第7节 函数的图像

合集下载

届数学一轮总复习第2章函数的概念与基本初等函数Ⅰ第7节函数的图象跟踪检测文含解析

届数学一轮总复习第2章函数的概念与基本初等函数Ⅰ第7节函数的图象跟踪检测文含解析

第二章函数的概念与基本初等函数(Ⅰ)第七节函数的图象A级·基础过关|固根基|1。

(2019届沈阳市质量监测)函数f(x)=错误!的图象大致为()解析:选C因为y=x2-1与y=e|x|都是偶函数,所以f(x)=错误!为偶函数,排除A、B;又f(2)=错误!<1,排除D,故选C。

2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()解析:选C小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A;因交通堵塞停留了一段时间,与学校的距离不变,排除D;后来为了赶时间加快速度行驶,排除B。

3.(一题多解)下列函数中,其图象与函数y=ln x的图象关于直线x=1对称的是()A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x) D.y=ln(2+x)解析:选B解法一:设所求函数图象上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图象上,所以y=ln(2-x),故选B.解法二:由题意知,对称轴上的点(1,0)既在函数y=ln x的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A、C、D,故选B.4.已知图①中的图象对应的函数为y=f(x),则图②中的图象对应的函数为()A.y=f(|x|) B.y=f(-|x|)C.y=|f(x)| D.y=-f(|x|)解析:选B观察函数图象,图②是由图①保留y轴左侧部分图象,并将左侧图象翻折到右侧所得.因此,图②中对应的函数解析式为y=f(-|x|).5.函数y=错误!的图象大致为()解析:选B函数y=错误!的定义域为{x|x≠0且x≠±1},排除A 项;∵f(-x)=错误!=-f(x),f(x)是奇函数,排除C项;当x=2时,y=错误!>0,排除D项.6.已知函数f(x)=错误!则函数y=f(e-x)的大致图象是()解析:选B令g(x)=f(e-x),则g(x)=错误!化简得g(x)=错误!因此g(x)在(0,+∞),(-∞,0)上都是减函数,A、C、D不成立.7.已知函数f(2x+1)是奇函数,则函数y=f(2x)的图象的对称中心为()A.(1,0) B.(-1,0)C.错误!D.错误!解析:选C f(2x+1)是奇函数,所以图象关于原点成中心对称,而f(2x)的图象是由f(2x+1)的图象向右平移12个单位长度得到的,故关于点错误!成中心对称.8.已知函数f(x)=dax2+bx+c(a,b,c,d∈R)的图象如图所示,则()A.a>0,b>0,c<0,d<0 B.a<0,b>0,c<0,d>0 C.a<0,b>0,c>0,d>0 D.a>0,b<0,c>0,d>0解析:选B由题图可知,x≠1且x≠5,则ax2+bx+c=0的两根为1,5,由根与系数的关系,得-错误!=6,错误!=5,∴a,b异号,a,c同号,排除A、C;又∵f(0)=错误!<0,∴c,d异号,排除D,只有B项适合.9.(2019届石家庄模拟)在同一平面直角坐标系中,函数y=g (x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=-1,则m =________.解析:由题意知g(x)=ln x,则f(x)=ln(-x),若f(m)=-1,则ln(-m)=-1,解得m=-1 e.答案:-错误! 10。

2023年高考数学总复习第二章 函数概念与基本初等函数第7节:函数的图像(教师版)

2023年高考数学总复习第二章 函数概念与基本初等函数第7节:函数的图像(教师版)

2023年高考数学总复习第二章函数概念与基本初等函数第7节函数的图像考试要求1.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2.会运用基本初等函数的图像分析函数的性质,解决方程解的个数与不等式解的问题.1.利用描点法作函数的图像步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图像变换法作函数的图像(1)平移变换(2)对称变换y =f (x )的图像―——————―→关于x 轴对称y =-f (x )的图像;y =f (x )的图像――——————→关于y 轴对称y =f (-x )的图像;y =f (x )的图像―——————―→关于原点对称y =-f (-x )的图像;y =a x (a >0,且a ≠1)的图像―——————————―→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图像.(3)伸缩变换y =f (x )―——————————————————―→纵坐标不变各点横坐标变为原来的1a (a >0)倍y =f (ax ).y =f (x )―————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻折变换y =f (x )的图像―————————————―→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图像;y =f (x )的图像―——————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图像.1.函数图像自身的轴对称(1)f (-x )=f (x )⇔函数y =f (x )的图像关于y 轴对称;(2)函数y =f (x )的图像关于直线x =a 对称⇔f (a +x )=f (a -x )⇔f (x )=f (2a -x )⇔f (-x )=f (2a +x );(3)若函数y =f (x )的定义域为R ,且有f (a +x )=f (b -x ),则函数y =f (x )的图像关于直线x =a +b2对称.2.函数图像自身的中心对称(1)f (-x )=-f (x )⇔函数y =f (x )的图像关于原点对称;(2)函数y =f (x )的图像关于点(a ,0)对称⇔f (a +x )=-f (a -x )⇔f (x )=-f (2a -x )⇔f (-x )=-f (2a +x );(3)函数y =f (x )的图像关于点(a ,b )成中心对称⇔f (a +x )=2b -f (a -x )⇔f (x )=2b -f (2a -x ).3.两个函数图像之间的对称关系(1)函数y =f (a +x )与y =f (b -x )的图像关于直线x =b -a2对称(由a +x =b -x 得对称轴方程);(2)函数y =f (x )与y =f (2a -x )的图像关于直线x =a 对称;(3)函数y =f (x )与y =2b -f (-x )的图像关于点(0,b )对称;(4)函数y=f(x)与y=2b-f(2a-x)的图像关于点(a,b)对称.1.思考辨析(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图像相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图像相同.()(3)函数y=f(x)与y=-f(x)的图像关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图像关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图像不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图像不同,(2)错误.(3)y=f(x)与y=-f(x)的图像关于x轴对称,(3)错误.2.下列图像是函数y 2,x<0,-1,x≥0的图像的是()答案C解析其图像是由y=x2图像中x<0的部分和y=x-1图像中x≥0的部分组成.3.(2021·昆明质检)已知图①中的图像对应的函数为y=f(x),则图②中的图像对应的函数为()A.y=f(|x|)B.y=f(-|x|)C.y=|f(x)|D.y=-|f(x)|答案B解析观察函数图像可得,②是由①保留y 轴左侧及y 轴上的图像,然后将y 轴左侧图像翻折到右侧所得,结合函数图像的对称变换可得变换后的函数的解析式为y =f (-|x |).4.(2021·天津卷)函数y =ln|x |x 2+2的图像大致为()答案B解析设y =f (x )=ln|x |x 2+2,则函数f (x )的定义域为{x |x ≠0},关于原点对称,又f (-x )=ln|-x |(-x )2+2=f (x ),所以函数f (x )为偶函数,排除A ,C ;当x ∈(0,1)时,ln|x |<0,x 2+1>0,所以f (x )<0,排除D.5.(易错题)设f (x )=2-x ,g (x )的图像与f (x )的图像关于直线y =x 对称,h (x )的图像由g (x )的图像向右平移1个单位得到,则h (x )=________.答案-log 2(x -1)解析与f (x )的图像关于y =x 对称的图像所对应的函数为g (x )=-log 2x ,再将其图像右移1个单位得到h (x )=-log 2(x -1)的图像.6.(2022·西安调研)已知函数f (x )的图像如图所示,则函数g (x )=log 2f (x )的定义域是________.答案(2,8]解析当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图像知满足f (x )>0时,x ∈(2,8].考点一作函数的图像例1作出下列函数的图像:(1)y =2|x |+1;(2)y =|lg(x -1)|;(3)y =x 2-|x |-2.解(1)将y =2x 的图像关于y 轴作对称图像,取y ≥1的部分得y =2|x |的图像,再将所得图像向上平移1个单位长度,得到y =2|x |+1的图像,如图①所示(实线部分).(2)首先作出y =lg x 的图像,然后将其向右平移1个单位长度,得到y =lg(x -1)的图像,再把所得图像在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图像,如图②所示(实线部分).(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,函数为偶函数,先用描点法作出[0,+∞)上的图像,再根据对称性作出(-∞,0)上的图像,其图像如图③所示.感悟提升 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图像的关键点直接作出.2.图像变换法:若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.训练1分别作出下列函数的图像:(1)y =|x 2-5x +4|;(2)y =2x -1x -1.解(1)令y =x 2-5x +4=0,解出两根为1,4,得到y =x 2-5x +4的图像.将x 轴以下的部分关于x 轴作对称图形,得到y =|x 2-5x +4|的图像,如图①所示(实线部分).(2)y =2x -1x -1=2+1x -1,故函数的图像可由y =1x 的图像向右平移1个单位,再向上平移2个单位得到,如图②所示.考点二函数图像的辨识1.函数f (x )=sin x +xcos x +x2在[-π,π]的图像大致为()答案D 解析∵f (-x )=sin (-x )-xcos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x=π时,f(π)=π-1+π2>0,排除B,C,只有D满足.2.已知函数f(x),x≥0,x<0,g(x)=-f(-x),则函数g(x)的图像是()答案D解析法一当x>0时,-x<0,所以g(x)=-f(-x)=1 x,当x≤0时,-x≥0,g(x)=-x2,从而根据函数的取值正负情况可知D正确.法二也可先画出f(x)的图像,再关于原点对称得g(x)的图像.3.已知函数f(x)x,x≤1,13x,x>1,则函数y=f(1-x)的大致图像是()答案D解析法一先画出函数f(x)x,x≤1,13x,x>1的草图,令函数f(x)的图像关于y轴对称,得函数f(-x)的图像,再把所得的函数f(-x)的图像,向右平移1个单位,得到函数y=f(1-x)的图像(图略),故选D.法二由已知函数f(x)的解析式,得y=f(1-x)1-x,x≥0,log13(1-x),x<0,故该函数过点(0,3),排除A;过点(1,1),排除B;在(-∞,0)上单调递增,排除C.4.(2021·浙江卷)已知函数f(x)=x2+14,g(x)=sin x,则图像如图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y=f(x)g(x)D.y=g(x)f(x)答案D解析易知函数f(x)=x2+14是偶函数,g(x)=sin x是奇函数,给出的图像对应的函数是奇函数.选项A,y=f(x)+g(x)-14=x2+sin x为非奇非偶函数,不符合题意,排除A;选项B,y=f(x)-g(x)-14=x2-sin x也为非奇非偶函数,不符合题意,排除B;因为当x∈(0,+∞)时,f(x)单调递增,且f(x)>0,当x 0,π2g(x)单调递增,且g(x)>0,所以y=f(x)g(x)0,π2上单调递增,由图像可知所求函数0,π4上不单调,排除C.故选D.感悟提升 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置;(2)从函数的单调性,判断图像的变化趋势;(3)从周期性,判断图像的循环往复;(4)从函数的奇偶性,判断图像的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图像的应用角度1研究函数的性质例2已知函数f(x)=x|x|-2x,则下列结论正确的是()A.f (x )是偶函数,递增区间是(0,+∞)B.f (x )是偶函数,递减区间是(-∞,1)C.f (x )是奇函数,递减区间是(-1,1)D.f (x )是奇函数,递增区间是(-∞,0)答案C解析将函数f (x )=x |x |-2x 去掉绝对值得f (x )2-2x ,x ≥0,x 2-2x ,x <0,画出函数f (x )的图像,如图,观察图像可知,函数f (x )的图像关于原点对称,故函数f (x )为奇函数,且在(-1,1)上是递减的.角度2在不等式中的应用例3(1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c的大小关系为________.(2)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为________.答案(1)f (c )c >f (b )b >f (a )a(2)(-1,0)∪(0,1)解析(1)由题意可得,f (a )a ,f (b )b ,f (c )c分别看作函数f (x )=log 2(x +1)图像上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图像可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0可化为f (x )x<0,即xf (x )<0,f (x )的大致图像如图所示,所以原不等式的解集为(-1,0)∪(0,1).角度3求参数的取值范围例4(1)(2022·洛阳模拟)已知f (x )x |,x ≤1,2+4x -2,x >1,若关于x 的方程a =f (x )恰有两个不同的实数根,则实数a 的取值范围是()[1,2)[1,2)C.(1,2)D.[1,2)(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.答案(1)B(2)(0,1)∪(9,+∞)解析(1)关于x 的方程a =f (x )恰有两个不同的实根,即f (x )的图像与直线y=a 恰有两个不同的交点,作出f (x )的图像如图所示.由图像可得a[1,2).(2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图像如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图像有4个不同的交点,且4个交点的横坐标都小于1,所以=-x 2-3x ,=a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,=(3-a )2-4a >0,3<a -32<0,3)2+(3-a )×(-3)+a >0,2+(3-a )×0+a >0,∴0<a <1.=x 2+3x ,=a (x -1)(x >1)有两组不同解.消去y 得x 2+(3-a )x +a =0有两不等实根x 3,x 4,∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1,∴a >9.综上可知,0<a <1或a >9.感悟提升1.利用函数的图像研究函数的性质对于已知或易画出其在给定区间上图像的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图像研究,但一定要注意性质与图像特征的对应关系.2.利用函数的图像可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图像交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图像位于g (x )图像下方的点的横坐标的集合,体现了数形结合思想.训练2(1)(2021·唐山模拟)已知函数f (x )=|x -2|+1,g (x )=kx ,若f (x )>g (x )恒成立,则实数k 的取值范围是________.(2)已知函数y =f (x )的图像是圆x 2+y 2=2上的两段弧,如图所示,则不等式f (x )>f (-x )-2x 的解集是______.(3)已知f (x )x |,x >0,|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是______.答案(1)-1(2)(-1,0)∪(1,2](3)5解析(1)如图作出函数f (x )的图像,当-1≤k <12时,g (x )的图像恒在f (x )下方.(2)由图像可知,函数f (x )为奇函数,故原不等式可等价转化为f (x )>-x .在同一平面直角坐标系中分别画出y =f (x )与y =-x 的图像,由图像可知不等式的解集为(-1,0)∪(1,2].(3)方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图像,由图像知y =f (x )与y =12有2个交点,y =f (x )与y =1有3个交点,故零点的个数为5.1.在2h 内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q 随时间t 变化的图像是()答案B解析依题意知,在2h 内血液中药物含量Q 持续增加,停止注射后,Q 呈指数衰减,图像B 适合.2.(2022·河南名校联考)函数f (x )=x cos x +sin x x 2+1的部分图像大致为()答案A 解析因为f (x )=x cos x +sin xx 2+1,所以f (-x )=-x cos (-x )+sin (-x )(-x )2+1=-x cos x+sin xx2+1=-f(x),所以函数f(x)为奇函数,排除选项C,D;又当x f(x)>0,所以排除B.选A.3.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|-1)的图像可能是()答案D解析由f(x)在R上是减函数,知0<a<1.又y=log a(|x|-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x>1时,y=log a(x-1)的图像由y=log a x的图像向右平移一个单位得到.因此D正确.4.下列函数中,其图像与函数y=ln x的图像关于直线x=1对称的是()A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)答案B解析法一设所求函数图像上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图像上,所以y=ln(2-x).法二由题意知,对称轴上的点(1,0)在函数y=ln x的图像上也在所求函数的图像上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.5.(2021·郑州模拟)已知函数f(x)=-x+1+log2x,则不等式f(x)<0的解集是()A.(0,2)B.(-∞,1)∪(2,+∞)C.(1,2)D.(0,1)∪(2,+∞)答案D解析函数f (x )=-x +1+log 2x 的定义域为(0,+∞),且f (1)=f (2)=0,由f (x )<0可得log 2x <x -1,作出函数y =log 2x 与函数y =x -1的图像如图所示.则函数y =log 2x 与函数y =x -1图像的两个交点的坐标为(1,0),(2,1),由图像可知,不等式log 2x <x -1的解集为(0,1)∪(2,+∞).故选D.6.(2022·大庆模拟)我们从某公司的商标中抽象出一个图像,如图所示.其对应的函数解析式可能是()A.f (x )=1x 2-1B.f (x )=1x 2+1C.f (x )=1|x -1|D.f (x )=1||x |-1|答案D解析由题图可知,f (x )为偶函数,故C 错误;又f (x )>0恒成立,对于A ,f (x )=1x 2-1>0不恒成立,故A 错误;由图知f (x )在x =-1和x =1处无定义,故B 错误.故选D.7.已知f (x )=2x -1,g (x )=1-x 2.当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析如图,画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图像,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图像是图中的实线部分,因此h(x)有最小值-1,无最大值.8.若函数y=f(x)的图像恒过点(2,2),则函数y=f(5-x)的图像一定经过点________.答案(3,2)解析∵f(5-x)的图像可以看作y=f(x)的图像先关于y轴对称,再向右平移5个单位长度得到,点(2,2)关于y轴对称的点(-2,2),再将此点向右平移5个单位长度为(3,2),∴y=f(5-x)的图像一定过点(3,2).9.已知函数f(x)=x2-2|x|-m的零点有两个,则实数m的取值范围是________.答案{-1}∪(0,+∞)解析在同一平面直角坐标系内作出函数y=x2-2|x|的图像和直线y=m,可知当m>0或m=-1时,直线y=m与函数y=x2-2|x|的图像有两个交点,即函数f(x)=x2-2|x|-m有两个零点.10.已知函数f(x)在R上单调且其部分图像如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为________.答案1解析由图像可知不等式-2<f(x+t)<4,即f(3)<f(x+t)<f(0).又y=f(x)在R上单调递减,∴0<x+t<3,不等式解集为(-t,3-t).依题意,得t=1.11.(2021·兰州质检)设函数y=f(x)的图像与y+a的图像关于直线y=x对称,且f(3)+4,则实数a=________.答案-2解析设(x,y)是y=f(x)图像上任意一点,则(y,x)在函数y+a的图像上,所以x+a,则y=log13x-a.因此f(x)=log13x-a.由f(3)+4,得-1+1-2a=4,所以a=-2.12.(2022·哈尔滨模拟)若函数f(x)2+1,x<1,,x≥1的值域是(a,+∞),则a的取值范围是________.答案2 3,解析画出函数f(x)2+1,x<1,,x≥1的图像,如图所示.f(x)=x2+1(x<1)的值域是[1,+∞),f(x)=a(x≥1),a+13,要使函数f (x )的值域是(a ,+∞),+13≥1,<1,解得23≤a <1,所以a 的取值范围是23,13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图像上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )2x (x <0),(x ≥0),则f (x )的“和谐点对”有()A.1个B.2个C.3个D.4个答案B解析作出函数y =x 2+2x (x <0)的图像关于原点对称的图像(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图像的交点个数即可,观察图像可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2021·上海卷)已知函数y =f (x )的定义域为R ,下列是f (x )无最大值的充分条件的是()A.f (x )为偶函数且图像关于点(1,1)对称B.f (x )为偶函数且图像关于直线x =1对称C.f (x )为奇函数且图像关于点(1,1)对称D.f (x )为奇函数且图像关于直线x =1对称答案C解析选项A ,B ,D 的反例如图1,2,3所示,故选项A ,B ,D 错误;对于选项C ,∵f (x )为奇函数且图像关于点(1,1)对称,∴f (x )+f (-x )=0,f (2+x )+f (-x )=2,∴f (2+x )-f (x )=2,∴f (2k +x )=f (x )+2k ,k ∈Z ,又f (0)=0,∴f (2k )=2k ,k ∈Z ,当k →+∞时,f (2k )=2k →+∞,∴函数f (x )无最大值,故选C.15.已知函数f (x )πx ,0≤x ≤1,2022x ,x >1,若实数a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.答案(2,2023)解析函数f (x )πx ,0≤x ≤1,2022x ,x >1的图像如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2022,所以2<a +b +c <2023.16.已知函数g (x )-1|,h (x )=cos πx ,当x ∈(-2,4)时,函数g (x )与h (x )的交点横坐标分别记为x i (i =1,2,…,n ),则∑ni =1x i 等于________.答案7解析易知g (x )-1|的图像关于直线x =1对称,h (x )=cos πx 的图像关于直线x =1对称.作出两个函数的图像,如图所示.根据图像知,两函数有7个交点,其中一个点的横坐标为x =1,另外6个交点关于直线x =1对称,因此∑7i =1x i =3×2+1=7.。

第2章 第7节 函数的图象

第2章 第7节 函数的图象
A>1,伸为原来的A倍
y=f(ωx) ;
y=f(x)―――――――――――――→ y=Af(x) . 0<A<1,缩为原来的A倍
主干知识 自主排查
(3)对称变换 y=f(x)―――――→y= -f(x) y=f(x)―――――→y= f(-x)
关于y轴对称 关于x轴对称
; ;
关于原点对称 y=f(x) ――→ y= -f(-x) . (4)翻折变换 y=f(x)―――――――――――――→y=f(|x|);
主干知识 自主排查
2.利用图象变换法作函数的图象 (1)平移变换 y=f(x)――――――――――→ y=f(x-a)
a<0,左移|a|个单位 a>0,右移a个单位
; .
b>0,上移b个单位 y=f(x)――――――――――→ y=f(x)+b
b<0,下移|b|个单位
主干知识 自主排查
(2)伸缩变换 y=f(x)=
(1)首先作出y =lg x的图象C1,然后将 C1向右平移1个 函数图象作法的 2个关键点 单位,得到y=lg(x-1)的图象C2,再把C2在x轴下方 (1) 常见的几种函数图象如二次函数、反比例函 的图象作关于 x轴对称的图象,即为所求图象C3:y= |lg(x-1)|.如图1所示(实线部分). 数、指数函数、对数函数、幂函数、形如 y=x+ + (2)y=2x 1-1的图象可由y=2x的图象向左平移1个单 m 位,得y=2x+1的图象,再向下平移一个单位得到,如 (m>0)的函数是图象变换的基础. x 图2所示. 2 x -x-2x≥0, 2 (2) 掌握平移交换、伸缩变换、对称变换等常用方 (3)y=x -|x|-2= 2 其图象如图3所 x +x-2x<0, 法技巧,可以帮助我们简化作图过程. 示.

第二章 第七节 函数图像

第二章  第七节  函数图像

1 a>b≥0,f(a)=f(b)同时成立, ≤b<1, 2 12 1 2 bf(a)=b· f(b)=b(b+1)=b +b=b+2 -4, 3 所以4≤b·f(a)<2.
上一页 返回导航 下一页
新课标高考第一轮总复习•数学(理)
考点 3
函数图象的应用
例3(1)若函数 f(x)=|4x-x2|+a 有 4 个零点, 则实 数 a 的取值范围是( A. [-4,0] B. (-4,0) C. [0,4] D. (0,4) )
解析: (2)作 y=log2|x|的图象,再将图象向右平移一个单位,如图,即得到 y= log2|x-1|的图象.
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
考点二|函数图象的识别 【例 2】 (1)函数
(思维突破)
1 f(x)=lnx-x 的图象是(
B )
上一页
返回导航
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
2.平移变换
右移 a 0, ___ a个单位 y f x y f x a; a 0, ___ a 个单位 左移
b 0, ___ b个单位 上移 y f x y f x b. b 0, ___ b 个单位 下移
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
1 3.(必修 1· 2.2 练习改编)函数 y=ln 的图象大致为( B ) 1+x
上一页
返回导航
下一页
新课标高考第一轮总复习•数学(理)
4.(必修 1· 习题 1.2B 组改编)函数 r=f(p)的图象如图所示,若只有唯一的 p 值 (3,5]∪(0,2). 与 r 对应,则 r 的范围为_____________

2019新版高中数学人教A版必修一 第五章 三角函数 第7节 正弦函数的图像和性质

2019新版高中数学人教A版必修一 第五章  三角函数  第7节  正弦函数的图像和性质

3.正弦函数y=sinx的性质:
课后练习:
1.函数 y=-2sinx 的最大值为____________
解:y的最大值=-2x(-1)=2
2.求函数 y=﹣cos2x+sinx,(|x|≤ )的最大值和最小值以及使该函数取得最值
时的 x 的集合.
解:函数 f(x)=﹣cos2x+sinx=﹣1+sin2x+sinx=(sinx+ )2﹣ ,
A.x=0 B.
C.
D.x=π
【解答】解:f(x)=sinx 图象的一条对称轴为
+kπ,k∈Z,
∴当 k=0 时,函数的对称轴为 , 故选:C.
(2)函数 y=sinx 图象的一个对称中心的坐标是( )
A.(0,0) B.
C.
D.
解:因为函数 y=sinx 图象的一个对称中心的坐标(kπ,0)k∈Z,当 k=1 时对称 中心坐标为(0,0). 故选 A.
2
x
y sin x,x [0,2 π]
步骤:
1.列表 2.描点 3.连线
练习:画出函数 y=-sin x , x[0,2 ]的简图.
解:列表
x
0
π 2
sin x
0
1
π


2
0
-1
0
y -sin x 0
-1
0
1
0
描点、连线
y sin x,x [0,2 π]
正弦函数的性质
y
1
-3
5 2
-2
( π ,1); 2
(0,0),(π,0),(2 π,0);
( 3π , 1) . 2
“五点” 作图法

第7节一元函数的连续性与间断点

第7节一元函数的连续性与间断点

而点 x 0 可以是 , 内的任意一点,因此
y x 2 在 , 内连续。
10/31/2019 8:38 AM
第2章 极限与连续
例2 证明函数 ysinx在,内连续。
证 设 x 0 为 , 内任意一点,x 在 x 0
处有改变量 x ,函数的改变量
y y sin 1 x
o
x
10/31/2019 8:38 AM
第2章 极限与连续
3. 连续函数的运算法则
【定理】若函数 f ( x ) 与 g ( x ) 在点 x 0 处
连续,则
f(x)g(x), f(x) g(x),
f(x) g(x)
(当g(x0)
0)
在 x 0 处也连续。
证 只要证明极限值等于函数值即可(略)
例 因为 sinx,cosx 在区间 , 内连续,
所以 tan x sin x 在其定义域内连续。
cos x
10/31/2019 8:38 AM
第2章 极限与连续
【定理】若函数 y f(x) 在区间 I x 上单调
增加(减少)且连续,则其反函数 x f 1(y)
也在对应的区间 Iy {yyf(x ),x Ix}上,单 调增加(减少)且连续。(证略)
如图所示
y yf(x)
M
c
m
f()c
解 lim x 3
x3
x3
x2 9

lim
x3
x2
9

1 6 66
10/31/2019 8:38 AM
第2章 极限与连续
【定理】设函数 yf[g(x)]由函数y f(u)
与函数 ug(x) 复合而成,若函数 ug(x) 在

第7节 函数的图象

第7节 函数的图象

第7节函数的图象课时训练练题感提知能【选题明细表】一、选择题1.为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象上所有的点( A )(A)向右平移3个单位长度,再向下平移1个单位长度(B)向左平移3个单位长度,再向下平移1个单位长度(C)向右平移3个单位长度,再向上平移1个单位长度(D)向左平移3个单位长度,再向上平移1个单位长度解析:y=2x y=2x-3y=2x-3-1.故选A.2.已知f(x)=则函数y=f(x-1)的图象是( A )解析:先在坐标平面内画出函数y=f(x)的图象,如图所示,再将函数y=f(x)的图象向右平移1个单位长度即可得到y=f(x-1)的图象,因此选项A正确.故选A.3.(2013四川内江模拟)函数f(x)=2x-x2的图象为( D )解析:函数f(x)既不是奇函数也不是偶函数,排除选项A、C.又f(-1)=-,f(-2)=-,即f(-1)>f(-2).所以f(x)在(-∞,0)上不可能是减函数,故排除B,选D.4.(2014山东济南质检)设函数f(x)=2x,则如图所示的图象对应的函数是( C )(A)y=f(|x|)(B)y=-|f(x)|(C)y=-f(-|x|)(D)y=f(-|x|)解析:该图象是函数y=-2-|x|即y=-f(-|x|)的图象.故选C.5.(2013河南省十所名校三联)已知函数f(x)是定义在R上的增函数,则函数y=f(|x-1|)-1的图象可能是( B )解析:函数y=f(|x|)是偶函数,且在[0,+∞)上单调递增,函数y=f(|x-1|)-1的图象是把函数y=f(|x|)的图象向右平移一个单位,再向下平移一个单位得到,因此y=f(|x-1|)-1的对称轴为直线x=1,在(1,+∞)上是增函数,故选B.6.(2013乐山市第一次调研考试)函数f(x)=-(cos x)lg|x|的部分图象是下图中的( A )解析:易知f(x)为偶函数,其图象关于y轴对称,故排除选项B、D,再观察,知图象和x轴都有交点,且与x轴正方向的第一个交点为(1,0),第二个交点为,取x=,则f=-cos lg<0,排除选项C.故选A.7.(2013四川广安模拟)函数f(x)=sin 2x+e ln|x|的图象的大致形状是( B )解析:函数f(x)=sin 2x+|x|是非奇非偶函数,排除选项A、C.当x=-时,f(-)=sin(-)+=-1+<0.故排除D,选B.8.已知f(x)当x∈R时,恒满足f(2+x)=f(2-x),若方程f(x)=0恰有5个不同的实数根,则所有五个根之和是( C )(A)6 (B)8 (C)10 (D)12解析:由f(2+x)=f(2-x)知y=f(x)的图象关于直线x=2对称,如图,设方程f(x)=0的5个根从小到大依次为x1,x2,x3,x4,x5,则=2,=2,x3=2.所以x1+x2+x3+x4+x5=10.故选C.二、填空题9.若函数y=f(x+3)的图象经过点P(1,4),则函数y=f(x)的图象必经过点.解析:法一函数y=f(x)的图象是由y=f(x+3)的图象向右平移3个单位长度而得到的.故y=f(x)的图象经过点(4,4).法二由题意得f(4)=4成立,故函数y=f(x)的图象必经过点(4,4). 答案:(4,4)10.一个体积为V的棱锥被平行于底面的平面所截,设截面上部的小棱锥的体积为y,截面下部的几何体的体积为x,则y与x的函数关系可以表示为(填入正确图象的序号).解析:∵x+y=V,∴y=-x+V,∴由y=-x+V的图象可知应为③.答案:③11.已知函数f(x)满足f(x+1)=-f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围为.解析:依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内有4个零点,即函数y=f(x)与y=k(x+1)的图象在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图象(如图所示),注意直线y=k(x+1)恒过点(-1,0),可知当k∈时,相应的直线与函数y=f(x)在区间[-1,3]内有4个不同的交点,故实数k的取值范围是.答案:12.已知m、n分别是方程10x+x=10与lg x+x=10的根,则m+n= .解析:在同一坐标系中作出y=lg x,y=10x,y=10-x的图象,设其交点为A,B,如图所示.设直线y=x与直线y=10-x的交点为M,联立方程,得解得M(5,5).∵函数y=lg x和y=10x的图象关于直线y=x对称.∴m+n=x A+x B=2x M=10.答案:1013.已知定义在区间[0,1]上的函数y=f(x)的图象如图所示.对满足0<x1<x2<1的任意x1,x2,给出下列结论:①f(x1)-f(x2)>x1-x2;②f(x1)-f(x2)<x1-x2;③x2f(x1)>x1f(x2);④<f().其中正确结论的序号是.解析:由于k=表示函数图象上两点(x1,f(x1)),(x2,f(x2))连线的斜率,当x1和x2都接近于零时,由图象可知k>1,当x1和x2都接近于1时,k<1,故①②均不正确;当0<x1<x2<1时,根据斜率关系有>,即x2f(x1)>x1f(x2),所以③正确;在区间(0,1)上任取两点A、B,其横坐标分别为x1,x2,过A、B分别作x轴的垂线,与曲线交于点M、N,取AB中点C,过C作x轴的垂线,与曲线交点为P,与线段MN交点为Q,则=CQ,f()=CP,由图象易知CP>CQ,故有<f(),所以④正确.答案:③④三、解答题14.利用函数图象讨论方程|1-x|=kx的实数根的个数.解:在同一坐标系中画出y=|1-x|、y=kx的图象.由图象可知,当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图形为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P'(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,所以g(x)=.(2)由=b⇒(x-3)2=b(x-4)(x≠4).所以x2-(b+6)x+4b+9=0(其中x≠4)有唯一实根.(*)由Δ=[-(b+6)]2-4(4b+9)=b2-4b=0⇒b=0或b=4,把b=0代入(*)式得x=3,把b=4代入(*)式得x=5;∴当b=0或b=4时,直线y=b与C2有且仅有一个公共点,且交点的坐标为(3,0)和(5,4).16.已知函数f(x)=,g(x)=x+2,若方程f(x+a)=g(x)有两个不同实根,求a的取值范围.解:方程y=f(x+a)=,可化为∴函数y=f(x+a)的图象为以(-a,0)为圆心,半径为1的圆在x轴上和x轴上方的部分,如图所示.设过(-2,0)点和与直线y=x+2相切的半圆方程分别为y=f(x+a1)和y=f(x+a2),则可求出a=2-.由图象可观察出当-a1≤-a<-a2,即a2<a≤a1时,y=f(x+a)的图象与y=g(x)的图象有两个不同交点,即2-<a≤1时,方程f(x+a)=g(x)有两个不同的实根.。

超实用高考数学专题复习:第五章三角函数解三角形 第7节函数y=Asinωx+φ的图象及应用

超实用高考数学专题复习:第五章三角函数解三角形   第7节函数y=Asinωx+φ的图象及应用

2.y=2sin2x-4π的振幅、频率和初相分别为(
)
A.2,1π,-π4
B.2,21π,-4π
C.2,1π,-8π
D.2,21π,-π8
解析 振幅 A=2,频率 f=T1=2ωπ=1π,初相 φ=-π4.
答案 A
3.(2018·全国Ⅲ卷)函数 f(x)=1+tatnanx2x的最小正周期为(
)
解析 (1)由函数的图象可得 A=2,T=2ωπ=4×32π-π2=4π,解得 ω=12.又图象经 过π2,0,0=2sin12×π2+φ,0<φ<π,φ=34π,故 f(x)的解析式为 f(x)=2sin12x+34π, 所以 f(2 016π)=2sin12×2 016π+34π= 2.故选 A.
0
1
0
-1
0
y=2sin2x+3π
0
2
0
-2
0
(2)法一 把 y=sin x 的图象上所有的点向左平移3π个单位,得到 y=sinx+3π的图象; 再把 y=sinx+3π的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到 y= sin2x+3π的图象;最后把 y=sin2x+π3上所有点的纵坐标伸长到原来的 2 倍(横坐标 不变),即可得到 y=2sin2x+π3的图象.
法二 将 y=sin x 的图象上每一点的横坐标缩短为原来的12倍(纵坐标不变),得到 y=sin 2x 的图象;再将 y=sin 2x 的图象向左平移π6个单位,得到 y=sin 2x+π6= sin2x+3π的图象;再将 y=sin2x+π3的图象上每一点的纵坐标伸长到原来的 2 倍 (横坐标不变),得到 y=2sin2x+3π的图象.
考点一 函数y=Asin(ωx+φ)的图象及变换 【例 1】 设函数 f(x)=sin ωx+ 3cos ωx(ω>0)的周期为 π.

第7节 函数的图象(经典练习及答案详解)

第7节 函数的图象(经典练习及答案详解)

第7节函数的图象知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象y=log a x(a>0,且a≠1)的图象.(3)伸缩变换(4)翻折变换1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.而言,如果x的系数不是1,常需把系数提出2.图象的左右平移仅仅是相对于...x.来,再进行变换.而言的,利用“上加下减”进行.3.图象的上下平移仅仅是相对于...y.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图象不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图象不同,(2)错误.(3)y=f(x)与y=-f(x)的图象关于x轴对称,(3)错误.2.(多选题)若函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,则下列选项中正确的有()A.a>1B.0<a<1C.b>0D.b<0答案AD解析因为函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,所以其大致图象如图所示.由图象可知函数为增函数,所以a>1,当x=0时,y=1+b-1=b<0,故选AD.3.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是()答案B解析依题意知,在2 h内血液中药物含量Q持续增加,停止注射后,Q呈指数衰减,图象B适合.4.(2019·全国Ⅰ卷)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()答案D解析 ∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C ,只有D 满足. 5.(2021·长沙检测)已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A.y =f (|x |)B.y =f (-|x |)C.y =|f (x )|D.y =-|f (x )|答案 B解析 观察函数图象可得,②是由①保留y 轴左侧及y 轴上的图象,然后将y 轴左侧图象翻折到右侧所得,结合函数图象的对称变换可得变换后的函数的解析式为y =f (-|x |).6.(2020·重庆联考)已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].考点一 作函数的图象【例1】作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.感悟升华 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】分别作出下列函数的图象: (1)y =sin |x |;(2)y =2x -1x -1. 解 (1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图①.(2)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图②所示. 考点二 函数图象的辨识1.(2020·浙江卷)函数y =x cos x +sin x 在区间[-π,π]的图象大致为( )答案 A解析 因为f (x )=x cos x +sin x ,则f (-x )=-x cos x -sin x =-f (x ),又x ∈[-π,π],所以f (x )为奇函数,其图象关于坐标原点对称,则C ,D 错误.且x =π时,y =πcos π+sin π=-π<0,知B 错误;只有A 满足. 2.(2021·重庆诊断)函数f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2的图象大致为( )答案 A解析 根据题意,f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2=x sin x ,定义域为R ,关于原点对称.有f (-x )=(-x )sin(-x )=x sin x =f (x ),即函数y =f (x )为偶函数,排除B ,D.当x ∈(0,π)时,x >0,sin x >0,有f (x )>0,排除C.只有A 适合. 3.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 法一先画出函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.法二 由已知函数f (x )的解析式,得y =f (1-x )=⎩⎨⎧31-x,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.4.函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A.f (x )=x +sin xB.f (x )=cos xxC.f (x )=x ⎝ ⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2D.f (x )=x cos x 答案 D解析 从图象看,y =f (x )应为奇函数,排除C ; 又f ⎝ ⎛⎭⎪⎫π2=0,知f (x )=x +sin x 不正确;对于B,f(x)=cos xx ,得f′(x)=-x sin x-cos xx2,当0<x<π2时,f′(x)<0,所以f(x)=cos xx 在⎝⎛⎭⎪⎫0,π2上递减,B不正确;只有f(x)=x cos x满足图象的特征.感悟升华 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图象的应用角度1研究函数的性质【例2】(多选题)(2021·滨州一模)在平面直角坐标系xOy中,如图放置的边长为2的正方形ABCD沿x轴滚动(无滑动滚动),点D恰好经过坐标原点.设顶点B(x,y)的轨迹方程是y=f(x),则对函数y=f(x)的判断正确的是()A.函数y=f(x)是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意得,当-4≤x<-2时,点B的轨迹为以(-2,0)为圆心,2为半径的14圆;当-2≤x <2时,点B 的轨迹为以原点为圆心,22为半径的14圆; 当2≤x <4时,点B 的轨迹为以(2,0)为圆心,2为半径的14圆,如图所示; 以后依次重复,所以函数f (x )是以8为周期的周期函数.由图象可知,函数f (x )为偶函数,故A 错误;因为f (x )的周期为8,所以f (x +8)=f (x ),即f (x +4)=f (x -4),故B 正确; 由图象可知,f (x )的值域为[0,22],故C 正确;由图象可知,f (x )在[-2,0]上单调递增,因为f (x )在[6,8]的图象和在[-2,0]的图象相同,故D 正确.故选BCD.角度2 函数图象在不等式中的应用【例3】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)(2020·北京卷)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.(-∞,0)∪(1,+∞)答案 (1)B (2)D解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c 分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)在同一平面直角坐标系中画出h (x )=2x ,g (x )=x +1的图象如图.由图象得交点坐标为(0,1)和(1,2). 又f (x )>0等价于2x >x +1, 结合图象,可得x <0或x >1.故f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.角度3 求参数的取值范围【例4】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (1)(0,1) (2)(0,1)∪(9,+∞)解析 (1)画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值范围为(0,1). (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,∴⎩⎪⎨⎪⎧Δ=(3-a )2-4a >0,-3<a -32<0,(-3)2+(3-a )×(-3)+a >0,02+(3-a )×0+a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1, ∴a >9.综上可知,0<a <1或a >9.感悟升华 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练2】(1)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.(2)(2020·徽州一中期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为________.(3)(多选题)(2021·淄博模拟)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案(1)[-1,+∞)(2)(-2,-1)∪(1,2)(3)ABD解析(1)如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).(2)∵xf(x)<0,∴x和f(x)异号,由于f(x)为奇函数,补齐函数的图象如图.当x∈(-2,-1)∪(0,1)∪(2,+∞)时,f(x)>0,当x∈(-∞,-2)∪(-1,0)∪(1,2)时,f(x)<0,∴不等式xf(x)<0的解集为(-2,-1)∪(1,2).(3)函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.函数图象的活用直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.一、根据函数图象确定函数解析式【例1】(2021·长沙检测)已知某函数的图象如图所示,则下列函数中,与图象最契合的是()A.y =sin(e x +e -x )B.y =sin(e x -e -x )C.y =cos(e x -e -x )D.y =cos(e x +e -x )答案 D解析 由函数图象知,函数图象关于y 轴对称,∵y =sin(e x -e -x )为奇函数,图象关于原点对称,B 不正确; 又-1<f (0)<0,但sin 2>0,cos 0=1,故A ,C 不正确; 只有y =cos(e x +e -x )满足图象特征.故选D.素养升华 函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.二、由图象特征研究函数性质求参数【例2】设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A.(-∞,1] B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞) 答案 D解析 作出函数f (x )的图象如图所示,由图象可知,要使f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2. 因此a ≥4或a ≤1.素养升华 1.运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.2.图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.A级基础巩固一、选择题1.(2020·天津卷)函数y=4xx2+1的图象大致为()答案A解析令f(x)=4xx2+1,则f(x)的定义域为R,且f(-x)=-4xx2+1=-f(x),因此,函数为奇函数,排除C,D.当x=1时,f(1)=42=2>0,排除B.故选A.2.(2021·江南十校模拟)函数f(x)=x cos x2x+2-x在⎣⎢⎡⎦⎥⎤-π2,π2上的图象大致为()答案C解析根据题意,有f(-x)=-x cos x2x+2-x=-f(x),且定义域关于原点对称,则在⎣⎢⎡⎦⎥⎤-π2,π2上,f (x )为奇函数,其图象关于原点对称,排除A ,B ; 又在区间⎝ ⎛⎭⎪⎫0,π2上,x >0,cos x >0,2x >0,2-x >0,则f (x )>0,排除D ,只有C 适合.3.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可能是( )答案 D解析 由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到.因此D 正确.4.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )答案 B解析 法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.5.(2021·豫北名校联考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,则不等式f (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-32,32B.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32 D.⎝ ⎛⎭⎪⎫-32,0∪⎝ ⎛⎭⎪⎫32,+∞ 答案 C解析 根据题意,f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,可得其图象如图,且f (0)=0,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=0,则不等式f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32.6.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=( ) A.-12 B.-54 C.-1D.-2答案 C解析 由图象知⎩⎪⎨⎪⎧ln (a -1)=0,b -a =3,得⎩⎪⎨⎪⎧a =2,b =5.∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=5-6=-1.7.(多选题)(2021·山东新高考模拟)对于函数f (x )=lg(|x -2|+1),下列说法正确的是( )A.f (x +2)是偶函数B.f (x +2)是奇函数C.f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f (x )没有最小值 答案 AC解析 f (x +2)=lg(|x |+1)为偶函数,A 正确,B 错误.作出f (x )的图象如图所示,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0,C 正确,D 错误.8.若函数y =f (x )的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f ⎝ ⎛⎭⎪⎫2x -12B.y =f (2x -1)C.y =f ⎝ ⎛⎭⎪⎫12x -12D.y =f ⎝ ⎛⎭⎪⎫12x -1答案 B解析 函数f (x )的图象先整体往右平移1个单位,得到y =f (x -1)的图象,再将所有点的横坐标变为原来的12,得到y =f (2x -1)的图象. 二、填空题9.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度为(3,1).所以函数y =f (4-x )的图象过定点(3,1).10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a |-1的大致图象如图所示,∴若直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 只需2a =-1,可得a =-12.11.使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一直角坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).12.已知函数f (x )在R 上单调且其部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________. 答案 1解析 由图象可知不等式-2<f (x +t )<4, 即f (3)<f (x +t )<f (0).又y =f (x )在R 上单调递减,∴0<x +t <3,不等式解集为(-t ,3-t ). 依题意,得t =1.B 级 能力提升13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x (x ≥0),则f (x )的“和谐点对”有( ) A.1个 B.2个C.3个D.4个答案 B解析 作出函数y =x 2+2x (x <0)的图象关于原点对称的图象(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2020·潍坊质检)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或-12 C.-14或12D.0或-14答案 D解析 因为f (x +2)=f (x ),所以函数f (x )的周期为2,如图所示:由图知,直线y =x +a 与函数f (x )的图象在区间[0,2]内恰有两个不同的公共点时,直线y =x +a 经过点(1,1)或与曲线f (x )=x 2(0≤x ≤1)相切于点A ,则1=1+a ,或方程x 2=x +a 只有一个实数根.所以a =0或Δ=1+4a =0,即a =0或a =-14.15.(多选题)(2021·日照模拟)设f (x )是定义在R 上的函数,若存在两个不相等的实数x 1,x 2,使得f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2,则称函数f (x )具有性质P .那么下列函数中,具有性质P 的函数为( ) A.f (x )=⎩⎪⎨⎪⎧1x ,x ≠0,0,x =0B.f (x )=|x 2-1|C.f (x )=x 3+xD.f (x )=2|x |答案 ABC解析 对于A ,在函数f (x )的图象上取A (-1,-1),B (0,0),C (1,1),有f (0)=f (-1)+f (1)2成立,故A 正确; 对于B ,在函数f (x )的图象上取A (-2,1),B (0,1),C (2,1),有f (0)=f (-2)+f (2)2成立,故B 正确; 对于C ,在函数f (x )的图象上取A (1,2),B (0,0),C (-1,-2),有f (0)=f (-1)+f (1)2成立,故C 正确; 对于D ,因为f (x )=2|x |,f (x 1)+f (x 2)2=2|x 1|+2|x 2|2≥2|x 1|·2|x 2|=2|x 1|+|x 2|2≥2|x 1+x 22|=f ⎝ ⎛⎭⎪⎫x 1+x 22,又x 1≠x 2,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,故D 错误.故选ABC.16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 如图,作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故n m =9.。

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册

第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图2­7­1A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图2­7­2,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图2­7­2A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图2­7­3所示,则f (x )的解析式可以是( )图2­7­3A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图2­7­4所示,那么函数y =log b (x -a )的图象可能是( )图2­7­4(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图2­7­5所示,那么不等式f xcos x <0的解集为________.图2­7­5 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图2­7­6所示,则( )图2­7­6A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图2­7­7所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图2­7­7(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图2­7­8,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图2­7­8f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图2­7­9所示给定的直角坐标系内画出f (x )的图象;图2­7­9(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。

微积分第二版课件第七节函数的连续性

微积分第二版课件第七节函数的连续性
断点.
例 函数 y x2 x 2 在 x=1 处无定义,因此 x 1
x=1是该函数的间断点.
间断点分类
第 一 类 间 断 点
x x0 为间断点 但 lim f (x)存在
x x0
可去
lim
x x0
f
( x)存在, 但
f (x0)无定义.
间断
或 lim
x x0
f (x)
lim
x x0
第四节 函数的连续性
问题导言—— 连续与间断 自然界中有许多现象,如气温的变化、河水的流 动、植物的生长等都是随时间连续地变化的. 这种现象 在反映在函数关系上就是函数的连续性.
连续性描述了自然界的渐变现象. 除了渐变现象, 自然界还存在突变现象,突变现象则反映的是函数的 间断特征.
一、连续与间断举例与描述

y f (x)




x0
y f (x)
y f (x)
x0
lim f (x) f (x0)
x x0
x0
lim f (x) lim f (x)
x x0
x x0
(1) f (x)在x x0处有定义
(2) lim f (x) lim f (x)
x x0
x x0
(3) lim
x x0
f (x)
f (x)
f (x0)
跳跃 间断
lim f (x) lim f (x)
x x0
x x0
第 二 类 间 断 点
x x0 为间断点 但 lim f (x) 至
x x0
少有一个不存在
无穷 间断
lim f (x) 或 lim f (x)

第7节 函数的图象

第7节 函数的图象

象在 x 轴下方的部分翻折上来,即得到 f(x)=|lg(2-x)|的图象.由图象知,在 选项中的区间上 f(x)是增函数的显然只有 D. 答案: D
返回
数形结 合 的数
2.已知函数 f(x)=log12x,x>0,
若关于 x 的方程 f(x)=k
学方法
2x,x≤0,
有两个不相等的实数根,则实数 k 的取值范围是________.
返回
2.会用两种数学思想 (1)数形结合思想 借助函数图象, 可以研究函数的定义域、值域、单调性、奇偶 性、对称性等性质;利用函数的图象,还可以判断方程f(x)=g(x) 的解的个数、求不等式的解集等. (2)分类讨论思想 画函数图象时,如果解析式中含参数, 还要对参数进行讨论, 分别画出其图象.
解析: 作出函数 y=f(x)与 y=k 的图象,如图所示:
由图可知,若关于 x 的方程 f(x)=k 有两个不相等的
实数根,则 k∈(0,1].答案: (0,1]
返回
[变式练] 根据已知条件可画出大致图像,再求解
3.设奇函数 f(x)在(0,+∞)上为增函数,且 f(1)=0,则不等式fx-xf-x
易知此时两函数图象在 x∈[0,1]上有且只有一个交点;
②当 m>1 时,在同一平面直角坐标系中作出函数 y=(mx-1)2 与 y= x+m 的图象,如图.要满足题意,则(m-1)2≥1+m,解得 m≥3 或 m≤0(舍去),∴m≥3. 综上,正实数 m 的取值范围为(0,1]∪[3,+∞).答案: (1)C (2)B
[拓展练]
5.若关于 x 的不等式 4ax-1<3x-4(a>0,且 a≠1)对于任意的 x>2 恒
成立,则 a 的取值范围为( )

高中数学-必修一-函数第七节(巧妙讲解)

高中数学-必修一-函数第七节(巧妙讲解)

第七节、双钩函数、幂函数【知识梳理】一、双钩函数定义:函数(),(0,0)b f x ax a b x=+>>叫做双钩函数.图像如图所示:性质的研究方法1:该函数定义域{}0x x ≠,并且是奇函数,图象关于原点对称(因为:()()()0()b f x ax xf x f x b f x ax x ⎧=+⎪⎪⇒+-=⎨⎪-=--⎪⎩).位于第一、三象限.当0x >时,由基本不等式(均值不等式)可得:y ≥,当且仅当b ax x =,即x =故其顶点坐标为,图象在⎛ ⎝上是单调递减的,在⎫+∞⎪⎪⎭上是单调递增.同理:当0x <时,由基本不等式可得:y ≤-,当且仅当b ax x =,即x =时取等号.故其顶点坐标为(-,图象在,⎛-∞ ⎝上是单调递增,在⎡⎫⎪⎢⎪⎣⎭上是单调递减的.性质的研究方法2:2222(()b ax b a x x f x a x x x -+-'=-==.当x 变化时,()f x 、()f x '的变化情况如下表:所以:当x =时,()f x 有极大值-;当x =时,()f x 有极小值.二、幂函数定义:一般地,形如y x α=(x R ∈)的函数称为幂函数,其中x 是自变量,α是常数.如112,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.三、函数的图像和性质(1)y x=(2)12y x=(3)2y x=(4)1y x-=(5)3y x=用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出:y x=2y x =3y x =12y x=1y x -=定义域x R ∈x R ∈x R ∈0x ≥0x ≠值域Ry ≥Ry ≥0y≠奇偶性奇函数偶函数奇函数非奇非偶奇函数在第Ⅰ象限单调增减性定点(公共点)(1,1)图像规律第一象限内直线1x =的右侧,图像由下到上,幂指数逐渐增大【典型例题讲解】【例1】、已知 1.20.2512,(,2log 22a b c -===,则a,b,c 的大小关系为()(A)a b c <<(B)c a b <<(C)b a c <<(D)b c a<<【例2】、设5a log 4=,()25b log 3=,4c log 5=则()(A)a c b <<(B))b c a<<(C))a b c<<(D))b a c<<【例3】、如果1122log log 0x y <<那么()A.1<<x y B.1<<y x C.yx <<1D.xy <<1【例4】、已知244log 3.6,log 3.2,log 3.6a b c ===则()A.a b c>>B.a c b>>C.b a c>>D.c a b>>【例5】、设123log 2,ln 2,5a b c -===,则()A a b c<<B a c b >>C c a b<<D c b a<<【例6】、设2lg ,(lg ),lg a e b e c ===则()(A)a b c>>(B)a c b>>(C)c a b>>(D)c b a>>【例7】、设323log ,log log a b c π===,则()(A)a b c>>(B)a c b>> C.b a c>> D.b c a>>【例8】、设11333124log ,log ,log 233a b c ===则,,a b c 的大小关系是()A.a b c<<B.c b a<<C.b a c<<D.b c a<<【答案解析】【例1】 0.20.2 1.21(222b -==<,∴所以a b <<1,14log 2log 2log 25255<===c ,∴所以a b c <<.故答案:A.【例2】2555554(log 3)log 3log 3log 3log 41log 5=⋅<<<<,故b a c <<.故答案:D.【例3】解法一:111log log log 11x y x y <<⇒>>;故答案:D.解法二:由图得1x y >>.故答案:D.【例4】122444log 3.6log 3.62log 3.6log 3.6a ====,根据对数函数的单调性得:2444log 3.6log 3.6log 3.2>>.故答案:B.【例5】321log 2log 3a ==,21ln 2log b e ==,而22log 3log 1e >>,所以a b <,125c -==222log 4log 3>=>,所以c a <,综上b a c >>.故答案:C.【例6】本题考查对数函数的增减性,由1lg 0e >>,知a b >,又1lg 2c e ==,22(lg )2lg lg lg1011lg b e e e c e===<=,得c b >,且1lg lg 2a e e c =>=.故答案:B.【例7】322log log log <<b c >,2233log log 2log 3log π<=<所以a b >.故答案:A.【例8】3313433log log log 344c ==-=,111333123log log log 234>>.故答案:B.xyO1y x。

高考总复习一轮数学精品课件 第3章 函数与基本初等函数 第7节 指数函数

高考总复习一轮数学精品课件 第3章 函数与基本初等函数 第7节 指数函数

若0<a<1,则f(x)在[-1,0]上单调递减,所以f(x)min=f(-1)=a-1=2,

1
a= .综上,a=2
2

1
a= .
2
考向2 比较幂值的大小
例3(1)(2024·江西赣州模拟)已知函数f(x)=ex,若a=f(40.99),b=f(21.99),c=f(ln 2),
则a,b,c的大小关系为( C )
图所示,则下列结论正确的是(ABD)
A.ab>1
B.a+b>1
C.ba>1
D.2b-a<1
解析 由图象可知,函数y=ax-b(a>0且a≠1)在R上单调递增,所以a>1,且当
x=0时,y=1-b∈(0,1),可得0<b<1.对于A选项,ab>a0=1,故A选项正确;对于B
选项,a+b>a>1,故B选项正确;对于C选项,ba<b0=1,故C选项错误;对于D选
[0,2]
取值范围为__________.
解析 根据题意
1
A=(-3,1),由2<2x+a<2,解得-a-1<x<1-a,∴B={x|-a-1<x<1-a}.
--1 ≥ -3,
∵p 是 q 成立的必要条件,∴B⊆A,由于 B≠⌀,所以有
解得 0≤a≤2,
1- ≤ 1,
因此实数 a 的取值范围是[0,2].
B.b<a<c
C.c<a<b
D.b<c<a
3 -0.3
2
0.7
a=( ) ,b=1.1 ,c=( )
2

人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第七节 函数的图象

人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第七节 函数的图象
1.利用描点法作函数图象
列表
描点
连线
基本步骤是:______、______、______.
2.利用图象变换法作函数的图象
(1)平移变换
+
−ℎ
+ℎ

(2)对称变换
① = 的图象
② = 的图象
③ = 的图象
④ =
(
关于轴对称
法二:先作出函数 = 的图象关于原点的对称图象,得到 = − − 的图象;
然后将 = − − 的图象向右平移2个单位长度,得到 = − − 的图象.故选D.
3.已知函数 的图象如图所示,则 的解析式可以是() A
A. =
C. =
ln
e




> ,此时函数 = 在(−∞, − ]上单调递减,在[− , +∞)上单调递增,




++
由复合函数的单调性,可得 =
在(−∞,− ]上单调递减,在[− ,+∞)上




单调递增,且 > ,此时选项B符合题意.当 = − > 时,即 < < 时,此
− 1,其图象可看作由函数 =
1
2
的图
象向右平移1个单位长度,再向下平移1个单位长度得到,而
=
1 ∣∣
2
=
1
,
ቐ 2
2 , <
≥ 0,
其图象可由 =
0,
1
的图象保留
2
时的图象,然后将该部分关于轴对称得到,则 =
1 −1

第七节函数y=Asin(ωx+φ)图像和性质

第七节函数y=Asin(ωx+φ)图像和性质

§7 函数y =Asin(ωx +φ)的图象(2课时)一、 教学目标:1、 知识与技能表达式y =Asin(ωx +φ),掌握A 、(1)熟练掌握五点作图法的实质;(2)理解φ、ωx +φ的含义;(3)理解振幅变换和周期变换的规律,会对函数y =sinx 进行振幅和周期的变换;(4)会利用平移、伸缩变换方法,作函数y =Asin(ωx +φ)的图像;(5)能利用相位变换画出函数的图像。

2、 过程与方法,使他们知道列表、描点、连线通过学生自己动手画图像是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图像,发现规律,总结提练,加以应用;要求学生能利用五点作图法,正确作出函数y =Asin(ωx +φ)的图像;讲解例题,总结方法,巩固练习。

3、 情感态度与价值观通过本节的学习,渗透数形结合的思想;树立运动变化观点,学会运用运动变化的观点认识事物;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。

二、教学重、难点重点: 相位变换的有关概念,五点法作函数y =Asin(ωx +φ)的图像 难点: 相位变换的有关概念,五点法作函数y =Asin(ωx +φ)的图像 三、学法与教学用具在前面,我们知道精确度要求不高时,可以用五点作图法,是哪五个关键点;首先请同学们回忆,然后通过物理学中的几个情境引入课题;主要让学生动手实践,两节课尽可能多地让他们画图,教师只是加以点拨;可以从几个具体的、简单的例子开始,在适当的时候加以推广;先分解各个小知识点,再综合在一起,上升更高一层。

教学用具:投影机、三角板第一课时 y =sinx 和y =Asinx 的图像, y =sinx 和 y =sin (x +φ)的图像 一、教学思路【创设情境,揭示课题】在物理和工程技术的许多问题中,经常会遇到形如y =Asin(ωx +φ)的函数,例如:在简谐振动中位移与时间表的函数关系就是形如y =Asin(ωx +φ)的函数。

2024届新高考一轮总复习人教版 第二章 第7节 函数的图象 课件(45张)

2024届新高考一轮总复习人教版 第二章 第7节 函数的图象 课件(45张)

f(x)-k
f(x)-h
(2)伸缩变换 ①y=f(x)―a0―><1a―,<1―横,―坐横―标坐―缩标―短伸为―长原为―来原―的来―1a的―倍a1―,倍―纵,―坐纵―标坐不―标变不―变→ y=__f(_a_x_)__. ②y=f(x)―0―<a>a―<1,1―,纵―纵坐―坐标―标伸―缩长―短为为―原原―来来―的的―a倍a―倍,―,横―横坐―坐标―标不不―变变→ y=__a_f(_x_)__.
(2) (2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象, 则该函数是( )
x2-2x-1,x≥0, (3)y=x2+2x-1,x<0, 其图象如图③所示.
【思维升华】 作函数图象的两种常用方法 (1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本初等函数时,就可根据 这些函数的特征直接作出; (2)图象变换法:若函数图象可由某个基本初等函数的图象经过平移、翻折、对称得 到,可利用图象变换作出,但要注意变换顺序.
(4)函数 y=f(x)与 y=2b-f(2a-x)的图象关于点(a,b)对称.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)函数 y=f(1-x)的图象可由 y=f(-x)的图象向左平移 1 个单位长度得到.( ) (2)当 x∈(0,+∞)时,函数 y=|f(x)|与 y=f(|x|)的图象相同.( ) (3)函数 y=f(x)与 y=-f(-x)的图象关于原点对称.( ) (4)若函数 y=f(x)满足 f(1+x)=f(1-x),则函数 f(x)的图象关于直线 x=1 对称.( ) 答案:(1)× (2)× (3)√ (4)√
2.将函数 y=log2(2x+2)的图象向下平移 1 个单位长度,再向右平移 1 个单位长度,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
.
x 1, x 1, x 1 解析:y= = x 1, 1 x 1, ,作出函数的图象 x 1 x 1, x 1.
(实线),
如图所示,要使函数的 图象与 y=kx-2 的图象 有两个不同的交点, 则 0<k<4 且 k≠1,即 0<k<1 或 1<k<4. 答案:(0,1)∪(1,4)
反思归纳
应用函数图象解题是数形结
合思想的体现,其关键是根据已知函数画出 图象,从函数图象上发现函数的性质,得出 解题的思路,再根据数式的计算完成解题.
即时突破 3 (2012 年高考天津卷)已知函数 y=
x2 1 x 1
的图象与函数 y=kx-2 的图象恰有两个交点,则实数 k 的取值范围是
64 4 27 当 x=4 时,y= = < ,可排除选项 D, 80 5 26
故选 C.
反思归纳
识别函数图象应注意以下三点:
(1)函数的定义域、值域; (2)函数的性质(单调性、奇偶性、周期性等); (3)函数图象上的特殊点(与坐标轴的交点、经 过的定点等).
即时突破 2 (2014 山东德州一模)已知函数 f(x)=x则函数 y=f(x)的大致图像为( )
考点一
ln x
剖典例 知规律
作函数的图象
【例 1】 作出下列函数的图象 (1)y=e ; (2)y=|log2(x+1)|; (3)y=a|x|(0<a<1);
2x 1 (4)y= . x 1
思维导引:对于(1)、(3)、(4)可先化简函数解析式,再利用图象 的变换作图,(2)可直接利用图象变换作图.
错误,选项 D 正确,因此选 D.
【例 2】函数 f(x)是定义在[-4,4]上的偶函数, 其在[0,4]上的图象如图所示,那么不等式
f x cos x
<0 的解集 .

π π 解析:在 0, 上 y=cos x>0,在 , 4 上 y=cos x<0. 2 2
f x
f x cos x
为偶函数,
命题探究 高考中函数图象应用
【典例】 (2013 年高考安徽卷) 函数 y=f(x)的图象如图所示,在区间[a,b] 上可找到 n(n≥2)个不同的数 x1,x2,…,xn, 使得
f x1 x1
=
f x2 x2)Fra bibliotek=…=
f xn xn
命题意图
本考题是函数的图象与代数式综合应用,
考查了斜率公式等知识,体现了以能力立意的转化思 想,以及高考重理解少计算的指导原则.
点击进入课时训练
2
B )
4.为了得到函数 f(x)=log2x 的图象,只需将函数
x g(x)=log2 的图象向 8
平移
个单位.
x 解析:g(x)=log2 =log2x-3=f(x)-3, 8
因此只需将函数 g(x)的图象向上平移 3 个单位即可得 到函数 f(x)=log2x 的图象. 答案:上 3
考点突破
即时突破 1 函数 y=
应的图中的序号是
x2 x+2 、y=|lg x|、y=2 的图象对 x 1
.
x2 3 3 解析:y= = +1,由函数 y= 图象平移得 x 1 x 1 x
到,为序号③中的图象;函数 y=|lg x|的图象由函 数 y=lg x 图象翻折得到,为序号①中的图 象;y=2 的图象由函数 y=2 左移 2 个单位得到, 为序号②中的图象. 答案:③①②
备选例题
【例 1】 在同一个坐标系中画出函数 y=a 、y=sin ax 的部分图象,其 中 a>0 且 a≠1,则下列所给图象中正确的是( )
x
2π 解析:当 a>1 时,函数 y=sin ax 的最小正周期 T= <2π,故选项 A、C a 2π 错误;当 0<a<1 时,函数 y=sin ax 的最小正周期 T= >2π,故选项 B a
解:(1)∵函数的定义域为{x|x>0} ln x 且 y=e =x(x>0), ∴其图象如图(1)所示.
(2)将函数 y=log2x 的图象向左平移一个单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可得到函数 y=|log2(x+1)|的图象,如图(2)所示.
a x , x 0, (3)∵y= 1 x (0<a<1), , x 0 a
,则 n 的取值
范围为( (A){2,3}
(B){2,3,4}
(C){3,4} (D){3,4,5}
分析:n 表示 f(x)图象上与原点连线斜率相等时点的个数. 解析:由
f x1 x1
=
=
f x2 x2
=… =
f xn xn
得 ,表示
f x1 0 x1 0
f x2 0 x2 0
ln x x
2
,
解析:可判断 f(x)是非奇非偶函数,故排除选项 B、C,又当
ln x 0<x<1 时,f(x)=x- 2 >0,排除选项 D.故选 A. x
考点三 函数图象的应用
【例 3】 (2013 年高考辽宁卷)已知函数 f(x)=x -2(a+2)x+a ,g(x)=-x +2(a-2)x-a +8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q} 表示 p,q 中的较大值,min{p,q}表示 p,q 中的较小值).记 H1(x)的最小值为 A,H2(x)的最大值为 B,则 A-B 等于( ) (A)16 (B)-16 (C)a2-2a-16 (D)a2+2a-16 思维导引:作出函数 f(x),g(x)的图象,结合图象确定 A 与 B,再计算 A-B.
第 7 节 函数的图像
基础梳理
考点突破
基础梳理
知识整合
1.利用描点法作函数图象
抓主干
固双基
其基本步骤是列表、描点、连线.首先:①确定函数的定义 域;②化简函数解析式;③讨论函数的性质(奇偶性、单调 性、周期性、对称性等);其次:列表(尤其注意特殊点、零 点、 最大值点、 最小值点、 与坐标轴的交点等),描点,连线.
∴只需作出 0<a<1 时函数 y=a (x≥0)和
x
1 y= (x<0)的图象,合起来即得函数 a
y=a (0<a<1)的图象.如图(3)所示.
|x|
x
1 (4)∵y=2+ , x 1 1 故函数图象可由 y= x
的图象向右平移 1 个单 位,再向上平移 2 个单 位而得,如图(4)所示.
反思归纳
画函数图象的一般方法:
(1)直接法.当函数表达式(或变形后的表达式)是熟悉 的基本函数时,就可根据这些函数的特征直接作出. (2)图象变换法.若函数图象可由某个基本函数的图象 经过平移、翻折、对称得到,可利用图象变换作出,但 要注意变换顺序.对不能直接找到熟悉的基本函数的 要先变形,并应注意平移变换与伸缩变换的顺序对变 换单位及解析式的影响.
2
1 3
1 3
3.(2013 年高考湖南卷)函数 f(x)=2ln x 的图象与函数 g(x)=x -4x+5 的图象的交点个数为( (A)3 (B)2 (C)1 (D)0 解析:g(x)=x2-4x+5 =(x-2)2+1, 又当 x=e 时,f(x)=2ln e=2>1,g(x)<2, 在同一直角坐标系内画出函数 f(x)=2ln x 与 g(x)=x2-4x+5 的图象, 如图所示,可知 f(x)与 g(x)有两个不同的交点.故选 B.
2.图象变换
(1)平移变换
(2)对称变换 ①y=f(x) ②y=f(x) ③y=f(x) 的图象的对称性如何? 提示:由 y=f(x+a)是偶函数可得 f(a+x)=f(a-x), 故 f(x)的图象关于直线 x=a 对称(由 y=f(x+a)是奇函数可得 f(x+a)=-f(a-x),故 f(x)的图象关于点(a,0)对称). y=-f(x); y=f(-x); y=-f(-x).
2 2 2 2
2 2 y x 2 a 2 x a , 解析:联立 2 2 y x 2 a 2 x a 8,
解得 x1=a-2,x2=a+2. 如图所示,虚线部分为 H1(x)的图象, 实线部分为 H2(x)的图象, 则 A、 B 分别为 x1,x2 处函数值且 A≤B, A=H1(x)min=f(a+2)=-4a-4, B=H2(x)max=g(a-2)=-4a+12, 所以 A-B=-16,故选 B.
质疑探究:若函数 y=f(x+a)是偶函数(奇函数),那么 y=f(x)
双基自测
1 1.函数 y=1的图象是( x 1
B
)
解析:∵x≠1,∴可排除选项 C、D. 又 x=0 时,y=2,可排除选项 A.故选 B.
2.(2013 山东济南模拟)函数 y=x- x 的图象大致为( A )
1 3
解析:函数 y=x- x 为奇函数.当 x>0 时,由 x- x >0,即 x3>x 可得 x >1,即 x>1,结合选项,可知应选 A.
…=
f xn 0 xn 0
函数图象上的点与原点连线的斜率相等, 也可理解为过原点的直线与函数 y=f(x)图象相交,x1,x2,…,xn 是交 点的横坐标,n 则为交点的个数,观察图象可知过原点的直线与函数 可能有 2,3 或 4 个交点,因此 n 的取值范围为{2,3,4}.故选 B.
相关文档
最新文档