:观测量的真值与观测值的差。
3、观测条件:仪器误差、观测者和外界环境的综合影响。
4、观测误差分类:系统误差和偶然误差。
5、误差公理:在测量中产生误差是不可避免的,即误差存在于整个观测过程。
6、消除或削弱系统误差:一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。
7、测量平差的任务:⑴求观测值的最或是值(平差值)⑵评定观测值及平差值的精度。
8、偶然误差具有统计特性:(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。
(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。
(3) 对称性:绝对值相等的正负误差出现的概率相等。
(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。
9、由偶然误差特性引出的两个测量依据:⑴制定测量限差的依据⑵判断系统误差(粗差)的依据。
10、精度:精度指的是误差分布的密集或离散的程度。
11、观测量的精度指标:(1) 方差与中误差(2) 极限误差(3) 相对误差。
12、极限误差:在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。
通常取三倍中误差为极限误差。
当观测要求较严时,也可取两倍中误差为极限误差。
13、水准测量的高差中误差与测站数及水准路线长度关系:当各测站的观测精度相同时,水准测量的高差中误差与测站数的算术平方根成正比;当各测站的距离大致相等时,水准测量的高差中误差与水准路线长度的算术平方根成正比。
14、单位权:权等于1时称为单位权;单位权中误差:权等于1的中误差称15、应用权倒数传播律时注意:观测值间应误差独立。
16、观测值的权与其协因数关系:观测值的权与其协因数互为倒数关系。
17、菲列罗公式作用:根据三角形的闭合差计算测角中误差。
18、测量平差的原则:(1) 用一组改正数来消除不符值;(2) 该组改正数必须满足最小。
19、同精度观测值:在相同的观测条件下所进行的一组观测。
20、测量平差的目的:根据最小二乘法原理,正确消除各观测值间的矛盾,合理地分配误差,求出观测值及其函数的最或是值,同时评定测量结果的精度。
21、条件平差的原理:根据观测值间构成的条件,按最小二乘法原理求观测值的最或是值,消除因多余观测而产生的不符值,并进行精度评定。
22、条件平差中的法方程特点(1) 是一组线性对称方程,系数排列与对角线成对称;(2) 在对角线上的系数都是自乘系数;(3) 全部系数都是由条件方程的系数组成,常数项的条件方程的常数项。
23、条件平差的计算步骤:(1) 根据实际问题,确定条件方程的个数(等于多余观测的个数),列出改正数条件方程;(2) 组成法方程式(等于条件方程的个数);(3) 解算法方程,求出联系数k;(4) 将k代入改正数方程求出改正数v,并计算平差值;(5) 计算单位权中误差;(6) 将平差值代入平差值条件方程式,检核平差值计算的正确性。
24、水准网的必要观测的确定:对于有已知点的水准网,确定一个待定点的高程必须观测一段高差,所以必要观测个数t等于待定点个数p,即;对于无已知点的水准网,只能确定待定点间的相对高程,故必要观测个数t等于待定点个数p减1,即。
25、条件方程的列立应注意:(1) 条件方程的个数必须等于多余观测的个数,不能多也不能少;(2) 条件方程式之间必须函数独立;(3) 尽量选择形式简单便于计算的条件方程式。
26、水准网的条件方程式特点:水准网的条件方程式只有闭合水准路线和附合水准路线两种,当水准网为独立网时,条件方程式只有闭合水准路线。
27、独立测角网的条件方程类型:独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
圆周条件的个数等于中点多边形的个数,极条件的个数等于中点多边形、大地四边形和扇形的总数,图形条件的个数等于互不重叠的三角形个数加上实对角线的条数。
28、极条件特点:分子是推算路线未知边所对角平差值的正弦函数值的乘积,分母是推算路线已知边所对角平差值的正弦函数值的乘积。
29、求平差值函数的中误差:(1) 列平差值函数式;(2) 求平差值函数的权倒数;(3) 求平差值函数的中误差。
30、间接平差:以最小二乘为平差原则,以平差值方程、误差方差作为函数模型的平差方法。
31、间接平差的计算步骤:(1) 根据平差问题的性质,确定必要观测的个数t,选择t个独立量作为未知参数;(2) 将观测值的平差值表示成未知参数的函数,即平差值方程,并列出误差方程;(3) 由误差方程的系数B与自由项l组成法方程;(4) 解算法方程,求出未知参数,计算未知参数的平差值;(5) 将未知参数代入误差方程求出改正数v,并求出观测值的平差值。
32、按间接平差法列水准网误差方程的步骤:(1) 根据平差问题,确定必要观测的个数t;(2) 选取t个待定点的高程作为未知参数,确定未知参数的近似值;(3) 列立平差值方程、误差方程。
33、坐标平差列立误差方程的步骤:(1) 计算各待定点的近似坐标;(2) 由待定点的近似坐标和已知点的坐标计算各待定边的近似坐标方位角和近似边长;(3) 列出各待定边坐标方位角改正数方程,并求解其系数;(4) 列立误差方程,计算系数和常数。
34、坐标平差:以待定点的坐标为未知参数的间接平差称为坐标平差。