一次函数的图像和性质教学设计

合集下载

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

三、教学难点1. 一次函数图像的性质的理解和应用。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。

2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。

3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。

4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。

5. 练习:让学生绘制一些一次函数的图像,并分析其性质。

7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。

8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。

六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。

2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。

七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。

八、课后作业1. 完成练习册上的一次函数相关习题。

2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。

九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。

2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。

十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。

2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。

3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。

一次函数的图像与性质教学设计

一次函数的图像与性质教学设计

教学设计
12.2第2课时一次函数的图象典案高效课堂
移得到,具体平移的方法可以借助于示意图来帮助确定.
教师点拨:只要k相同,直线就平行,一次函数y=kx+b(k≠0)是由正比例函数y=kx(k≠0)的图象经过向上或向下平移|b|个单位得到的.b>0,直线向上移;b<0,直线向下移.
解:y=-1
2x+3是由直线y=-
1
2x向上平移3个单位
得到的;而y=-1
2x-5是由直线y=-
1
2x向下平移5
个单位得到的.
预备练习:
7正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()
8在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,得到的直线的表达式是()
A.y=-2x-2B.y=-2x+6
C.y=-2x-4 D.y=-2x+4。

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇一次函数篇一11.2 一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义。

2.掌握正比例函数解析式特点。

3.理解正比例函数图象性质及特点。

4.能利用所学知识解决相关实际问题。

教学重点1.理解正比例函数意义及解析式特点。

2.掌握正比例函数图象的性质特点。

3.能根据要求完成转化,解决问题。

教学难点正比例函数图象性质特点的掌握。

教学过程ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。

4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30某4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。

函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。

即y=200某45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。

尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

类似于y=200x这种形式的函数在现实世界中还有很多。

它们都具备什么样的特征呢?我们这节课就来学习。

ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长l随半径r的大小变化而变化。

3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。

.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。

一次函数图象和性质优质课教案完美版

一次函数图象和性质优质课教案完美版

3、猜想:一次函数 y=kx+b 的图象是什么形状,它与直 y=kx 平移(b)个单
线 y=kx 有什么关系?
位得到(当 b>0,向
上平移,当 b<0,向
下平移)
归纳性质:
(二)一次函数的性质。
当 k>0,y 随着 x 增
1、画出函数 y=x+1, y=-x+1, y=2x+1 y=-2x+1 的图象,大而增大。
移____个单位长度而得到。
哪两个点由学生讨
(2)、比较两个函数解析式,试解释函数图象的位置关 论。通常选点(0, 巩固“两点法”
系。
b)(- ,0)
画图的方法。
2、在同一坐标系中画出函数 y=2x-1 与 y=-0.5x+1 的图
象。
学生归纳结果,教师
总结:一次函数
y=kx+b 图象是一条
直线,可看成直线
的图象及性质作
的图象也是直线吗?从解析式上看,正比例函数与一次
好铺垫。
函数相差什么?如果体现在图象上又会有怎样的关系
呢?
二、探究新知
学生用描点法画图,
(一) 正比例函数与一次函数图象的关系
并 通 过 填 表 观 察 比 通过画图比较正
1、 用描点法在同一坐标系中画出函数 y=-6x 与 y=-6x+5 较其异同点。
而______。
归纳:b 决定直线
3、在同一坐标函数中画出下列函数图象归纳 y=kx+b(k、y=kx+b 与 y 轴交点
b 是常数,k≠0)中 b 对函数图象的影响。
的坐标(0,b)。
1、y=x-1 y=x y=x+1
当 b>0 时,交点在

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

一次函数的图象和性质教案

一次函数的图象和性质教案

一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。

2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。

3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。

二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。

2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。

四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 利用数形结合法,让学生直观地理解一次函数的图象特征。

3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。

五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。

2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。

3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。

4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。

2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。

3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。

七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。

2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。

一次函数的图像和性质教学设计

一次函数的图像和性质教学设计

19.2.2《一次函数的图像和性质》(2)教学设计
柴沟堡第二中学宋旭飞
一、教学目标
1.能从图象角度理解正比例函数与一次函数的关系;
2.掌握一次函数图象及其画法,理解一次函数的性质;
3.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用.
二、教学重点
掌握一次函数的图象和性质,一次函数与正比例函数的关系.
三、教学难点
理解一次函数的图象和性质,并能灵活应用.
四、教学方法
教师启发与学生自主探究相结合
五、教学手段
利用多媒体等教学手段
六、过程设计。

一次函数的图象和性质数学教案

一次函数的图象和性质数学教案

一次函数的图象和性质数学教案
标题:一次函数的图象和性质
一、教学目标
1. 学生能够理解并掌握一次函数的基本概念。

2. 学生能够通过解析式画出一次函数的图像,并了解其性质。

3. 学生能够运用一次函数解决实际问题。

二、教学内容
1. 一次函数的定义
2. 一次函数的解析式与图像
3. 一次函数的性质
4. 一次函数的应用
三、教学过程
1. 引入新课:通过生活中的实例引入一次函数的概念,如商品的价格与销售量的关系等。

2. 新课讲解:
a) 一次函数的定义:形如y=kx+b(k≠0)的函数称为一次函数,其中k是斜率,b是截距。

b) 一次函数的解析式与图像:学生在教师的指导下,通过坐标系绘制一次函数的图像,并通过观察图像总结一次函数的性质。

c) 一次函数的性质:一次函数的图像是一条直线,直线的斜率决定了一次函数的增长速度,截距决定了函数图像与y轴的交点位置。

d) 一次函数的应用:结合具体例子,让学生学会用一次函数解决实际问题。

3. 练习巩固:设计一些题目,让学生进行练习,以检验他们对一次函数的理解程度。

4. 总结回顾:回顾本节课的主要内容,强调一次函数的定义、图像和性质。

四、作业布置
为学生布置一些一次函数的题目,让他们在课后继续深化理解和掌握一次函数的相关知识。

五、教学反思
对本次教学进行反思,包括教学方法是否有效,学生的学习效果如何等,以便于改进今后的教学。

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。

能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标知识与技能:1. 理解一次函数的概念,掌握一次函数的表示方法。

2. 学会绘制一次函数的图像,并能分析图像的性质。

3. 能够运用一次函数解决实际问题。

过程与方法:1. 通过实例引入一次函数,引导学生发现一次函数的规律。

2. 利用数形结合的思想,让学生通过绘制函数图像来理解函数的性质。

3. 运用合作交流的方式,培养学生解决问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。

2. 培养学生勇于探索、积极思考的科学精神。

3. 培养学生合作交流的良好习惯。

二、教学重点与难点重点:1. 一次函数的概念及表示方法。

2. 一次函数图像的特点。

3. 一次函数的性质。

难点:1. 一次函数图像的绘制。

2. 一次函数性质的理解与应用。

三、教学准备教师准备:1. 教学课件或黑板。

2. 函数图像的示例。

3. 实际问题情境的材料。

学生准备:1. 学习一次函数的相关知识。

2. 准备绘图工具(如直尺、圆规、橡皮等)。

四、教学过程1. 导入:通过一个实际问题情境,引入一次函数的概念。

2. 新课导入:讲解一次函数的定义,引导学生掌握一次函数的表示方法。

3. 课堂讲解:讲解一次函数的图像特点,让学生通过绘制函数图像来理解函数的性质。

4. 课堂练习:给出一些一次函数的实例,让学生分析其图像和性质。

5. 课堂小结:总结一次函数的图像和性质,引导学生掌握一次函数的解题方法。

五、课后作业1. 绘制一些一次函数的图像,并分析其性质。

2. 运用一次函数解决实际问题。

3. 准备课堂交流分享。

六、教学评估1. 课堂讲解:通过观察学生在课堂讲解中的参与程度和理解程度,评估学生对一次函数概念和表示方法的掌握情况。

2. 课堂练习:通过检查学生在课堂练习中的解答,评估学生对一次函数图像和性质的理解。

3. 课后作业:通过批改学生的课后作业,评估学生对一次函数图像和性质的掌握情况以及解决实际问题的能力。

《一次函数的图像及性质》教学设计 .docx

《一次函数的图像及性质》教学设计 .docx

《一次函数的图像及性质》教学设计教学目标(一)知识与技能1、通过实际操作与探索,学生会利用两个合适的点画出一次函数图像2、通过数形结合,学生能根据图像和解析式y =kx +b(k ≠ 0),理解当k > 0 和k < 0 时图像的变化情况,从而理解一次函数的增减性。

(二)过程与方法通过观察图像、类比正比例函数性质概括一次函数性质的活动,发展数学感知和数学概括能力,体会数形结合的思想,发展几何直观思维。

(三)情感态度与价值观在画图过程中体验数与形的内在联系,通过一系列富有探究性的问题,培养学生的实践论证意识。

教学重难点:教学重点:利用数形结合的方法,通过画图观察探究,概括一次函数的性质,理解并掌握函数的增减性与自变量系数正负形的关系。

教学难点:以坐标为桥梁,探究函数图像特征和变量间的对应关系。

学生分析:通过正比例函数的学习,学生已经初步体会了函数的研究方法,具有数形结合的探究理念。

一次函数的解析式比正比例函数多了常数b ,所以可类比正比例函数的研究方法,由画图引入,引导学生观察概括函数图像的性质,再回归到解析式的特点,在理解的基础上,心中有图,脑中有式,而非仅停留在结论的记忆层次。

教学内容分析网课阶段,如何在平台上与学生无障碍沟通,实时掌握其学习动态是至关重要的。

一次函数是数学中最简单、最基本的函数之一,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

本节课与正比例函数的图形和性质有着紧密的联系,学生已有探究基础,便可增加与生活实际的联系、学生互动的设计。

在教学中,通过设置环环相扣的问题,引导学生自主观察、探索,让他们在学习过程中体验、感悟函数思想和实际应用的联系,激发学生学习函数的信心和兴趣。

教学媒体应用教学过程一、创设情境,引入新课播放网络视频动画《疫情扩散中的函数问题》问题 1:在视频中出现的函数都是以什么样的形式体现出来的?问题 2:函数图像为何能反映疫情扩散情况?我们怎样“看图说话”?设计意图:当下,疫情是人们普遍关注的问题,由此引入可激发学生学习兴趣,让学生初步体会到数学建模思想。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用一次函数解决实际问题的能力。

二、教学内容:1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

3. 一次函数图像的绘制方法。

4. 一次函数在实际问题中的应用。

三、教学重点与难点:1. 重点:一次函数的概念,一次函数图像的性质,一次函数图像的绘制方法。

2. 难点:一次函数图像的性质的理解与应用。

四、教学方法:1. 采用讲授法,讲解一次函数的概念、表示方法、图像性质等。

2. 采用演示法,展示一次函数图像的绘制过程。

3. 采用案例分析法,分析一次函数在实际问题中的应用。

五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,激发学生的学习兴趣。

2. 新课导入:讲解一次函数的概念、表示方法。

3. 案例分析:分析一次函数在实际问题中的应用。

4. 课堂互动:让学生上台演示一次函数图像的绘制过程,其他学生进行评价。

6. 课后作业:布置有关一次函数的练习题,巩固所学知识。

六、教学评价:1. 通过课堂互动、课后作业和课堂表现,评价学生对一次函数概念和表示方法的掌握情况。

2. 通过绘制一次函数图像和分析图像性质,评价学生对一次函数图像性质的理解和应用能力。

3. 通过解决实际问题,评价学生运用一次函数解决实际问题的能力。

七、教学资源:1. PPT课件:展示一次函数的概念、表示方法、图像性质等内容。

2. 黑板:用于板书重要概念和公式。

3. 练习题:用于巩固所学知识。

4. 实际问题案例:用于引导学生运用一次函数解决实际问题。

八、教学进度安排:1. 第1-2课时:讲解一次函数的概念和表示方法。

2. 第3-4课时:讲解一次函数图像的性质。

3. 第5-6课时:讲解一次函数图像的绘制方法。

4. 第7-8课时:分析一次函数在实际问题中的应用。

九、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、作业完成情况等。

一次函数图像与性质教学设计(8篇)

一次函数图像与性质教学设计(8篇)

一次函数图像与性质教学设计(8篇)第1篇:一次函数图像性质教学反思《一次函数的图象和性质》教学反思从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。

通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。

究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。

这样,教师才能灵活的把握课堂教学。

而现在,教师缺乏的正是这一点,还是为了教而教。

按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。

而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。

从这一角度讲,教师应在把握知识的基础上。

结合学生的表现,灵活多样的处理知识。

学生是学习的主体,学生活动是新教材的一大特点。

新教材在知识安排上,往往从实例引入,抽象出数学模型。

通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。

侧重于学生能力的培养,让学生知道学什么,如何学。

因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。

一是通过画函数图象理解一次函数图象的形状。

二是两点法画一次函数的图象。

三是探究一次函数的图象与 k、b 符号的关系。

在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。

值得老师们探讨。

为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。

如在活动一中,要求学生观察图象的形状,两条直线的位置关系。

在活动二中,强调两点法(直线与坐标轴的交点)画直线。

在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。

学生目标明确,操作性强,受到了较好的效果。

本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。

一次函数的图像与性质教学设计

一次函数的图像与性质教学设计

一次函数的图像和性质教学设计一、教学目标知识与技能目标:1.掌握一次函数y=kx+b(k≠0)的性质.2.能利用一次函数的有关性质解决有关问题。

过程与方法目标:1.经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质的影响;培养学生合作交流探究意识。

2.观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力.情感态度价值观目标:通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。

二、教学重点和难点教学重点:掌握一次函数y=kx+b(k≠0)的性质. 利用一次函数的有关性质解决有关问题。

教学难点:由一次函数的图像实验归纳出一次函数的性质及对性质的理解。

三、教学方法:观察法,数形结合发、自主探究式教学方法四、教学过程(一)知识回顾:1,正比例函数的一般形式是。

一次函数的一般形式是。

2,一次函数与正比例函数有什么关系?3,正比例函数的图像是什么形状?怎样简洁的画出正比例函数的图像?它的图像有什么样的性质?这节课,我们一起探究一次函数的图像与性质。

(二)画一画1,回顾画函数图像的步骤:(1)列表(2)描点(3)连线2,在准备好的坐标系上画出函数y = 2x – 1 的图像。

(三)观察与思考(1)观察图像可得:一次函数 y=2x -1 的图象是它与X轴和与Y轴的交点分别是猜想:一次函数y=kx+b(k≠0)的图象是一条直线。

疑问:是否所有一次函数的图像都如此呢?验证:在同一坐标系中画出下列函数y=2x, y=2x+1,y=2x-3的图象。

(导学案上画)发现:发现:这几个函数的图象形状都是一条直线,并且倾斜程度__相同。

函数y=2x的图象经过原点,函数y=2x+1的图象与y轴交于点____ ,即它可以看作由直线y=2x向 __ 平移个单位长度而得到。

函数y=2x-3的图象与y轴交于点_ __,即它可以看作由直线y=2x向平移 ____ 个单位长度而得到.结论:因为函数y=2x, y=2x+4,和y=2x-3的图象可以相互平移得到,所以它们的图像形状相同,都是一条直线。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

三、教学难点:1. 一次函数的图象和性质的理解和运用。

2. 实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。

2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。

3. 案例分析:给出实际问题,让学生运用一次函数解决。

4. 巩固练习:设计相关练习题,让学生巩固所学知识。

6. 课后作业:布置相关作业,巩固所学知识。

教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

三、教学难点:1. 一次函数的图象和性质的理解和运用。

2. 实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。

2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。

3. 案例分析:给出实际问题,让学生运用一次函数解决。

4. 巩固练习:设计相关练习题,让学生巩固所学知识。

6. 课后作业:布置相关作业,巩固所学知识。

教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念通过实际生活中的问题,如“某商品的售价与购买数量之间的关系”,引出一次函数的概念。

解释一次函数的表达式为y = kx + b,其中k 是斜率,b 是截距。

1.2 理解斜率和截距的含义解释斜率k 表示函数图象的倾斜程度,斜率为正表示图象向上倾斜,斜率为负表示图象向下倾斜。

解释截距b 表示函数图象与y 轴的交点。

1.3 例题解析提供几个一次函数的例题,让学生理解并应用一次函数的定义与表达式。

1.4 练习题设计一些练习题,让学生巩固对一次函数的定义与表达式的理解。

第二章:一次函数的图象2.1 绘制一次函数的图象解释一次函数图象是一条直线,并且讨论斜率和截距对直线位置的影响。

利用图形计算器或在线绘图工具,让学生绘制一次函数的图象。

2.2 分析一次函数图象的性质讨论一次函数图象的斜率和截距与直线的位置关系。

解释一次函数图象与坐标轴的交点。

2.3 例题解析提供几个关于一次函数图象的例题,让学生理解并应用一次函数图象的性质。

2.4 练习题设计一些练习题,让学生巩固对一次函数图象的理解。

第三章:一次函数的性质3.1 斜率的性质解释斜率的正负与函数图象的倾斜方向的关系。

讨论斜率的绝对值与函数图象的陡峭程度的关系。

3.2 截距的性质解释截距的正负与函数图象与y 轴的交点位置的关系。

讨论截距的绝对值与函数图象与y 轴的距离的关系。

3.3 例题解析提供几个关于一次函数性质的例题,让学生理解并应用一次函数的性质。

3.4 练习题设计一些练习题,让学生巩固对一次函数性质的理解。

第四章:一次函数的应用4.1 线性方程的解法解释如何利用一次函数的性质解决线性方程的问题。

提供一些线性方程的例题,让学生理解并应用解法。

4.2 实际问题应用提供几个实际问题,如“某商品的售价与购买数量之间的关系”,让学生应用一次函数的知识解决问题。

4.3 例题解析提供几个关于一次函数应用的例题,让学生理解并应用一次函数的知识解决实际问题。

中学数学一次函数的图象和性质优秀教案

中学数学一次函数的图象和性质优秀教案

中学数学一次函数的图象和性质优秀教案教学目标:1、使学生会画出一次函数和正比例函数的图象;2、结合图象,使学生理解正比例函数与一次函数的性质;3、在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念.4、通过画正比例函数与一次函数的图象,培养学生的动手能力;教学重点:正比例函数的图象及性质,因为图象是研究性质的前提,而研究性质又是进一步研究函数的基础.教学难点:由函数的图象归纳得出函数的性质及对性质的理解.因为由图象归纳函数的性质是学生首次接触,学生没有基本思路,而且学生思维的深刻性和全面性也不够.教学过程:一、新课引入:提问:1、上节课我们介绍了两种特殊的函数,是哪两种?2、什么是一次函数?什么是正比例函数?由学生口答之后互相评价,纠正出现的错误.这节课我们将要进一步研究这两种函数,主要来研究它们的图象和性质.(板书)二、新课讲解:提问:1.以前我们曾画过y=x的图象,它的图象是什么样的?2.上节课的作业我们曾在同一直角坐标系中画出了三个函数图象:y=2x,y=2x-1,y=2x+1,这个函数图象是什么样的?3.函数y=x,y=2x,y=2x-1,y=2x+1各是什么函数?4.正比例函数与一次函数有什么样的关系?5.你能否由此猜测:一次函数的图象是什么样的?由上述问题,学生很容易得到结论:一次函数的图象是一条直线.教师再加以强调总结并板书.6.由几何知识可得,要画一条直线只要知道几点就可以了?由此问题可给出画一次函数图象的方法:只要先描出两点,再连成直线就可以了.练习一:画正比例函数y=0.5x与y=-0.5x的图象.(出示幻灯)提问:你准备取哪两点来画这两个图象?为什么?由学生充分讨论,对比之后,得出两点,让学生明白取这两点的好处.然后由一名同学上黑板画图,其他同学在练习本上完成.最后再加以总结板书:画正比例函数y=kx的图象,通常取(0,0)和(1,k)两点连线.提问:1.看y=0.5x的图象,随着x的值增大,y的值有怎样的变化趋势?2.再看y=-0.5x的图看,随着x的值增大,y的值有怎样的变化趋势?3.你认为这两个函数图象的变化趋势不同,是由什么因素影响的?这几个问题可由学生讨论回答,有助于培养学生的观察、分析问题的能力和思维的深刻性.在学生回答的基础上,教师加以总结和板书:一般地,正比例函数y=kx有下列性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.我们知道正比例函数是一次函数的特例,那么,正比例函数的这个性质一次函数是不是具有呢?看练习:(出示幻灯)练习二:在同一直角坐标系中画出下列函数的图象:y=2x+1,y=-2x+1.提问:要画这两个函数的图象,你认为取哪两点较好?由学生进行充分的讨论,适当地向学生提示:在坐标平面内,什么样的点好找?(轴上的点)由此启发学生恰当地找出两点,便于画图,形成规律.然后由一名同学上黑板画图,其他同学在练习本上完成.最后加以总结,板书:连线.注意:通常,我们把一次函数y=kx+b的图象叫做直线y=kx+b.提问:观察你所画的图象,一次函数y=kx+b是否具有同正比例函数y=kx相同的性质?有了上次的经验,学生很容易就能得到结论,教师在此基础上总结,板书:一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.练习三:1.P.109中1直接画在书上;2.P.117中2填在书上,口答;3.(出示幻灯)画出函数y=3x+12的图象,利用图象:(2)求y=3,9,-3时对应的x的值;(3)求方程3x+12=0的解.分析:(1)这道题是利用图象解决问题,所以应先画出图象.由一名学生板演,其他同学在练习本上完成.注意:由于本题的数值问题,所以x轴和y轴最好取不同的长度表示不同的数值.(2)若已知x(或y)的值求与它对应值y(或x),应怎样在图上找呢?例如:已知x=-2时,求y的值.由学生先讨论,然后动手作,找到y的对应值,最后回答是怎样作的.(作垂直)(3)你能否找到余下的x与y的对应值?学生作图之后,口答结果.(4)若求方程3x+12=0的解,看方程3x+12=0与函数y=3x+12的关系,实际就是求什么?学生讨论回答,然后加以总结:求方程3x+12=0的解其实就是看函数y=3x+12的图象当y=0时对应的x的值,也就是看图象与x轴交点的横坐标.(三)重点、难点的学习与目标完成过程本节课的'重点是画正比例函数与一次函数的图象及由图象总结得出函数的性质.为了能使学生顺利地掌握画图的方法,首先给学生一个明确的感性认识:一次函数的图象是一条直线,再通过几何知识得到,画一条直线只要知道两点即可,然后又通过实例总结出画正比例函数图象与画一次函数的图象找哪两点较好,加以总结,形成规律,便于学生的记忆和应用.在画完图象的基础上,由学生对图象进行观察,然后教师提出关于变化的问题,对学生加以引导,使学生很顺利地得到正比例函数与一次函数的性质.整节课的关联性较强,一环扣一环,便于学生的思考.三、课堂小结:教师提问,学生思考回答:(1)画正比例函数y=kx的图象取哪两点?(2)画一次函数y=kx+b的图象取哪两点?(3)正比例函数y=kx与一次函数y=kx+b的性质是怎样叙述的?你认为只要记住哪个函数的性质就可以?(一次函数的性质)为什么?(正比例函数是一次函数的特例,一次函数具有的性质正比例函数必具备.)(4)我们是由什么得到函数的性质的?(5)能否考虑由解析式得到正比例函数y=kx与一次函数y=kx+b的性质呢?由学生讨论,看学生的程度决定是否向学生介绍这个问题.答:实际上,看y=0.5x.任取两对对应值(x1,y1)(x2,y2),如果x1>x2,由k=0.5>0,可得0.5x1>0.5x2,即y1>y2.也就是说,对于y=kx,若k>0,则y随x的增大而增大.类似地,可以说明y=-0.5x的性质和y=2x+1,y=-2x+1的性质.四、布置作业1.教材P.111中1、2.2.选做:P.112B.1。

一次函数的图像与性质教学设计

一次函数的图像与性质教学设计

探究一次函数的图像与性质教学设计一、教材分析本节课安排在正比例函数与一次函数的概念和函数图像画法之后。

目的是通过这个节课的学习使学生掌握正比例函数和一次函数图像和性质,并能简单应用性质。

它既是探究其他函数性质的基础,又是后续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。

本节教学内容还是学生进一步学习“数形结合”这个数学思想方法的很好素材。

作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

二、学情分析学生已经学习了一次函数和正比例函数的定义、一次函数的图像形状以及会选择两点来画直线。

会画函数图像和一定的探究水平。

三、教学目标知识与技能目标:经历探索由一次函数图像观察归纳一次函数性质的过程,掌握并应用性质解决问题。

过程与方法目标:经历观察、猜想、实验、归纳、推理、交流等数学活动过程,使学生体会和学会探索问题的一般方法,同时渗透数形结合、数学建模、类比和分类讨论数学思想。

情感态度价值观目标:通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。

四、教学重点和难点教学重点是一次函数的图像和性质教学难点是由一次函数的图像实验归纳出一次函数的性质及对性质的理解。

五、教学方法:数学实验法、自主探究式教学方法六、教学过程设计变化对直线的影响。

(2)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;b相同,直线交于一点学生探究后,教师即时给予点拨指导,并用课件配合演示b的变化对直线的影响。

实验探究三:K、b对函数y=kx+b的图像位置的影响启发学生根据K、b的符号,探究画图,得出结论:①如图(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).给学生留有充足的时间与空间实行实验探索,让学生自己发现错误、自行纠错,力求使学生在充分的思维冲突中,强化对性质的理解和把握,学会研究问题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数的图像和性质》教学设计
一、教学目标
1.掌握一次函数图象及其画法,理解一次函数的性质;
2.体会数形结合思想、分类讨论思想在分析问题和解决问题中的作用;
3.体会从特殊到一般的研究问题的方法;
4.提高学生动手实践的能力和与他人交流合作的意识.
二、教学重点
掌握一次函数的图象和性质。

三、教学难点
理解一次函数的图象和性质,并能灵活应用.
四、教学方法
教师启发与学生自主探究相结合
五、教学手段
利用多媒体等教学手段
六、过程设计。

相关文档
最新文档