史上最详细的解析几何全解
高考数学解析几何概念详解
高考数学解析几何概念详解高考数学是每个学生普遍都需要面对的考试之一。
其中,解析几何是不可避免的一个重要考点。
解析几何主要涉及到平面解析几何和空间解析几何两个部分。
本文将着重介绍空间解析几何的概念及其应用。
一、空间直角坐标系和三元组空间解析几何中,空间直角坐标系是十分重要的概念。
我们通常用三个坐标轴来确定一个三维空间,这三个坐标轴之间相互垂直,其中x轴是水平方向,y轴是垂直于x轴的水平方向,z轴是垂直于x轴和y轴的垂直方向。
三元组则是指在一个空间直角坐标系中,一个点的坐标表示。
三元组的一般表示为$(x,y,z)$,其中x表示该点在x轴上的坐标位置,y表示该点在y轴上的坐标位置,z表示该点在z轴上的坐标位置。
二、空间向量的定义和性质空间向量是指在空间内有大小和方向的量。
空间向量可以用坐标表示和点表示两种方式。
在坐标表示中,一个空间向量通常用起点和终点的坐标表示出来,两个坐标之间的差即为该向量的坐标表示。
在点表示中,一个空间向量通常用其起点和方向向量来表示,我们通常用有向线段表示空间向量,起点在空间上的一个点,终点则为有向线段的末端点,而方向则由有向线段的方向确定。
在学习空间解析几何时,我们需要掌握空间向量的一些基本性质,比如向量的运算法则、向量共线条件、向量的数量积等等。
三、空间直线的方程式和特殊直线空间直线通常可以用向量、点向式和截距式表示。
其中,向量式表示的直线通常采用点向式和截距式表示。
点向式表示的直线可以通过其通过的一点 $P(x_0,y_0,z_0)$ 和与直线平行的一个向量 $\overrightarrow{l}=\langle a,b,c\rangle$ 来表示,其方程为:$$ \frac{\mathbf{x}-\mathbf{P}}{a}=\frac{\mathbf{y}-\mathbf{P}}{b}=\frac{\mathbf{z}-\mathbf{P}}{c} $$截距式表示的直线则主要用于表示直线与坐标轴的交点及其坐标。
解析几何(全解)
直线的方程1、l ()1过两点()2,3A ,()6,5B ;()2过()1,2A ,且以()2,3a =为方向向量;()3过()3,2P ,倾斜角是直线430x y -+=的倾斜角的2倍; ()4过()5,2A -,且在x 轴,y 轴上截距相等;()5在y 轴上的截距为3-,且它与两坐标轴围成的三角形面积为6;()6过()2,3P -,且与x 轴、y 轴分别交于A 、B 两点,若点P 分AB比为2-2、(斜率与倾斜角)已知两点()1,2A -,(),3B m .()1求直线A B 的斜率k 和倾斜角α;()2求直线A B 的方程;()3若实数13m ⎡⎤∈--⎢⎥⎣⎦,求A B 的倾斜角α的范围3、 (两直线位置、距离)根据下列条件,求直线的直线方程()1求通过两条直线3100x y +-=和30x y -=的交点,且到原点距离为1;()2经过点()3,2A ,且与直线420x y +-=平行;()3经过点()3,0B ,且与直线250x y +-=垂直.4、(动直线相交)已知直线l 过点()0,0P 且与以点()2,2A --,()1,1B -为端点的线段相交(1)求直线l 的斜率及倾斜角α的范围.()2求函数sin 13cos y θθ-=+的值域 5、 (对称问题)已知直线l :2x-3y+1=0,点A (-1,-2),求:(1)点A 关于直线l 的对称点'A 的坐标;(2)直线m:3x-2y-6=0关于直线l 的对称直线'm 方程; (3)直线l 关于点A(-1,-2)对称的直线'l 的方程; 6、(定点问题)已知直线0)()2(:=-++++b a y b a x b a l 及点)4,3(P (1)证明直线l 过某定点,并求该定点的坐标 (2)当点P 到直线l 的距离最大时,求直线l 的方圆的方程圆的标准方程为222)()(r b y a x =-+-,其中圆心为),(b a ,半径为r圆的一般方程为220x y Dx Ey F ++++=,圆心坐标(,)22D E --,半径为2422FE D -+。
(完整版)高中数学解析几何公式大全
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
解析几何课件(第五版)精选全文
所求平面方程为
上一页
返回
解
§3.2 平面与点的相关位置
下一页
返回
上一页
下一页
返回
点到平面距离公式
上一页
下一页
返回
在第一个平面内任取一点,比如(0,0,1),
上一页
返回
定义
(通常取锐角)
两平面法向量之间的夹角称为两平面的夹角.
§3.3 两平面的相关位置
下一页
返回
按照两向量夹角余弦公式有
§1.5 标架与坐标
§1.7 两向量的数性积
§1.9 三向量的混合积
§1.8 两向量的矢性积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.4 空间曲线的方程
§2.3 母线平行与坐标轴的柱面方程
第三章 平面与空间直线
注意 空间曲面的参数方程的表达式不是惟一的.
抛物柱面
平面
抛物柱面方程:
平面方程:
三、母线平行与坐标轴的柱面方程
下一页
返回
从柱面方程看柱面的特征:
(其他类推)
实 例
椭圆柱面,
双曲柱面 ,
抛物柱面,
母线// 轴
母线// 轴
母线// 轴
上一页
下一页
返回
a
b
椭圆柱面
上一页
下一页
返回
y
平面的点法式方程
平面上的点都满足上方程,不在平面上的点都不满足上方程,上方程称为平面的方程,平面称为方程的图形.
其中法向量
已知点
上一页
下一页
返回
解
所求平面方程为
化简得
上一页
下一页
几何问题的解析几何解法
几何问题的解析几何解法几何问题是数学中一类常见的问题类型,而解析几何则是解决这类问题的一种有效方法。
解析几何通过运用代数和几何的相互联系,以坐标系为基础,利用代数符号和方程式来研究几何图形的性质和变换。
本文将介绍几何问题的解析几何解法,并提供一些实例来加深理解。
一、直线的解析几何解法直线是几何中最基本的元素之一,通过坐标系的引入,我们可以用解析几何的方法来研究直线的性质和特点。
对于已知两点A(x₁, y₁)和B(x₂, y₂),要确定这两点之间的直线方程,可以使用以下公式:\[\frac{{y-y₁}}{{x-x₁}} = \frac{{y₂-y₁}}{{x₂-x₁}}\]这个公式称为点斜式,其中斜率为 \(\frac{{y₂-y₁}}{{x₂-x₁}}\)。
通过这个方程,我们可以得到直线的斜率、截距等重要信息,从而进一步理解和分析直线的特性。
二、圆的解析几何解法圆是另一类常见的几何图形,在解析几何中也有相应的解法。
已知圆心为C(a, b),半径为r的圆,其方程可以表示为:\[(x-a)^2 + (y-b)^2 = r^2\]在解析几何中,我们可以根据圆心和半径的信息,推导出关于圆的性质和变换的一系列公式。
例如,通过对圆心的平移、旋转和缩放等操作,我们可以得到新的圆的方程和特征。
这些解析几何的方法在实际问题中具有广泛的应用,例如在计算机图形学和物理学领域。
三、多边形的解析几何解法多边形是由多条线段组成的几何图形,其解析几何解法也是基于坐标系的引入和运用。
对于一个n边形,我们可以通过提取顶点的坐标,组成一个由点组成的集合。
通过连接这些顶点,我们可以得到多边形的边界。
进一步,我们可以运用向量加法、平移以及旋转等解析几何的方法来研究多边形的性质和变换。
除了以上提到的几何图形,解析几何还可以用于研究曲线、立体图形等问题。
通过引入坐标系,用代数的方法来解决几何问题,解析几何在数学领域扮演着重要的角色。
解析几何的出现极大地促进了几何学和代数学的发展。
推荐-最详细的解析几何全解 精品 精品
1.近三年高考各试卷解析几何考查情况统计20XX年高考各地的16套试卷中,每套试卷均有1道解析几何解答题试题,涉及椭圆的有9道,涉及双曲线的有2道,涉及抛物线的有3道,涉及直线与圆的有3道,涉及线性规划的有1道.当中,求最值的有4道,求参数的取值范围的有4道,求轨迹方程的有5道,和向量综合的有7道,探索性的问题有5道.20XX年高考各地的18套试卷里,每套均有1道解答试题,涉及椭圆的有9道,抛物线的有4道,双曲线的有5道.当中求动点的轨迹,求参数的取值范围是热门话题.重庆的解析几何、数列、不等式证明相结合的试题比较独特.20XX年高考各地的19套试卷中,每套均有1道解答题,椭圆的有8道,双曲线的有4道,抛物线的3道,涉及到圆锥曲线中的最值问题、轨迹问题、中点弦问题等.解析几何解答试题热点的题型是求参数范围或求最值的综合性问题,探求动点的轨迹问题,有关定值、定点等的证明问题,与向量综合的探索性问题等.2.考查特点(1)由已知条件建立曲线的方程,研究曲线的性质.用待定系数法确定圆锥曲线的标准方程,求它们的焦点、焦距、准线、离心率等元素,研究几何性质.(2)直线与圆锥曲线的位置关系是高考重点考查内容之一,主要讨论直线和圆锥曲线的公共点问题,求弦长、焦点弦长及中点等问题.(3)有关解析几何的最值问题、曲线方程中含字母参数的范围问题以及对称问题是高考中经常出现的内容,涉及知识面广,常用到函数、不等式和三角等方面的知识.(4)有关探索性题型,因为它具有考查思维能力、区分度较高的功能,所以经常结合其它章节的知识点出现在高考试题(5)平面向量和解析几何结合,已成为高考新的热点.(6)解析几何部分仍在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,以逻辑思维能力为核心,全面考查其它各种能力,强调探索性、综合性,应用性,切合考生的实际,注重试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.1.突出解析几何的基本思想解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程.(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.2.熟练掌握直线、圆、及圆锥曲线的基本知识(1)直线和圆①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x轴、y轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.(2)椭圆①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F1、F2的距离之和等于常数2a(2a>|F1F2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e(0<e<1)的动点轨迹为椭圆,(顺便指出:e>1、e=1时的轨迹分别为双曲线和抛物线).②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点是F(±c,0)时,标准方程为(a>b>0);焦点是F(0,±c)时,标准方程为(a>b>0).这里隐含a2=b2+c2,此关系体现在△OFB(B为短轴端点)中.③深刻理解a、b、c、e、的本质含义及相互关系,实际上就掌握了几何性质.(3)双曲线①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a、b、c、e、的本质含义及其相互间的关系.②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).③双曲线(a>0,b>0)隐含了一个附加公式c2=a2+b2.此关系体现在△OAB(A,B分别为实轴,虚轴的一个端点)中;特别地,当a=b时的双曲线称为等轴(边)双曲线,其离心率为.(4)抛物线①抛物线的定义:平面内到一个定点F和一条定直线l的距离相等的点的轨迹(F l).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.②抛物线方程(标准)有四种形式:y2=±2px和x2=±2py(p>0),选择时必须判定开口与对称轴.③掌握几何性质,注意分清2p,p,的几何意义.3.掌握直线与圆锥曲线的位置关系的研究方法(1)判断直线l与圆锥曲线C的位置关系,可将直线l的方程代入曲线C的方程,消去y(也可以消去x)得到一个关于变量x的一元方程ax2+bx+c=0,然后利用“Δ”法.(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算.(4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理.(5)有关圆锥曲线关于直线l的对称问题中,若A、A′是对称点,则应抓住AA′的中点在l上及kA A′·kl=-1这两个关键条件解决问题.(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”来解决.1.(北京清华大学附中模拟题)无论m为任何实数,直线l:y=x+m与双曲线C:(b>0)恒有公共点.(Ⅰ)求双曲线C的离心率e的取值范围;求双曲线C的方程.(Ⅱ)若直线l过双曲线C的右焦点F,与双曲线交于P,Q两点,并且满足,[点评]第1问的解答方法较多,可以转化为求与抛物线相切的直线,也可以利用判别式法来求,还可以利用点到直线的距离转化为函数求最值.第2问要证明平行于AB的弦被定直线平分,只需说明弦的中点的恒定性,这是一种转化的思想.。
2025年高考数学解析几何知识点总结
2025年高考数学解析几何知识点总结解析几何是高中数学的重要组成部分,在高考中占有相当的比重。
下面我们来对这部分的知识点进行一个全面的总结。
一、直线1、直线的方程点斜式:$y y_1 = k(x x_1)$,其中$(x_1, y_1)$是直线上的一点,$k$是直线的斜率。
斜截式:$y = kx + b$,其中$k$是斜率,$b$是直线在$y$轴上的截距。
两点式:$\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}$,其中$(x_1, y_1)$,$(x_2, y_2)$是直线上的两点。
截距式:$\frac{x}{a} +\frac{y}{b} = 1$,其中$a$,$b$分别是直线在$x$轴和$y$轴上的截距。
一般式:$Ax + By + C = 0$($A$,$B$不同时为 0)2、直线的斜率定义:直线倾斜角$\alpha$($\alpha \neq 90°$)的正切值$k =\tan\alpha$。
斜率公式:若直线上有两点$(x_1, y_1)$,$(x_2, y_2)$,则斜率$k =\frac{y_2 y_1}{x_2 x_1}$。
3、两条直线的位置关系平行:两条直线斜率相等且截距不等。
垂直:两条直线斜率之积为$-1$。
4、点到直线的距离公式点$P(x_0, y_0)$到直线$Ax + By + C = 0$的距离$d =\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$二、圆1、圆的方程标准方程:$(x a)^2 +(y b)^2 = r^2$,其中$(a, b)$是圆心坐标,$r$是半径。
一般方程:$x^2 + y^2 + Dx + Ey + F = 0$($D^2 + E^2 4F > 0$)2、圆的性质圆心到圆上任意一点的距离都等于半径。
圆的直径所对的圆周角是直角。
3、直线与圆的位置关系相交:圆心到直线的距离小于半径。
初中解析几何解题技巧与实例讲解
初中解析几何解题技巧与实例讲解解析几何是数学的一个重要分支,也是初中数学的一部分。
在学习解析几何时,同学们常常会遇到一些难题,需要一些技巧和方法来解决。
本文将介绍一些初中解析几何解题的技巧,并给出一些实例讲解,帮助同学们更好地掌握解析几何的应用。
一、直线与坐标在解析几何中,直线是一个重要的概念。
通过给定的条件,我们可以确定直线的方程或性质。
下面通过两个实例来说明解析几何中直线的解题技巧:实例1:已知点A(2,3)和点B(5,7),求线段AB的中点坐标。
解析:线段的中点坐标可以通过x坐标和y坐标的平均值来确定。
根据题意,点A的坐标是(2,3),点B的坐标是(5,7)。
所以线段AB的中点坐标为:[(2+5)/2,(3+7)/2],即中点的坐标为(3.5,5)。
实例2:已知直线的斜率为1/2,且经过点(4,3),求直线的方程。
解析:直线的方程可以通过斜率和截距来确定。
根据题意,直线的斜率为1/2,经过点(4,3)。
斜率为1/2说明直线上的任意两点横坐标的差和纵坐标的差的比值都是1/2。
现在取直线上的一点为(x,y),则有(x-4)/(y-3)=1/2。
通过解这个方程可以得到直线的方程。
二、直角三角形与勾股定理直角三角形是解析几何中常见的一个概念,其中最重要的定理就是勾股定理。
下面通过两个实例来说明直角三角形的解题技巧:实例1:已知直角三角形的两条直角边长度分别为3和4,求斜边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以斜边的长度等于√(3^2+4^2)=5。
实例2:已知直角三角形的斜边长度为5,一直角边长度为3,求另一直角边的长度。
解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。
所以另一直角边的长度等于√(5^2-3^2)=4。
三、圆与圆的相交解析几何中考察的另一个重要概念是圆与圆的相交。
通过确定圆心和半径,我们可以确定圆的性质与位置关系。
下面通过一个实例来说明圆与圆的相交的解题技巧:实例:已知圆A的圆心为(2,3),半径为4;圆B的圆心为(5,7),半径为3,求圆A和圆B的交点坐标。
解析几何知识点总结
解析几何知识点总结1. 引言解析几何,又称为解析几何学,是数学的一个分支,它研究点、线、面等几何图形的性质和相互关系,并将其用坐标系统的方法来描述和研究。
本文将对解析几何的重要知识点进行总结,包括直线方程、曲线方程、向量、平面方程等内容。
2. 直线方程2.1 点斜式方程直线的点斜式方程用于表示直线上的点以及直线的斜率。
点斜式方程的一般形式为:y - y1= m(x - x1)其中,(x1, y1)是直线上的已知点的坐标,m是直线的斜率。
2.2 一般式方程直线的一般式方程是一条直线的代数表示,一般形式如下:Ax + By + C = 0其中,A、B、C为常数,A和B不能同时为0。
2.3 斜截式方程直线的斜截式方程常用于表示直线与y轴的截距和斜率关系。
斜截式方程的一般形式如下:y = mx + c其中,m为直线的斜率,c为直线与y轴的截距。
3. 曲线方程3.1 二次曲线方程二次曲线是指解析平面上的点坐标满足一个二次方程的图形。
常见的二次曲线方程有抛物线、椭圆、双曲线等。
以抛物线为例,其一般方程形式为:y = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
3.2 圆方程圆是一个平面上距离某一给定点的距离恒定的点的集合。
圆的方程有多种表达形式,常见的是标准方程和一般方程。
标准方程表示如下:(x - h)^2 + (y - k)^2 = r^2其中,(h, k)为圆心的坐标,r为圆的半径。
4. 向量4.1 向量的基本概念向量是空间中的一个几何对象,它具有大小和方向。
向量通常用一个箭头来表示,箭头的起点为向量的起点,箭头所指的方向为向量的方向,箭头的长度表示向量的大小。
4.2 向量的加减法向量的加法和减法可以通过向量的坐标表示进行计算。
对于二维向量,其加法和减法的运算规则如下:向量A + 向量B = (A_x + B_x, A_y + B_y)向量A - 向量B = (A_x - B_x, A_y - B_y)其中,(A_x, A_y)和(B_x, B_y)分别为向量A和向量B的坐标表示。
高中数学解析几何总结非常全
高中数学解析几何第一部分:直线一、直线的倾斜角及斜率1.倾斜角a(1)定义:直线』向上的方向及X轴正向所成的角叫做直线的倾斜角。
⑦范围:0°<a<180°2斜率:直线倾斜角a的正切值叫做这条直线的斜率.k = tanad丿.倾斜角为90。
的直线没有斜率。
“丿.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于X轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在及不存在这两种情况,否则会产生漏解。
(3)设经过A(“,儿)和B(X2,y2)两点的直线的斜率为k ,则当為工心时,;当x, = x2时,―妙;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (物必)及直线的斜率k(倾斜角a )求直线的方程用点斜式:y-y°二k(x-xo)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为x = s2.斜截式:若已知直线在y轴上的截距(直线及y轴焦点的纵坐标)为b, 斜率为k,则直线方程:y = kx+b;待别地,斜率存在且经过坐标原点的直线方程为:y = kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,及"距离”有区别。
3.两点式:若已知直线经过和(兀2,『2)两点,且(册工兀2,力工卩2则直线的方程:;注意:①不能表示及兀轴和y轴垂直的直线;②当两点式方程写成如下形式(七-02-比)(兀-切=0时,方程可以适应在于任何一条直线「4截距式:若已知直线在X轴,y轴上的截距分别是d, b ("HO,bHO )则直线方程:;注意:]).截葩式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
2).横截距及纵截距相等的直线方程可设为x+yp横截距及纵截葩互为相反数的直线方程可设为x-y二a5 一般式:任何一条直线方程均可写成一般式:Ax+By + C = 0 ;(不同时为零);反之,任何一个二元一次方程都表示一条直线。
高中数学解析几何总结(非常全)
高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
空间解析几何演示
4
2
.
x
0
z
y
6
6
6
平面y=0 , z=0,3x+y =6, 3x+2y =12 和x+y+z =6所围成的立体图
27. 作图练习
a
a
x
z
y
0
28. 作图练习
z = 0
y = 0
x = 0
a
a
x
z
y
0
28. 作图练习
.
a
a
x
z
y
0
学画草图
28. 作图练习
.
a
b
c
y
x
z
o
16. 椭球面
x
z
y
0
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
17. 椭圆抛物面
x
z
y
0
截痕法
用z = a截曲面
用y = b截曲面
用x = c截曲面
17. 椭圆抛物面
.
用z = a截曲面
用y = 0截曲面
用x = b截曲面
x
z
y
0
截痕法
(马鞍面)
18. 双曲抛物面
截痕法
.
18. 双曲抛物面
(马鞍面)
x
z
y
0
用z = a截曲面
用y = 0截曲面
用x = b截曲面
截痕法
.
18. 双曲抛物面
(马鞍面)
x
z
y
0
用z = a截曲面
用y = 0截曲面
高中数学解析几何知识点全面梳理汇编
高中数学解析几何知识点全面梳理汇编解析几何是高中数学的重要分支之一,通过运用坐标系以及代数方法,研究几何问题,并将其转化为代数问题进行求解。
在高中阶段,学生需要掌握解析几何的基本概念、性质以及相关的定理与公式。
本文将全面梳理高中数学解析几何的知识点,帮助学生加深对该领域的理解。
一、直线与平面1. 直线的方程直线的方程可分为点斜式、一般式、截距式等形式。
点斜式方程为y-y₁=k(x-x₁),其中(k为斜率,x₁、y₁为直线上的一点);一般式方程为Ax+By+C=0;截距式方程为x/a+y/b=1,其中a、b分别为x、y轴的截距。
2. 直线的性质直线的性质包括斜率、截距、垂直、平行等。
两条直线垂直时,斜率之积为-1;两条直线平行时,斜率相等。
3. 直线的位置关系直线的位置关系主要有相交、重合、平行等情况。
通过解直线方程,可以判断直线的位置关系。
4. 平面的方程平面的方程可分为一般式、点法式、截距式等形式。
一般式方程为Ax+By+Cz+D=0;点法式方程为n·[P-P₀]=0,其中n为平面的法向量,P₀为平面上的一点。
5. 平面与平面的位置关系平面与平面的位置关系有相交、重合、平行等情况。
通过解平面方程,可以判断平面的位置关系。
二、直线与平面的交点1. 直线与平面的交点坐标求解通过联立直线方程和平面方程,可以求解直线与平面的交点坐标。
将直线方程代入平面方程,求解未知变量即可得到交点坐标。
2. 直线与平面的位置关系判断通过解直线方程和平面方程,并进行代入,可以判断直线与平面的位置关系。
当直线在平面上时,直线方程的解同时满足平面方程。
三、直线与直线的位置关系1. 直线与直线的位置关系判断通过解两条直线的方程,并进行代入,可以判断直线与直线的位置关系。
当两条直线重合时,两条直线的方程解相等;两条直线平行时,两条直线的斜率相等。
2. 直线与直线的夹角直线与直线之间的夹角可以通过斜率进行计算。
两条直线的夹角等于两条直线斜率的差的反函数的斜率。
解析几何精讲
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.
16.如图,椭圆 的左焦点为 ,右焦点为 ,离心率 .过 的直线交椭圆于 两点,且 的周长为8.
(Ⅰ)求椭圆 的方程.
(Ⅱ)设动直线 与椭圆 有且只有一个公共点 ,且与直线 相较于点 .试探究:在x轴上是否存在定点 ,使得以 为直径的圆恒过点 ?若存在,求出点 的坐标;若不存在,说明理由.
(III)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由。
3.已知椭圆C的中心在原点,焦点在x轴上,离心率为 ,短轴长为4 .
(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为 .
①求四边形APBQ面积的最大值;
②设直线PA的斜率为 ,直线PB的斜率为 ,判断 + 的值是否为常数,并说明理由.
4.已知椭圆 的左右焦点分别为 ,短轴两个端点分别为 ,且四边形 是边长为2的正方形.
(I)求椭圆方程;(II)若 分别是椭圆长轴的左、右两端点,动点 满足 ,连结 ,交椭圆于点 .求证: 为定值.
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,
若 ,
(i)求 的最值.
(ii)求证:四边形ABCD的面积为定值;
9.已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且 =λ (λ>0).过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)证明 · 为定值;
(Ⅰ)求椭圆 的方程;
(完整版)解析几何知识点总结
① 焦点在 x 轴上的方程: x 2 a2
y2 b2
1 ( a>b>0);
③当焦点位置不能确定时,也可直接设椭圆方程为:
mx2+ny2=1(m>0,n>0) ;
y2 x2 ②焦点在 y 轴上的方程: a 2 b 2 1
x a cos
④、参数方程:
y b sin
( a>b>0);
2、椭圆的定义: 平面内与两个定点 F1, F2 的距离的和等于常数(大于 | F1F2 | )的点的轨迹。
O
F1
B1
A1 ( b,0), A2 (b,0) B1 (0, a), B2 (0, a)
x 轴, y 轴;短轴为 2b ,长轴为 2a
F1 ( c,0), F 2( c,0)
F1 (0, c), F2 (0, c)
| F1F2 | 2c( c 0) c 2 a2 b 2
a2 x
c
| PF1 | a ex0 | PF2 | a ex0
过解不等式(组)得出参数的变化范围;第二种
是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围
椭圆图象及几何性质: 标准方程 参数方程
图形
顶点 对称轴 焦点 焦距 离心率 准线 通径 焦半径 焦点弦 焦准距
中心在原点,焦点在 x 轴上
x2
y2
a2
b2
1 (a
通径
焦半径
焦点弦 焦准距
F ( p ,0) 2 p
x 2
x轴
p | PF | | x0 |
2
p F ( ,0)
2
p x
2
O( 0,0)
(完整版)解析几何讲义详解
解决解析几何的基本思路和流程讲义稿解析几何的本质:用代数方法解决几何问题,即由图形到代数的问题。
从这个意义上讲,解决解析几何问题的基本思路和流程就应该是(1)画出图形(2)找出几何关系(3)把几何关系转化为代数关系(4)代数运算。
图形:形状、位置、大小三个要素。
函数解析式(方程)⇒⇒⇒⇒点的坐标(描点)图像(图形)点代数式 因此,解析几何问题要从图形中的“点”找出几何关系和代数关系。
看见“点”想位置:(1)“点”的自身位置:直角坐标系的意义就在于把一个点的位置分解为一个水平位置和一个竖直位置。
如点(2,3)的水平位置是相对于原点方向向右、距离为2,竖直位置是相对于原点方向向上、距离为3.(2)“点”相对于其他点或线的位置关系。
点⎧⎪⎧⎧⎨⎪⇒⎨⎨⎪⎪⎩⎩⎩表达位置(水平位置、竖直位置)代数关系:函数关系、方程关系知道位置找关系表达关系几何关系:与其他点或线的关系知道关系找位置 一、 关于直线直线需要确定其形状和位置。
其中形状即直线的倾斜程度,由直线的倾斜角α(或斜率k ,k=tg α)确定,位置由直线上的一个点000(,)P x y 确定。
因此,直线的代数表达式(称之为直线的方程)是00()y y k x x -=-(k 存在的前提下)。
(1)因为直线的确定需要形状和位置两个要素,所以求直线的方程就需要两个相互独立的条件.比如已知两个点的坐标或已知一个点的坐标和直线的斜率等等.(2)如果直线的形状(即直线的倾斜程度)不能确定(x 或y 前面有字母系数),那么直线方程表达的就是过定点的直线集合.(如kx+y —2k+1=0,过定点(2,-1)的直线集合;X+ky+1=0,过定点(-1,0)的直线集合等等。
(3)如果直线的位置(即直线过的点)不能确定(x或y前面没有字母系数、形状确定),那么直线方程表达的就是平行线集合。
如x-2y+k=0,斜率为12k=的平行线集合2x+y+b=0,斜率为k=—2的平行线集合等等。
解析几何课后答案详解
解析几何课后答案详解解析几何课后答案详解:1. 什么是解析几何?解析几何是指利用解析方法,如笛卡儿坐标系或参数方程等方法,对几何问题进行研究的数学分支。
2. 什么是直线的点斜式方程?直线的点斜式方程是指通过一点且与给定直线垂直的直线所满足的方程形式,一般形式为 y-y1=k(x-x1),其中(k是直线斜率,(x1,y1)为给定点坐标)。
3. 如何求两直线的夹角?两直线夹角的计算公式为:θ=arccos(cosθ)=arcsin(sinθ)=arctan(tanθ)其中θ为两直线夹角,cosθ、sinθ、tanθ分别为两直线斜率的余弦、正弦、正切。
若两直线分别为y=k1x+b1和y=k2x+b2,则θ=arctan(k2-k1/(1+k1k2))。
4. 如何求两直线的垂足?设直线l1:y=k1x+b1和直线l2:y=k2x+b2,且l1与l2相交。
直线l2的垂足坐标(x0,y0)可以通过以下公式求得:x0 = (k1y1-k2y2+b2-b1)/(k1-k2) (其中(x1,y1)为直线l1上的任一点,(x2,y2)为直线l2上的任一点)y0 = k2(x0) + b25. 如何求直线和圆的交点?设直线的方程为y=kx+b,圆的方程为(x-a)²+(y-b)²=r²,由此可得直线方程中x的值带入圆的方程求解得到y,并将y代入直线方程中即可得到交点的坐标。
也可以将直线方程中y的值带入圆的方程,然后解一个关于x的二次方程,求解出x,再代入直线方程中得到交点坐标。
6. 什么是平面与空间直线的位置关系?在三维空间中,平面的位置可以由两个法向量来确定,而直线的位置由一个方向向量和一个点来确定。
当平面的法向量与直线的方向向量互相垂直时,这条直线与该平面垂直。
当平面与直线的夹角小于90度时,称直线在平面上方;当夹角大于90度时,称直线在平面下方;当夹角为90度时,称直线位于平面内部。
(完整版)解析几何常用知识点总结
“解析几何”一网打尽(一)直线 1.1直线的倾斜角 0, , k tan -- , x-i x 2x 2 x-i -2.直线的方程(1)点斜式y y1 k(x x -)(直线I 过点P i (x i ,y i ),且斜率为k ).般式 Ax By C 0(其中A 、B 不同时为0).特别的:(1 )已知直线纵截距b ,常设其方程为y kx b或x 0 ;已知直线横截距 X 。
,常设其方程为x myX 。
(直线斜率k 存在时,m 为k 的倒数)或y 0 .知直线过点(x o ,y0),常设其方程为 y k(x x 0) y 0 或 X x °(2)直线在坐标轴上的截距可正、可负、也可为 0.直线两截距相等 直线的斜率为-1或直线过原点; 直线两截距互为相反数 直线的斜率为1或直线过原点; 直线两截距绝对值相等直线的斜率为1或直线过原点.(3)在解析几何中,研究两条直线的位置关系时, 有可能这两条直线重合, 而在立体几何中一般提到的两条直线可以理解为它们不重合 • 3、几个距离公式(1)两点间距离公式:点 A(X 1,yJ 点 B(x -,y -)AB 讹为 x -)2 (% y -)-当直线L: y y °时,点P (X 0,y °)到L 的距离d y y °h 〃l 2 b ;即匕、k 2都存在时)AB ;AS ;重合5.三角形的重心坐标公式 :△ ABC 三个顶点的坐标分别为 A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),则厶ABC 的重心的坐标是G(x M 广丁).(2)斜截式y kx b(b 为直线I 在y 轴上的截距).(3) ⑵P(x °, y °)到直线AxBy C 0的距离为dAx 0 By 0 C特别地,当直线 L: x x °时,点P (x °, y °)到L 的距离dx x 0 ;(3).两平行线间的距离公式:设l 1 : Ax By C 10,l 2: Ax By C 2 0,贝Ud|C 1 C 2 .a 2 b 24.两直线的位置关系:l 1 l 2 k 1k 21(匕、k 2都存在时) AA 2 B 1B 2 0 ;(二)圆1.圆的三种方程(1)圆的标准方程 (x a)2 ( y b)2 r 2.(2)圆的一般方程x 2 y 2 Dx Ey F 0( D 2 E 2 4F >0).(3)圆的直径式方程 (x xj (x X 2) (y yj (y y ?) O (圆的直径的端点是 人(捲,比)、B(x ,y))注意: (1).圆心必在弦的中垂线上;两圆相切,两圆心连线必过切点;辅助线一般连圆心与切点或者连圆心与弦中 点。
解析几何知识点总结
解析几何知识点总结解析几何是数学中的一个重要分支,它通过坐标和方程来研究几何图形的性质和相互关系。
下面我们来详细总结一下解析几何的主要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值tanα称为直线的斜率k。
当倾斜角为π/2 时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁)和(x₂, y₂)是直线上的两个点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁≠ b₂;或者两条直线的一般式中,A₁B₂ A₂B₁= 0 且 A₁C₂A₂C₁≠ 0 。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1 ;或者两条直线的一般式中,A₁A₂+ B₁B₂= 0 。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离为 d =|Ax₀+By₀+ C| /√(A²+ B²)二、圆1、圆的标准方程(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r 是圆的半径。
2、圆的一般方程x²+ y²+ Dx + Ey + F = 0 (D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。
3、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,即 d < r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.近三年高考各试卷解析几何考查情况统计
2005年高考各地的16套试卷中,每套试卷均有1道解析几何解答题试题,涉及椭圆的有9道,涉及双曲线的有2道,涉及抛物线的有3道,涉及直线与圆的有3道,涉及线性规划的有1道.
当中,求最值的有4道,求参数的取值范围的有4道,求轨迹方程的有5道,和向量综合的有7道,探索性的问题有5道.
2006年高考各地的18套试卷里,每套均有1道解答试题,涉及椭圆的有9道,抛物线的有4道,双曲线的有5道.当中求动点的轨迹,求参数的取值范围是热门话题.重庆的解析几何、数列、
不等式证明相结合的试题比较独特.
2007年高考各地的19套试卷中,每套均有1道解答题,椭圆的有8道,双曲线的有4道,抛物线的3道,涉及到圆锥曲线中的最值问题、轨迹问题、中点弦问题等.
解析几何解答试题热点的题型是求参数范围或求最值的综合性问题,探求动点的轨迹问题,有关定值、定点等的证明问题,与向量综合的探索性问题等.
2.考查特点
(1)由已知条件建立曲线的方程,研究曲线的性质.用待定系数法确定圆锥曲线的标准方程,求它们的焦点、焦距、准线、离心率等元素,研究几何性质.
(2)直线与圆锥曲线的位置关系是高考重点考查内容之一,主要讨论直线和圆锥曲线的公共点问题,求弦长、焦点弦长及中点等问题.
(3)有关解析几何的最值问题、曲线方程中含字母参数的范围问题以及对称问题是高考中经常出现的内容,涉及知识面广,常用到函数、不等式和三角等方面的知识.
(4)有关探索性题型,因为它具有考查思维能力、区分度较高的功能,所以经常结合其它章节的知识点出现在高考试题
(5)平面向量和解析几何结合,已成为高考新的热点.
(6)解析几何部分仍在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,以逻辑思维能力为核心,全面考查其它各种能力,强调探索性、综合性,应用性,切合考生的实际,注重试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.
1.突出解析几何的基本思想
解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:
一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.
另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:
(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.
(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x,y)表示出已知动点的坐标,然后代入已知的曲线方程.
(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.
(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.
2.熟练掌握直线、圆、及圆锥曲线的基本知识
(1)直线和圆
①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:
(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.
②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x轴、y轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.
③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.
(2)椭圆
①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F1、F2的距离之和等于常数2a(2a>|F1F2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e(0<e<1)的动点轨迹为椭圆,(顺便指出:e>1、e=1时的轨迹分别为双曲线和抛物线).
②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点是F(±c,0)时,标准方程为(a>b>0);
焦点是F(0,±c)时,标准方程为(a>b>0).这里隐含a2=b2+c2,此关系体现在△OFB(B为短轴端点)中.
③深刻理解a、b、c、e、的本质含义及相互关系,实际上就掌握了几何性质.
(3)双曲线
①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a、b、
c、e、的本质含义及其相互间的关系.
②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).
③双曲线(a>0,b>0)隐含了一个附加公式c2=a2+b2.此关系体现在△OAB(A,B分别为实轴,虚轴的一个端点)中;特别地,当a=b时的双曲线称为等轴(边)双曲线,其离心率为
.
(4)抛物线
①抛物线的定义:平面内到一个定点F和一条定直线l的距离相等的点的轨迹(F l).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.
②抛物线方程(标准)有四种形式:y2=±2px和x2=±2py(p>0),选择时必须判定开口与对称轴.
③掌握几何性质,注意分清2p,p,的几何意义.
3.掌握直线与圆锥曲线的位置关系的研究方法
(1)判断直线l与圆锥曲线C的位置关系,可将直线l的方程代入曲线C的方程,消去y(也可以消去x)得到一个关于变量x的一元方程ax2+bx+c=0,然后利用“Δ”法.
(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.
(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算.
(4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理.
(5)有关圆锥曲线关于直线l的对称问题中,若A、A′是对称点,则应抓住AA′的中点在l上及kA A′·kl=-1这两个关键条件解决问题.
(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”来解决.
1.(北京清华大学附中模拟题)无论m为任何实数,直线l:y=x+m与双曲线C:(b>0)恒有公共点.(Ⅰ)求双曲线C的离心率e的取值范围;
求双曲线C的方程.(Ⅱ)若直线l过双曲线C的右焦点F,与双曲线交于P,Q两点,并且满足
,
[点评]第1问的解答方法较多,可以转化为求与抛物线相切的直线,也可以利用判别式法来求,还可以利用点到直线的距离转化为函数求最值.第2问要证明平行于AB的弦被定直线平分,只需说明弦的中点的恒定性,这是一种转化的思想.。