1.2《一元二次方程的解法—配方法(2)》导学案
2.2一元二次方程的解法(2)导学案
2.2 一元二次方程的解法(2)班级__________________ 姓名__________________〖学习目标〗1.巩固用配方法解一元二次方程的基本步骤;2.会用开平方法解二次项系数的绝对值不为1的一元二次方程。
〖学习重点与难点〗重点:用配方法解二次项系数的绝对值不是1的一元二次方程。
难点:二次项系数为小数或分数时,用配方法解一元二次方程是本节学习的难点。
一、复习引入(把握时间,看看你的复习情况)1.用配方法解下列方程:(1) 162=+x x (2)11342-=x x2.回顾:上个星期学习的配方法解方程有哪些步骤?3.思考:当二次项系数不为1时,我们该怎么办?比如 11052+=x x ,此时二次项系数不为1,你觉得怎么用配方法来解?4.用配方法解二次项系数不为1的一元二次方程,有哪些步骤?跟之前比较,多了哪些步骤?二、例题精讲(先思考,然后和老师一起完成)例3 用配方法解下列一元二次方程:⑴03422=-+x x ⑵03832=--x x⑶x x 353122=-⑷05.01.02=++x x三、巩固练习1.用配方法解方程0122=--x x 时,配方结果正确的是( ) (A )43)21(2=-x (B )43)41(2=-x (C )1617)41(2=-x (D )169)41(2=-x2.用配方法解下列方程:⑴03622=++x x ⑵05722=+-x x四、当堂检测(仔细思考,总结解题的步骤)用配方法解方程: ⑴132)1(=--n n n ⑵02222=--x x⑶02142=++x x ⑷08121432=--x x总结:用配方法解二次项系数不为1的一元二次方程,有哪些步骤?你又掌握了哪些?五、小结这节课,你收获了哪些知识?。
1.2.2一元二次方程的解法-- 公式法学案(湘教版九上)
1.2.2一元二次方程的解法-- 公式法学案(湘教版九上)学习目标:1、理解一元二次方程求根公式的推导过程,了解公式法的概念。
2、会熟练应用公式法解一元二次方程.学习重点:求根公式的推导和公式法的应用.学习难点:一元二次方程求根公式法的推导.学习过程一、问题引入:1、知识回忆(学生活动):用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=522、情境导入:用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程ax 2+bx +c = 0(a ≠0)的实数根呢?请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2二、探究新知:请同学们带着以下问题用10分钟的时间自学完教材P35—P37动脑筋前的内容,并完成下面的自学检测中的练习。
1、自学思考题:⑴如何用配方法解一般形式的一元二次方程ax 2+bx +c = 0(a ≠0)? 配方时需要哪几个步骤?⑵方程(x+ab 2)2=a ac b 442-一定有实数根吗? ⑶ 一元二次方程ax 2+bx+c=0(a ≠0)的根由什么决定?求根公式的意义是什么?⑷ 为什么在得出求根公式时有限制条件b 2-4ac ≥0?(学生尝试,分组讨论交流,分析公式的特点,记忆公式。
)2、自学检测:⑴用公式法解方程2x 2-7x=3时,其中a 、b 、c 、的值分别为 。
⑵一元二次方程x 2+2=3x,则b 2-4ac= x 1= x 2=⑶方程x 2-5x-6=0的两根为x 1= x 2=⑷用公式法解方程3x 2-4=2x 时,其中a= b= c= b 2-4ac= 方程的根x 1= x 2= ⑸在一元二次方程2x 2-3x+2=0中,b 2-4ac= 此方程 实数解。
3、自学点拨:⑴一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定。
《一元二次方程的解法:配方法(第2课时)》参考教案2
第2课时用配方法解二次项系数为1的一元二次方程1.了解用配方法解一元二次方程的基本步骤,并能熟练运用配方法解二次项系数为“1”的一元二次方程.2.经历用配方法将一元二次方程变形的过程,进一步体会“化归”的思想方法.阅读教材P32~33,完成下列问题:(一)知识探究1.在方程的左边加上一次项系数的________的________,再________这个数,使得含未知数的项在一个________里,这种做法叫作配方.配方、整理后就可以直接根据____________来求解了.这种解一元二次方程的方法叫作配方法.2.配方是为了直接运用____________,从而把一个一元二次方程转化为两个________方程来解.(二)自学反馈1.用适当的数填空:(1)x2-8x+(______)2=(x-______)2;(2)x2+10x+(______)2=(x+______)2.2.用配方法解下列方程:(1)x2+2x=7;(2)x2-5x+14=0.活动1 小组讨论例用配方法解下列关于x的方程:(1)x2-8x+1=0; (2)x2+1=3x.解:x1=4+15,解:x1=52+32,x 2=4-15. x2=-52+32.(1)用配方法解一元二次方程时,方程左边分别为二次项和一次项,常数项放右边.(2)配方时所加常数为一次项系数的一半的平方.(3)注意:配方时一定要在方程的两边同加.活动2 跟踪训练1.把二次三项式x2+8x+2进行配方,正确的是( )A.(x+8)2-1 B.(x+4)2-14C.(x+4)2+18 D.(x+2)2-162.填空:(1)x2-4x+______=(x-______)2;(2)x2+6x+______=(x+______)2;(3)x2-7x+______=(x-______)2.3.解方程x2-3x-2=0,配方,得(x-______)2+______=0.4.用配方法解下列方程:(1)x2-2x=1; (2)x2+6x-2=0;(3)x2+4x+3=0; (4)x2+x-1=0.活动3 课堂小结学生试述:今天学到了什么【预习导学】知识探究1.一半平方减去完全平方式平方根的意义 2.平方根的意义一元一次自学反馈1.(1)4 4 (2)5 5 2.(1)x1=-1+22,x2=-1-2 2.(2)x1=52+6,x2=52- 6.【合作探究】活动2 跟踪训练1.B 2.(1)4 2 (2)9 3 (3)49472-1744.(1)x1=1+2,x2=1- 2.(2)x1=11-3,x2=-11-3.1=-1,x2=-3.(4)x1=-1+52,x2=-1-52.(3)x。
1.2.2 一元二次方程的解法-配方法(解析版)
1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。
1.2.2一元二次方程的解法(配方法2)
助手:
a.
完全平方式:式子a2±2ab+b2叫完全平方式,且 a2±2ab+b2 =(a±b)2.
回顾与复习 2
配方法
用配方法解一元二次方程的步骤:
1.移项:把常数项移到方程的右边; 2.配方:方程两边都加上一次项系数一半的 平方; 3.变形:方程左边分解因式,右边合并同类项 4.开方:根据平方根意义,方程两边开平方; 5.求解:解一元一次方程; 6.定解:写出原方程的解.
否
写成一般形式 ax2+bx+c=0(a≠0)
x
2
b a
x
c a
0.
配方 解两个一元一次方程 用因式分解法或 直接开平方法
练习
解下列方程
(1) x 3 x 2 0;
2
(2)3 x 15 x 18 0;
2
(3) 2 x 3 x 1 .
2
小结
拓展
回味无穷
• 本节课复习了哪些旧知识呢? • 继续请两个“老朋友”助阵和加深对“配方法” 的理解运用: 平方根的意义: 如果x2=a,那么x= a . 完全平方式:式子a2±2ab+b2叫完全平方式,且 a2±2ab+b2 =(a±b)2.
随堂练习 1
你能行吗
5.3x2 +8x –3=0 ;
这个方程与前4个方程不 一样的是二次项系数不是 1,而是3. 基本思想是: 如果能转化为前4个方程 的形式,则问题即可解决.
用配方法解下列方程.
1.x2
– 2 = 0;
1 4
2.x2
-3x-
=0 ;
3.x2-6x+1=0 ;
你想到了什么办法?
一元二次方程复习导学案
解一元二次方程复习一、知识回顾1.一元二次方程的概念:形如:()002≠=++a c bx ax2.一元二次方程的解法:(1)直接开平方法:(2)配方法:(3)因式分解法:(4)公式法:求根公式:()042422≥--±-=ac b aac b b x1、按要求解下列方程:①9)12(2=-x (直接开平方法) ②0432=-+x x (用配方法)③0822=--x x (用因式分解法) (4) 3x 2+5(2x+1)=0(用公式法)3.一元二次方程的根的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根.....。
如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系二、基础训练一元二次方程的概念1.下列关于x 的方程: 其中是一元二次方程的有( )A.4个B.3个C.2个D.1个2、关于x 的方程(m+3)x |m|-1-2x+4=0是一元二次方程,则m=解下列方程(1)(2x +3)2-25=0. (2) 02722=--x x .(3)()()2322+=+x x 1)4(,02)3(,53)2(,032)1(223222=+=+-=+=--y x x x x x x x(4)0)52()13(22=+--x x (5)2232)2(y y y =-+根的判别式(1)关于x 的一元二次方程x 2-4x+2m=0无实数根,求m 的取值范围(2)关于x 的一元二次方程mx 2-4x+2=0有实数根,求m 的取值范围.(3)关于x 的方程mx 2-4x+2=0有实数根,求m 的取值范围.。
一元二次方程的解法——配方法
自组
主内
预交
习流
(8’)
一、复习提问:
问题1:一元二次方程的一般形式是什么?
问题2:具有什么结构特征的一元二次方程能用直接开平方法解?
二、自主学习:
1、用直接开平方法解方程:①(x-2)²=5②x2-4x+4=5
2、思考:怎样解方程:x2-4x-1=0
二
合
作
探
究
10'
(三)
分合
配作
任探
务究
(10’)
A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1
5、若a2+2a+b2-6b+10=0,则a=,b=。
6、证明:代数式x2+4x+ 5的值不小于1.
7、用配方法解下列方程:(1)x2-3x-1=0(2)y2+ y-2=0
(六)
知构
识建
归网
纳络
课堂小结(会思考、会总结,才会有收获哦!)
一、填上适当的数或式,使下列各等式成立.
(1) =()2(2) =()2
(3) =()2(4) =()2
(5) =()2
二、分析讨论:①等式左边的多项式中二次项的系数都是;
②等式左边所填的常数(或式)都有什么特点:;
三、现在你会解方程:x2-4x-1=0吗?
四、知识点归纳:
我们把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做
三
展
示
提
升
15’
(四)
展拓
示展
质提
疑升
(15’)
配方法2导学案
学习课题:配方法解一元二次方程(2)执教:陈珧学习目标:1、会用配方法解数字系数的一元二次方程;2、能将配方法具体化,概括出解方程的具体操作过程;3、体验配方法解方程的整个过程,体会转化、化归的数学思想。
重点:用配方法解数字系数的一元二次方程;难点:配方的过程。
阅读教材:P31-P34导学过程 一:知识链接1,在横线内填上恰当的数(相信自己)总结:如何确定所填数? 2,利用直接开平方法解下列方程(大胆试试)(1)x ²=25 (2)(x+3)²=25 (3)x ²+6x+9=25总结:1、直接开平方法适用于:方程左边是 的形式,而右边是一个 。
2、直接开方法的核心是: 即将 方程转化为 方程 二:自主学习,合作探究★问题:家有一底为正方形蓄水池,计划拓展水池的面积,使一边长度增加6m ,面积达到16m ²,你知道蓄水池原边长多少吗?222222____)(_____)3(_____)(____21)2(_____)(_____2)1(+=++-=+-+=++x px x y y y x x x,分析:设水池宽为xm,则长为 m,于是:=16即思考:该方程能否直接开平方?★自学P32-P33,各组内合作交流,共同探究形成解下列方程的方法探究:方程x²+6x-16=0的解法。
①移项得 x2+6x=___ _.②于是 x2+6x+_ _=16+__ _,则()2=___ _.③∴ x+3=___ _.④故原方程的解是x1=___ __,x2=___ __.学生交流:1、能否说出以上各步要点?2、第二步为什么加9,可以加其他数吗?3、什么是配方法?配方的关键是什么?4、配方法解一元二次方程的步骤是:①②③④★巩固训练:用配方法解方程x2-8x+9=0.(所有同学共同完成)移项得 x2-8x=___ _.于是 x2-8x+_ _=-9+__ _,则()2=___ _.∴ x-4=___ _.故原方程的解是x1=___ __,x2=___ __.三:组内互助,人人过关★先独立完成,再组内互查互纠,发现错误用配方法解以下方程(1)x²-6x-7=0 (2)x²+3x+1=0(3)2x²+6x+2=0 (4)x²-4x+6=0学生交流:四:反思小结1、配方法就把是把方程的左边化成一个含未知数的,右边是一个,再运用直接平方求出方程的解。
1.2《一元二次方程的解法—公式法》导学案
第4课时一元二次方程的解法一、知识目标1、会用公式法解一元二次方程2、体验用配方法推导一元二次方程求根公式的过程,明确运用公式求根的前提条件是b 2-4ac ≥03、在公式的推导过程中培养学生的符号感重点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程难点:求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误二、知识准备1、用配方法解一元二次方程的步骤是什么?2、用配方法解下例方程(1)02722=--x x (2)05422=+-x x三、学习内容如何解一般形式的一元二次方程ax 2+bx +c = 0(a ≠0)?1、阅读下列解方程的过程:因为0a ≠,方程两边都除以a ,得20b c x x a a++= 移项,得2b c x x a a +=- 配方,得 222)2()2(22ab ac a b x a b x +-=+∙∙+ 即2224()24b b ac x a a -+=当240b ac -≥,时,2b x a +=x =。
2、思考:(1)为什么要求240b ac -≥?(2)这个公式说明了什么?(这个公式说明方程的根是由方程的系数a 、b 、c 所确定的,利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解,这种解方程的方法叫做公式法。
)(3)若b 2 – 4ac < 0,方程还有根吗?3、请你利用求根公式解下列方程:⑴ x 2+3x +2 = 0⑵ 2 x 2-7x = 4四、知识梳理1、用公式法解一元二次方程时要注意什么?2、任何一个一元二次方程都能用公式法求解吗?举例说明。
3、若解一个一元二次方程时,b 2-4ac <0,请说明这个方程解的情况。
五、达标检测1、把方程4-x 2=3x 化为ax 2+bx+c=0(a≠0)形式为,b 2-4ac=.2、用公式法解下列方程:(1)x 2-2x-8=0;(2)x 2+2x-4=0;(3)2x 2-3x-2=0;(4)3x(3x-2)+1=0. (5)2260x x +-=(6)242x x +=3、已知等腰三角形的底边长为9,腰是方程210240x x -+=的一个根,求这个三角形。
《一元二次方程的解法》复习学案
《一元二次方程的解法》——复习学案[知识要点]1. 一元二次方程的概念:首先是 “整式方程”,其次是“只含有一个未知数,且未知数的最高次数是“2”。
一元二次方程为一般形式 ( ),尤其要注意“系数”是包括它们的正负号在内的。
“0≠a”是一元二次方程一般形式的一个重要组成部分。
因为方程02=++c bx ax 只有当0≠a 时,才叫做一元二次方程。
反之,如果明确指出方程是一元二次方程,那就隐含了0≠a 这个条件。
2.解一元二次方程的几种方法(1)直接开平方法:是建立在“数的开方”的基础上。
形如()()02≥=-b b a x 的方程,可用直接开平方法,求得方程的根为:()0≥±=b b a x 。
(2)配方法:是将一般一元二次方程配成完全平方后转化成直接开平方法来求解的方法。
它实质上是直接开平方法的延伸。
一般步骤:①化二次项系数为1,②移项,③配方,④化原方程为2()x m n +=的形式, ⑤如果0n≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解. (3)求根公式法:是求出一元二次方程解的方法,它是解一元二次方程的一般方法。
一元二次方程02=++c bx ax (0≠a )的求根公式为:()042422≥--±-=ac b a ac b b x(4)分解因式法:其实质是“降次”求解。
将二次三项式分解为两个一次因式的乘积,分别设两个一次因式为0,从而得到两个一次方程,使原方程达到“降次”的目的。
具体方法有①提公因式法②平方差公式法③完全平方公式法④十字相乘法[典型例题]例1.(1)用不同的方法解方程0862=+-x x 。
(公式法) (十字相乘法) (配方法)(2)用不同的方法解方程02522=+-x x例2. 用适当的方法解方程:(1)()()y y 213122-=- (2)12=-x x(3)042312=+-x x (4)()()03051752=+---x x类题练习:用适当的方法解方程:(1)75102=+x x (2)223422=+x x(3)()3222=-x (4)()()04323322=----x x(5)04232=+--t t[小测试]1.下列方程是一元二次方程的是:(1)12=-y x (2)12-=x y (3)()()()()1121122-+-=++-x x x x x x (4)12-=x x (5)1142=+x (6)()0212=-++k x k (k 是常数) 2.写出下列各方程的二次项、一次项和它们的系数以及常数项: (1)1232=+x x (2)x x 22= (3)()()5612122-=--+x x x5.用配方法解方程:01842=+--x x 6.用公式法解方程:02322=--x x7.用因式分解法解下列一元二次方程:(1)03072=--x x (2)()()1314-=-x x x3.当实数k 满足什么条件时,关于x 的方程58222+=+x kx x k 是一元二次方程.4.用直接开平方法解一元二次方程:()()22112+=-x x。
新人教版九年级数学第21章一元二次方程教案导学案(全章)
第21章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键1.分析实际问题如何建立一元二次方程的数学模型.2.用配方法解一元二次方程的步骤.3.解一元二次方程公式法的推导.课时划分本单元教学时间约需18课时,具体分配如下:21.1 一元二次方程2课时21.2 降次──解一元二次方程9课时21.3 实际问题与一元二次方程3课时教学活动、习题课、小结 4课时第1课时一元二次方程(1)第2课时一元二次方程(2)第3课时解一元二次方程——配方法(1)第4课时解一元二次方程——配方法(2)第5课时解一元二次方程——配方法(3)第6课时解一元二次方程——公式法(1)第7课时解一元二次方程——公式法(2)第8课时解一元二次方程—因式分解法(1)第9课时解一元二次方程—因式分解法(2)第10课时一元二次方程的解法复习课的数学思想。
一元二次方程解法专题训练导学案(直接开平方、配方法、求根公式、十字相乘、因式分解)
鸡西市第十九中学学案鸡西市第十九中学学案《直接开平方法》专题班级 姓名不要被失败吓到,不要被胜利冲昏头脑。
例:用直接开平方法解方程:22)6(16)3(49+=-x x 解:开平方得,7(3)4(6)x x -=±+∴7(3)4(6)x x -=+由或7(3)4(6)x x -=-+由 ∴115.x =得,23.11x =-【点评】直接开平方法的要点是:通过等式变形变出2x n =或2()x m n -=的形式,再直接开平方; 另外注意方程解得书写格式1x 、2x . 用直接开平方法解下列一元二次方程2435x -= (2)(2)21x x -+= 2(2=9x );51)12(212=-y 4(x -3)2=25 24)23(2=+x()21-350x -= x 2+2x+1=4 2269(52)x x x -+=-2216(1)9(1)x x -=+ 2249(3)16(6)x x -=+22((1x =x 2+4x+4=0 x 2-6x+9=16 x 2-4x+4=10 x 2+x+14=4鸡西市第十九中学学案《配方法》专题班级 姓名空想会想出很多绝妙的主意,但却办不成任何事情。
例:用配方法解方程: x 2+2x -3=0 解:移项得: x 2+2x =3两边同时加1得: x 2+2x +1=3+1配方得: 2)1(+x =4 解得: x +1=2±∴ x +1=2或x +1=2-∴ 11=x ,32-=x1、若2228170x x y y ++-+=,求,x y 的值。
2、求241x x -+的最小值。
用配方法解方程0662=--y y 0542=--x x 9642=-x xy 2+22y-4=0; x 2+8x -2=0 x 2-5x -6=0.34322x x =-021232=-+x x 037322=-+x xx x 4232=- 01322=-+x x 07232=-+x x鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案一元二次方程根与系数的关系一、学习目标:1、掌握一元二次方程根与系数的关系。
《一元二次方程的解法——配方法》的教学设计方案
《一元二次方程的解法——配方法》的教学设计方案学习主题介绍学习主题名称:《一元二次方程的解法配方法》主题内容简介:一元二次方程的解法之一配方法,它是一元二次方程解法中的一个最为重要的解法。
是在学完直接开平方法的基础上,完全平方公式和解方程两个学问的综合运用和升华。
通过本节课的教学使同学明确配方法是解方程的通法,同时会依据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
学习目标分析1.理解配方法。
2.会利用配方法娴熟、敏捷地解二次项系数为1的一元二次方程。
3.会用配方法解简洁的一元二次方程。
4.通过对一元二次方程配方法解法的教学,领悟一元二次方程的应用及意义,进一步了解数学与实际生活的紧密联系。
学情分析前需学问把握状况:九班级同学有剧烈的奇怪心和求知欲。
当他们在解决实际问题时,发觉要解的方程不再是以前所学过的(x+m)2=n(n0),他们自然会想进一步讨论和探究ax2+bx+c=0(a0)这类型的方程的解法。
而从同学的认知结构上来看,前面我们已经系统的讨论了完全平方公式、二次根式,这就为我们连续讨论用配方法解一元二次方程奠定了基础。
对微课的熟悉:这班同学对微课熟悉只停留在简洁的了解环节。
运用到课堂中,还是第一次,所以在运用微课学习这个方式上,同学还是很不习惯的。
同学特征分析学习态度:同学能乐观地参与到微课视频学习中,也乐于完成学习任务。
态度仔细。
学习风格:同学能仔细的观看微课,但需要引导同学大胆探究,乐观表达自己的观点,对学习的内容有较强的主动性。
微课用于同学学习的教学策略分析微课用于同学学习的目的:强化同学的留意力。
通过新型的方式,更易于同学认知。
更直观,生动形象的展现出教学内容。
更简单强化巩固学问。
微课用于同学学习的时机:对课文的重难点环节,引入微课,能让同学学得更轻松。
微课用于同学学习的方式:在课堂上让同学通过自主观看视频,再通过小组争论合作,探究的方式,引导同学学习新学问。
《一元二次方程的解法-配方法》教学设计2
21.2.1配方法一、学习目标知识与技能:理解配方法,会用配方法对一元二次方程进行配方。
过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法。
情感、态度与价值观:让学生在独立思考和合作探究中感受成功的喜悦,培养学生勇于探索的良好的学习习惯;让学生感受数学的严谨性以及数学结论的确定性。
二、学习重难点学习重点:运用配方法解数字系数的一元二次方程学习难点:发现并理解配方的方法三、学情分析1.知识掌握上,九年级学生学习了平方根的意义。
即如果X2=a,那么X=±√a。
他们还学习了完全平方式X2+2Xy+y2=(X+y)2.这对配方法解一元二次方程奠定了基础。
2.学生学习本节的障碍。
学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析。
3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。
当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。
而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法解一元二次方程奠定了基础。
四、、教学准备:课件、学案。
五、学导过程:(-)回顾旧知1、 解一元二次方程的基本思路2、用直接开平方的方法解一元二次方程(1) x 2 = 121 (2) (X+3)2=54、因式分解的完全平方公式思考:X 2+2ax+ =(x+a) 2(二)、探究1、探究一配成完全平方式你发现了什么规律? ___)(___)(___)(___)(22222222____21)4(_____5)3(_____8)2(_____2)1(-+-+=+-=++=+-=++y yy y x x x x y y x x2、 探究二3、探究三以上解法中,为什么在方程x 2+6x=-4两边加32?加其他数行吗?配方法的定义:4、 探究四我们刚才解的方程x 2+6x+4=0你觉得用配方法解一元二次方程的一般步骤有哪些? 最关键的是哪一步?(三)、总结用配方法解二次项系数为1的一元二次方程的步骤:(四)、随堂练习1.用配方法解方程 X 2 + 8X + 7 = 0方程可化为( ) A(x-4)2=9 B(x+4)2=9C(x-8)2=16 C(x+8)2=572.用配方法解方程 x 2 + x = 2 应把方程两边同时加上( ) A 、 B 、 C 、D 、 3.若代数式X 2 + 2(m+1)X + 25是完全平方式,则m 的值是?0462=++x x 想一想如何解方程( )A、4B、 - 6C、4或– 6D、 - 1(五)、例题分析例1 解下列方程(1)8x1=0 (2)21=3x(3)36x4=0(六)、随堂练习(1)3x2+6x-4=0(2)4x2-6x-3=0 (3)x2+4x-9=2x-11 (4)x(x+4)=8x+12(七)、学导反思:谈谈你的收获:(八)、课后作业:教科书第17页习题21.2第3题六、拓展延伸试试你的应用能力若 X2+Y2+4X-6Y+13=0,求X y的值。
2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案
2用配方法求解一元二次方程第1课时 用配方法解二次项系数为1的一元二次方程 导学案学习目标1、会用配方法解二次项系数为1的一元二次方程,探究配方法的意义。
2、通过以前所学的开平方方法,初步了解配方法;3、牢记配方法的一般步骤.学习过程一.复习回顾:1.利用直接开平方法解下列方程(1)9x 2=1 (2)(x+3)2=52.能利用直接开平方法求解的一元二次方程具有什么特征?3.下列方程能用直接开平方法来解吗?(1)x 2+12x+36=9(2)x 2+6x-15=0二.新课学习:1.例题练习交流探讨并回答问题:(1)你会如何解此方程:x 2-6x-40=0 呢?移项,得 x 2-6x= 40方程两边都加上32(一次项系数一半的平方),得x 2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x 1=10,x 2=-4(2)做一做,填一填(1)x 2+2x+ =(x+ )2(2)x 2-8x+ =(x- )2(3)y 2+5y+ =(y+ )2(4)y 2-21y+ =(y- )2问题:你能从中总结出什么规律吗?2、例题学习并思考下列问题:例1: 用配方法解方程:x 2+12x-15=0解:移项得x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x 1=651-;x 2=-651-(1)配方法的特点?(2)配方法的步骤?三.尝试应用:1、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 2、用配方法把方程210x x +-=化为21()2x m +=,则m= .3、用配方法解方程:x 2-23x+118=0;四.自主总结:1、配方法:通过配成 的方法得到了一元二次方程的根,这种解一元二次方程的方法称为 .2、用配方法解一元二次方程的步骤::把常数项移到方程的右边;:方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式:根据平方根意义,方程两边开平方;:解一元一次方程;:写出原方程的解.五.达标测试一、选择题1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x+2)2=3B .(x-2)2=3C .(x-2)2=5D .(x+2)2=52.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=23.用配方法将代数式a 2+4a-5变形,结果正确的是( )A. (a+2)2-1B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9 二、填空题4.填上适当的数,使下面各等式成立:(1)x 2+3x+_______=(x+________)2;(2)_______-3x+14=(3x_______)2; (3)4x 2+_____+9=(2x________)2; (4)x 2-px+_______=(x-_______)2;(5)x 2+b a x+_______=(x+_______)2.5.x 2x+_____=(x-______)2.6.在横线上填上适当的数或式,使下列等式成立:(1)x 2+px+________=(x+_______)2;(2)x 2+b ax+_________=(x+_______)2 三、解答题7.用配方法解方程:(1)x 2+4x-3=0(2)x 2﹣4x+1=0.达标测试答案:一、选择题1.A .【解析】试题分析:移项得,x 2+4x=-1,配方得,x 2+4x+22=-1+4,(x+2)2=3,故选A .2.B 【解析】原方程化为22441,(2)1,x x x -+=-=故选B3.D 【解析】a 2+4a-5=a 2+4a+4-4-5=(a+2)2-9,故选D .二、填空题 4.(1)93,42;(2)9x 2,12-;(3)12x ,+3;(4)2,42p p ;(5)22,42b b a a5.12;2 【解析】试题分析:根据常数项等于一次项系数一半的平方,即可得到结果。
《用配方法求解一元二次方程二》优秀教案
第二章一元二次方程2.用配方法求解一元二次方程(二)一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。
学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。
二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。
这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:①经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;②经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;③能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力三、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第一环节复习回顾活动内容:回顾配方法解二次项系数为1的一元二次方程的基本步骤。
活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。
实际效果:教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,2-6-40=0移项,得2-6= 40方程两边都加上32一次项系数一半的平方),得2-632=4032即(-3)2=49开平方,得-3 =±7即-3=7或-3=-7所以1=10,2=-4学生一般都能整理出配方法解方程的基本步骤:通过对这个方程基本步骤地熟悉学生们顺畅的理清思路,掌握了每一步的理论依据,增强了解题的信心,达到预期的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时一元二次方程的解法
一、知识目标
1、会用配方法二次项系数不为1的一元二次方程.
2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义。
3、在用配方法解方程的过程中,体会转化的思想。
重点:使学生掌握用配方法解二次项系数不为1的一元二次方程 难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式
二、知识准备
1、用配方法解下列方程:
(1)x 2-6x-16=0; (2)x 2+3x-2=0;
2、请你思考方程x 2-
2
5x+1=0与方程2x 2-5x+2=0有什么关系?
三、学习内容
如何解方程2x 2-5x+2=0?
点拨:
对于二次项系数不为1的一元二次议程,我们可以先将两边同时除以二次项系数,再利用配方法求解
四、典型例题
例1、解方程:01832=++x x
例2、-01432=++x x
五、知识梳理
1、对于二次项系数不为1的一元二次方程,用配方法求解时要注意什么?
2、用配方法解一元二次方程的步骤是什么?
系数化一,移项,配方,开方,解一元二次方程
六、达标检测
1、填空:
(1)x 2-3
1x+=(x-)2, (2)2x 2-3x+=2(x-)2. (3)a 2+b 2+2a-4b+5=(a+)2+(b-)2
2、用配方法解一元二次方程2x 2-5x-8=0的步骤中第一步是。
3、方程2(x+4)2-10=0的根是.
4、用配方法解方程2x 2-4x+3=0,配方正确的是()
A.2x 2-4x+4=3+4
B. 2x 2-4x+4=-3+4
C.x 2-2x+1=23+1
D. x 2-2x+1=-2
3+1 5、用配方法解下列方程:
(1)04722=--t t ;(2)x x 6132=-
(3)x x 10152=+(4) 3y 2-y-2=0
6、已知(a+b)2=17,ab=3.求(a-b)2的值.
七、学习反馈:
1、本节课有困惑的题目是:
2、本节课的学习收获是:。