山楂黄酮—农业食品化学—单行本

合集下载

山楂总黄酮提取工艺、提取物活性及指纹图谱研究的开题报告

山楂总黄酮提取工艺、提取物活性及指纹图谱研究的开题报告

山楂总黄酮提取工艺、提取物活性及指纹图谱研究的开题报告一、研究背景及意义山楂是一种常见的中药材,被广泛地应用于中药制剂和保健品中。

其中,山楂总黄酮是一种主要的有效成分,具有降血压、降血脂、抗氧化等多种生物活性。

因此,开发有效的山楂总黄酮提取工艺,对于提高山楂的利用价值具有重要意义。

目前,山楂总黄酮的提取方法有很多种,如超声波法、酶法、微波法、超临界流体萃取法等。

但是,不同的提取方法会对提取物的活性和质量产生不同的影响。

因此,本研究旨在探究不同工艺条件下山楂总黄酮的提取率、纯度,以及提取物的生物活性,为山楂总黄酮的优化提取提供理论依据。

二、研究内容和方法本研究将采用超声波法、酶法、微波法和超临界流体萃取法四种方法对山楂总黄酮进行提取,并对所得的提取物进行生物活性测试,如抗氧化活性、降血压、降血脂等。

同时,利用高效液相色谱法对不同提取工艺下的山楂总黄酮提取物进行化学成分分析,建立山楂总黄酮的指纹图谱。

三、研究预期成果本研究将探讨不同工艺条件下山楂总黄酮的提取率、纯度,以及提取物的生物活性,建立山楂总黄酮的指纹图谱。

预计能够获得以下成果:1. 不同提取工艺条件下山楂总黄酮的提取率和纯度差异。

2. 不同提取工艺条件下山楂总黄酮提取物的抗氧化、降血压和降血脂等生物活性差异。

3. 建立山楂总黄酮的指纹图谱,为山楂总黄酮的质量控制提供依据。

四、研究意义本研究将为山楂总黄酮的优化提取提供理论依据,同时也能够为山楂总黄酮的生物活性研究提供数据支持。

同时,建立山楂总黄酮的指纹图谱,能够为山楂总黄酮制品的质量控制提供依据,具有很高的实用价值。

山楂黄酮最佳提取工艺探讨

山楂黄酮最佳提取工艺探讨

山楂黄酮最佳提取工艺探讨
刘北林;董继生;霍红
【期刊名称】《食品科学》
【年(卷),期】2007(028)006
【摘要】目的:研究提取工艺对提取山楂总黄酮含量的影响.方法:采用单因素和正交试验法方法研究不同工艺条件对山楂黄酮提取效率的影响,最后采用响应曲面分析法,确定最佳浸提工艺及相关工艺参数.结果:溶剂:70%乙醇;超声波频率:40 kHz 超声波作用时间:15 min;料液比:1:40.结论:乙醇超声波提取方法具有操作简单、超声波作用时间短、纯度高、得率高、无需加热,剩余物无有害残留,可以综合利用.【总页数】4页(P167-170)
【作者】刘北林;董继生;霍红
【作者单位】哈尔滨商业大学,黑龙江,哈尔滨,150076;哈尔滨商业大学,黑龙江,哈尔滨,150076;哈尔滨商业大学,黑龙江,哈尔滨,150076
【正文语种】中文
【中图分类】R284.2
【相关文献】
1.山楂籽中黄酮类化合物最佳提取工艺 [J], 王立娟;李坚;张丽君;何杰
2.撒尼黑树莓黄酮最佳提取工艺探讨 [J], 杨李;吴中能
3.山楂叶黄酮类化合物最佳提取工艺研究 [J], 何改
4.山楂叶总黄酮对大鼠血管环的作用及其机制探讨 [J], 闵清;白育庭;刘晶;李继孝
5.大孔吸附树脂分离纯化广山楂总黄酮的最佳工艺条件及参数探讨 [J], 陈洪涛;刘源焕;覃学谦;蔡丹昭
因版权原因,仅展示原文概要,查看原文内容请购买。

山楂黄酮的含量测定方法

山楂黄酮的含量测定方法

山楂黄酮的含量测定方法一、引言山楂黄酮是一种常见的生物活性成分,具有多种药理作用,例如降脂、保护心脏、抗氧化等。

准确测定山楂黄酮的含量对研究其药理作用和开发药物具有重要意义。

本文将介绍几种常用的山楂黄酮含量测定方法,并从中挑选最适合的方法进行深入探讨。

本文按照从简单到复杂的顺序进行讲解,帮助读者更好地理解山楂黄酮的含量测定。

二、常用的测定方法1. 薄层色谱法薄层色谱法是一种简单、快速的分离和测定方法。

其基本原理是将样品溶液均匀涂在薄层色谱板上,放入含有适量溶剂的瓶中,让溶剂沿着色谱板向上移动,通过观察刻线上的斑点来确定山楂黄酮的含量。

这种方法操作简单、成本低廉,但缺点是分离效果较差,测定结果的准确性有限。

2. 高效液相色谱法高效液相色谱法是一种精确测定山楂黄酮含量的常用方法。

基本原理是将样品溶液注射到高效液相色谱仪中,通过不同溶剂的流动和固定相的作用,分离出山楂黄酮与其他成分,最后通过检测器对山楂黄酮进行定量。

这种方法具有分离效果好、准确性高等优点,但需要专用设备和较长的分析时间。

3. 比色法比色法是一种常用的快速测定山楂黄酮含量的方法,该方法通过测量山楂黄酮在特定波长下的吸光度来定量。

具体操作时,将山楂黄酮溶液和试剂混合后,根据试剂与山楂黄酮的反应产生的色素的吸光度变化来确定山楂黄酮的含量。

这种方法操作简便、快速,但需要选取合适的试剂和波长,并且对样品的前处理要求比较高。

三、选择最适合的方法进行探讨根据上述介绍,山楂黄酮的含量测定方法可以选择薄层色谱法、高效液相色谱法和比色法。

考虑到测定过程中的准确性和实用性,我们选择高效液相色谱法进行深入探讨。

高效液相色谱法是目前应用广泛的山楂黄酮含量测定方法之一。

其优势在于分离效果好、准确性高,并且可以同时测定多个成分,适用于复杂样品的分析。

高效液相色谱仪的使用越来越普及,使得该方法更加便捷和可行。

在使用高效液相色谱法测定山楂黄酮含量时,我们需要选择合适的柱和固定相,优化流动相的组成和流速,并确定适当的检测波长。

山楂总黄酮的提取及其抗氧化性研究

山楂总黄酮的提取及其抗氧化性研究
v o n o i d s a n d t o e x p l o r e t h e a n t i o x i d a n t a b i l i t y o f e x t r a c t s . Me t h o d s : T h e o p t i ma l e x t r a c t i o n c o n d i t i o n s o f h a w t h o r n
S t u d y o n E x t r a c t i o n a n d An t i . o x i d a n t A c t i v i t y o f T o t a l F l a v o n o i d s f r o m Ha w t h o r n
c o n d i t i o n s w e r e a s  ̄ l l o w s : t h e r a t i o o f m a t e r i a l t o l i q u i d w a s 1 : 4 4( g / mL ) , t h e c o n c e n t r a t i o n o f e t h a n o l w a s 6 0
GA O Ho n g—me i , DI NG Z h i —g a n g , G UO Yu a n—x i n, WU J i n g
( F o o d a n d D r u g C o l l e g e , A n h u i S c i e n c e a n d T e c h n o l o g y U n i v e r s i t y , F e n ya g n g 2 3 3 1 0 0, C h i n a ) A b s t r a c t : Ob j e c t i v e : T o o p t i m i z e t h e o p t i ma l c o n d i t i o n s o f m i c r o w a v e—a s s i s t e d e x t r a c t i o n o f h a w t h o r n t o t a l l f a —

山楂黄酮提取方法及主要山楂属植物黄酮含量初步研究的开题报告

山楂黄酮提取方法及主要山楂属植物黄酮含量初步研究的开题报告

山楂黄酮提取方法及主要山楂属植物黄酮含量初步
研究的开题报告
一、选题背景及意义
山楂(Crataegus spp.),是蔷薇科山楂属(Crataegus L.)的植物,广泛分布于世界各地。

在中药学和食品工业中,山楂被广泛应用于治疗
消化不良、降低血脂和保健等方面。

其中,山楂黄酮作为其主要药效成
分之一,也被广泛关注。

山楂黄酮是指一类多环黄酮类化合物,其化学结构中含有3-酰化基,常见的有芦丁、槲皮素、山奈黄素等。

许多研究表明,山楂黄酮具有广
泛的生物活性,如抗氧化、抗炎、降血脂、降血压、抑制血小板凝集等
功效。

因此,研究山楂黄酮提取方法和山楂属植物黄酮含量具有重要的
科学意义和应用价值。

二、研究目的
本研究旨在探讨山楂黄酮的提取方法,并初步分析主要山楂属植物
的黄酮含量,为山楂黄酮的应用奠定基础。

三、研究方法
1. 山楂黄酮提取方法的优化:采用正交实验法设计实验,通过改变
提取剂、时间、温度、比例等条件,优化提取方法。

2. 主要山楂属植物黄酮含量的测定:采用高效液相色谱法(HPLC)对不同种类山楂属植物中的黄酮含量进行测定,并根据结果进行初步分析。

四、研究预期结果
1. 优化出较优的山楂黄酮提取方法。

2. 确定主要山楂属植物的黄酮含量并初步比较不同种类之间的差异。

五、研究意义
1. 为山楂黄酮的提取及其应用提供参考依据。

2. 为山楂属植物资源的合理利用提供科学依据。

3. 为进一步深入研究山楂黄酮的药效成分及其作用机制提供基础数据支持。

山楂黄酮提取物的抗氧化活性和对癌细胞生长抑制作用

山楂黄酮提取物的抗氧化活性和对癌细胞生长抑制作用

山楂黄酮提取物的抗氧化活性和对癌细胞生长抑制作用柳嘉;David Glen POPOVICH;景浩【期刊名称】《食品科学》【年(卷),期】2010(031)003【摘要】目的:研究山楂(Crataegus pinnatifida Bunge)黄酮提取物的抗氧化能力以及对人肝癌Hep-G2细胞和人肠癌Caco-2细胞生长抑制作用.方法:比较测定总黄酮含量的直接法和两种铝盐显色法,进一步采用硝酸铝盐显色法测定提取物总黄酮含量,ABTS法和DPPH法分析提取物的抗氧化活性,MTT法评价山楂黄酮提取物对细胞生长的抑制效果.结果:山楂黄酮提取物中黄酮含量占干质量的98%,清除ABTS和DPPH自由基的能力随提取物剂量的增加而升高,EC_(50)分别为88μg/mL和112μg/mL,而标准品Trolox的EC_(50)清除ABTS和DPPH自由基的能力分别为111μg/mL和118μg/mL.山楂黄酮提取物能够有效地抑制癌细胞的生长,且对Hep-G2细胞的抑制效果更强,Hep-G2细胞和Caco-2细胞的IC_(50)分别约为115μg/mL和376μg/mL.结论:山楂黄酮提取物黄酮含量高,抗氧化能力强,有抑制癌细胞的作用,是一种有效的天然抗氧化剂.【总页数】4页(P220-223)【作者】柳嘉;David Glen POPOVICH;景浩【作者单位】中国农业大学食品科学与营养工程学院,北京,100083;新加坡国立大学化学系,新加坡,肯特岗,117543;中国农业大学食品科学与营养工程学院,北京,100083【正文语种】中文【中图分类】R282.71【相关文献】1.棉花皮苷的抗氧化活性及对肝癌细胞生长的抑制作用研究 [J], 吕娜;李锋;刘斌斌2.马铃薯提取物对卵巢癌细胞生长抑制作用研究 [J], 何金英;马玉珍;姚星宇;孙文芳;刘慧;侯建华;杨丽敏3.HPLC法同时测定口服山楂叶总黄酮提取物后大鼠血浆中3种黄酮的含量及药动学研究 [J], 王思源;张文杰;康廷国4.山楂及山楂黄酮提取物调节大鼠血脂的效果研究 [J], 高莹;肖颖5.同时测定山楂叶总黄酮中6种黄酮含量及体外抗氧化活性评价 [J], 邓婷;秦涛;徐颖;孙涛因版权原因,仅展示原文概要,查看原文内容请购买。

山楂中黄酮提取的研究

山楂中黄酮提取的研究
z 。 n g n e Y a n j l u 堡 垒 里
山楂 中黄 酮 提 取 的研 究
郭 亮 王谷洪 周 齐 刘 旭海 王 桂华 。
( 1 . 深圳 市瑞 升华 科技 股份 有 限公 司 , 广东 深圳 5 1 8 0 0 0 ; 2 . 江 中药 业股 份有 限公 司 , 江西 南昌 3 3 0 0 O 0 ) 摘 要: 通过 利用 紫外 分光 光度 计测 定 吸光度 的方 法 , 研 究 了山楂 中总 黄酮 在 P E G/ ( NH ) s Q 形成 的 双水 相 系统 巾的萃 取结 果 , 最
1 . 0 mI 、 3号 管 中加 人 2 . 0 mI 、 4号 管 中加 入 3 . 0 mI 、 5号 管 中
加入 4 . 0 mL 、 6号 管 中 加 入 5 . 0 mI , 分别 加入 5 O 乙 醇 使 成 5 mL; 精密加入 5 Na N O2 溶液 0 . 3 mI , 摇匀 , 放置 6 mi n ; 加 入1 O Al ( N 03 ) 3 溶液0 . 3 mI , 摇匀 , 放置 6 mi n ; 加入 1 mo l / I Na OH 溶 液 4 mI ; 用5 0 % 乙 醇加 到 1 0 mL处 , 混 合 均匀 。 向 1号 管 中 加 入 5 N a NO z 溶液 0 . 3 mi , 摇匀, 放 置
1 实 验
1 . 1 仪器 、 试 剂 与 材 料
紫外分光光度 计 ( 龙尼柯 有 限公司 ) 、 离心机 ( 北 京 离 心 机
厂) 、 恒温 水浴 锅 ( 上海 仪 器 有 限公 司) 、 干燥 箱 ( 江 苏 曙峰 企
业) 、 分析天平 ( 莱 阳化 工有 限公 司 ) 。
6 mi n ; 加入 l O AI ( N Oa ) 3 溶液 0 . 3 mL, 摇匀 , 放置 6 mi n ; 加

山楂黄酮单复方治疗高脂血症的比较研究

山楂黄酮单复方治疗高脂血症的比较研究

山楂黄酮单复方治疗高脂血症的比较研究目的比较山楂黄酮单复方在治疗高血脂症作用的差异。

方法通过给予金黄地鼠高脂饲料来建立高血脂动物模型,观察灌胃山楂黄酮单复方后动物的体重、血脂各成分指标及脏器病理改变。

结果山楂黄酮复方降血脂作用明显优于单方。

结论山楂黄酮在复方中能够较充分地发挥其药效,且可避免单一药物长期使用而引起不良反应,而在单方中药效较差。

标签:山楂黄酮;单方;复方;高脂血症伴随着生活水平的不断提高,人们的饮食习惯也渐渐发生改变,高脂饮食的摄入过多,使高血脂人群数量急速增长,威胁着人类的健康。

据调查显示,我国约有9 000万人患有高血脂[1]。

血脂是人体内一种重要的物质,广泛存在于人体中,它是人体生命代谢的必需物质,发挥着重要的作用,但当其含量显著上升并且超过正常值范围,则会增加动脉粥样硬化、冠心病、脑血栓、糖尿病、高血压、高血脂症以及脂肪肝的发病率。

目前多数观点认为,高血脂是糖尿病发病的独立危险因素[2-7]。

目前对于高血脂的治疗药物中主要以他汀类药物和贝特酸类药物为主,首选药物为他汀类,其是80年代末问世的一类新型降血脂药,具有疗效高、副作用少和耐受性好等优点,他汀类药物长时间使用会发生体内代谢障碍和直接毒副作用,易造成肝损伤以及肌病[8-9]。

本实验通过比较山楂黄酮单方及山楂黄酮/阿托伐他汀复方对高脂血症的治疗作用,寻找一种具有明显降脂效力且可避免单一药物长期使用而引起不良反应的复方组合降血脂药物。

1 材料和方法1.1 实验动物雄性金黄地鼠[(级别:SPF级,品系:LUG,购自:北京维通利华实验动物技术有限公司,许可证编号:SCXX(京)2006-0009)],饲养于内蒙古医科大学动物中心,自由饮水摄食,24 h明暗交替。

1.2 主要试剂总胆固醇(TC)、甘油三酯(TG)、肌酸激酶(CK)、直接高密度脂蛋白胆固醇(D-HDL-C)、直接低密度脂蛋白胆固醇(D-LDL-C)测定试剂盒(中生北控生物科技股份有限公司)。

山楂中黄酮的提取研究技术

山楂中黄酮的提取研究技术

在用索氏提取法中,使用正交实验设计分析的方法,通 过4因素3水平的正交实验得出最佳提取工艺为80℃、70%乙 醇、3h、液料比为20的提取。索氏提取法原理与浸渍法类似 ,都是根据相似相溶的原理,但是它的提取率高于浸渍法。 液料比的选择为20,增大液料比,黄酮的提取效果也随之增 加,但是当液料比大于20的时候,提取效率增加不大。索氏 提取法提取效果比较好,可以在提取后直接在此温度下进行 浓缩,减少能量损失,可以用于工业生产。
(3)液料比极差 液料比极差值从水平1到水平3的数值逐 渐加高,但是变化幅度不是很大,这说明随着加入的液料比的 增加,黄酮提取量也随着增加。
各个实验因素与因素水平对山楂中黄酮的提取用超声波 法提取的影响表现出一定的差别,从极差的分析结果可以得出 :因素A>B>C(注:A、超声时间 B、液料比 C、乙醇浓度)
山楂中黄酮的提取研究技术来自 目录1 引言 2 实验工艺流程 3 结果与分析 4 讨论
1 引言
中国是山楂的世界主产国之一。但受某些客 观原因的限制,山楂的应用开发研究比较滞后, 随着人们对健康的日益关注,山楂开始逐渐受到 人们的重视,尤其是维生素C和黄酮类药品,具有 良好的前景。在对山楂黄酮研究中,大都集中在 黄酮的药理作用及其保健功能,然而对山楂总黄 酮的提取缺乏系统的研究,使得这成为制约其更 进一步开发的瓶颈。
(3)时间极差 水平2比水平1的增加十分明显,然而水平3 只比水平2有一点的增加。提取时间一增长,黄酮提取量就慢 慢开始恒定。
这说明了各个实验因素与因素水平对山楂中黄酮提取量的 影响有一定的差异,由分析结果可以得出:因素B>A>C(注:A 、提取温度 B、提取时间 C、乙醇浓度)。
3.3 超声波提取法对山楂中黄酮提取的影响

山楂中黄酮的提取实习报告

山楂中黄酮的提取实习报告

实习报告实习内容:山楂中黄酮的提取实习时间:XX年XX月XX日实习地点:实验室一、实习背景及目的山楂是一种常见的水果,也是一种重要的中药材。

山楂中含有丰富的黄酮类化合物,具有多种药理作用,如抗氧化、抗炎、降压等。

本实习旨在学习并掌握山楂中黄酮的提取方法,并对其进行含量测定,以了解山楂中黄酮的含量。

二、实习过程1. 材料准备本次实习所需材料有新鲜山楂、70%乙醇、盐酸、氢氧化钠、碳酸钠、丙酮、石英砂等。

2. 提取方法采用70%乙醇超声波提取法进行山楂中黄酮的提取。

具体操作如下:(1)将新鲜山楂洗净,去核,切片,干燥后粉碎过筛,得到山楂粉末。

(2)将山楂粉末与石英砂按1:10的比例混合,加入70%乙醇,放入超声波清洗器中,设定频率为40kHz,功率为200W,超声波提取30分钟。

(3)提取结束后,滤渣重复提取一次,合并滤液,减压回收乙醇,得到提取液。

3. 含量测定采用分光光度法测定山楂中黄酮的含量。

具体操作如下:(1)准备一系列不同浓度的黄酮标准溶液,分别测定其在200-400nm波长范围内的吸光度。

(2)以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。

(3)将提取液稀释至适当浓度,测定其在200-400nm波长范围内的吸光度,并根据标准曲线计算黄酮含量。

三、实习结果与分析1. 标准曲线通过测定不同浓度的黄酮标准溶液的吸光度,绘制标准曲线,得到线性方程为:y = kx + b,其中y为吸光度,x为浓度,k为斜率,b为截距。

2. 提取液黄酮含量测定将提取液稀释至适当浓度,测定其在200-400nm波长范围内的吸光度,根据标准曲线计算黄酮含量。

四、实习总结通过本次实习,我学习了山楂中黄酮的提取方法,并掌握了分光光度法测定黄酮含量的技巧。

实验结果显示,山楂中黄酮含量较高,具有一定的药用价值。

本次实习不仅提高了我的实验操作能力,还增强了我对中药化学成分提取与分析的认识。

在今后的学习中,我将继续努力,深入了解更多的中药提取技术,为中药现代化研究贡献力量。

山楂黄酮的薄层色谱分离鉴定研究_梁淑芳

山楂黄酮的薄层色谱分离鉴定研究_梁淑芳

山楂黄酮的薄层色谱分离鉴定研究LIA NG S F 梁淑芳,马耀光,马柏林(西北农林科技大学生命科学学院,陕西杨凌712100)摘 要: 研究了山楂(山里红Cr ataegus p innatif ida Bge.v ar.maj or N.E.Br)黄酮类化合物新的薄层色谱分离鉴定方法。

以十二烷基硫酸钠 正丁醇 正庚烷 水微乳液为展开剂,利用聚酰胺薄层色谱法能使山楂黄酮完全分离。

从山楂叶中分离得到7个黄酮斑点,山楂果中得到7个黄酮斑点,但二者的斑点不完全相同。

与用正丁醇 乙酸 水4 1 5为展开剂的聚酰胺薄层色谱法比较发现,微乳薄层色谱法检测灵敏度高、分离效果理想。

关键词: 山楂;黄酮;薄层色谱;微乳液中图分类号:Q 949.751.8;O658.64 文献标识码:A 文章编号:0253-2417(2003)04-0086-03A STU DY ON SEPARAT ION AND IDENT IFICAT ION OF FLAVONOIDS INCRA TAE G US PINN ATIFIDA BGE.BY THIN LAYER CHROMATOGRAPHYLIANG Shu fang,MA Yao guang ,MA Bai lin(Lif e Science Collage,Northw est Science Technology University of Agr icultur e andFor estry ,Yangling 712100,China)Abstract:T his paper studied new method of separation and identification of flavonoides in Crataegus p innatif idaBge.var.ma j or N.E.Br.Influence of microemulsio n types on pow er of resolving flav onoids was inv est igated w ithSDS/n C 4H 9OH/n C 7H 16/H 2O microemulsion as eluant on poly amide film.T he flavonoids were separated entirely.Seven flavono ids spots w er e obtained r espectiv ely from leaves and fr uit,but they are not par ed w ith theg eneral mobile phase composed of C 4H 9OH C H 3CO OH H 2O=4 1 5the sensitivity of detection w as improved mar kedlyand the r esults w er e satisfactory.T hi s new chromatog raphic method is simple,accurate for separation and ident ification of flavonoids in C.p innatif ida Bge.var.maj or N.E.Br.Key words:Crataegus p innatif ida Bg e.var.maj or N.E.Br.;flavo noids;thin layer chromatography;microemulsion黄酮类化合物是山楂果中的主要药用成分之一,对治疗脑血管硬化和心血管疾病疗效显著。

山楂黄酮抗氧化作用的研究进展

山楂黄酮抗氧化作用的研究进展

山楂黄酮抗氧化作用的研究进展伍胶;胡艳颖;曹发正;毛青花;徐俊晨;王齐【摘要】山楂黄酮主要含有金丝桃苷、槲皮素、槲皮苷、异槲皮苷、芦丁、杜荆素、异杜荆素和表儿茶素等.研究表明山楂黄酮具有抗氧化、改善心肌功能、抗肿瘤、调节血压、增加冠脉流量、降血脂等作用,其主要机制可能为提高组织中SOD 和全血中SOD和GSH-Px活力.【期刊名称】《吉林医药学院学报》【年(卷),期】2012(033)005【总页数】3页(P317-319)【关键词】山楂黄酮;抗氧化;丙二醛【作者】伍胶;胡艳颖;曹发正;毛青花;徐俊晨;王齐【作者单位】吉林医药学院2008级预防医学本科班,吉林吉林132013;吉林医药学院2008级预防医学本科班,吉林吉林132013;吉林医药学院2008级预防医学本科班,吉林吉林132013;吉林医药学院2008级预防医学本科班,吉林吉林132013;吉林医药学院2008级预防医学本科班,吉林吉林132013;吉林医药学院2008级预防医学本科班,吉林吉林132013【正文语种】中文【中图分类】R2851 山楂黄酮成分山楂(Crataegus pinnatifida Bunge),又名红果、山里红等,属山楂属落叶乔木,在我国种植资源丰富。

山楂果实中含有黄酮类、有机酸、三萜类化合物等,但一般认为活性功效多来源于山楂黄酮。

山楂黄酮主要含有金丝桃苷、槲皮素、槲皮苷、异槲皮苷、芦丁、杜荆素、异杜荆素和表儿茶素[1-3]等。

其主要活性成分根据紫外、红外、电子电离质谱、快原子轰击质谱、1H核磁共振、13C核磁共振、多键碳氢关系、异核多量子关系和13CGATE等波谱数据分析鉴定,得出化合物牡荆素鼠李糖苷为中药山楂中的专属性成分,首次由山里红果实中分得,化合物金丝桃苷为山楂中的降血脂主要黄酮成分。

2 山楂黄酮的药理作用山楂黄酮具有抗氧化、改善心肌功能、抗肿瘤、调节血压、增加冠脉流量、降血脂等作用[4]。

2.1 抗氧化作用闫君宝等[5]应用6%的山楂水煎剂可明显降低高脂饮食大鼠空腹血清胰岛素和丙二醛(MDA)水平,表明其可改善高脂饮食大鼠的胰岛素血症,增强机体抗脂质氧化作用,其机制可能与调节糖代谢有关,其药效物质基础可能与金丝桃苷和熊果酸有关。

山楂叶片中黄酮类物质的提取工艺与检测

山楂叶片中黄酮类物质的提取工艺与检测

山楂叶片中黄酮类物质的提取工艺与检测1项目设计的意义山楂为蔷薇科植物,资源丰富,叶片中含有的黄酮类化合物具有降压、降血脂、软化血管、增加冠状动脉流量、助消化等药理作用。

随着人们健康观念的更新以及黄酮类化合物越来越广泛的生物活性被发现,其开发利用已成为目前的一个研究热点。

研究证实,山楂叶和果含有相近的营养及药用成分,特别是总黄酮含量远高于果实,有很高的利用价值。

但长期以来,人们只注重果实的利用,而山楂叶则自生自落,白白浪费。

超声波法提取总黄酮具有简单、低成本、快速、有效的优点,且不破坏其有效成分。

为了充分开发利用山楂叶这一丰富的资源,本试验对山楂叶总黄酮的超声波提取工艺条件进行了研究,为进一步合理开发利用山楂资源提供理论依据。

2项目设计的原理2.1超声波提取法原理用超声波法提取黄酮类物质,是目前比较新的方法。

它的原理是超声波的空化作用对细胞膜的破坏有助于黄酮类化合物的释放与溶出,超声波使提取液不断震荡,有助于溶质扩散,同时超声波的热效应使水温基本在57℃,对原料有水溶作用。

因此,超声波法大大缩短了提取时间,提高了有效成分的提取率和原料的利用率,且实验可在室温下进行,设备简单,操作方便,是提取山楂中黄酮类物质的一种有效方法。

2.2测定原理黄酮类化合物主要包括黄酮苷和黄酮醇苷两大部分,三氯化铝与黄酮类化合物作用后,生成黄酮的铅盐络离子,呈黄色,颜色的深浅与黄酮的含量成一定的比例关系,可以定量测定。

3主要仪器及试剂KQ-5000DB型数控超声波清洗器(昆山市超声仪器有限公司,额定功率为500W),754型紫外可见分光光度计(上海光谱仪器有限公司),JA-5003A型千分之一电子天平,DHG-9146A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司),RE-52A型旋转蒸发仪(上海亚荣生化仪器厂)及其他玻璃仪器。

芦丁为生化试剂,乙醇、硝酸铝、亚硝酸钠、氢氧化钠等均为分析纯。

4实验内容和步骤4.1山楂叶总黄酮超声波法提取工艺条件的筛选(1)准确称取干燥山楂叶1.000g,加入20mL(料液比1:20)体积分数分别为60%、70%、80%、90%的乙醇,在40℃下以80%超声功率(400W)提取30min,测定其黄酮的提取率。

山楂片中黄酮类物质的提取与检测

山楂片中黄酮类物质的提取与检测

山楂片中黄酮类物质的提取与检测一、前言:山楂是我们冬天最喜欢吃的食物之一,黄酮成是山植中主要成分之一。

有资料表明:山植黄酮类物质对252例冠心病心绞痛病人总有效率为为 94.4 %。

对降低血脂总有效率达 85 %,对治疗冠心病、心肌炎及心肌病引起的早博总有效率为 62·5 %。

此外,对降低舒张压, 防治心律失常、心血管病和化痰也起重要作用二、材料、试剂、主要仪器设备材料:廊坊师院10教后采集的山楂叶试剂5 % 乙醇AR;无水乙醇;5%NaNO溶液 20%AL(NO3)3 溶液; 4%Na(OH)溶液;主要仪器设备:紫外光 /可见光自动记录分光光度计 ;高速离心机; 三.提取、纯化取干山植叶50g ,经破碎成1cm2左右。

置于烧杯中,加入蒸馏水加热煮沸3 h。

冷却后进行粗滤,滤液用高速离心机分离。

4000r/min;20min。

弃去滤渣。

滤液蒸发器上进行浓缩。

加热温度,加热温度 7 0 ℃浓缩液冷却后加入等体积95%乙醇。

放于冰箱内2h。

进行分离,高速离心机5000r/min3分钟,弃去粘稠滤渣。

滤液于蒸发器蒸馏( 7 0 ℃ );。

待乙醇蒸发后,将浓液置于真空干燥箱中干燥成疏松固体、然后粉碎得终产物。

再将浸提过的山植叶再以同样方法处理2次。

合并3次产物,称重计收率。

四、黄酮类物质的测定芦丁标准曲线的建立(1)配置标准溶液精密称量干燥至芦丁样品10mg,置与50ml容量瓶中,加无水乙醇30ml轻摇使之充分溶解,定容摇匀得0.2mg/ml的芦丁标准溶液(2)测绘标准曲线,根据中国药典委员会规定的紫外分光光度计法,以芦丁标准品进行测量。

精密吸取标准溶液0、1、2、3、4、5和6ml 分别置于250ml容量瓶中,加水至6ml,加5%NaNO2溶液1ml后摇匀,静置6min加10%AL(NO3)3溶液1ml,摇匀静放6min加入4%的Na(OH)溶液10ml,摇匀后加水至刻度,摇匀放置15分钟,立即在510nm波长处测量吸光度(A)值,以吸光度为横坐标,浓度(C,m/v)为纵坐标测绘曲线,计算曲线的回归方程。

山楂及山楂黄酮提取物调节大鼠血脂的效果研究

山楂及山楂黄酮提取物调节大鼠血脂的效果研究

山楂及山楂黄酮提取物调节大鼠血脂的效果研究
高莹;肖颖
【期刊名称】《中国食品卫生杂志》
【年(卷),期】2002(14)3
【摘要】为研究山楂和山楂黄酮调节血脂的效果 ,本课题观察了山楂黄酮和山楂汁对高脂血症大鼠血清脂质和肝脏脂水平的影响。

大鼠高脂饲料含有 1%胆固醇、10 %猪油、10 %蛋黄粉和 79%基础饲料。

结果显示第五周末实验结束时 ,山楂黄酮和山楂汁使高脂血症大鼠血清甘油三酯、肝脏甘油三酯明显降低 (P <0 0 5 ) ,山楂黄酮和山楂汁使肝脏胆固醇明显降低 (P <0 0 5 ) ,但两种受试物都未降低血清胆固醇。

本研究提示山楂和山楂黄酮对高脂血症大鼠的甘油三酯代谢具有良好的改善作用。

【总页数】3页(P14-16)
【关键词】山楂;山楂黄酮提取物;高脂血症;大鼠;调节血脂
【作者】高莹;肖颖
【作者单位】北京大学医学部营养与食品卫生学系
【正文语种】中文
【中图分类】R972.6
【相关文献】
1.山楂黄酮提取物降血脂研究 [J], 张明;陈珍
2.山楂总黄酮和茶多酚联合调节血脂的优化配比研究 [J], 谷仿丽;陈乃富;戴军;陈
军;李杰
3.沙棘总黄酮和山楂总黄酮及其混合液对大鼠高血脂的影响 [J], 王云彩
4.HPLC法同时测定口服山楂叶总黄酮提取物后大鼠血浆中3种黄酮的含量及药动学研究 [J], 王思源;张文杰;康廷国
5.山楂提取物调节血脂作用的实验研究 [J], 王代明
因版权原因,仅展示原文概要,查看原文内容请购买。

山楂果实中黄酮类化合物的超高压提取研究

山楂果实中黄酮类化合物的超高压提取研究

山楂果实中黄酮类化合物的超高压提取研究
骆晓沛;张守勤;张格;曹金钰;闫洪森
【期刊名称】《农机化研究》
【年(卷),期】2008(0)7
【摘要】用常温超高压技术提取山楂中黄酮类化合物,为了研究提取的最佳工艺,采用正交试验优化, 利用分光光度法检测提取液中总黄酮含量.结果表明,超高压提取山楂果中黄酮类化合物的最佳提取工艺参数分别为: 提取溶剂为50%乙醇,料液比为1:40 ,浸泡时间2h,提取压力300MPa,提取时间为3min.超高压提取时间短,提取液澄清稳定.
【总页数】4页(P168-171)
【作者】骆晓沛;张守勤;张格;曹金钰;闫洪森
【作者单位】吉林大学,生物与农业工程学院,长春130022;吉林大学,生物与农业工程学院,长春130022;吉林大学,生物与农业工程学院,长春130022;吉林大学,生物与农业工程学院,长春130022;长春大学,电子信息工程学院,长春130022
【正文语种】中文
【中图分类】TQ914.1;R284.2
【相关文献】
1.回流法提取山楂叶悬钩子叶片中黄酮类化合物的工艺研究 [J], 唐红梅;常丽新;丁存宝;张树华;贾长虹
2.山楂叶中黄酮类化合物的提取工艺研究 [J], 张元富;刘志辉;于行梅;贾文杰
3.长白山野生山楂叶中黄酮类化合物提取工艺研究 [J], 李桂玲
4.长白山野生山楂叶中黄酮类化合物提取工艺研究 [J], 李桂玲
5.山楂中黄酮类化合物的提取研究 [J], 刘煊崴; 罗维巍; 刁全平; 嵇彬慧; 覃汉棋; 蒋昊
因版权原因,仅展示原文概要,查看原文内容请购买。

大果山楂黄酮提取的方法研究

大果山楂黄酮提取的方法研究

大果山楂黄酮提取的方法研究作者:陈兵兵等来源:《现代养生·下半月版》 2017年第3期【摘要】据调查,在成熟的大果山楂果实里面,含有十分丰富的黄酮类物质。

其有着天然无毒与多种生物活性等优点。

在大果山楂黄酮的提取方面,不同的方法对结果有着较大影响。

通过乙醇回流法与超声法对大果山楂黄酮提取结果的对比分析,得到最有效的提取工艺及各类参数。

结果显示,超声法是提取大果山楂中黄酮的最佳方法,其具有操作简单与纯度高的优势。

【关键词】大果山楂;黄酮;提取1 引言大果山楂在植物当中,被划归为蔷薇科的一类。

适应我国南北种植。

山楂是我国原有和特有的栽培果树,其果实营养丰富,食用与药用价值都很高,已被国家卫生部确定为药食两用食品。

在2015 年版的《中国药典》中,再一次将大果山楂收录。

它有着消食健胃与活血化瘀的良好疗效,临床常用于消化不良与产后腹痛等症状的缓解。

其主要功能除了消食健胃与活血化瘀,还包括腹痛腹胀、肠胃不顺、经闭、心腹疼痛以及高血脂症等症状的治疗[1]。

近些年来,大果山楂在临床上,也广泛被用于治疗高血压、冠心病以及高脂血症等一系列的心血管疾病,并取得了良好的疗效。

其药理研究中也显示,大果山楂中的关键成分即黄酮。

相关的统计显示,2016 年全国大果山楂种植面积突破600 万亩,总产量突破60万吨。

但是大果山楂的食用与药用量仅占到总产量的一成。

怎样改善大果山楂的利用率,是大果山楂加工业与医药领域发展面临的重点问题。

提取大果山楂中的黄酮,同时对剩余物进行有效利用,是解决该问题的科学手段[2]。

本文通过乙醇回流提取法与超声法这两类不同的方法,研究了这两种不同方法对大果山楂黄酮提取效率的结果。

借助于比色法测定提取的黄酮含量,最后得出大果山楂黄酮提取的最佳方法与工艺条件[3]。

2 原料与方法2.1 材料与试剂大果山楂:选择成熟度良好均匀,外观圆润,没有病虫害的广西贺州地区的大果山植实施黄酮提取实验分析。

试剂:主要包括福林酚、无水乙醇、甲醇、乙酸乙酯、丙酮、亚硝酸钠、氢氧化钠、无水碳酸钠、葡萄糖、盐酸、锌粉、醋酸铅、三氯化铁、芦丁标准品等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3132J.Agric.Food Chem.2010,58,3132–3138DOI:10.1021/jf903337fSynergetic Effect and Structure-Activity Relationship of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitorsfrom Crataegus pinnatifida Bge.X IAO-L I Y E,†W EN-WEN H UANG,§Z HU C HEN,§X UE-G ANG L I,*,§P ING L I,#P ING L AN,§L IANG W ANG,§Y ING G AO,§Z HONG-Q I Z HAO,§AND X IN C HEN§†School of Life Science,Southwest University,Chongqing400715,China,§Chemistry Institute of Pharmaceutical Resources,School of Pharmaceutical Science,Southwest University,Chongqing400716,China,and#Beibei Tranditional Chinese Medicie Hospital,Chongqing400700,China The3-hydroxy-3-methylglutaryl coenzyme A reductase(HMGR)inhibitors from hawthorn fruit(Crataegus pinnatifida Bge.)were isolated and evaluated for their antihyperlipidemic effect inducedby high-fat diet in mice.After being further purified with silica and polyamide column chromatog-raphy from the fractions(fractions A,F,H,and G)with a high inhibitory rate(IR)to HMGR,24chromatographic fractions were obtained,including8active fractions with a high IR to HMGR.However,the total inhibitory activity of24fractions was decreased by about70%.From eight activefractions,four compounds were obtained by recrystallization and identified as quercetin(a),hyperoside(b),rutin(c),and chlorogenic acid(d),the contents of which in hawthorn EtOH extractwere0.16,0.32, 1.45,and0.95%,respectively.The IR values of compounds a-d to HMGRwere6.28,9.64,23.53,and10.56%at the corresponding concentrations of0.16,0.32,1.45,and0.95mg/mL,respectively.It was discovered that the IR of a mixture(2.85mg/mL)matching theoriginal percentage of compounds a-d in hawthorn EtOH extract was up to79.5%,much higherthan that of the single compound and the total IR of these four compounds(50.01%).The in vivoresults also revealed that the mixture had a more significant lipid-lowering efficacy than themonomers.Structure-activity relationship revealed the inhibitory activity and lowering-lipid abilityof compounds a-c decreased with increasing glycoside numbers.It was concluded that there weresynergetic effects on inhibiting HMGR and lowering lipid among compounds a-d,and the weakhydrophilic ability benefits the inhibition to HMGR and lowering-lipid efficacy.KEYWORDS:Hawthorn fruit;3-hydroxy-3-methylglutaryl coenzyme A reductase(HMGR);antihyperlipi-demic effect;synergetic effect;structure-activity relationship(SAR)1.INTRODUCTIONHyperlipidemia is a dangerous factor of cardio-cerebrovascu-lar diseases,inducing essential hypertension,coronary heart disease,and atherosclerosis(1).It is widely acknowledged that lowering the level of total cholesterol(TC),low-density lipopro-tein cholesterol(LDL-C),and triglycerides(TG)can interfere with the progression of atherosclerosis and reduce cardiovascular events in patients with atherosclerosis and cardio-cerebrovascular diseases(2,3).The most widely used lipid-lowering drugs are a class of3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR)inhibitors.HMGR is an endoplasmic reticulum(ER) bound enzyme that catalyzes the conversion of hydroxymethyl-glutaryl-CoA to mevalonate(4),an early rate-limiting step in cholesterol biosynthesis,leading to cholesterol-lowering effects. Statins,a competitive inhibitor of HMGR most widely used in clinics,reduce TC,LDL-C,apolipoprotein B,and TG levels(5), but they are associated with undesirable side effects such as severe myopathy and statin-associated memory loss(6).Myopathy is a serious side reaction,with the potential for rhabdomyolysis(the pathological breakdown of skeletal muscle),leading to acute renal failure(7).Recently,we conducted a rationalized screening to search for HMGR inhibitors from traditional Chinese medicine(TCM). The EtOH extract of hawthorn fruit(Crataegus pimmatifida Bge.) showed a very significant inhibition to HMGR by HPLC(8) among73TCMs. C.pimmatifida Bge.(Rosaceae),named Shanzha in Chinese,is widely used as a food and traditional medicine in treating chronic heart failure,high blood pressure, various digestive ailments(9),and arrhythmia(10),as well as geriatric and antiarteriosclerosis remedies(11)by reducing serum cholesterol.It has been documented that hawthorn fruit de-creased the serum total cholesterol,LDL-C,and triglycerides in hyperlipidemic humans(12).The major components include flavonoids,proanthocyanidin, triterpenes,organic acids,tannin,flavane and its polymers,and so*Address correspondence to this author at the Chemical Institute ofPharmaceutical Resources,School of Pharmaceutical Science,South-west University,Chongqing400715,China(telephoneþ862368250728;faxþ862368250728;e-mail xuegangli2000@)./JAFC Published on Web02/04/2010©2010American Chemical SocietyArticle J.Agric.Food Chem.,Vol.58,No.5,20103133 on(13).Among them,flavonoids and triterpenes were reported asthe main active hypolipidemic constituents(14,15).However,there had been no reports on the active components of HMGRinhibitors in hawthorn fruit and their lipid-lowering efficacy.In the present study,we separated and purified the EtOHextract of hawthorn fruit by systematic chromatographic meth-ods using HMGR as the target to research the inhibition toHMGR and the lipid-lowering efficacy of active components andfurther investigate their synergetic effect and structure-activityrelationship.2.MATERIALS AND METHODS2.1.Chemicals.Standard quercitrin,hyperoside,rutin,and chloro-genic acid were purchased from the National Institute for the Control ofPharmaceutical Biological Products(Beijing,China).Nicotinamide ade-nine dinucleotide phosphate(NADPH),1,4-dithiothreitol(DTT),ethyle-nediaminetetraacetic acid(EDTA),and3-hydroxy-3-methylglutaryl-coenzyme A(HMG-CoA)were obtained from Sigma Chemical Co.(St.Louis,MO).Other chemicals were purchased from Pharmaceutical andChemical Reagent Inc.(Chongqing,China).Silica gel(200-300mesh),polyamide(100-200mesh),and D-101macroporuos resin were pur-chased from Qingdao Marine Chemical Co.,Ltd.(Qingdao,China).2.2.Plant Materials.Hawthorn fruit(C.pimmatifida Bge.)wascommercially available in Chongqing,China.It was dried at75°C in avibrating blast drier(model VFB-A,Beijing,China)and ground to passthrough a60mesh screen;the powder was stored in a desiccator at theChemistry Institute of Pharmacological Resource,Southwest University,China.2.3.Preparation and Assay of HMGR from Mouse Liver(8).Briefly,liver was homogenized in potassium phosphate buffer A(PPB,pH7.2),containing50mmol/L KCl,40mmol/L K2PO4,30mmol/L EDTA,and10mmol/L sucrose.The homogenate was centrifuged at16000g for15min,and the supernatant was centrifuged at100000g for60min.Theresulting microsomal fraction was suspended in3mL of potassiumphosphate buffer A(pH7.2),containing250mmol/L sucrose,20mmol/L EDTA,and50μmol/L leupeptin,immediately frozen in liquid nitrogen,and stored at-80°C until analysis.Microsomal suspensions of10μL(80mg/mL protein)and10μLinhibitors were preincubated for5min at37°C with80μL of PPB(pH6.8),containing300mmol/L KCl,240mmol/L K2HPO4,6mmol/LEDTA,and15mmol/L DTT.The assay was initiated by adding10μLof50μmol/L NADPH and10μL of HMG-CoA.The incubation wasperformed at37°C for30min and terminated by the addition of500μL of0.5mol/L of NaOH.Then the mixture was centrifuged at10000g for10min,and20μL of supernatant was taken to measure the content ofNADPH by HPLC(8).In this reaction,the NADPH would be oxidized toNADPþ,causing the decrease in absorbance of NADPH at340nm.Afteradding inhibitors,the reaction velocity was decreased and the depletion ofNADPH was correspondingly declined.The changes in the content ofNADPH were analyzed,and the inhibitory rate(IR)was calculatedaccording to the following equation:IR¼S i-S cS b-S cÂ100%ð1ÞHere,IR indicates the inhibitory rate and S i,S b,and S c indicate the peakarea(mAU*s)of NADPH in inhibitor,blank,and control group,respectively.HPLC conditions of analyzing NADPH were as follows:chromato-graphic column,Hypersil C18-ODS(4.6mmÂ200mm,5μm);mobilephase,phosphate buffer/MeOH(78:22,pH7.2);flow rate,1mL/min;injection volume,20μL;wavelength of detection,340nm;temperature ofcolumn,25°C.2.4.Preparation of Hawthorn Fruit Extracts.The dried powderof hawthorn fruit(1000g)was extracted three times with15L of95%ethanol under ultrasonic vibration.The supernatant was evaporated at60°C in a rotary evaporator under reduced pressure to produce680g of crude extracts.Then the extract was dissolved in distilled water to obtainsupernatant and precipitate(35.2g,fraction A)by centrifugation.Thesupernatant was loaded onto the D-101macroporous adsorption resins column(8cmÂ100cm),then eluted with different concentrations of EtOH(0,10,20,30,40,50,60,70,80,90,and100%)to collect various fractions,and concentrated under reduced pressure to obtain condensed fractions designated fractions B,C,D,E,F,H,I,J,K,and L,respectively. Then the IR of fractions A-L to the activity of HMGR was measured by HPLC(Table1).2.5.Purification of Active Fractions with High Inhibition to HMGR.According to results of section2.4,four fractions(A,F,G,and H)had a high inhibitory activity to HMGR(Table1)and were further purified.One gram of fraction A was suspended in MeOH and loaded onto10g of silicagel.After MeOH had been evaporated,silica gel with fraction A was put into column(1.5cmÂ70cm)containing90g of silica gel,and then eluted with different ratios of CHCl3/MeOH to produce six fractions (fractions1-6)(shown in Table2).Fraction F(1g)was loaded onto column chromatography on100g of polyamide(1.5cmÂ70cm)and eluted with a gradient of H2O/MeOH eluent to yield six fractions(fractions7-12).Fraction G(1g)was loaded onto100g of polyamide chromatography (1.5cmÂ70cm)and eluted with a gradient of H2O/EtOH to yield five fractions(fractions13-17).Fraction H(1g)was loaded onto100g of silica gel chromatography (1.5cmÂ70cm)and eluted with a gradient of CHCl3/MeOH to yield seven fractions(fractions18-24).The IR of fractions1-24to HMGR was measured by HPLC.Those fractions with a high inhibition to HMGR were purified with thin layer chromatography(TLC)and recrystallized to obtain eight compounds, a-h,respectively.The separation process is shown in Scheme1.2.6.Structural Identification of Active Compounds.Melting points,UV,IR,1H NMR,and TLC were used to identify structures of new compounds.Melting points were determined on an RD-2C electro-thermal melting point apparatus and are uncorrected.The UV spectra were recorded on a Hitachi U-1800spectrophotometer.The IR spectra were carried out on a Perkin-Elmer IR spectrophotometer.The1H and13C NMR spectra were recorded on a Bruker model Avance DMX300 spectrometer(300MHz for1H and75MHz for13C)using TMS as an internal standard and DMSO-d6as solvent.Macroporous resin was used for crude separations.Analytical TLC was performed on precoated silica gel G plates(Qingdao Marine Chemical Co.Ltd.)and polyamide thin film (Yuanda Chemical Co.Ltd.),visualized with UV light,and then sprayed with1%vanillin/H2SO4and heated or with1%AlCl3/EtOH.2.7.Quantitative Analysis of Active Components in Hawthorn Fruit Extract.For quantification of active components in hawthorn fruit extract,a Waters HPLC system equipped with a510pump,a UV detector, and a Symmetry Hypersil C18-BDS(4.6Â250mm,5μm)was used. Quercetin,hyperoside,rutin,and chlorogenic acid in methanol were injected into the column as external standard compounds.After injection, the column was eluted with a linear gradient of acetonitrile in water from Table1.Inhibition Rate of Constituents to HMG-CoA Reductase and of Countsweight(g)weight ratio(%)IR a(%)total inhibitoryactivity b crude extract680100 5.134680 precipitation(fraction A)35.2 5.1818.46476.80 water fraction(fraction B)448.0665.890.0144.80 10%EtOH(fraction C)24.92 3.660.249.84 20%EtOH(fraction D)11.92 1.750.671.52 30%EtOH(fraction E)16.63 2.45 5.6931.28 40%EtOH(fraction F)43.6 6.4128.312338.8 50%EtOH(fraction G)31.5 4.6330.39544.5 60%EtOH(fraction H)18.5 2.7226.34865.5 70%EtOH(fraction I) 5.230.77 1.578.45 80%EtOH(fraction J) 2.090.31 2.552.25 90%EtOH(fraction K) 4.50.66 1.358.5 100%EtOH(fraction L) 5.860.86 2.2128.92 total648.019534641.16 a IR indicates the inhibitory rate to HMGR at the concentration of1mg/mL.b Total inhibitory activity=weight(mg)ÂIR(%).3134J.Agric.Food Chem.,Vol.58,No.5,2010Ye et al.10to50%(containing0.3%KH2PO4)over30min before returning to initial conditions for10min.The flow rate was1mL/min,and effluent was monitored at360nm.Before being analyzed,the EtOH extract of hawthorn fruit was dissolved in methanol,and after a brief centrifugation(1000g,10min),a 5mL aliquot of the supernatant was passed through a2mL cleanup column and eluted with methanol.Twenty microliters of collected eluant was used to analyze the content of active compounds by HPLC.2.8.Animal Experiments.Kunming mice(20(2g)of both genders were purchased from Animal Breeding Center of the Third Military Medical University(Chongqing,China).Animals were cared for according to the institutional guidelines of Chongqing City Laboratory Animal Administration Committee of China.Mice were housed in an air-conditioned room(24(2°C,55(10%relative humidity,15air changes in1h,and12h light cycle)with5mice per cage.The regular and the high-fat and high cholesterol(HFHC)diets contained2%cholesterol,10% lard,10%yolk powder,and0.5%sodium deoxycholate,purchased from Animal Breeding Center of the Third Military Medical University (Chongqing,China).After1week of accommodation period,the mice were divided into normal control(HFHC free),model(HFHC diet),compound a(2.85mg/ kg/day),compound b(2.85mg/kg/day),compound c(2.85mg/kg/day), compound d(2.85mg/kg/day),and mixture of compounds a-d(2.85mg/ kg/day),and10mice were included in each group.The mixture of compounds a-d was matched according to their ratio in hawthorn fruit extract(0.16:0.32:1.42:0.95).Mice in the normal control were fed regular mouse diet.Other animals were fed HFHC diet for2months to get the hyperlipidemic mice.Then hyperlipidemic mice were untreated or treated with above extracts using a stomach tube for6weeks,respectively.Six hours after the last treatment,the mice were sacrificed,their blood was collected,and the serum for the measurement of cholesterol levels was obtained by centrifugation.Then total cholesterol(TC),triglyceride(TG), high-density lipoprotein-cholesterol(HDL-C),and low-density lipopro-tein-cholesterol(LDL-C)were assayed using commercially available kits.2.9.Statistics.The data were analyzed by SPSS11.5software and expressed as mean(standard deviation(SD),and one-way analysis of variance(ANOVA)was used for statistical evaluation.Differences were accepted as statistically significant at P values of<0.05.3.RESULTS AND CONCLUSION3.1.IR of Fractions A-L to the Activity of HMGR.Table1 showed the IR of hawthorn fruit extract to the activity of HMGR. From1000g of dried powder of hawthorn fruit,680g of crude EtOH extract was obtained.Its IR to HMGR was only5.1%,and the total inhibitory activity was about34680.Then the crude extract was dissolved in water to get the precipitate and supernatant.The IR of precipitate(35.2g, fraction A)was up to18.4%,and the total inhibitory activity was about6476.8.From the supernatant,11fractions(fractions B-L)were obtained.Among them,fractions F,G,and H had high inhibitory activities to HMGR,their IRs being up to28.3, 30.3,and26.3%,respectively.According to the data in Table1, the total activity of fractions A-L was34641.16.This indicated that there had been no loss of total inhibitory activity.The inhibitory activities of fractions A,F,G,and H accounted for 95.9%,but their weights were only18.9%of total weight.3.2.IR of Fractions1-24to the Activity of HMGR.Fractions A,F,G,and H were further purified with different column chromatographies to obtain24fractions(fractions1-24) (Table2).Six fractions were obtained from precipitate(fraction A). Among them,fraction2showed the highest inhibitory activity to HMGR,up to39.6%,2-fold higher than that of the pre-cipitate.However,after purification by column chromatography, the loss of weight was only21.5%,and total activity was up to 66.2%,compared with that of fraction A(Table2).Fraction2 was further purified with TLC and recrystallized in MeOH,and a pure compound(a)with yellow needle-like crystals was obtained and identified as quercetin.Similarly,six fractions(fractions7-12)were obtained from fraction F.The loss of total weight and total inhibitory activity were23.4and65.2%,respectively.Among six fractions,fractions 8,9,and11had strong inhibitory activities,their IR values being 30.4,16.5,and11.1%,respectively.After purification by TLC and recsytallization in MeOH,compounds b,c,and d were obtained from fractions8,9,and11,respectively,and identified as hyperoside(b),rutin(c),and chlorogenic acid(d).After purification with polyamide,five fractions were obtained from fraction G.The loss of total weight and total inhibitory activity were23.3and56.9%,respectively.Two fractions(14and15)with high IR to HMGR values were obtained from fractionG.After purification by TLC and recrystallization in MeOH, compounds e and f were produced from fractions14and15, respectively,and identified as hyperoside(b)and rutin(c). After purification on a silica gel column,seven fractions were produced from fraction H.According to the data in Table2,the loss of total weight and inhibitory activity of these fractions were 25.7and64.3%,respectively.From these fractions,two fractions (19and21)with high IR to HMGR values were obtained.After purification by TLC and recrystallization in MeOH,compounds g and h were produced from fractions19and21,respectively,and identified as quercetin(a)and hyperoside(b).During the period of separating active compounds with the different column chromatographies,we observed that the totalTable2.Contents and IR of Chromatographic Fractions to HMGR fraction weight(mg)weight ratio(%)IR a(%)total activity bA1000100.018.4184.0 1999.9 2.5 2.5 2787.839.630.9 325525.5 2.4 6.1 414914.9 4.6 6.9 550 5.00.20.1 615415.410.315.9 sum78578.562.3F1000100.028.3283.0 761 6.1 5.9 3.6 8808.030.424.3 928328.316.546.7 10929.2 1.9 1.7 11808.011.18.9 1217017.07.913.4 sum76676.698.7 G1000100.030.3303.0 13727.2 3.4 2.4 1430830.830.493.6 1516416.416.527.1 16808.00.30.2 1715315.3 4.87.3 sum77777.7130.7 H1000100.026.3263.0 1812012.0 6.98.3 19150.839.6 5.9 2065 6.5 2.4 1.6 2112812.830.438.9 22737.3 1.9 1.4 2330 3.0 2.60.8 2431231.211.937.1 sum71374.393.9 a IR indicates the inhibitory rate to HMGR at the concentration of1mg/mL.b Total inhibitory activity=weight(mg)ÂIR(%).Article J.Agric.Food Chem.,Vol.58,No.5,20103135weight of those fractions(A,F,G,and H)with a high IR was reduced by20-30%,and the total activity(fractions1-24)was reduced by50-70%.This indicated that further purification to crude extract weakened the inhibitory activity of active compo-nents to HMGR,and it was speculated that there was a synergetic effect among the active components.3.3.Structural Identification of Active Compounds from Haw-thorn pounds a and g were negative in Molish’s reaction and positive in HCl-Mg reaction.Both of them had the same structural properties:yellow needle-like crystal (MeOH),mp310-312°C;EI-MS(m/z)302[Mþ1];Anal. Calcd C15H10O7;UVλmax(MeOH)359nm;IR v(cm-1)3416.82 (OH stretching vibration),1662.1(C d O stretching vibration), 1612.2,1560.4,1522.6,1450.7(aromatic ring skelton vibration), 1383.8,1320.8,1320.1,1264.2,1200.7,1170.0,1132.3,1093.1, 1015.2,942.1,864.4,842.4,824.9;1H NMR(300MHz,DMSO-d6)δ12.49(s,1H,5-Ar-OH),10.78(s,1H,7-Ar-OH),9.60 (s,1H,40-Ar-OH),9.37(s,1H,3-Ar-OH),9.31(s,1H,30-Ar-OH),7.67(s,1H,20-Ar-H),7.54(d,1H,J=8.4Hz,60-Ar-H),6.88(d,1H,J=8.4Hz,50-Ar-H),6.41(s,1H,8-Ar-H),6.19(s, 1H,6-Ar-H);13C NMR(75MHz,DMSO-d6)δ175.87(C-4), 163.91(C-7),160.75(C-5),156.16(C-9),147.73(C-40),146.82(C-2),145.09(C-30),135.77(C-3),121.98(C-10),120.00(C-60),115.63 (C-20),115.09(C-50),103.04(C-10),98.21(C-6),93.38(C-8). According to the results of structural identification and color reaction,compounds a and g were confirmed as quercetin,4H-1-benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy, assigned as compound a.Compounds b,e,and h were all positive in Molish’s reaction and HCl-Mg reaction,indicating they were a kind of flavonoid glycoside.Those in absolute methanol were hydrolyzed by2% H2SO4at60°C and then neutralized with NaOH to remove H2SO4.After being concentrated under reduced pressure,the residue was recrystallized in ethyl acetate to get the yellow crystal. Its mp was310-312°C.The R f value was the same as for quercetin,indicating the aglycone is quercetin.Another result ofthe TLC chromatogram confirmed they contained galactose.Their structural properties were as follows:yellow amorphouspowder(MeOH),mp234-236°C;ESI-MS(m/z)465[Mþ1];Anal.Cacld C21H20O12;UVλmax(MeOH)359nm;IR v(cm-1)3436.6(OH stretching vibration),2923.2(saturated C;Hstretching vibration),1654.5(C d O stretching vibration),1607.1,1505.1,1452.4(aromatic ring skelton vibration),1384.4,1363.9,1305.6,1261.7,1205.6,1172.7,116.4,1134.8,996.2,819.7,796.7;1H NMR(300MHz,DMSO-d6)δ12.73(s,1H,5-Ar-OH),10.96(s,1H,7-Ar-OH),9.83(s,1H,40-Ar-OH),9.25(s,1H,30-Ar-OH),7.78-7.75(dd,1H,J=5.9Hz,60-Ar-H),7.62(s,1H,20-Ar-H),6.91(d,1H,J=8.5Hz,50-Ar-H),6.49(d,1H,J=1.4,8-Ar-H),6.29(s,1H,6-Ar-H),5.47(d,1H,J=7.6,H-Ar-100),5.23(br s,1H,galactosyl OH),4.95(br s,1H,galactosyl OH),4.53(br s,2H,galactosyl OH),3.74(s,1H,galactosyl H),3.66-3.26(m,6H,H-200-600);13C NMR(75MHz, DMSO-d6)δ177.48(C-4),164.10(C-7),161.22(C-5),156.28(C-2,C-9),148.44(C-40),144.81(C-30),133.49(C-3),121.98(C-60),121.10(C-10),115.95(C-50),115.17(C-20),103.92(C-10),101.81(C-100),98.65(C-6),93.48(C-8),75.83(C-500),73.19(C-300),71.20(C-200),67.92(C-400),60.13(C-600).According to the results ofstructural identification and color reaction,it was confirmed thatcompounds b,e,and h are hyperoside,4H-1-benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3-(β-D-galactopyranosyloxy)-5,7-dihy-droxy,assigned as compound b.Compounds c and f were all positive in HCl-Mg reaction,aluminum chloride(AlCl3)reaction,and Molish’s reaction.Bothof them had the same structural properties:yellow needle-likecrystal(MeOH),mp195-198°C;ESI-MS(m/z)610[Mþ1];Anal.Calcd C27H30O16;UVλmax(MeOH)357nm;IR v(cm-1)3429.3(OH stretching vibration),2983.5,2937.7,2901.1(saturatedC-H stretching vibration),1654.1(C d O stretching vibration),1599.8,1505.9,1454.5(aromatic ring skelton vibration),1362.4,1295.8,1233.6,1203.3,1168.8,1124.2,1091.9,1061.4,1042.1,Scheme1.Scheme of Separating Active Compounds with High Inhibition to HMGR from Crataegus pinnatifidaBge.3136J.Agric.Food Chem.,Vol.58,No.5,2010Ye et al. 1014.0,969.7,944.0,911.9,879.7,827.7,807.9;1H NMR(300MHz,DMSO-d6)δ12.69(s,1H,5-Ar-OH),10.93(s,1H,7-Ar-OH),9.77(s,1H,40-Ar-OH),9.28(s,1H,30-Ar-OH),7.63(d,2H,J=7.4,60-Ar-H),6.92(d,1H,J=8.6Hz,50-Ar-H),6.47(s,1H,8-Ar-H),6.28(d,1H,6-Ar-H),5.43(d,1H,J=6.3Hz,100-H),4.47(d,1H,J=9.3Hz,1000-H),1.07(d,3H,J=5.9Hz,6000-H);13C NMR(75MHz,DMSO-d6)δ177.37(C-4),164.05(C-7),161.22(C-5),156.42(C-2),156.60(C-9),148.40(C-40),144.74(C-30),133.31(C-3),121.58(C-10),121.18(C-60),116.27(C-50),115.22(C-20),103.97(C-10),101.19(C-100),100.73(C-1000),98.66(C-6),93.57(C-8),76.46(C-300),75.91(C-500),74.07(C-200),71.85(C-4000),70.56(C-400),70.37(C-2000),70.01(C-3000),68.23(C-5000),66.99(C-600),17.71(C-6000).It wasconfirmed that compounds c and f were rutin,4H-1-benzopyran-4-one,3-[(6-O-(6-deoxy-R-L-mannopyranosyl)-β-D-glucopyranosyl]-oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy,assigned as com-pound c.Compound d was blue in ferric chloride(FeCl3)reaction:yellow powder(MeOH/H2O),mp207-209°C;ESI-MS(m/z)354[Mþ1];Anal.Calcd16H18O9;UVλmax(MeOH)328.5nm;IRv(cm-1)3389.5(OH stretching vibration),2956.0,2928.8,2857.1(C;H stretching vibration),2626.4,1685.6(C d O stretchingvibration),1638.9,1614.3,1528.7,1517.7,1442.8,1384.1(aro-matic ring skelton vibration),1289.4,1252.4,1190.4,1158.8, 1133.6,1114.1,1086.2,1038.1,970.2,818.4;1H NMR(300 MHz,H2O-d6)δ7.47(d,1H,J=15.9Hz,R-H),7.03(s,1H, 20-H),6.96(d,1H,J=8.3Hz,60-H),6.83(d,1H,J=8.3Hz,50-H),6.17(d,1H,J=15.9Hz,β-H),5.25-5.18(m,1H,3-H),4.19 (d,J=3.0Hz,5-H),3.80(dd,1H,J=8.5Hz,4-H),2.22-2.00 (m,4H,2-H,6-H);13C NMR(75MHz,H2O-d6)δ1176.57(C-70), 168.13(C-9),146.60(C-4),145.71(C-3,),143.72(C-7),126.39(C-1),122.24(C-6),115.65(C-5),114.65(C-2),113.78(C-8),74.40 (C-10),70.93(C-40),70.13(C-30),68.70(C-50),36.08(C-60),35.95 (C-20).It was confirmed that compound d was chlorogenic acid,(1S,3R,4R,5R)-3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-pro-penyl]oxy]-1,4,5-trihydroxycyclohexanecarboxylic acid.The structures of compounds a-d are shown in Figure1. 3.4.Quantification of Four Active Components in Hawthorn Fruit Extract.The HPLC chromatogram of the ethanol extract of hawthorn fruit is shown in Figure2.There are more than10peaks in the extract,which accounted for about4%.In100g of dried extract,chlorogenic acid(d)accounted for0.95g;rutin (c),1.42g;hyperoside(b),0.32g;and quercetin(a),0.16g.In addition,ursolic acid accounted for0.32g;oleaniolic,0.08g;and maslinic acid,0.08g.The total content of compounds a-d was about2.85g in100g of dried extract of hawthorn fruit.3.5.IR of Four Monomers and Their Mixture to HMGR. According to the ratio of the four monomers in crude extract of hawthorn fruit,quercetin(a),hyperoside(b),rutin(c),and chlorogenic acid(d)were adjusted to concentrations of0.16, 0.32,1.42,and0.95mg/mL with PPB(pH6.8),respectively.Then their IR to the activity of HMGR was analyzed by HPLC.The IR values of compounds a-d at1mg/mL were6.28,9.64,23.53,and 10.56%,respectively.Their total IR was about50.01%(Table3). According to their ratio in hawthorn fruit extract,the mixture of compounds a-d was matched with the concentration of2.85mg/ mL.The IR of the matched mixture was up to79.5%,much higher than that of the sum of four monomers.3.6.Effects of Four Monomers and Their Mixture on Lipid-Lowering Efficacy in Mice.As mixture of compounds a-d showed an improved IR to HMGR in vitro,the effects of four monomers and their mixture on lipid-lowering efficacy in vivo were investigated.After a6week treatment,all mice showed good health status, and no mortality was recorded during the whole experimental period.There were no significant differences in the body weights among different groups during treatment,suggesting the mixture or compounds a-d was safe and well tolerated in the mice. The mice were fed a high-fat and-cholesterol(HFHC)diet for pared to the normal diet group,the levels of TC, TG,and LDL-C increased(p<0.01)and that of HDL-C decreased(p<0.05)in the hyperlipidemic group.Then,hyperli-pidemic mice were treated with compounds a-d or matched mixture from hawthorn fruit orally for6weeks or left untreated. The levels of TC,TG,and LDL-C in therapy groups decreased in different degrees and that of HDL-C increased in the blood of the hyperlipidemic mice(Table4).Among these monomers,querce-tin(a)showed the highest lipid-lowering effect(p<0.05).The IR values of hyperoside,rutin,and chlorogenic acid decreased in order,which was similar to the result of their inhibitory activity to HMGR.In general,the lipid-lowering efficacy of compounds a-d was not perfect;the content of TC,TG,and LDL-C showed no difference from that of the hyperlipidemic control.However, the mixture of compounds a-d could significantly reduce the levels of TC,TG,and LDL-C by46.5,49.6,and58.1%, respectively(p<0.01).This confirmed that there was a positive synergetic effect on lowering lipid among these four compounds, similar to that of HMGR.3.7.Structure-Activity Relationship of Compounds a-c to HMGR and Lipid-Lowering Efficacy.As seen in the structures of compounds a-c in Figure1,they contained a quercetin glycone. Hyperoside(b)is a monoglycoside of compound a,linked with a β-D-galatose on the3-OH of quercetin.Rutin(c)is a disaccharideglycoside of compound a,linked with a disaccharide of6-O-L-rhamnosyl-D-glucose at the3-OH of quercetin.In general,the introduction of the glycosyl group increased the hydrophilic ability of a compound.The greater the number of the glycosyl group is,the stronger is the hydrophilic ability.From the data of Table5,the IR values of quercetin,hyperoside,and rutin to HMGR were39.6,30.4,and16.5%,respectively,which gradually decreased with the increase of glycosyl group number.Similarly, the efficacy of quercetin,hyperoside,and rutin in lowering TC, TG,and LDL-C was decreased with the increase of glycosyl group number(Table4).Quercetin(a),without a glycosyl group, showed the highest inhibitory activity and lipid-lowering effect. This indicated that the activities of inhibition to HMGR and lowering lipid were related to its hydrophilic ability.Theweak Figure1.Structures of compounds a-d:(a)quercetin;(b)hyperoside;(c)rutin;(d)chlorogenic acid.。

相关文档
最新文档