分解因式基础讲义附答案
因式分解经典讲义(精)
第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。
(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。
3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。
(2 )步骤:①先确定____________,②后____________________ 。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“”号。
4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。
人教版 小学8年级 数学上册 因式分解的四种方法(讲义及答案)
精品资料·人教版初中数学因式分解的四种方法(讲义)课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解的四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法的时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()+++=++x p q x pq x p x q3.因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+;(2)32a a a --+; 解:原式=解:原式=(3)()(1)()(1)a b m b a n -+---;解:原式=(4)22()()x x y y y x ---;(5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+;(10)22222()4a b a b +-.解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---;(4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-.解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --;解:原式=解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;解:原式=(6)222221x xy y x y -+-++.解:原式=【参考答案】课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
人教版 八年级数学 因式分解讲义 (含解析)
第9讲因式分解知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习因式分解。
在初中重大比赛和考试中直接考因式分解的题很少,但要用到因式分解的题却很多,很多人解题拿不下就是因为因式分解不过关。
中学代数主要做好3件事情:恒等变形与计算、分类讨论、数形结合,因式分解是恒等变形的基础,是个极为重要的工具,因此本节课要好好学习并掌握。
知识梳理讲解用时:20分钟课前回顾整式的乘法回顾:(1)单项式×单项式(2)单项式×多项式a(b+c)=ab+ac(3)多项式×多项式(a+b)·(c+d)=ac+bc+ad+bd乘法公式回顾:1、平方差公式:(a+b)·(a-b)=a²-b²2、完全平方公式:(a±b)²=a²±2ab+b²幂的计算回顾:(m,n都是整数)(m,n都是整数)()n n nab a b=⋅(n是整数)m n m na a a-÷=(m、n都是整数且a≠0)nmnm aaa+=⋅mnnm aa=)(上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.先来做一个简单的复习吧三、十字相乘法:要点:一拆(拆常数项),二乘(十字相乘),三验(验证十字相乘后的和是否等于一次项)举例:x²+x-6x -2x 3 (-2x)+3x=x对于一般地:四、分组分解法:分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式.例如:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(a+b)(x+y)因式分解过程的一般步骤和注意点:1、一般步骤:先提公因式,再运用公式法或者十字相乘法,后分组分解,最后是重新整理再分解.2、注意点:在分解因式的时候要注意各个因式是否还能继续分解,直到每一个因式都不能继续分解为止.课堂精讲精练【例题1】分解因式:2(n﹣2)+m(2﹣n)= .【答案】(2﹣m)(n﹣2)【解析】直接提取公因式(n﹣2)进而分解因式即可.解:原式=2(n﹣2)﹣m(n﹣2)=(2﹣m)(n﹣2).故答案为:(2﹣m)(n﹣2).讲解用时:2分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:关键是看出题目中的公因式,注意互为相反数的式子提一个负号即可. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】因式分解:3x2﹣18x= .【答案】3x(x﹣6)【解析】直接找出公因式进而提取得出答案.解:3x2﹣18x=3x(x﹣6).故答案为:3x(x﹣6).讲解用时:2分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:先找数字的最大公约数,再找含相同字母的最低次幂.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习1.2】分解因式8x2y﹣2y= .【答案】2y(2x+1)(2x﹣1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案.解:8x2y﹣2y=2y(4x2﹣1)=2y(2x+1)(2x﹣1).故答案为:2y(2x+1)(2x﹣1).讲解用时:2分钟解题思路:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.教学建议:先找数字的最大公约数,再找含相同字母的最低次幂.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】因式分解:m²-n²= .9x2﹣4= .【答案】(m+n)(m-n) (3x﹣2)(3x+2)【解析】直接利用平方差公式分解因式得出即可.解:m²-n²=(m+n)(m-n).9x2﹣4=(3x﹣2)(3x+2).故答案为:(3x﹣2)(3x+2).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,熟练应乘法公式是解题关键.教学建议:注意看到平方数,并且是异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】分解因式:x2﹣9y2【答案】(x+3y)(x﹣3y)【解析】直接利用平方差公式分解因式即可.解:原式=(x+3y)(x﹣3y).故答案为:(x+3y)(x﹣3y).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用公式是解题关键.教学建议:注意看到平方数,并且是异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习2.2】因式分解:9﹣p2= .【答案】(3﹣p)(3+p)【解析】直接利用平方差公式分解因式得出答案.解:9﹣p2=(3﹣p)(3+p).故答案为:(3﹣p)(3+p).讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.教学建议:注意看到平方数,并且是符号异号的情况想到用公式法中的平方差公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】分解因式:x2﹣x+1= .【答案】(x﹣1)2【解析】直接利用完全平方公式a2﹣2ab+b2=(a﹣b)2把多项式分解即可.解:原式=(x﹣1)2.故答案为:(x﹣1)2.讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,关键是掌握完全平方公式a2﹣2ab+b2=(a﹣b)2.教学建议:注意看到有3项,2项是平方和的形式且符号同号,另1项是乘积的2倍的形式想到用公式法中的完全平方公式计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】因式分解:﹣x2﹣y2+2xy= .【答案】﹣(x﹣y)2【解析】直接利用完全平方公式分解因式得出答案.解:原式=﹣(x2+y2﹣2xy)=﹣(x﹣y)2.故答案为:﹣(x﹣y)2.讲解用时:2分钟解题思路:此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.教学建议:注意看到有3项,2项是平方和的形式且符号同号,另1项是乘积的2倍的形式想到用公式法中的完全平方公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习3.2】分解因式:m2+2mn+n2= .【答案】(m+n)2【解析】直接利用完全平方公式分解因式得出答案.解:m2+2mn+n2=(m+n)2.故答案为:(m+n)2.讲解用时:1分钟解题思路:此题主要考查了公式法分解因式,正确应用公式是解题关键.教学建议:直接套用完全平方公式计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】因式分解:x2﹣4x+3= .【答案】(x﹣1)(x﹣3)【解析】把3写成﹣1×(﹣3),又﹣1﹣3=﹣4,所以利用十字相乘法分解因式即可.解:x2﹣4x+3=(x﹣1)(x﹣3).故答案为:(x﹣1)(x﹣3).讲解用时:2分钟解题思路:本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.教学建议:学会画十字相乘法图示.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【答案】(1)(m+2n)(2m+n);(2)42cm.【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.讲解用时:4分钟解题思路:此题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题关键.教学建议:观察图形,学会十字相乘法分解因式.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题5】分解因式:m2﹣25+9n2+6mn.【答案】(m+3n+5)(m+3n﹣5)【解析】首先分组,进而利用完全平方公式以及平方差公式分解因式得出答案.解:原式=(m2+6mn+9n2)﹣25=(m+3n)2﹣25=(m+3n+5)(m+3n﹣5).讲解用时:3分钟解题思路:此题主要考查了分组分解法分解因式,正确分组是解题关键.教学建议:学会运用分组分解法来解题.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习5.1】因式分解:a2﹣2ab+b2﹣1.【答案】(a﹣b+1)(a﹣b﹣1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2﹣2ab+b2可组成完全平方公式,可把前三项分为一组.解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).讲解用时:3分钟解题思路:本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组.教学建议:学会运用分组分解法来解题.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题6】因式分解(1)ax2﹣16ay2(2)﹣2a3+12a2﹣18a(3)(x+2)(x﹣6)+16(4)a2﹣2ab+b2﹣1.【答案】(1)a(x+4y)(x﹣4y)(2)﹣2a(a﹣3)2 (3)(x﹣2)2;(4)(a﹣b+1)(a﹣b﹣1).【解析】(1)先提取公因式,然后利用平方差公式(2)先提取公因式,然后利用完全平方公式(3)先展开,然后利用完全平方公式(4)先分组,然后再利用完全平方公式和平方差公式.解:(1)原式=a(x2﹣16y2)=a(x+4y)(x﹣4y)(2)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2(3)原式=x2﹣4x+4=(x﹣2)2(4)原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1)讲解用时:3分钟解题思路:本题考查因式分解,解题的关键是熟练运用提取公因式法与公式法,本题属于基础题型.教学建议:熟练掌握因式分解的几种方法并熟练运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc【答案】(1)4x(2x﹣y);(2)3x2(x+y)2;(3)(a﹣b)(a+c).【解析】(1)提取公因式4x即可得;(2)先提取公因式3x2,再利用公式法分解可得;(3)利用分组分解法,将a2﹣ab、ac﹣bc分别作为一组提取公因式后,再分解可得.解:(1)原式=4x(2x﹣y);(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2;(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).讲解用时:3分钟解题思路:本题主要考查因式分解,解题的关键是熟练掌握提公因式法、公式法和分组分解法因式分解.教学建议:熟练掌握因式分解的几种方法并熟练运用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知xy=﹣3,满足x+y=2,求代数式x2y+xy2的值.【答案】﹣6【解析】将原式提取公因式xy,进而将已知代入求出即可.解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy(x+y)=﹣3×2=﹣6.讲解用时:3分钟解题思路:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.教学建议:先因式分解,再求代数式的值.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】已知ab=﹣2,a﹣b=3,求a3b﹣2a2b2+ab3的值.【答案】﹣18【解析】本题要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.讲解用时:3分钟解题思路:本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.教学建议:先因式分解,再求代数式的值.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】分解因式:2m2﹣m= .【答案】m(2m﹣1)【解析】直接把公因式m提出来即可.解:2m2﹣m=m(2m﹣1).故答案为:m(2m﹣1).讲解用时:1分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】因式分解(1)m2﹣4n2(2)2a2﹣4a+2.【答案】(1)(m+2n)(m﹣2n);(2)2(a﹣1)2【解析】根据因式分解法即可求出答案.解:(1)原式=(m+2n)(m﹣2n)(2)原式=2(a2﹣2a+1)=2(a﹣1)2讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】因式分解:(1)3a(x﹣y)﹣5b(y﹣x)(2)x6﹣x2y4.【答案】(1)(x﹣y)(3a+5b);(2)x2(x﹣y)(x+y)(x2+y2)【解析】根据因式分解法即可求出答案.解:(1)原式=(x﹣y)(3a+5b)(2)=x2(x4﹣y4)=x2(x2﹣y2)(x2+y2)=x2(x﹣y)(x+y)(x2+y2)讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业4】已知a+b=2,ab=2,求a2b+ab2的值.【答案】4【解析】首先提公因式ab,进而分解因式得出答案.解:∵a+b=2,ab=2,∴a2b+ab2=ab(a+b)=2×2=4.讲解用时:2分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2a2+3ab+b2,并利用你所画的图形面积对2a2+3ab+b2进行因式分解.【答案】(1)2a2+2ab=2a(a+b);(2)2a2+3ab+b2=(2a+b)(a+b).【解析】(1)根据正方形面积求出即可;(2)画出图形,即可得出答案,根据图形和矩形面积公式求出即可.解:(1)2a2+2ab=2a(a+b),故答案为:2a2+2ab=2a(a+b),(2)如图所示:2a2+3ab+b2=(2a+b)(a+b).讲解用时:4分钟难度:4 适应场景:练习题例题来源:无年份:2018。
因式分解-讲义
因式分解(一)-一般方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).1.(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4、(1)x2-3xy-10y2+x+9y-2= ;(2)x2-y2+5x+3y+4= ;(3)xy+y2+x-y-2= ;(4)6x2-7xy-3y2-xz+7yz-2z2= ;(5)2x2-7xy-22y2-5x+35y-3= .因式分解(二)--求根法分解因式我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例1 分解因式:x3-4x2+6x-4.例2 分解因式:9x4-3x3+7x2-3x-2.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
因式分解概念讲解及练习题
第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。
因式分解(讲义及答案)
因式分解(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:______________________________________.2. 探索新知:39999-能被100整除吗?小明是这样做的:3229999999999199(991)9998009998100-=⨯-⨯=⨯-=⨯=⨯⨯所以39999-能被100整除.类比小明的做法,请说明38989-能被90整除.➢ 知识点睛1. _________________________________________,这种变形叫做因式分解.因式分解也可称为分解因式.2. 多项式各项都含有的___________,叫做这个多项式各项的公因式.3. 提公因式法:如果一个多项式的各项含有公因式,那么就可以把_________提出来,从而将多项式化为两个因式乘积的形式.这种因式分解的方法叫做提公因式法.运用提公因式法需要注意三点:①公因式要提尽;②首项为负时,先提出负号;③提公因式后项数不变.4. 公式法:利用__________把某些多项式因式分解,这种因式分解的方法叫做公式法.“两项”通常考虑___________,“三项”通常考虑_____________.运用公式法时需要注意两点:①能提公因式先提公因式;②找准公式中的a 和b .5. 因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2221x x x x x ⎛⎫++=++ ⎪⎝⎭; ⑥24(2)(2)m m m -=+-;⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)33x x -;(2)32520y y +; 解:原式=解:原式=(3)2212246a b ab ab -+; (4)32a a a --+;解:原式=解:原式=(5)32246x x x -+-;(6)(3)2(3)a x b x ---; 解:原式=解:原式=(7)22(1)(1)y x y x +++;(8)()()a x y b y x ---; 解:原式=解:原式=(9)22(2)3(2)x x ---;(10)326()12()m n n m ---.解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)292416x x ++; 解:原式=解:原式=(3)221.96x y -+;(4)222510x y xy --+; 解:原式=解:原式=(5)229()()m n m n +--; (6)2()14()49x y x y +-++;解:原式=解:原式=(7)44x y -;(8)4221a a -+; 解:原式=解:原式=(9)22222()4a b a b +-;解:原式=(10)22(3)2(3)(43)(43)x y x y x y x y +-+-+-.解:原式=4. 因式分解:(1)328a b ab -;(2)21222x x ++; 解:原式=解:原式=(3)2(25)4(52)x x x -+-;(4)22344xy x y y --; 解:原式=解:原式=(5)228168ax axy ay -+-; (6)2(2)8a b ab -+;解:原式=解:原式=(7)111363a a ⎛⎫-+ ⎪⎝⎭; (8)1(1)(2)4x x +++. 解:原式=解:原式=5. 先因式分解,再计算求值: (1)2231212x xy y -+,其中x =15-,y =25;(2)2222a b a b +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,其中a =18-,b =2.6. 利用因式分解计算:(1)223.14 5.5 3.144.5⨯-⨯; (2)2225545991981-++; 解:原式=解:原式=(3)2222211111(1)(1)(1)(1)(1)234910-----. 解:原式=7. 求证:当n 为自然数时,(n +7)2-(n -5)2能被24整除.8. 利用因式分解说明:127525-能被120整除.9. 若a +b =2,ab =2,则代数式a 3b +2a 2b 2+ab 3的值为__________.10. 长和宽分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为___________.11. 正方形I 的周长比正方形Ⅱ的周长长96 cm ,它们的面积相差960 cm 2,则正方形I的边长为__________,正方形Ⅱ的边长为__________.12. 阅读与思考:2()x p q x pq +++型式子是数学学习中常见的一类多项式,如何将这种类型的式子进行因式分解呢?利用多项式的乘法法则推导得出:22()()()x p x q x px qx pq x p q x pq++=+++=+++因式分解是与整式乘法方向相反的变形,利用这种关系可得:2()()()x p q x pq x p x q +++=++①.利用①式,可以将某些二次项系数是1的二次三项式分解因式.例如,将式子232x x ++分解因式.这个式子的二次项 系数是1,常数项2=1×2,一次项系数3=1+2,因此这是一个2()x p q x pq +++型的式子,利用①式可得:232(1)(2)x x x x ++=++.上述分解因式232x x ++的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如图1).图1这样我们也可以得到232(1)(2)x x x x ++=++.利用这种方法,你能将下列多项式分解因式吗?(1)243x x ++;(2)2718x x +-; 解:原式=解:原式=(3)223x x -++; (4)221x x +-;解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --; 解:原式=解:原式=(9)22(1)12(1)16a a ---+;(10)(1)(2)12x x ++-.解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-;222222()2()2a b a ab b a b a ab b +=++-=-+;2. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除➢ 知识点睛1. 把一个多项式化成几个整式的积的形式;2. 相同因式;3. 这个公因式;4. 乘法公式,平方差公式,完全平方公式;5. 一提二套三分四查,有理数; ➢ 精讲精练1. ④⑥⑦2. (1)2(3)x x -;(2)25(4)y y +;(3)6(241)ab a b -+;(4)2(1)a a a -+-;(5)22(23)x x x --+;(6)(3)(2)x a b --;(7)(1)(1)y x xy y +++;(8)()()a b x y +-;(9)(2)(21)x x --;(10)26()(2)m n m n ---;3. (1)(23)(23)x x +-;(2)2(34)x +;(3)( 1.4)( 1.4)x y x y -+-;(4)2(5)x y --;(5)4(2)(2)m n m n ++;(6)2(7)x y +-;(7)22()()()x y x y x y ++-;(8)22(1)(1)a a +-;(9)22()()a b a b +-;(10)29(2)x y -.4. (1)2(2)(2)ab a a +-;(2)212()2x +; (3)(25)(2)(2)x x x -+-;(4)2(2)y x y --;(5)28()a x y --;(6)2(2)a b +;(7)21(1)6a -; (8)23()2x +. 5. (1)3;(2)14-. 6. (1)31.4;(2)110; (3)1120; 7. 原式可因式分解为24(1)n +,所以能被24整除; 8. 原式可因式分解为115120⨯,所以能被120整除;9. 8;10. 70;11. 32cm ;8cm ;12. (1)(1)(3)x x ++; (2)(2)(9)x x -+;(3)(1)(3)x x -+-; (4)(1)(21)x x +-;(5)(23)(4)x x -+; (6)(32)()x y x y -+;(7)(23)(5)x y x y ++; (8)(2)(4)x x x +-;(9)2(3)(5)a a --; (10)(2)(5)x x -+.。
分解因式的综合应用-讲义及答案
分解因式的综合应用一、知识点睛1.提公因式法、公式法、十字相乘法、分组分解法是分解因式的四种基本方法,换元、添项拆项是复杂多项式进行分解因式的常用技巧,通过对复杂多项式的处理最终都转化为__________________.①换元:当多项式中的某一部分________________时,我们会___________将其替换,从而简化式子的形式.②添项拆项:其目的是使多项式能够用__________________进行分解因式,这种方法技巧性强,需要充分关注多项式的__________________.2.分解因式应用的核心原则是_____________,主要有以下几种情况:①复杂多项式的化简;②简化方程;③多项式除以多项式;④几何拼图.二、精讲精练1.把下列各式分解因式:(1)(x2+2x)2-7(x2+2x)-8;(2)x2-6xy+9y2+2x-6y+1;(3)x3+1;(4)x4+4;(5)a 2-b 2+4a +2b +3; (6)x 3+6x 2+11x +6;(7)x 3-9x +8; (8)m 3-7m +6;(9)(a +1)(a +3)(a +5)(a +7)+15;(10)(x -1)(x -2)(x -3)(x -4) -24.2. 化简:(1)(1)(2)(3)(4)1n n n n +++++(n 为正整数);(2)22111(1)n n +++(n 为正整数).3.若22228440a b ab a b-+++=,则201332ba⎛⎫+ ⎪⎝⎭=________.4.若a,b,c是三角形三边长,且a2-16b2-c2+6ab+10bc=0,则2b-a-c=____________.5.若a,b,c是△ABC的三边长,且满足a2+b2+c2=ab+bc+ac,试判断△ABC的形状.6.对于多项式x3-5x2+x+10,如果我们把x=2代入此多项式,发现多项式x3-5x2+x+10=0,这时可以断定多项式中有因式(x-2)(注:把x=a代入多项式能使多项式的值为0,则多项式含有因式(x-a)),于是我们可以把多项式写成:x3-5x2+x+10=(x-2)(x2+mx+n).(1)求式子中m,n的值;(2)以上这种分解因式的方法叫试根法,用试根法将多项式x3-2x2-13x-10分解因式.7.多项式x2-mx-4分解因式后,其结果中有一个因式是x+1,求m的值和另一个因式.8. 将下图中的1个正方形和3个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积有什么关系.你能据此将x 2+(p +q )x +pq 分解因式吗?x p qx pq x9. (1)有若干块长方形和正方形纸片如图1所示,用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②由此,你可以得到一个等式为: ;(2)有若干块长方形和正方形硬纸片如图3所示,①请你用拼图的方法推出一个完全平方式,画出你的拼图; ②请你用拼图的方法推出2a 2+5ab +2b 2分解因式的结果,画出你的拼图.aa b图3b三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛:1a a 1a 1图2a a 11图11. 提公因式法、公式法、十字相乘法、分组分解法是分解因式的基本方法,换元、添项拆项是复杂多项式进行分解因式的常用技巧,通过对复杂多项式的处理最终都转化为基本方法.①换元:当多项式中的某一部分重复出现时,我们会设元将其替换,从而简化式子的形式.②添项拆项:其目的是使多项式能够用分组分解法进行分解因式,这种方法技巧性强,需要充分关注多项式的式子结构.2. 分解因式应用的核心原则是简化运算,主要有以下几种情况:①复杂多项式的化简;②简化方程;③多项式除以多项式;④几何拼图.二、精讲精练1. (1)(x +1)2(x -2)(x +4); (2)(x -3y +1)2;(3)(x +1)(x 2-x +1); (4)(x 2+2x +2)(x 2-2x +2);(5)(a +b +1)(a -b +3); (6)(x +3)(x +1)(x +2);(7)(x -1)(x 2+x -8); (8)(m -1)(m -2)(m +3);(9)(a +2)(a +6)(a 2+8a +10); (10)x (x -5)(x 2-5x +10).2. (1)255n n ++; (2)1111n n +-+. 3. 4或-44. 05. 等边三角形6. (1)m =-3,n =-5; (2)(x +1)(x -5)(x +2).7. m =3;另一个因式:(x -4).8. x 2+(p +q )x +pq =(x +p )(x +q )9. 解:(1)①长方形的面积=(a +1)×(a +1)=(a +1)2或a 2+2a +1,②(a +1)2=a 2+2a +1;(2)①如下图: 把该长方形视为一个边长为(a +b )的正方形时,其面积为(a +b )2;ab该长方形可视为四个长方形的拼图.四个长方形指两个边长分别为a和b的正方形,以及两个相同的小长方形(长和宽分别为b和a).此时,其面积为a2+2ab+b2,由此,可推导出(a+b)2=a2+2ab+b2.(3)2a2+5ab+2b2=(2a+b)(a+2b),如下图:a a babb。
65-12数学12:因式分解(附答案)
分解因式的方法一:提公因式法※具体方法和过程:(1) 提“系数”: (2) 提“字母”: (3) 提“多项式”:如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
分解因式的方法二:公式法平方差公式: (a+b)(a-b)=a ²-b ² 反过来为22()()a b a b a b -=+- 完全平方公式:(a+b)²=a ²+2ab+b ² (a-b)²=a ²-2ab+b ²反过来为 a 2+2ab+b 2= (a+b)2,a 2-2ab+b 2=(a-b) 2 针对练习:1、弄清几种变形:请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)2-a =__________(a -2); (2)y -x =__________(x -y ); (3)-m -n =__________-(m+n ) (4)-s 2+t 2=______(s 2-t 2). (5)(b -a )2=_____ (a -b )2(6)(m-n)3=_______(n-m)32、下列代数式能否用平方差公式或是完全平方公式?(7)a 2-ab+b 2 (8)x 2-6x-9 (9)a 2+a+0.25一、魔法装备 22)()(4)6(y x y x -++- x y 22(2)0.04- 4x y 22(3)-+22)(4)5(y x -- x -2(1)122-)4(y x -初二数学承诺班讲义第十二讲:因式分解例1 下列从左到右的变形,属于分解因式的是( )A. (x+3)(x -2)=x 2+x -6 B. ax -ay+1=a(x -y)+1 C. x 2-21y=(x+y 1)(x -y 1) D. 3x 2+3x=3x(x+1) 变式练习1 下列各式从左到右的变形是分解因式的是( ).A .a (a -b )=a 2-ab ;B .a 2-2a +1=a (a -2)+1C .x 2-x =x (x -1);D .x 2-y y ⨯1=(x +y 1)(x -y1) 例题2 (1)x (x -y )-y (y -x ) (2)3525x x + (3)121m n m n a b a b -+-(4)16x 2y 2z 2-9 (5) ma 2+2ma+m变式练习2 (1)15×(a -b )2-3y (b -a ) (2)39×37-13×34;(3)253243143521x y x y x y +- (4)()()23a a b a b a ---二、魔力升级平方差公式的特征: (1)两项(2)两项符号相反(3)两项可写成数或式的平方形式 完全平方公式特征: (1)多项式是三项式,(2)其中有两项能写成两个数(或式)的平方的形式,且符号相同(3)另一项是这两个数(或式)的积的2倍。
因式分解-讲义--资料
因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。
例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。
人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)
因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
因式分解解析含答案
A.2a2﹣2a+1=2a(a﹣1)+1B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x
【答案】C
【解析】
【分析】
根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.
故选:A.
【点睛】
本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.
故选C.
【点睛】
此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.
4.若a2-b2= ,a-b= ,则a+b的值为()
A.- B.1C. D.2
【答案】C
【解析】
【分析】
已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.
【详解】
∵a2-b2=(a+b)(a-b)= (a+b)=
c2(a2−b2)−(a2+b2)(a2−b2)=0,
(a2−b2)(c2−a2−b2)=0,
所以,a2−b2=0或c2−a2−b2=0,
即a=b或a2+b2=c2,
因此,△ABC等腰三角形或直角三角形.
故选B.
【点睛】
本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.
【详解】
A选项,从左到右变形错误,不符合题意,
B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,
C选项,从左到右变形是在利用平方差公式进行计算,不符合题意,
D选项,从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,
七年级数学竞赛讲座:因式分解(含答案详解)
初中数学竞赛辅导资料因式分解甲内容提要和例题我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。
下面再介紹两种方法1.添项拆项。
是.为了分组后,能运用公式(包括配方)或提公因式例1因式分解:①x4+x2+1②a3+b3+c3-3abc①分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-ac-bc)例2因式分解:①x3-11x+20②a5+a+1①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。
(注意这里16是完全平方数)②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)2.运用因式定理和待定系数法定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a⑵若两个多项式相等,则它们同类项的系数相等。
例3因式分解:①x 3-5x 2+9x -6 ②2x 3-13x 2+3①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。
因式分解讲义
1 分解因式分解因式注意:①.结果应是积的形式. ②每个因式都是整式. ③要分解到不能分解为止.练习:下列各式的变形中,是否是因式分解,为什么?(1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=;(4)()()()()221a y x a x y y x --=-+-;(5).96962⎪⎭⎫ ⎝⎛++=++x x xy y xy y x 1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --2、若22)32(9-=++x kx mx,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-123、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( ) A 、1个,B 、2个,C 、3个,D 、4个4、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
5、22)(n x m x x -=++则m =____n =____6、232y x 与y x 612的公因式是_7、若n my x-=))()((4222y x y x y x +-+,则m=_______,n=_________。
8、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的有______ ,其结果是 ____。
9、若22(3)16x m x +--是平方差形式,则m=_______。
9、_____))(2(2(_____)2++=++x x x x10、已知,01200520042=+++++xxx x 则.________2006=x11、若25)(162++-M b a 是完全平方式M=________。
因式分解讲义(适合0基础的)
精心整理因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±;例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .6.1.6x 33.(a 例1.(1)(3例2.((1A .2.分解因式(),424c b a --其中一个因式是() A .c b a +-22B .c b a 222--C .c b a 222-+D .c b a 222++3.x x 212+--分解因式后的结果是()A .不能分解B .()21-xC .()21+-xD .()21--x 4.下列代数式中是完全平方式的是()①442--x x ②442++-x x ③1392++x x④4122++ab b a ⑤2224y xy x ++⑥2291624x y xy +-A .①③B .①②C .④⑥D .④③5.k -12xy 2+9x 2是一个完全平方式,那么k 的值为()A .2B .4C .2y 2D .4y 46.若()16322+-+x m x 是完全平方式,则m 的值等于()A .-5B .7C .-1D .7或-17.因式分解1.14-x 2.36122+-x x3例1(1)x 例2(1)21.A .2A .3A .10和-2B .-10和2C .10和2D .-10和-24.不能用十字相乘法分解的是( )A .22-+x xB .x x x 310322+-C .242++x xD .22865y xy x -- 5.分解结果等于(x +y -4)(2x +2y -5)的多项式是( )A .20)(13)(22++-+y x y xB .20)(13)22(2++-+y x y xC .20)(13)(22++++y x y xD .20)(9)(22++-+y x y x6.=--652m m (m +a )(m +b ).a =__________,b =__________.7.因式分解(1)a 2-7a+6(2)2384a a -+(3)2576x x +-(4)261110y y --(5)2252310a b ab +-(6)222231710a b abxy x y -+(7)22712x xy y -+(8)42718x x +-(9)22483m mn n ++(10)53251520x x y xy --分组分解法:1、322236129xy y x y x -+中各项的公因式是__________。
(完整版)数学因式分解(附答案)
数学因式分解1解方程:2x2-3x-2=0(2x+1)(x-2)2请看下面的问题:把x4+4分解因式分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4-4x2=(x2+2)2-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解.(1)x4+4y4;解:(1)x4+4y4=x4+4x2y2+4y2-4x2y2,=(x2+2y2)2-4x2y2,=(x2+2y2+2xy)(x2+2y2-2xy);(2)x2-2ax-b2-2ab.=x2-2ax+a2-a2-b2-2ab,=(x-a)2-(a+b)2,=(x-a+a+b)(x-a-a-b),=(x+b)(x-2a-b).3 x2+4x-12=0(用两种方法作答)4 用配方法解方程x2+6x+7=0.56用十字相乘法解下列一元二次方程.(1)x2-5x-6=0(2)6x2+19x-36=0.7(2012•随州)在一次数学活动课上,老师出了一道题:(1)解方程x2-2x-3=0巡视后,老师发现同学们解此道题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于x的方程mx2+(m-3)x-3=0(m为常数,且m≠0).如果x2-5x+m可以用十字相乘法因式分解,那么m可以取的一个值是()13 对于一个自然数n,如果能找到自然数a(a>0)和b(b>0),使n-1=a+b+ab,则称n 为一个“十字相乘数”,例如:4-1=1+1+1×1,则4是一个“十字相乘数”,在1~20这20个自然数中,“十字相乘数”共有11 个.14。
因式分解讲义
因式分解知识点1:因式分解的定义1.分解因式:把一个多项式化成几个_整式的乘的积,这种变形叫做分解因式,它与整式的乘法互为逆运算。
如: 判断下列从左边到右边的变形是否为分解因式:①8)3)(3(892+-+=+-x x x x ( ) ② )49)(49(4922y x y x y x -+=- ( ) ③ 9)3)(3(2-=-+x x x ( ) ④)2(222y x xy xy xy y x -=+- ( ) 知识点2:公因式公因式: 定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3. 342)()()(n m m n y n m x +++-+的公因式是__________知识点3:用提公因式法分解因式提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。
例如:1.可以直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)542)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值2.式子的第一项为负号的类型:(1)①33222864y x y x y x -+- =_______________②243)(12)(8)(4n m n m n m +++-+-=_______(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时)如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D..y x 431--2.分解因式-5(y -x)3-10y(y -x)33. 公因式只相差符号的类型:公因式相差符号的,要先确定取哪个因式为公因式,然后把另外的只相差符号的因式的负号提出来,使其统一于之前确定的那个公因式。