第十二章 实数(12.1——12.6 第四周)

合集下载

沪教版 七年级下数学12.1节-- 实数的概念【优秀课件】浦东外国语学校 励一敏

沪教版 七年级下数学12.1节-- 实数的概念【优秀课件】浦东外国语学校 励一敏

解:(1) S正方形ABCD 62 =36
36 S正方形EFGH 2 =18 EF 18
(2)这个值不是有理数。
Hale Waihona Puke AHDEGBF C
[提示]在后续课程中,我们将进一步学习 18 可化简 为3 2 。
[小结] 1、无理数的概念及举例; 2、实数的分类。
【提示】 1、由于后续课程得需要,同学们须熟记500以内 的平方数。例如,192= ,202= ,212=
12.1
实数的概念
从本章起,数的范围将从有理数
扩大到实数。为此,需要先引入 “无理数”的概念。
整数 有理数
??
分数
[问题引入]小正方形的边长是1。
???
大正方形的面积是2,它的边长是多少?
[无理数举例] 1、带“ ”的数; 2、与 π 有关的数; 3、某些带省略号形式的小数。 0.1010010001…(每两个1之间0的个数依次多1个)
……。 2、请同学们课后阅读《课本》-P36上关于无理数 的拓展知识。
作业:《练习册》-习题12.1。 【说明】《一课一练》暂时不做统一要求,如 果已经有这本书,可以按照教学进度完成,并 批、订。
[注意]此类小数不要与无限循环小数混淆!
[练习]请举出3个介于4~5之间的无理数。
实数的分类(P4):
[实数还有其他分类方法]
整数
有理数
?实?数?
分数
无?理?数?
3
2
2
[例1]将下列各数放入图中适当的位置:
9
0,-2 4, 9
练习:P5/2
2, 5 ,
0.3737737773…
[例2]如图,已知正方形ABCD的边长是6,在各边 上依次取中点连成正方形EFGH。借助图形面积的 方法我们能否求出线段EF的长?这个值是不是有 理数?

沪科版八年级数学上册第12章教学课件:12.1 第1课时 变量与函数(共23张PPT)

沪科版八年级数学上册第12章教学课件:12.1 第1课时 变量与函数(共23张PPT)

典例精析
例1 指出下列事件过程中的常量与变量注意:π是一个确 定的数,是常量
(1)某水果店橘子的单价为5元/千克,买a千橘子的总 价为m元,其中常量是 5 ,变量是 a,m ;
(2)周长C与圆的半径r之间的关系式是C=2πr,其中常 量是 2,π ,变量是 C, r ;
(3)三角形的一边长5cm,它的面积S(cm2)与这边上的高
第12章 一次函数
12.1 函数
第1课时 变量与函数
学习目标
1.联系自己的学习、生活实际,通过具体情境 领悟函数的概念,了解常量、变量,知道自变量 与函数,能写出简单的函数表达式;
2.探究变量的发现和函数概念的形成,提高学 生分析、解决问题的能力.
导入新课
情境引入
万物皆变
行星在宇宙中的位置随时间而变化
例2 阅读并完成下面一段叙述: ⒈某人持续以a米/分的速度用t分钟时间跑了s米,其中 常量是 a ,变量是 t,s .
⒉s米的路程不同的人以不同的速度a米/分各需跑的时间 为t分,其中常量是 s ,变量是 a,t .
3.根据上面的叙述,写出一句关于常量与变量的结论: 在不同的条件下,常量与变量是相对的 .
(2)y 是n的函数,其中n是自变量. (3)y 不是x的函数.
例如,到原点的 距离为1的点对 应实数1或-1,
课堂小结
常量与变量:在一个变化过程中, 数值发生变化的量为变量,数值 始终不变的量为常量.
变量与函数
函数:一般地,在一个变化过程 中,如果有两个变量x与y,并且 对于x的每个确定值,y都有唯一确 定的值与其对应,那么我们就说x 是自变量,y是x的函数.
自我发生变化的量__t_________; 因别人变化而变化的量___h_______.

高考数学大一轮复习 第十二章 系列4选讲 12.1 矩阵与变换教案(含解析)

高考数学大一轮复习 第十二章 系列4选讲 12.1 矩阵与变换教案(含解析)

第十二章系列4选讲考试内容等级要求矩阵的概念 A二阶矩阵与平面向量 B常见的平面变换 A变换的复合与矩阵的乘法 B二阶逆矩阵 B二阶矩阵的特征值与特征向量 B二阶矩阵的简单应用 B坐标系的有关概念 A简单图形的极坐标方程 B极坐标方程与直角坐标方程的互化 B参数方程 B直线、圆及椭圆的参数方程 B参数方程与普通方程的互化 B参数方程的简单应用 B不等式的基本性质 B含有绝对值的不等式的求解 B不等式的证明(比较法、综合法、分析法) B算术—几何平均不等式与柯西不等式 A利用不等式求最大(小)值 B运用数学归纳法证明不等式 B§12.1矩阵与变换考情考向分析矩阵命题出自三个方向:一是变换的复合与矩阵的乘法,通过研究曲线上任意一点的变换可以得出曲线的变换.二是逆变换与逆矩阵,主要由点或曲线的变换用待定系数法求矩阵或逆矩阵.三是特征值与特征向量.属于低档题.1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 12a 21a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ),AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换(1)恒等变换:如⎣⎢⎢⎡⎦⎥⎥⎤1 001; (2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤100 12;(3)反射变换:如⎣⎢⎢⎡⎦⎥⎥⎤100-1; (4)旋转变换:如⎣⎢⎢⎡⎦⎥⎥⎤cos θ-sin θsin θcos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎢⎡⎦⎥⎥⎤1000,⎣⎢⎢⎡⎦⎥⎥⎤1 010; (6)切变变换:如⎣⎢⎢⎡⎦⎥⎥⎤1k 01(k ∈R ,且k ≠0). 3.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵;(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. 5.特征多项式 设A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .( √ )(2)⎣⎢⎢⎡⎦⎥⎥⎤1 -12 1⎝ ⎛⎭⎪⎪⎫⎣⎢⎢⎡⎦⎥⎥⎤1 02 1⎣⎢⎢⎡⎦⎥⎥⎤1 021=⎣⎢⎢⎡⎦⎥⎥⎤-3-1 61.( √ )(3)若二阶矩阵A ,B 均存在逆矩阵,则(AB )-1=B -1A -1.( × )(4)矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值为8和-3.( √ ) 题组二 教材改编 2.[P52例3]已知矩阵A =⎣⎢⎡⎦⎥⎤2 345,则A 的逆矩阵A -1=________. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1解析 因为det(A )=2×5-3×4=-2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤-52 3242-22=⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1.3.[P11习题T7]已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 a 21,其中a ∈R .若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),实数a 的值为________. 答案 3 解析由⎣⎢⎢⎡⎦⎥⎥⎤2 a 2 1 ⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0,得2-2a =-4,解得a =3.4.[P39例1(1)]已知A =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,求AB . 解AB =⎣⎢⎢⎡⎦⎥⎥⎤12 121212 ⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12 =⎣⎢⎢⎡⎦⎥⎥⎤0 00 0. 题组三 易错自纠5.A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 01,B =⎣⎢⎢⎡⎦⎥⎥⎤0-110,则AB 的逆矩阵为________.答案⎣⎢⎢⎡⎦⎥⎥⎤0 11 0 解析 ∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B -1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0, ∴(AB )-1=B -1A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 110. 6.设椭圆的方程为x 2+y 2a =1,若它在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 0012对应的伸压变换下变为一个圆,则实数a =________. 答案 4解析 设P (x ,y )为椭圆上任意一点,变换后为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 12y,所以x =x ′,y =2y ′,代入椭圆的方程,得x ′2+4y ′2a=1.因为它表示圆,所以a =4.7.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 02,B =⎣⎢⎢⎡⎦⎥⎥⎤120 6,求矩阵A -1B . 解 设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤ab cd , 则⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤100 1, 故a =-1,b =0,c =0,d =12,从而A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12 ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 题型一 矩阵与变换1.已知a ,b 是实数,如果矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a b1所对应的变换将直线x-y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤2a b1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′)在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.2.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 变换作用下得到了直线m :x -y =4,求直线l 的方程.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则有⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-2 1=⎣⎢⎢⎡⎦⎥⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎢⎡⎦⎥⎥⎤1234. (2)设直线l 上任意一点P (x ,y ),在矩阵M 的变换作用下得到点P ′(x ′,y ′).因为⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1234 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y , 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 整理得x +y +2=0,所以直线l 的方程为x +y +2=0.思维升华已知变换前后的坐标,求变换对应的矩阵时,通常用待定系数法求解. 题型二 求逆矩阵例1已知矩阵det(A )=⎣⎢⎡⎦⎥⎤2 14 3,B =⎣⎢⎡⎦⎥⎤1 10 -1. (1)求A 的逆矩阵A -1; (2)求矩阵C ,使得AC =B .解 (1)因为|A |=2×3-1×4=2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-4222=⎣⎢⎢⎡⎦⎥⎥⎤32 -12-2 1.(2)由AC =B 得(A -1A )C =A -1B ,故C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-2 1 ⎣⎢⎢⎡⎦⎥⎥⎤1 10 -1 =⎣⎢⎢⎡⎦⎥⎥⎤32 2-2 -3.思维升华求逆矩阵的方法 (1)待定系数法 设A是一个二阶可逆矩阵⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,AB =BA =E ;(2)公式法|A |=⎪⎪⎪⎪⎪⎪⎪⎪a b cd =ad -bc ≠0,有A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |. 跟踪训练1已知矩阵A =⎣⎢⎡⎦⎥⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎢⎡⎦⎥⎥⎥⎤22 1220212=⎣⎢⎢⎡⎦⎥⎥⎤114012.∴AB =⎣⎢⎢⎡⎦⎥⎥⎤1 20-2 ⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540-1.题型三 特征值与特征向量例2已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 11 2. (1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 解 (1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13⎣⎢⎢⎡⎦⎥⎥⎤ 2 -1-1 2=⎣⎢⎢⎡⎦⎥⎥⎤23 -13-1323. (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎣⎢⎢⎡⎦⎥⎥⎤1 -1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.思维升华已知A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,求特征值和特征向量的步骤 (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧λ-ax -by =0,-cx +λ-d y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应特征的向量.跟踪训练2(2018·无锡期末)已知变换T 将平面内的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换成点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤ 94-2,⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 得a =3,b =-32,c =-4,d =4,∴M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-4 4. (2)设矩阵M 的特征多项式为f (λ),∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 32 4 λ-4=(λ-3)(λ-4)-6 =λ2-7λ+6.令f (λ)=0,则λ1=1,λ2=6.1.已知A =⎣⎢⎢⎡⎦⎥⎥⎤1562,求A 的特征值. 解 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 故A 的特征值为7和-4.2.(2018·南通、泰州模拟)设矩阵A 满足:A ⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 03,求矩阵A 的逆矩阵A -1.解 方法一 设矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b cd , 则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以a =-1,2a +6b =-2,c =0,2c +6d =3. 解得b =0,d =12,所以A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 012. 根据逆矩阵公式得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 方法二在A ⎣⎢⎢⎡⎦⎥⎥⎤1 206=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3两边同时左乘逆矩阵A -1, 得⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=A -1⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 设A-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以-a =1,-2a +3b =2,-c =0,-2c +3d =6. 解得a =-1,b =0,c =0,d =2,从而A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 3.(2019·徐州模拟)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2101,向量b =⎣⎢⎢⎡⎦⎥⎥⎤10 2.求向量a ,使得A 2a =b . 解 A2=⎣⎢⎢⎡⎦⎥⎥⎤210 1⎣⎢⎢⎡⎦⎥⎥⎤210 1=⎣⎢⎢⎡⎦⎥⎥⎤4 30 1, 设a =⎣⎢⎢⎡⎦⎥⎥⎤x y ,由A2a =b ,得⎣⎢⎢⎡⎦⎥⎥⎤4301 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤10 2, 即⎩⎪⎨⎪⎧4x +3y =10,y =2,解得⎩⎪⎨⎪⎧x =1,y =2,所以a =⎣⎢⎢⎡⎦⎥⎥⎤12.4.(2018·宿迁期中)已知变换T 把直角坐标平面上的点A (3,-4),B (0,5)分别变换成点A ′(2,-1),B ′(-1,2),求变换T 对应的二阶矩阵M . 解设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 3-4=⎣⎢⎢⎡⎦⎥⎥⎤ 2-1, 且⎣⎢⎢⎡⎦⎥⎥⎤ab c d ⎣⎢⎢⎡⎦⎥⎥⎤05=⎣⎢⎢⎡⎦⎥⎥⎤-1 2. 所以⎩⎪⎨⎪⎧3a -4b =2,3c -4d =-1,且⎩⎪⎨⎪⎧5b =-1,5d =2.解得⎩⎪⎪⎨⎪⎪⎧a =25,b =-15,c =15,d =25,所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤25 -151525. 5.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1201的作用下变换为曲线C 2,求C 2的方程.解 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 1⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧x =x ′+2y ′,y =y ′,即⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点,所以C 2的方程为(x -2y )2+2y 2=1. 6.(2015·江苏)已知x ,y ∈R ,向量α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤x1y0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值. 解 由已知,得Aα=-2α,即⎣⎢⎢⎡⎦⎥⎥⎤x 1y 0⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤x -1 y =⎣⎢⎢⎡⎦⎥⎥⎤-2 2, 则⎩⎪⎨⎪⎧x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-11 20. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.7.求曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线所围成图形的面积.解 设点(x 0,y 0)为曲线|x |+|y |=1上的任一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 00 13对应的变换作用下得到的点为(x ′,y ′), 则由⎣⎢⎢⎡⎦⎥⎥⎤1 00 13⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,得⎩⎪⎨⎪⎧x ′=x 0,y ′=13y 0,即⎩⎪⎨⎪⎧x 0=x ′,y 0=3y ′,所以曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线为|x |+3|y |=1,所以围成的图形为菱形,其面积为12×2×23=23.8.(2018·江苏省丰县中学质检)在平面直角坐标系xOy 中,A (0,0),B (-2,0),C (-2,1),设k ≠0,k ∈R ,M =⎣⎢⎢⎡⎦⎥⎥⎤k001,N =⎣⎢⎢⎡⎦⎥⎥⎤0 11 0,点A ,B ,C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值. 解由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤k001⎣⎢⎢⎡⎦⎥⎥⎤0 11 0=⎣⎢⎢⎡⎦⎥⎥⎤0 k 10, 由⎣⎢⎢⎡⎦⎥⎥⎤0 k 1 0⎣⎢⎢⎡⎦⎥⎥⎤0 -2 -20 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 0 k 0 -2 -2, 可知A 1(0,0),B 1(0,-2),C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知|k |=2×1=2,即k =±2.9.(2018·高邮考试)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1-1a1,其中a ∈R ,若点P (1,1)在矩阵A 对应的变换作用下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 解(1)∵⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤0-3, ∴⎣⎢⎢⎡⎦⎥⎥⎤ 0a +1=⎣⎢⎢⎡⎦⎥⎥⎤0-3,∴a =-4. (2)∵A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-41,∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=λ2-2λ-3. 令f (λ)=0,得λ1=-1,λ2=3, 对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧-2x +y =0,4x -2y =0,得一个非零解⎩⎪⎨⎪⎧x =1,y =2,因此α1=⎣⎢⎢⎡⎦⎥⎥⎤12是矩阵A 的属于特征值λ1=-1的一个特征向量.对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x +y =0,4x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =-2,因此α2=⎣⎢⎢⎡⎦⎥⎥⎤ 1-2是矩阵A 的属于特征值λ2=3的一个特征向量.∴矩阵A 的特征值为λ1=-1,λ2=3, 属于特征值λ1=-1,λ2=3的特征向量分别为⎣⎢⎢⎡⎦⎥⎥⎤12,⎣⎢⎢⎡⎦⎥⎥⎤1-2.10.设a >0,b >0,若矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a00b 把圆C :x 2+y 2=1变换为椭圆E :x 24+y 23=1.(1)求a ,b 的值;(2)求矩阵A 的逆矩阵A -1.解 (1)设点P (x ,y )为圆C :x 2+y 2=1上任意一点, 经过矩阵A 变换后对应点为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00 b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ax by =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=ax ,y ′=by ,因为点P ′(x ′,y ′)在椭圆E :x 24+y 23=1上,所以a 2x 24+b 2y 23=1,这个方程即为圆C 方程,所以⎩⎪⎨⎪⎧a 2=4,b 2=3,又因为a >0,b >0,所以a =2,b = 3.(2)由(1)得A =⎣⎢⎢⎡⎦⎥⎥⎤2 003,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤1200 33. 11.(2017·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解(1)因为A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤100 2, 所以AB =⎣⎢⎢⎡⎦⎥⎥⎤0110 ⎣⎢⎢⎡⎦⎥⎥⎤100 2=⎣⎢⎢⎡⎦⎥⎥⎤021 0.(2)设Q (x 0,y 0)为曲线C 1上任意一点,它在矩阵AB 对应的变换作用下变为点P (x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤0 21 0⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x y , 即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.12.(2018·江苏省镇江中学质检)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值及对应的一个特征向量e 2的坐标之间的关系;(3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程. 解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤11=8⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤88, 故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 2=⎣⎢⎢⎡⎦⎥⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4.联立以上两个方程组,解得a =6,b =2,c =4,d =4,故M =⎣⎢⎢⎡⎦⎥⎥⎤6 244. (2)由(1)知,矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 -2 -4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2. 设矩阵M 的特征值λ=2对应的一个特征向量是e 2=⎣⎢⎢⎡⎦⎥⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎢⎡⎦⎥⎥⎤x y , 解得2x +y =0.(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换作用下对应的点的坐标为(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤624 4⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧6x +2y =x ′,4x +4y =y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程化简,得x ′-y ′+2=0, 即x -y +2=0.。

沪教版(上海)数学七年级下册-12.1《实数的概念》 教案

沪教版(上海)数学七年级下册-12.1《实数的概念》  教案

《实数的概念》教案【教学目标】1、通过动手操作,回顾历史,经历发现无理数的过程,能通过二分法的原理对已知无理数进行估值,了解无理数的客观存在,以及在数轴上和有理数是稠密排列共存的。

2、通过对比分析,理解无理数是无限不循环小数,能够辨析一个数是不是无理数。

3、了解熟悉从整数到有理数,再到实数的一个扩充的过程,理解实数系统的构成结构,感受数学中严谨的分类思想。

【教学重点】对无理数简单的估值方法,理解无理数在数轴上是存在的。

【教学难点】理解无理数是无限不循环小数,以及实数与数轴上的点一一对应的关系【教学过程设计】一、复习引入我们对数的研究经历了一个漫长的过程,小时候自然数帮我们解决了数数的问题,直到学习了数轴我们知道了与正整数相对的还有负整数,它们与0统称为整数,至此我们学习的数的范围扩展了。

随着学习的深入我们发现在实际运算中:例如6÷3=2能整除,5÷3不能整除,因此我们有对数的学习进行了扩展,加入了分数的概念,我们知道分数可写成pq 形式,其中对p 、q 有没有什么要求呢?(p 、q 为整数,p 、q 互素,且P 不为0)。

平时为了感受分数的大小,又能够将分数p q 化为有限小数或者无限循环小数。

特别的当P=1时,p q 可以表示一个整数。

由此,我们将分数和整数统称为有理数,它们均可用pq 来表示。

问题1:数扩充至此,是不是我们生活中的所有数都是有理数,都能够表示成p q (p 、q 为整数,且P 不为0)的形式?即:有没有不是有理数的数?【分析】不是所有的数都能用这个形式表示,例如我们学的圆周率 即是一个无限不循环小数。

二、新课讲授 【活动一】正方形剪拼,引出2。

我们将桌面上的两个边长为1的正方形,分别沿着它的一条对角线剪开,得到四个形状大小相同的直角三角形,他们的面积都是21,再把这四个直角三角形拼成一个正方形。

问题1:新的这个正方形的面积是多少?(21121=+=+=S S S 正)问题2:这个正方形的边长是我们学过的有理数么?(不是,若设边长为x ,则可以得到22=x 。

苏科版初中数学教材目录

苏科版初中数学教材目录

七年级上第1章我们与数学同行1.1 生活数学 1.2 活动思考第2章有理数2.1 正数与负数 2.2 有理数与无理数 2.3 数轴 2.4 绝对值与相反数 2.5 有理数的加法与减法 2.6 有理数的乘法与除法 2.7 有理数的乘方 2.8 有理数的混合运算第3章代数式3.1 字母表示数 3.2 代数式 3.3 代数式的值 3.4 合并同类项 3.5 去括号 3.6 整式的加减第4章一元一次方程4.1 从问题到方程 4.2 解一元一次方程 4.3 用一元一次方程解决问题第5章走进图形世界5.1 丰富的图形世界 5.2 图形的运动 5.3 展开与折叠 5.4主视图、左视图、俯视图第6章平面图形的认识(一)6.1 线段、射线、直线 6.2 角 6.3 余角、补角、对顶角 6.4 平行 6.5 垂直七年级下第7章平面图形的认识(二)7.1 探索直线平行的条件 7.2 探索平行线的性质 7.3 图形的平移7.4 认识三角形7.5 多边形的内角和与外角和第8章幂的运算8.1 同底数幂的乘法 8.2 幂的乘方与积的乘方8.3 同底数幂的除法第9章整式乘法与因式分解9.1 单项式乘单项式 9.2 单项式乘多项式 9.3 多项式乘多项式 9.4 乘法公式9.5 多项式的因式分解第10章二元一次方程组10.1 二元一次方程 10.2 二元一次方程组 10.3 解二元一次方程组 10.4 三元一次方程组10.5 用二元一次方程组解决问题第11章一元一次不等式11.1 生活中的不等式11.2 不等式的解集 11.3 不等式的性质11.4 解一元一次不等式11.5 用一元一次不等式解决问题11.6 一元一次不等式组第12章证明12.1 定义与命题12.2 证明 12.3 互逆命题八年级上册第1章全等三角形1.1 全等图形 1.2 全等三角形 1.3 探索三角形全等的条件第2章轴对称图形2.1 轴对称与轴对称图形 2.2 轴对称的性质 2.3 设计轴对称图案 2.4 线段、角的轴对称性 2.5 等腰三角形的轴对称性第3章勾股定理3.1 勾股定理 3.2 勾股定理的逆定理 3.3 勾股定理的简单应用第4章实数4.1 平方根 4.2 立方根 4.3 实数 4.4 近似数第5章平面直接坐标系5.1 物体位置的确定 5.2 平面直角坐标系第6章一次函数6.1 函数 6.2 一次函数 6.3 一次函数的图像 6.4 用一次函数解决问题6.5 一次函数与二元一次方程 6.6 一次函数、一元一次方程和一元一次不等式八年级下第7章数据的收集、整理、描述7.1 普查与抽样调查7.2 统计表、统计图的选用7.3 频数和频率7.4 频数分布表和频数分布直方图第8章认识概率8.1 确定事件与随机事件 8.2 可能性的大小 8.3 频率与概率第9章中心对称图形——平行四边形9.1 图形的旋转9.2 中心对称与中心对称图形 9.3 平行四边形9.4 矩形、菱形、正方形 9.5 三角形的中位线第10章分式10.1 分式10.2 分式的基本性质 10.3 分式的加减 10.4 分式的乘除10.5 分式方程第11章反比例函数11.1 反比例函数11.2 反比例函数的图像与性质11.3用反比例函数解决问题第12章12.1 二次根式12.2 二次根式的乘除 12.3 二次根式的加减九年级上第1章一元二次方程1.1 一元二次方程 1.2 一元二次方程的解法 1.3 一元二次方程的根与系数的关系 1.4 用一元二次方程解决问题第2章对称图形——圆2.1 圆 2.2 圆的对称性 2.3 确定圆的条件 2.4 圆周角2.5 直线与圆的位置关系 2.6 正多边形与圆 2.7 弧长及扇形的面积 2.8 圆锥的侧面积第3章数据的集中趋势和离散程度3.1 平均数 3.2 中位数与众数 3.3 用计算器求平均数3.4 方差 3.5 用计算器求方差第4章等可能条件下的概率4.1 等可能性 4.2 等可能条件下的概率(一) 4.3 等可能条件下的概率(二)九年级下第5章二次函数5.1 二次函数 5.2 二次函数的图像与性质 5.3 用待定系数法确定二次函数表达式 5.3 二次函数与一元二次方程 5.4 用二次函数解决问题第6章图形的相似6.1 图上距离与实际距离 6.2 黄金分割 6.3 相似图形 6.5 探索三角形相似条件 6.6 相似三角形的性质 6.7 图形的位似 6.8 用相似三角形解决问题第7章锐角三角形7.1 正切7.2 正弦、余弦7.3 特殊角的三角函数7.4 由三角函数值求锐角 7.5 解直角三角形7.6 用锐角三角函数解决问题第8章统计和概率的简单应用8.1 中学生的视力情况调查 8.2 货比三家8.3 统计分析帮你做预测 8.4 抽签方法合理吗 8.5 概率帮你做估计8.6 收取多少保险费才合理优质文档,内容可编辑。

沪教版数学七年级下册第十二章《实数》单元复习教学设计

沪教版数学七年级下册第十二章《实数》单元复习教学设计

沪教版数学七年级下册第十二章《实数》单元复习教学设计一. 教材分析沪教版数学七年级下册第十二章《实数》是学生在初中阶段首次系统接触实数的概念和相关性质。

本章主要包括实数的定义、分类、运算和实数与数轴的关系等内容。

通过本章的学习,学生需要掌握实数的基本概念,了解实数的分类和性质,能够进行实数的运算,并能够将实数与数轴相结合,从而更好地理解和应用实数。

二. 学情分析学生在进入七年级下册之前,已经学习了有理数的概念和运算,对数学中的一些基本概念和运算规则有一定的了解。

但是,对于实数这一全新的概念,学生可能存在一定的困惑和难度。

因此,在教学过程中,需要注重实数概念的引入和解释,以及实数运算的实践和应用。

三. 教学目标1.了解实数的概念和分类,掌握实数的性质。

2.能够进行实数的运算,包括加法、减法、乘法、除法等。

3.理解实数与数轴的关系,能够将实数在数轴上表示出来。

4.能够运用实数的概念和运算解决实际问题。

四. 教学重难点1.实数的概念和分类,特别是无理数和负实数的概念。

2.实数的运算规则,特别是乘除法的运算规律。

3.实数与数轴的关系,以及如何在数轴上表示实数。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题和引导学生思考,激发学生的学习兴趣和主动性。

2.使用多媒体辅助教学,通过动画和图像的展示,帮助学生更好地理解实数的概念和性质。

3.注重实践操作,通过数轴的绘制和实数的运算,让学生直观地感受实数与数轴的关系。

六. 教学准备1.多媒体教学设备,包括投影仪和计算机。

2.教学课件和教案。

3.数轴的教具和实数的运算练习题。

七. 教学过程1.导入(5分钟)通过提出问题和引导学生思考,引发学生对实数的兴趣和好奇心。

例如,可以提出“你在生活中遇到过无法用整数表示的数量吗?”等问题,让学生思考和讨论。

2.呈现(10分钟)使用多媒体课件,介绍实数的概念和分类。

通过动画和图像的展示,帮助学生直观地理解实数的概念和性质。

沪教版数学七年级下册12.1《实数的概念》教学设计

沪教版数学七年级下册12.1《实数的概念》教学设计

沪教版数学七年级下册12.1《实数的概念》教学设计一. 教材分析沪教版数学七年级下册12.1《实数的概念》是学生在学习了有理数的基础上,进一步扩大数的概念,认识实数的教材。

这部分内容是整个初中数学的基础,对于学生来说,具有承前启后的作用。

本节内容主要介绍实数的概念,包括实数的定义、性质以及实数与数轴的关系等。

教材通过丰富的实例和生动的语言,引导学生逐步理解实数的概念,体会实数在数学中的重要性。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但实数的概念相对抽象,需要学生具有一定的抽象思维能力。

此外,实数与生活实际联系紧密,学生需要能够将抽象的数学概念与实际问题相结合。

根据学生的实际情况,我在教学过程中要注重启发学生思维,培养学生的抽象思维能力,同时注重联系生活实际,提高学生的学习兴趣。

三. 说教学目标1.知识与技能:理解实数的概念,掌握实数的性质,能够运用实数解决一些简单的问题。

2.过程与方法:通过观察、思考、交流等活动,培养学生的抽象思维能力,提高学生运用数学语言表达和解决问题的能力。

3.情感态度与价值观:体会数学与生活的紧密联系,激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 说教学重难点1.教学重点:实数的概念、性质以及实数与数轴的关系。

2.教学难点:实数的性质的理解和运用,实数与数轴的关系的把握。

五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、实物模型、数轴等教学工具,直观展示实数的概念和性质,提高学生的学习兴趣和理解能力。

六. 说教学过程1.导入新课:通过复习有理数的相关知识,引导学生回顾数的概念,为新课的学习做好铺垫。

2.探究实数的定义:引导学生观察实例,思考实数的定义,并通过讨论、交流得出实数的定义。

3.学习实数的性质:学生进行小组合作学习,探讨实数的性质,引导学生发现并证明实数的性质。

沪教版数学七年级下册第十二章《实数》单元复习教学设计

沪教版数学七年级下册第十二章《实数》单元复习教学设计

沪教版数学七年级下册第十二章《实数》单元复习教学设计一. 教材分析沪教版数学七年级下册第十二章《实数》是学生在学习了有理数、无理数的相关知识后,对实数的进一步拓展。

本章内容主要包括实数的分类、实数的性质和实数的运算。

教材以学生已有知识为基础,通过实例引入实数的概念,引导学生掌握实数的性质和运算,培养学生解决问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了有理数和无理数的基本概念,对数的运算也有一定的了解。

但部分学生对实数的理解仍存在困难,对实数的性质和运算掌握不够扎实。

因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.理解实数的概念,掌握实数的分类。

2.掌握实数的性质,能够运用实数的性质解决问题。

3.掌握实数的运算方法,能够熟练进行实数的运算。

4.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.实数的分类:正实数、负实数、零和无穷大。

2.实数的性质:实数的加减乘除运算规则,实数的相反数、倒数和绝对值等。

3.实数的运算:实数的混合运算,实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考问题来掌握实数的概念和性质。

2.运用实例教学,让学生在实际问题中感受实数的作用和意义。

3.采用分组讨论的教学方法,培养学生的团队协作能力和解决问题的能力。

4.运用多媒体教学手段,丰富教学形式,提高学生的学习兴趣。

六. 教学准备1.教学课件:制作精美的课件,展示实数的概念、性质和运算。

2.实例素材:收集与实数相关的实际问题,用于引导学生运用实数解决问题。

3.分组讨论材料:准备与实数相关的问题,供学生在分组讨论时使用。

七. 教学过程1.导入(5分钟)利用实例引入实数的概念,引导学生回顾有理数和无理数的相关知识,为新课的学习做好铺垫。

2.呈现(15分钟)讲解实数的分类,让学生掌握正实数、负实数、零和无穷大的概念。

通过PPT展示实数的性质,如实数的加减乘除运算规则,实数的相反数、倒数和绝对值等,让学生理解和掌握这些性质。

沪教版数学七年级下册12.1《实数的概念》教学设计

沪教版数学七年级下册12.1《实数的概念》教学设计

沪教版数学七年级下册12.1《实数的概念》教学设计一. 教材分析《实数的概念》是沪教版数学七年级下册第12.1节的内容,主要包括实数的定义、性质和运算。

本节内容是学生学习实数系统的开始,对于学生理解数学概念,掌握数学运算具有重要意义。

教材通过实例引入实数的概念,使学生感受实数在实际生活中的应用,培养学生的数学应用意识。

二. 学情分析七年级的学生已具备一定的代数基础,对于数学概念和运算有一定的理解。

但实数概念较为抽象,学生可能难以理解。

因此,在教学过程中,需要注重引导学生从具体实例中发现实数的性质,逐步形成实数的抽象概念。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够进行实数的运算。

3.培养学生的数学思维能力,提高学生的数学应用意识。

四. 教学重难点1.实数的定义和性质。

2.实数的运算方法。

五. 教学方法1.实例导入:通过生活中的实际问题,引导学生思考实数的概念。

2.小组讨论:让学生在小组内讨论实数的性质,培养学生的合作能力。

3.自主学习:引导学生通过自主学习,掌握实数的运算方法。

4.练习巩固:通过大量练习,使学生熟练掌握实数的运算。

六. 教学准备1.教学课件:制作课件,展示实数的定义和性质。

2.练习题:准备适量练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如地图上的距离、物体的高度等,引导学生思考实数的概念。

提问:这些实际问题中的数是什么类型的数?它们有什么共同特点?2.呈现(10分钟)介绍实数的定义,通过课件展示实数的性质,如整数、分数、无理数等。

同时,介绍实数在数轴上的表示方法,使学生形成对实数的直观认识。

3.操练(10分钟)让学生进行实数的基本运算,如加、减、乘、除等。

引导学生通过自主学习,掌握实数的运算方法。

在此过程中,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成练习题,检查学生对实数概念和运算的掌握情况。

教师及时批改,给予反馈,指导学生纠正错误。

2017春上海教育版数学七年级下册第十二章《实数》ppt复习课件 (共14张PPT)

2017春上海教育版数学七年级下册第十二章《实数》ppt复习课件 (共14张PPT)
2、当 n为偶数时
a
a的奇次方根与a的 正负性相同
正数a有2个互为相反数的偶次方根, 记作 n a 0的偶次方根等于0 负数没有偶次方根,
任意实数a都有且只有一个奇次方根
练习1 当 x 为何值时,下列各式有意义?
3 (1) x
x 取一切实数
(2) 2 x - 1 x 取一切实数
3
x -1 (3) x ≥1 x
3 2
※化简求值:
去绝对值要看, 绝对值里面式子的符号
a=
a
0பைடு நூலகம்
a
a 0 a 0
(a 0)
a a
2
(1) ( 3) 3
2
(
( 2) ( 3) 33
3 3
(3)( 2 ) 2 2
2
2
√ (×) a ( ×)
)
3
3
a
( 4) ( 2 5 ) 2 5 -2 5
42
再求2的平方根是多少?
练习3 (1) 已 知 1.7201 1.311, 17.201 4.147,
0.4147, 那 么 0.17201 _______
(2) 已 知 2.36 1.536, 23.6 4.858,
2360 若 x 48.58, 则x是 _______
3 3.14
用数轴上的点表示实数 数轴上的每个点都有一个实数与之对应
C
(2)求出在数轴上到点C距离为5的点所表示的数
设这个数为 x 数轴上两点间的距离 -1- x 5 公式:AB=|a–b|. - 1 - x 5或 - 1 - x 5 x -6 x4
整数
有理数 实数的分类

第12章 实数

第12章 实数

第十二章
实数
(4) (3)2 (6) (1 ) 2
2 5
2 3
十、我们一起来学习课本第 8 页课后练习 2:下列式子 是否正确? .. (1) 49 7 ;负数能开平方吗?或者说被开方数能是负数吗? (2) (3) 2 3 ,这个对还是 (3)2 3 对?或者是 (3)2 3 对? (3) (5)2 5 ,负负得正在这里对吗?等号右边应该怎么改? (4) 81 9 ,等号左边是求 81 的_____________,右边应该改为_____.
49 ; 169
9 ; 121 49 (7) ; 289
(3) (2) (4) (6) (8)
(4)625; (8)
289 . 169
九、续写下面各题,注意“+” 、 “-” 、 “±”在等号前后要一致: (1) (4)2 42 4;
5
(2) (5)2

/上海版/马学斌编
(3) (10)2 (5) ( ) 2
图1
图2
图3
(2) 2 的几何意义——面积为 2 的正方形的边长用 2 来表示, 2 读作_______. 由正方形的面积公式“面积=边长 2” ,可知 2=( (3) 2 在数轴上对应的点在哪里? 如图 3,面积为 2 的正方形的边长为 2 .如图 4,以原点为圆心,以 2 长为半径画 圆,圆与数轴的正半轴的交点就是 2 所对应的点. (4) 2 是“__ __ __ __ __ 小数” , 2 ≈1.414. )2.
2
/上海版/马学斌编
第十二章
实数
图5
图6
(2) 在图 7 中, 以原点为圆心, 以 OA 为半径画圆, 圆与数轴的正半轴的交点就是___. (3)我们可以体验到, 5 介于____和____两个整数点之间,靠近整数点____. (4)在图 7 中的数轴上注明 5 的相反数.

(完整版)12.1实数的概念

(完整版)12.1实数的概念

12.1实数的概念教学目标1.通过动手操作经历发现无理数的过程,了解无理数是客观存在的数,了解无理数的发现是人类理性思维的胜利.2. 通过对比分析,理解无理数是无限不循环小数,会辨别一个数是否是无理数.3. 了解数系从整数到有理数、再到实数的扩展过程,理解实数系统的结构,体会分类思想。

教学重点及难点理解无理数是无限不循环小数,会辨别一个数是否是无理数。

一、 概念1.无理数无限不循环小数叫做无理数。

无理数也有正、负之分。

只有符号不同的两个无理数,它们互为相反数。

2.实数有理数和无理数统称为实数。

实数可以这样分类:正有理数 有理数 零 -—有限小数或无限循环小数 实数 负有理数正无理数无理数 —-无限不循环小数负无理数二、 练习1.将下列各数填入适当的括号内:0、—3、2、6、3。

14159、32.0 、722、5、π、0.3737737773….有理数:﹛ ﹜;无理数:﹛ ﹜;{ {{正实数:﹛﹜;负实数:﹛﹜;非负数:﹛﹜;整数:﹛﹜.2.判断下列说法是否正确,并说明理由:(1) 无限小数都是无理数;(2)无理数都是无限小数;(3)正实数包括正有理数和正无理数;(4)实数可以分为正实数和负实数两类.3.请构造几个大小在3和4之间的无理数.4.用“是”、“不是”、“统称”、“包括”、“叫做”填空,并体会这些词的含义:. (2) 0 有理数。

(3) 无限不循环小数无理数。

(4) 实数有理数和无理数.(5)正整数、0和负整数整数.(6)有理数有限小数或无限循环小数。

华东师大版八年级数学上册教案1122实数

华东师大版八年级数学上册教案1122实数

华东师大版八年级数学上册教案1122实数一、教学内容本节课选自华东师大版八年级数学上册第十二章第二节,详细内容包括:实数的定义,无理数的理解,实数的分类,以及实数的运算。

二、教学目标1. 理解并掌握实数的定义,了解无理数的概念,理解实数的分类。

2. 学会实数的四则运算,并熟练进行混合运算。

3. 培养学生的抽象思维能力和逻辑推理能力。

三、教学难点与重点教学难点:无理数的理解,实数的运算。

教学重点:实数的定义,实数的分类,实数的运算。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

2. 学具:练习本、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,如测量长度、面积等,引导学生理解实数的概念。

2. 知识讲解:(1) 实数的定义:讲解实数的概念,包括有理数和无理数。

(2) 实数的分类:将有理数和无理数进行分类,并举例说明。

(3) 实数的运算:讲解实数的四则运算,强调运算规则。

3. 例题讲解:讲解典型例题,分析解题思路,示范解题过程。

4. 随堂练习:布置一些典型题目,让学生当堂完成,巩固所学知识。

六、板书设计1. 实数的定义2. 实数的分类(1) 有理数(2) 无理数3. 实数的运算(1) 加法(2) 减法(3) 乘法(4) 除法七、作业设计1. 作业题目:(2) 计算:2+3√2,(32√2)(3+2√2)(3) 已知a、b为实数,且a²+b²=1,求证:a²b²=(ab)(a+b)=a²+2ab+b²4ab2. 答案:(1) √2、π是无理数,√9、3.14是有理数。

(2) 2+3√2,(32√2)(3+2√2)=1(3) 证明过程略。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的定义和运算掌握情况,及时调整教学策略。

2. 拓展延伸:介绍实数在生活中的应用,如测量、科学计算等,激发学生学习兴趣。

布置一些提高题目,让学生在课后进行思考。

沪教版(上海)数学七年级第二学期 第12章小结 实数的复习 教案

沪教版(上海)数学七年级第二学期 第12章小结   实数的复习  教案

第十二章 实数的复习
教学目标:
1、梳理知识,形成知识结构框图,理清内容主线和知识脉络;
2、熟练掌握n 次方根的概念和性质,方根与分数指数幂的相互转化,体会转化思想;
3、正确运用运算法则、运算性质以及方根运算中的重要性质进行实数的有关运算. 教学重点:实数的有关概念、性质之间的联系. 教学难点:分数指数幂的运算. 教学过程:
教师活动
学生活动 设计意图 一、知识梳理
1、经过第十二章实数的学习,我们把数的范围从有理数扩大到了实数,今天我们就一起来回顾、复习本章的内容.
2、知识结构框图:
二、实数的分类 1. 已知下列实数:
,1020.5,2
3
,0,1.2,25,,722,14.3,32⨯-•π
1010010001.1(每两个1之间依次多一个0).
【注意】带根号的数不一定都是无理数;分数都是 有理数;分数形式的数不一定都是分数. (1)按要求填空:
无理数有______________________________, 有理数有______________________________, 整数有________________________________.
师生共同回忆.
无理数有:
2
3
,
,3π 1010010001.1
有理数有:
2
1020.5,0,1.2,
25,722
,14.3⨯-•
整数有:
21020.5,0,25⨯-
深入理解本章涉及的有关概念、性质.
复习实数的概念、能正确进行实数的分类.。

沪教版(五四制)七年级数学下册第十二章实数运算综合讲义(无答案)

沪教版(五四制)七年级数学下册第十二章实数运算综合讲义(无答案)

沪教版(五四制)七年级数学下册第十二章实数运算综合讲义(无答案)实数运算综合,知识定位本讲,我们是对实数进行综合复习,其中包括实数定义、开方、计算、分数指数幕等。

将以前学的有理数扩大到了实数。

从数学上看,在实数范围内对任何数施行开方运算都可以畅通无阻。

这既满足了实际应用的需要,也解决了数学内部的矛盾。

而且,实数的运算使我们之后学习更深内容的基础,是初中数学的基本知识和基本技能的重要组成部分。

在中考时难度一般不是很大,但为了后续内容的学习,也不能仅仅了解一下,需要真正理解这部分内容。

N知识梳理知识梳理1:实数定义有理数和无理数统称实数。

也就是说,实数可分为有理数和无理数。

无理数:无限不循环小数叫做无理数。

有理数:有限小数或无限循环小数称为有理数。

有限小数:特征一个最简分数的分母只含有因数2或5。

无限小数分为无限循环小数和无限不循环小数无限循环小数(纯循环小数和混循环小数):知识梳理2:有理数的开方平方根:如果x 2= a ( a>0 ),那么x叫做a的平方根(或二次方根)。

数a 的平方根记做±J a ,其中V a (即+d a)叫做a的算术平方根。

一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

知识梳理3:实数的运算实数的六种运算关系:加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算。

实数的运算顺序:沪教版(五四制)七年级数学下册第十二章实数运算综合讲义(无答案)先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

去括号的顺序是先去小括号,再去中括号,最后大括号。

同一级运算, 如果没有括号,可按由左至右的顺序进行。

实数运算律:(1)加法交换律:a + b = b + a(2)力口法结合律:(a + b ) + c = a + ( b + c )(3)乘法交换律:ab = ba⑷ 乘法结合律:(ab )c = a( bc )(5)乘法分配律:(a + b )c = ac + bc知识梳理4:分数指数幕(1)规定a0 =1 , a ~n = 4 a(2)规定正数a的正分数指数幕的意义为ma n =n:a m (m,n都为正整数,n >1))规定正数a的负分数指数幕的意义为5 1 ………、a =-^(m,n都为正整数,n>1))n m a0的正分数指数幕等于0, 0的负分数指数幕无意义.(3)引入了分数指数幕后,整数指数幕就推广到了有理数指数幕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 实数
(12.1——12.6)
班级 姓名 得分
一、填空题(每空2分,共30分)
1的平方根是 ;32-的五次方根是 .
2.计算:= .
3.在0,
227,,0.1010010001 (相邻两个1之间0的个数逐次增加),
0.3 ,2
π-中,无理数有 . 4.如果481a =,那么a = .
5.若3x =,236y =,且0xy <,则x y += .
6.将0.8096精确到千分位是 ,它有 个有效数字.
7.我们的数学课本的字数大约是25万字,这个数精确到 位,请用科学记数法表示课本的字数大约是 .
8.比较大小:
9厘米,则长方形的宽为 厘米.
10.M 、N 两点在数轴上,表示的数分别为22,则MN = .
11.已知0.7560≈,
7.560≈,那么x = .
12.如果230a -=,那么a b -= .
二、选择题(每题3分,共18分)
13.下列判断中,错误的有 ( ) ①有立方根的数必有平方根; ②有平方根的数必有立方根;
③零的平方根、立方根都是零; ④不论a
A .1个;
B .2个;
C .3个;
D .4个.
14.下列运算错误的是 ( )
A 5=±;
B .5=-;
C 3-;
D .3=-.
15.已知面积为10的正方形的边长为x ,那么x 的取值范围是 ( )
A .12x <<;
B .23x <<;
C .34x <<;
D .45x <<.
16.如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是 ( )
A.0
ab>;
B.0
a b
+<;
C.()()
110
b a
-+>;D.()()
110
b a
-->.
17.2013年7月17日中国互联网络信息中心发布:截至2013年6月底,中国网民规模达到5.91亿,下面关于“5.91亿”的说法中,错误的是()A.这是一个精确数;B.这是一个近似数;C.5.91亿用科学记数法可表示为8
5.9110
⨯;D.5.91亿已精确到百万位.18.小明编写了如下一个程序:输入2
1
2
x x
→→→→→
立方根倒数算术平方根,则x的值为()A.4;B.4±;C.8;D.8±.
三、计算题(每题6分,共36分)
19.20
2 21.))
22
11
-;22.(2;23.()
2
20141
11
2
-
⎛⎫
-+-

⎝⎭
;241




四、简答题(第25题10分,26题6分)
25.(1)求343的立方根;(2)求64的六次方根.
26.比较大小:-9-
第16题图。

相关文档
最新文档