七年级数学下册第12章证明12.3互逆命题1教案新版苏科版
新苏科版七年级数学下册《12章 证明 12.3 互逆命题》公开课教案_30
数学教学设计2.观察、思考、证明.3.学生板演.我开拓、我快乐(1)这个命题的证明过程中有互逆命题吗?请说出它的逆命题.(2)这个逆命题是真命题吗?为什么?1.发表意见,表达观点;2.写出证明过程,互相检查批改.感受构造一个命题的逆命题,并证明这个命题是真命题,是探索一些新的数学结论的方法,以利于发展学生思考的能力.我收获、我快乐1.(1)如图,AB∥CD,AB、DE相交于点G,∠B=∠D.在下列括号内填写推理的依据:∵AB∥CD (已知),∴∠EGA=∠D ( ),又∵∠B=∠D (已知),∴∠EGA=∠B( ),∴DE∥BF ( ).(2)上述推理中,应用了哪两个互逆的真命题?2.(1)已知:如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.(2)你在(1)的证明过程中应用思考并作答(根据学生的实际能力表现,可安排小组讨论).积极思考解决办法——运用本节课所学数学知识解决问题.1.巩固“三线八角”的相关知识;2.学习几何证明的书写方法.组织学生小组交流讨论,通过合作学习的方式进一步巩固本节课的学习内容.了哪两个互逆的真命题?我总结、我快乐通过今天的学习,你有哪些收获与体会,说出来和同学们分享.共同小结.师生互动,总结学习成果,体验成功.我游戏、我快乐如图AB∥CD,AC上一点P.请移动P点的位置,并探索∠A,∠P,∠C三角之间存在怎样的关系?积极思考,动手动脑,小组交流。
通过思考题的训练提高学生应用图形“位置关系”和“数量关系”互相转换的能力.。
苏教版七年级数学下册 12.3 互逆命题教案2(新版)苏科版
12.3互逆命题
一.设计思路
这节课创设了一个根据条件观察图形,做出猜想,证明猜想的活动情境,设计这个活动,使学生既经历合情推理,又经历演绎推理,不断发展初步演绎推理能力,从而使《标准》中“经历观察,实验猜想,证明”等数学活动,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自已的观点”这些过程性目标得到落实,再通过例题让学生知道可用不同的方式和方法证明同一个命题.
二.目标设计
1. 能使用合情推理和演绎推理证明一个命题;
2. 知道可以用不同的方式与方法证明同一个命题;
3. 探索关于图形的“位置关系”和“数量关系”的互逆命题.
三.活动设计
四.例题设计
五.拓展练习。
12.3互逆命题-苏科版七年级数学下册教案
12.3 互逆命题-苏科版七年级数学下册教案一、知识点概述本文将介绍苏科版七年级数学下册12.3节课的内容,主要包括以下几点:1.互逆命题的概念及定义;2.互逆命题的条件;3.互逆命题的举例。
二、互逆命题的概念及定义1.什么是互逆命题?在学习逻辑命题时,我们知道一个命题只有成立和不成立两种情况,因此我们可以把一个命题表示为“真”或“假”的两种结果,这样的表述称为“命题的真值”。
对于两个命题P和Q,若P的真值为T时,Q的真值也为T;若P的真值为F时,Q的真值也为F,那么就称P和Q互逆。
2.互逆命题的定义定义:设P、Q为两个命题,如果“P当且仅当Q”成立,则P与Q互逆。
表示为:P ↔Q“当且仅当”是数学中的一种语言习惯,表示“如果且仅如果”。
三、互逆命题的条件互逆命题的条件是,对于两个命题P和Q,当且仅当P的真值与Q的真值相同时,P和Q互逆。
需要注意的是,在上述条件中,“真值”指的是语言符号代表的“真”或“假”结果。
四、互逆命题的举例例如以下两个命题:1.如果天下雨,我就不出门;2.如果我不出门,天下雨。
这两个命题是互逆命题,即“如果天下雨,我就不出门”的真值等于“如果我不出门,天下雨”的真值。
互逆命题在数学、自然语言理解、人工智能等领域都有应用。
例如在数学证明中,可以通过反证法,利用互逆命题推导出相应的结论;在人工智能中,可以通过构建互逆命题的逻辑结构,进行自然语言理解等任务。
五、小结本文主要介绍了苏科版七年级数学下册12.3节课的内容——互逆命题。
通过学习本课内容,我们可以了解到互逆命题的概念、定义、条件及举例等,为我们在数学和其它领域的应用提供了基础。
12.3互逆命题-苏科版七年级数学下册教案
12.3 互逆命题-苏科版七年级数学下册教案
一、教学目标
本节课的教学目标是:
1.了解互逆命题的概念和定义;
2.学会互逆命题的判断方法;
3.掌握互逆命题在实际问题中的应用。
二、教学重点和难点
本节课的教学重点和难点是:
1.理解互逆命题的概念和定义;
2.掌握互逆命题的判断方法。
三、教学过程
1. 导入
为了导入本节课的主题,可以采用以下方式:
通过举一个具体的例子,引导学生思考两个命题互逆的概念和定义。
例如:
小明的体重小于50公斤可以表示为P,那么它的否定命题为非P(小明的体重大于等于50公斤),而其互逆命题则为非非P(小明的体重小于50公斤)。
2. 讲解
在导入之后,老师就可以对互逆命题的概念和定义进行讲解,包括:
1.互逆命题是指两个命题,一个是另一个的否定命题,即它们的真值相反,但我们不能说它们互为否定命题;
2.互逆命题在数学推理和证明中很常见。
3. 练习
为了巩固学生的理解和掌握,可以进行以下两个方面的练习:
1.练习判断互逆命题。
老师可以出一些互逆命题,让学生判断是否为互逆命题;
2.练习将自然语言的命题转化为数学命题,以及根据互逆命题进行推理和证明。
4. 拓展
在掌握了互逆命题的概念和判断方法之后,老师可以引导学生思考如何将互逆命题应用于实际问题中,例如:
根据学生的家庭地址,判断学生是否可以直接参加县级数学比赛。
五、课堂小结
本节课主要讲解了互逆命题的概念和定义,以及互逆命题在实际问题中的应用。
希望同学们能够掌握互逆命题的判断方法,加深对互逆命题的理解。
初中苏科版数学七年级下册12.3《互逆命题》教案
《互逆命题》教案教学目标知识与技能1.理解命题和互逆命题的概念,能写出一个命题的逆命题;并能用举反例的方法说明一个命题是假命题.2.能够完成对文字命题的证明.过程与方法1.通过对“同位角相等,两直线平行”、“两直线平行,同位角相等”等情境的创设,让学生对比二者之间的区别与联系,得出互逆命题的概念.2.能用举反例的方式说明逆命题的真假;同时发展学生合情推理能力和初步的演绎推理能力来表述自己的观点.情感、态度与价值观使学生经历“探索——发现——猜想一证明”等数学活动的过程,发展逻辑的思考能力,最后通过具体例题巩固所学过的知识,并体会反面思考问题的方法,让学生懂得任何事物都是正反两方面的对立统一体;使学生养成严谨论证的良好习惯与科学的治学品质.重点难点重点会写出一个命题的逆命题,并判断其真假;会证明一个文字命题和几何命题.难点发展初步的演绎推理能力;书写规范及推理表述的合理性;为了解决问题会适当地添加辅助线.教学设计一、情境创设公元前6世纪,古希腊哲人泰勒斯利用影子测量了金字塔的髙度,他自己还发现了三角形的一个特征:“等腰三角形的两个底角相等,反过来说,要使三角形两角相等,它们的对边必须相等”,这个发现我们现在看来很简单,可是在当时发现它们的确不易,其实这两个三角形的特征是两个定理,或者说是两个真命题.(投影显示提出两个问题):1.这两个命题有什么联系与区别?2.我们还学过类似的一些命题吗?如(平行线的判定与性质).二、新知探究探究活动一:1.互逆命题两个命题中,如果第一个命题的条件是第二个命题的结论,面第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.(设计目的:①通过学生熟悉的情境,引人互逆命题,使学生能轻易总结出互逆命题的特征,并归纳出它们的“条件”与“结论”的共性,再通过学生之间的合作、交流,探索出类似的命题,从而能熟练掌握互逆命题的概念,且会识别两个命题为互逆命题;②由“互逆命题”的概念得到写出一个命题的方法是:把一个命题的条件和结论复换就得到它的逆命题;每个命题都有逆命题.)2.尝试交流说出下列命题的逆命题,并判断逆命题的真假:(1)对顶角相等;(2)如果a2=b2,那么a=b;(3)直角三角形的两个锐角互余;(4>正方形的四个角都是直角.(分组讨论、协作交流,先分别写出命题的“条件”和“结论”)【答案】(1)相等的两个角是对顶角;是假命题.(2) 如果a=b,那么a2=b2;是真命题.(3)如果一个三角形的两个锐角互余,那么这个三角形是直角三角形;是真命题.<4)四个角都是直角的四边形是正方形;是假命题.(设计目的:1.(1)(3)(4)直接叙述它们的逆命题可能会有些困难,可以指导学生画出相关的图形分析命题的条件和结论.2.写出一个命题的逆命题要求语言一定要顺畅.)探究活动二:通过上面的尝试交流回答下列问题(投影显示问题):1.你是如何判断上述互逆命题中(1)(4)是假命题的?(设计目的:组织学生交流各自判断一个命题是假命题的方法,以利于引导学生体验并理解:说明命题是假命题只需举一个反例或画一个反例的图形,这既是学生巩固“互逆命题”的理解,同时也是获得判断“假命题”的方法——举反例,要让学生多思考,举一反三.)2.如果原命题是真命题,它的逆命题一定是真命题吗?如果原命题是假命题,它的逆命题一定是假命题吗?(设计目的:组织学生思考,并交流各自判断命题真假的情况,以利于引导学生主动发现:一对互逆命题的真假性不一定相同.)3.举反例概念举一个和已知命题符合的条件,得到和原命题不一致的结论称为举反例.三、例题教学例1如图,AB//CD,BF//DE,AB与DE相交于点G.图1①你由这些条件得到什么结论?②如何证明这个结论?③判断④这个命题正确与否.(设计目的:充分发挥学生的主动性,积极地去探索问题的结论并能以命题的形式用语言归纳出结论)【答案】①结论是:如果任意角的两边分别互相平行,那么这两个角相等.②证明:∵AB//CD(已知),∴∠EGA=∠D(两直线平行,同位角相等).又∵BF∥DE(已知),∴∠EGA=∠B(两直线平行,同位角相等).∴∠B=∠D(等量代换).③这个结论不正确,是假命题画出一个反例图如下:请同学们自己证明∠ABF与∠EDC互补;并且相互交流.图2(设计说明:①关于图1的一个命题的逆命题,实质是依据有关平行线的互逆命题进行推理,引导学生逐步认识探索图形的性质要关注图形的“位置关系”和“数量关系”的内在联系,体验数学活动中充满着探索与创造,感受数学的严谨;②教材提供的情景是让学生经历“观察一实验一猜想一证明”等活动,由合情推理到演绎推理,能有条理地、清晰地阐述自己的观点,从而不断发展初步的演绎推理的能力;③可以用画反例图的方法判断,一个几何命题是假命题.)例2 写出下列命题的逆命题,并判断它是真命题还是假命题:(1)若ac2>bc2,则a>b;(2)角平分线上的点到这个角的两边距离相等;(3)若ab=0,则a=0.解析:写出一个命题的逆命题,只需将命题的条件与结论交换.判断一个命题的真假,说它真,必须有根有据;而说它假,只要举个反例,千万不能想当然.【答案】(1)逆命题为:若a>b,则ac2>bc2.假命题,如:c=O,ac2=bc2.(2)逆命题为:到角的两边距离相等的点在这个角的平分线上.真命题.(3)逆命题为:若a=0,则ab=0.真命题.(设计说明;①真命题应是公理、定理、定义以及由它们推导出来的珀确的结论,是无需证明,大家一致公认的事实或一步一步推导出来的,而假命题只需举一个反例,即符合题设但不符合结论的例子.教师注意这里仍要提供让学生多说的好机会,只有让学生多说才能多思,多说才能有条理地表述;让学生自己去举反例,让学生要有思考的过程)例3 (投影显示例3)证明:平行于同一条直线的两条直线平行.图3解析已知:如图3,直线a、b、c中,b//a,c//a.求证:b//c.答案作直线a、b、c的截线d.∵b//a(已知),∴∠2=∠1两直线平行,同位角相等).∵c//a(已知),∴∠3=∠1(两直线平行,同位角相等).∴∠2=∠3(等量代换).∴b//c(同位角相等,两直线平行).你还有其他的方法证明bc//吗?(设计目的:这个例题可以让学生自己去探索,因为学生巳有了这个结论,并且也有学生在解题时用过这个结论,如同三角形的内角和一样,此题的证明有多种方法,可让学生自己先说证明思路,教师切不可自巳先讲,要让学生有自己的思考程,也不可只讲一种方法了事,应让学生体会多种方法.)例4 证明:直角三角形的两个锐角互余.解析命题证明题,要根据题意画出图形,然后结合图形写出已知、求证,最后写出证明过程.已知:如图4,在△ABC中,∠C=90°,求证:∠A+∠B=90°.证明:在△ABC中,∠A+∠B+∠C=180°(三角形三个内角的和为180°)∴∠A+∠B=180°-∠C(等式性质).∵∠C=90°(已知),∴∠A+∠B=180°-90°(等量代换).即∠A+∠B=90°.写出该命题的逆命题,判断真假,并给出理由.(学生自己完成).四、课堂练习教材第158页和第160页“练一练”五、课堂小结1.谈一谈这节课你有哪些收获?2.这节课你还有哪些疑惑?(设计目的:通过同学们的发言,发现同学们对新知的掌握情况,培养同学们的语言表达能力,同时也能够及时解决疑惑,共同提高教学质量.)六、作页布置教材习题12.3第1、2、4题.。
苏科版七年级下册数学 第12章 证明 复习 教案
课堂练习
1、下列语句中,不是命题的是().
A、同位角相等
B、延长线段AD
C、两点之间线段最短
D、如果x>1,那么x+1>5
2、下面有3个命题:①同旁内角互补;②两直线平行,内错角相等;•③垂直于同一直线的两直线互相平行.其中真命题为().
A、①
B、③
C、②③
D、②
3、一个三角形的一个内角等于另外两个内角的和,则这个三角形是().
A、直角三角形
B、锐角三角形
C、钝角三角形
D、何类三角形不能确定
4、如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().
A、50°
B、30°
C、20°
D、60°
5、如图:已知CE平分∠BCD,DE平分∠ADC,
∠1+∠2=90°,求证:AD∥CB 思考并作答(根据学生的实际能力表现,可安排小组讨论).
组织学生小组交流讨论,通过合作学习的方式进一步巩固本节课的学习内容,同时活跃课堂气氛,在一堂课的后半段激发学生学习
的热情,以提高课堂效率.
O
D
A
B
C
A
B
A
B
F
图③
2
1
E
D
C B
A。
新苏科版数学导学案七年级第12章证明
课堂笔记栏课堂笔记栏⑴猜想:a与b、c与d的大小关系?m与n平行吗?图④中,中间两个圆哪个大?⑵你的猜想对吗?如何检测你的猜想?谈谈你的感受.⑴猜想:这两条小道哪个长?这两条小路的面积相等吗?⑵你有什么理由或证据让别人信服你的猜想?1、如图①是一张88⨯的正方形纸片,把它剪成4块:⑴能拼成一个如图②的长方形吗?⑵分别计算出这两个图形的面积,你有何发现?2、如图所示网格中的△ABC 、△DEF 、△GHI :⑴你感觉它们哪一个面积最大?⑵实际计算一下,验证你的感觉是否正确.3、下面的判断是否正确?为什么?⑴无论x 取什么数,代数式342-+-x x 的值总是负数;⑵无论x 取什么数,代数式342-+-x x 的值不可能为2.4、⑴填表:⑵观察上表,小明发现“1>a 或2-<a 时,代数式()()12-+a a 的值是正数”.你认为小明的结论正确吗?为什么?a4-3-2-1-01234()()12-+a a课堂笔记栏1、如图,点A、B、E在一条直线上.⑴∵∠1=∠3(已知)∴AB∥DC();⑵∵∠DAE=∠CBE(已知)∴AD∥BC();⑶∵∠CDA+∠DAB=180°(已知)∴AB∥DC();⑷∵∠2=∠4(已知)∴∥(内错角相等,两直线平行);⑸∵∠DCB+∠ABC=180°(已知)∴∥(同旁内角互补,两直线平行);⑹∵∠DAB+∠ABC=180°(已知)∴∥(同旁内角互补,两直线平行).2、已知:如图,∠BAD=∠DCB,∠1=∠3.求证:AD∥BC.证明:∵∠BAD=∠DCB,∠1=∠3(),∴∠BAD―=∠DCB―(等式性质),即∠=∠,∴AD∥BC().3、已知:如图,D、B、C三点在同一条直线上,∠A=60°,∠1=2∠2.求证:AB∥CD.4、已知:如图,∠ABC=∠C,∠ABD=∠D,且AD∥BC.求证:∠C=2∠D.课堂笔记栏1、填写下列空格:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(),∴∠=∠(),∵∠1=∠2(已知),∴∠1=∠(),∴AB∥CD().2、已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.3、已知:如图,在△ABC中,∠A=∠ABC,直线EF分别交AB、AC和CB的延长线于点D、E、F.求证:∠F+∠FEC=2∠A.4、证明:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.课堂笔记栏班级:学号:姓名:金果学堂12.3互逆命题(第二课时)※学习目标:1、体会认识图形“位置关系”和“数量关系”的内在联系,学习逆向思考研究问题;2、经历构造一个命题的逆命题,并证明这个逆命题是真命题,获得新的数学结论的过程.※自主学习:阅读课本P159、160页探索如图:⑴如果AD ∥EF ,那么可以得到什么结论?⑵如果∠EFC +∠C =180°,那么可以得到什么结论呢?⑶证明AD ∥EF ,需要什么条件?证明EF ∥BC 呢?⑷证明AD ∥EF ∥BC ,需要什么条件?证明证明下列命题:⑴证明:平行于同一条直线的两条直线平行.⑵证明:直角三角形的两个锐角互余.⑶证明:有两个角互余的三角形是直角三角形.练习1、如图,AB ∥CD ,AB 、DE 相交于点G ,∠B =∠D .在下列括号内填写推理的依据:⑴∵AB ∥CD (已知),∴∠EGA =∠D (),又∵∠B =∠D (已知),∴∠EGA =∠B (),∴DE ∥BF ().⑵上述推理中,应用了哪两个互逆的真命题?2、已知:如图,在直角△ABC 中,∠ACB =90°,D 是AB 上一点,且∠ACD =∠B .求证:CD ⊥AB .3、已知:如图,在△ABC 中,点E 在AC 上,点F 在BC 上,点D 、G 在AB 上,FG ∥CD ,∠1=∠2.求证:∠AED =∠ACB .课堂笔记栏※巩固练习:1、如图,点A 、B 、C 、D 在一条直线上,填写下列空格:⑴∵EC ∥FD (已知),∴∠F =∠(),∵∠F =∠E (已知),∴∠=∠E (),∴∥().⑵上述推理中,应用了哪两个互逆的真命题?2、已知:如图,直线AB 、CD 、EF 被直线BF 所截,∠B +∠1=180°,∠2=∠3.求证:∠B +∠F =180°.3、已知:如图,BD 、CE 是△ABC 的高.BD 、CE 相交于点O .求证:∠A +∠BOC =180°.4、已知:如图,AB ⊥BC ,AB 、CD 相交于点E ,∠A =∠C .求证:CD ⊥AD .作业订正栏班级:学号:姓名:金果学堂第12章证明(复习)※学习目标:1、体会通过合情推理探索数学结论,运用演绎推理加以证明的过程;2、知道证明要合乎逻辑,初步会综合法证明的格式.※自主学习:阅读课本P162、163页1、下列语句中,不属于命题的是………………………………………………………()A .延长线段AB 到点C B .有两条边相等的三角形是等腰三角形C .自然数都是整数D .平行于同一条直线的两条直线平行2、若三角形的一个外角是锐角,则此三角形的形状是………………………………()A .钝角三角形B .锐角三角形C .直角三角形D .无法确定3、如图,AB ∥CD ,DA ⊥AC ,垂足为A .若∠ADC =35°,则∠1的度数为……()A .65°B .55°C .45°D .35°4、在锐角三角形中,最大角α的取值范围是…………………………………………()A .︒<<︒900αB .︒<≤︒9060αC .︒<<︒18060αD .︒<<︒9060α5、下列命题中,属于真命题的是………………………………………………………()A .锐角小于它的余角B .锐角小于它的补角C .锐角与锐角的和是钝角D .锐角与钝角的和等于平角6、如图,将一副三角尺按如图所示的方式放置,使含30°角的三角尺所对的直角边和含45°角的三角尺的一条直角边在同一条直线上,则∠1的度数为…………()A .75°B .65°C .45°D .30°7、下列条件:①∠A +∠B =∠C ;②∠A ∶∠B ∶∠C =1∶2∶3;③∠A =90°―∠B ;④∠A =∠B =21∠C .其中,能确定△ABC 是直角三角形的有……………………………………………()A .1个B .2个C .3个D .4个8、如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C .若∠1=58°,则∠2的度数为.9、如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2=.10、如图,直线a ∥b ,△ABC 的顶点B 在直线b 上,∠C =90°,∠1=36°,则∠2的度数为.11、如图,把一块直角三角尺的含60°角的顶点放在直尺的一边上.若∠1=2∠2,则∠1=.12、如图,直线1l ∥2l ,∠α=∠β,∠1=40°,则∠2=.课堂笔记栏13、写出下列各命题的逆命题,并判断其逆命题的真假.若是假命题,请举反例说明.⑴如果b a =,那么b a 33=;⑵互为相反数的两个数的积为负数;⑶钝角小于180°;⑷等底等高的两个三角形面积相等.14、已知:如图,AD 是△ABC 的角平分线,点E 在BC 上,点G 在CA 的延长线上,EG 交AB 于点F ,且∠AFG =∠G .求证:GE ∥AD.15、已知:如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠1=∠2,∠A =∠F .求证:∠C =∠D.16、已知:如图,∠ABC +∠C +∠CDE =360°,GH 分别交AB 、ED 相交于点G 、H .求证:∠1=∠2.作业订正栏。
七年级下册第12章证明12、3互逆命题教学新版苏科版
互逆命题
做一做:写出下列命题的逆命题. (1)如果a2=b2,那么a=b; 逆命题:如果a=b,那么a2=b2 .
(2)如果两个角是对顶角,那么它们的平分线组成一个平角; 逆命题:如果两个角的平分线组成一个平角,那么这两个角是对顶角.
(3)末位数字是5的数,能被5整除; 逆命题:能被5整除的数的末位数字是5.
互逆命题
(3)如果两个数互为相反数,那么它们的和为零; 原命题是真命题. 逆命题为:如果两个数的和为零,那么它们互为相反数. 逆命题是真命题. (4)如果ab<0,那么a>0,b<0. 原命题是假命题. 逆命题为:如果a>0,b<0,那么ab<0. 逆命题是真命题.
互逆命题
归纳:写出逆命题的关键是分清楚原命题的条件和结论, 然后将它的条件和结论交换位置就得到这个命题的逆命 题.判断一个命题是真命题需要进行逻辑推理,判断一个 命题是假命题只需要举出一个反例就可以了.
七年级数学下册苏科版
第12章 证 明
12.3 互逆命题
1 2
CONTENTS
1
看一看:
外行”的尴尬
有一位田径教练向领导汇报训练成绩
小明的百米 成绩是9秒9.
继续努力,争 取达到10秒.
相传,阎锡山在话有错吗?
发给每个人一 个球球,不要 再抢啦.
互逆命题
练一练:举例说明“两个负数之差是负数”是假命题. 说明:设a=-2,b=-5,(符合命题的条件) 则设a-b=-2-(-5)=3,不是负数.(不符合命题的结论) 所以“两个负数之差是负数”是假命题.
互逆命题
例 证明:平行于同一条直线的两条直线平行. 已知:如图 ,直线a,b,c,a∥c, b∥c. 求证: a∥b.
条件:等腰三角形的两条边长为5和7,结论:这个等腰三角 形的周长为17.假命题,腰长为7时,这个等腰三角形的周 长为19.
七年级数学下册 第12章 证明 12.3 互逆命题教案 (新版)苏科版
12.3 互逆命题
探索活动
如图:
(1)如果AD∥EF,那么可以得到什么结论?
(2)如果∠EFC+∠C=180°,那么可以得到什么结论呢?
(3)证明AD∥EF,需要什么条件?证明EF∥BC呢?
(4)证明AD∥EF∥BC,需要什么条件?
学生回顾“三线八角”的相关知识,积极
思考,回答问题.
问题(1)、(2)是“由
已知想可知”的思考;问
题(3)、(4)是“由未知
想需知”的思考.
引导学生逐步认识:
图形特殊的“位置关系”
往往决定了图形具有特殊
的“数量关系”;反过来,
图形特殊的“数量关系”
常常决定了图形具有特殊
的“位置关系”.体会认识
图形需要关注形与数之间
的内在联系,并为例1作
铺垫.
例题教学
例1 证明:平行于同一条直线的两条直线平行.
1.按照证明与图形有关的命题的一般步
骤画图,写已知、求证.
2.观察、思考、证明.
3.学生板演.
巩固与图形有关的命
题证明的一般步骤.
结合上一个问题的分
析思考,学生意识到要得
到直线平行这个“位置关
系”,就需要有三线八角的
“数量关系”作为条件.主
动添加辅助线,构造新图
形,进行证明.
通过板演,进一步学
会规范书写和有条理的说
理.
A
E B
F
C D。
七年级数学下册第12章证明12.3互逆命题作业设计新版苏科版202002242136
12.3 互逆命题一.选择题(共8小题)1.对于命题“在同一平面内,若//a b ,//a c ,则//b c ”,用反证法证明,应假设( )A .a c ⊥B .b c ⊥C .a 与c 相交D .b 与c 相交2.已知:ABC ∆中,AB AC =,求证:90B ∠<︒,下面写出可运用反证法证明这个命题的四个步骤:①180A B C ∴∠+∠+∠>︒,这与三角形内角和为180︒矛盾②因此假设不成立.90B ∴∠<︒③假设在ABC ∆中,90B ∠︒④由AB AC =,得90B C ∠=∠︒,即180B C ∠+∠︒.这四个步骤正确的顺序应是( )A .③④①②B .③④②①C .①②③④D .④③①②3.用反证法证明,“在ABC ∆中,A ∠、B ∠对边是a 、b ,若A B ∠>∠,则a b >.”第一步应假设( )A .a b <B .a b =C .a bD .a b4.用反证法证明“0a >”,应当先假设( )A .0a <B .0aC .0a ≠D .0a5.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45︒”时,首先应假设这个直角三角形中( )A .两个锐角都大于45︒B .两个锐角都小于45C .两个锐角都不大于45︒D .两个锐角都等于45︒6.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( )A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角 7.对于命题“已知://a b ,//b c ,求证://a c ”.如果用反证法,应先假设( )A .a 不平行bB .b 不平行cC .a c ⊥D .a 不平行c8.用反证法证明命题:“四边形中至少有一个角是钝角或直角”,我们应假设( )A .没有一个角是钝角或直角B .最多有一个角是钝角或直角C .有2个角是钝角或直角D .4个角都是钝角或直角 二.填空题(共2小题)9.用反证法证明“两直线平行,同位角相等”时,可假设 .10.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于15应先假设 .三.解答题(共5小题)11.证明:在一个三角形中,至少有一个内角小于或等于60度.12.利用反证法求证:一个三角形中不能有两个角是钝角.13.如图,在ABC ∆中,AB AC =,P 是ABC ∆内的一点,且APB APC ∠>∠,求证:PB PC <(反证法)14.证明:在ABC ∆中,A ∠,B ∠,C ∠中至少有一个角大于或等于60︒.15.用反证法证明:等腰三角形的底角相等.参考答案与试题解析一.选择题(共8小题)1.对于命题“在同一平面内,若//a b ,//a c ,则//b c ”,用反证法证明,应假设( )A .a c ⊥B .b c ⊥C .a 与c 相交D .b 与c 相交【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:c 与b 的位置关系有//c b 和c 与b 相交两种,因此用反证法证明“//c b ”时,应先假设c 与b 相交.故选:D .【点评】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.2.已知:ABC ∆中,AB AC =,求证:90B ∠<︒,下面写出可运用反证法证明这个命题的四个步骤:①180A B C ∴∠+∠+∠>︒,这与三角形内角和为180︒矛盾②因此假设不成立.90B ∴∠<︒③假设在ABC ∆中,90B ∠︒④由AB AC =,得90B C ∠=∠︒,即180B C ∠+∠︒.这四个步骤正确的顺序应是( )A .③④①②B .③④②①C .①②③④D .④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论; 所以题目中“已知:ABC ∆中,AB AC =,求证:90B ∠<︒”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设90B ∠︒;那么,由AB AC =,得90B C ∠=∠︒,即180B C ∠+∠︒所以180A B C ∠+∠+∠>︒,这与三角形内角和定理相矛盾,;所以因此假设不成立.90B ∴∠<︒;原题正确顺序为:③④①②.故选:A .【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.3.用反证法证明,“在ABC ∆中,A ∠、B ∠对边是a 、b ,若A B ∠>∠,则a b >.”第一步应假设( )A .a b <B .a b =C .a bD .a b【分析】熟记反证法的步骤,直接填空即可.【解答】解:根据反证法的步骤,得第一步应假设a b >不成立,即a b .故选:C .【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.用反证法证明“0a >”,应当先假设( )A .0a <B .0aC .0a ≠D .0a【分析】根据命题:“0a >”的反面是:“0a ”,可得假设内容.【解答】解:由于命题:“0a >”的反面是:“0a ”,故用反证法证明:“0a >”,应假设“0a ”,故选:B .【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.5.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45︒”时,首先应假设这个直角三角形中( )A .两个锐角都大于45︒B .两个锐角都小于45C .两个锐角都不大于45︒D .两个锐角都等于45︒【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45︒”时, 应先假设两个锐角都大于45︒.故选:A .【点评】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设() A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【解答】解:“最多有一个”的反面是“至少有两个”,反证即假设原命题的逆命题正确∴应假设:至少有两个内角是直角.故选:B.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.7.对于命题“已知://a c”.如果用反证法,应先假设()a b,//b c,求证://A.a不平行b B.b不平行c C.a c⊥D.a不平行c【分析】根据命题:“已知://a c”的反面是:“a不平行c”,可得a b,//b c,求证://假设内容.【解答】解:由于命题:“已知://a c”的反面是:“a不平行c”,a b,//b c,求证://故用反证法证明:“已知://a b,//a c”,应假设“a不平行c”,b c,求证://故选:D.【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.8.用反证法证明命题:“四边形中至少有一个角是钝角或直角”,我们应假设() A.没有一个角是钝角或直角B.最多有一个角是钝角或直角C.有2个角是钝角或直角D.4个角都是钝角或直角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意>的反面有多种情况,应一一否定.的是a b【解答】解:用反证法证明命题:“四边形中至少有一个角是钝角或直角”,应假设没四边形中没有一个角是钝角或直角,故选:A.【点评】本题考查的是反证法的应用,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.二.填空题(共2小题)9.用反证法证明“两直线平行,同位角相等”时,可假设两直线平行,同位角不相等.【分析】首先确定命题的结论,进而从反面假设得出答案.【解答】解:用反证法证明“两直线平行,同位角相等”时,可假设:两直线平行,同位角不相等.故答案为:两直线平行,同位角不相等.【点评】此题主要考查了反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.10.已知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于15应先假设这五个数都小于15.【分析】熟记反证法的步骤,直接从结论的反面出发得出即可.【解答】解:知五个正数的和等于1.用反证法证明:这五个数中至少有一个大于或等于1 5应先假设这五个数都小于15,故答案为:这五个数都小于1 5【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三.解答题(共5小题)11.证明:在一个三角形中,至少有一个内角小于或等于60度.【分析】当条件较少,无法直接证明时,可用反证法证明;先假设结论不成立,然后得到与定理矛盾,从而证得原结论成立.【解答】证明:假设在一个三角形中没有一个角小于或等于60︒,即都大于60︒;那么,这个三角形的三个内角之和就会大于180︒;这与定理“三角形的三个内角之和等于180︒”相矛盾,原命题正确.【点评】本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12.利用反证法求证:一个三角形中不能有两个角是钝角.【分析】根据反证法的证明方法假设出命题,进而证明即可.【解答】证明:假设A ∠、B ∠、C ∠中有两个角是钝角,不妨设A ∠、B ∠为钝角, 180A B ∴∠+∠>︒,这与三角形内角和定理相矛盾,故假设不成立原命题正确.【点评】此题主要考查了反证法,需熟练掌握反证法的一般步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.13.如图,在ABC ∆中,AB AC =,P 是ABC ∆内的一点,且APB APC ∠>∠,求证:PB PC <(反证法)【分析】运用反证法进行求解:(1)假设结论PB PC <不成立,即PB PC 成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB PC .把ABP ∆绕点A 逆时针旋转,使B 与C 重合,PB PC ,PB CD =,CD PC ∴,CPD CDP ∴∠∠,又AP AD =,APD ADP ∴∠=∠,APD CPD ADP CDP ∴∠+∠∠+∠,即APC ADC ∠∠,又APB ADC ∠=∠,APC APB ∴∠∠,与APB APC ∠>∠矛盾,PB PC ∴不成立,综上所述,得:PB PC <.【点评】此题主要考查了反证法的应用,解此题关键要懂得反证法的意义及步骤.14.证明:在ABC ∆中,A ∠,B ∠,C ∠中至少有一个角大于或等于60︒.【分析】利用反证法的步骤,首先假设原命题错误,进而得出与三角形内角和定理矛盾,从而证明原命题正确.【解答】证明:假设ABC ∆中每个内角都小于60︒,则180A B C ∠+∠+∠<︒,这与三角形内角和定理矛盾,故假设错误,即原结论成立,在ABC ∆中,A ∠,B ∠,C ∠中至少有一个角大于或等于60︒.【点评】此题主要考查了反证法,正确把握反证法的证明步骤是解题关键.15.用反证法证明:等腰三角形的底角相等.【分析】画出图形,写出已知、求证,然后根据反证法的步骤给出证明即可解决问题.【解答】已知:如图ABC ∆中,AB AC =,求证:B C ∠=∠.证明:假设B C ∠≠∠,()B C ∠>∠,B C ∠>∠,AC AB ∴>,这与已知AB AC =矛盾,∴假设不成立,结论成立.∴∠=∠.B C【点评】本题考查反证法,记住反证法分步骤是解题的关键,记住反证法的第一步是假设结论不成立,然后推出与已知或定理矛盾,最后强调假设不成立,结论成立,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:12.3 互逆命题(1)
教学目标: 1.引导学生通过具体实例,了解原命题及其逆命题的概念;
2.会识别两个互逆命题,知道原命题成立其逆命题不一定成立;
3.通过具体的例子了解反例的作用,知道利用反例可以证明一个命题是错误的.
重点;会识别两个互逆命题,并能利用反例证明一个命题是错误的.
难点:准确表述一个命题的逆命题,学会利用反例进行有条理的表述
教学方法
教学过程
一.预学指导初步感知、激发兴趣
两直线平行,同位角相等.
同位角相等,两直线平行.
提问:
1.这两个命题的条件和结论分别是什么?是真命题还是假命题?
2.从结构上看,这两个命题有什么联系和区别?
二.新知探究师生互动、揭示通法
问题1.举例:在我们学过的命题中,还有类似的一些例子吗?(同桌交流)
形成概念:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.
问题2. 下列各组命题是否是互逆命题:
(1)“正方形的四个角都是直角”与“四个角都是直角的四边形是正方形”;
(2)“等于同一个角的两个角相等”与“如果两个角都等于同一个角,那么这两个角相等”;(3)“对顶角相等”与“如果两个角相等,那么这两个角是对顶角”;
(4)“同位角相等,两直线平行”与“同位角不相等,两直线不平行”.
问题3. 说出下列命题的逆命题,并与同学交流.
(1)如果a2=b2,那么a=b;
(2)如果两个角是对顶角,那么它们的平分线组成一个平角;
(3)末位数字是5的数,能被5整除;
(4)锐角与钝角互为补角.
问题4.判断上面问题3中四对互逆命题的真假.
1.说明一个命题是真命题可以用推理的方法去证明,那如何说明一个命题是假命题呢 (小组交流) ?
举出一个符合命题的条件,但命题结论不成立的例子来说明命题是假命题,这样的例子称为反例.数学中,判断一个命题是假命题,只需举出一个反例.
2.如果一个命题是真命题,那么它的逆命题一定是真命题吗?你能举例说明吗?
三.变式拓展能力提升、突破难点
问题5. 举反例说明下列命题是假命题.
(1)如果|a|=|b|,那么a=b;
(2)任何数的平方大于0;
(3)两个锐角的和是钝角;
(4)如果一点到线段两端的距离相等,那么这点是这条线段的中点.
四.回扣目标学有所成、悟出方法
通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.。