概率论2-4 (1)
概率论第二章知识点
第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =两点分布的方差:()(1)D X p p =-(2)二项分布: 若一个随机变量X 的概率分布由式{}(1),0,1,...,.k k n k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k e k k λλλ-==>=则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k e k k λλλ-==>=泊松分布的期望:()E X λ=泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt -∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度: 均匀分布的期望:()2a bE X +=均匀分布的方差:2()()12b a D X -=(2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩则称X 服从参数为λ的指数分布,记为 X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a ab x f ⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a ab x f指数分布的期望:1()E X λ=指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X 的概率密度为22()21()x f x ex μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()21()x f x ex μσ--=-∞<<+∞正态分布的期望:()E X μ=正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==2222()()x t xx ex e dt ϕφ---∞=⎰标准正态分布表的使用: (1)0()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数:设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
《概率论与数理统计》第四章考点手册
《概率论与数理统计》第四章 随机变量的数字特征考点33 离散型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是离散型随机变量,概率分布为P {X =x i }=p i ,i =1,2,…。
则∑∞==1)(i i ip x X E 为X 的数学期望(或均值)。
2.常用离散型随机变量的数学期望(1)两点分布:X ∼B(1,p),0<p<1,则E(X)=p 。
(2)二项分布:X ∼B(n,p),其中0<p<1,则E(X)=np 。
(3)泊松分布:X ∼P(λ),其中λ>0,则E(X)=λ。
考点34 连续型随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.设X 是连续型随机变量,则称⎰∞∞-=dx x f x X E )()(为X 的数学期望。
2. 常用连续型随机变量的数学期望(1)均匀分布若X~U[a,b],即X 服从[a,b]上的均匀分布,则; 21)()(b a dx a b x dx x xf X E b a +=-==⎰⎰+∞∞- (2)指数分布若X 服从参数为λ的指数分布,则 ; /1)(0λλλ⎰+∞-==dx e x X E x 正态分布若X 服从),(2s µN ,则.)(μ=X E考点35 二维随机变量的数学期望(★★二级考点,选择、填空、计算、综合)1.二维离散型随机变量的数学期望:设二维离散型随机向量(X,Y)的概率分布为p ij ,i=1,2,⋯,j=1,2,⋯.则:.),()],([11åå¥=¥==i j ij j i p y x g Y X g E2. 二维连续型随机变量的数学期望:设二维连续型随机向量(X,Y)的密度函数为f(x,y),则:. ),(),()],([dxdy y x f y x g Y X g E òò¥¥-¥¥-=考点36 数学期望的性质(★★★一级考点,选择、填空)(1).设C 是常数,则E(C)=C;E(C)=C ×1=C(2).若k 是常数,则E(kX)=kE(X);(3).E(X+Y)=E(X)+E(Y);(4).设X,Y 相互独立,则E(XY)=E(X)E(Y);考点37 方差的概念(★★二级考点,选择、填空)1.方差的概念:设X 是一随机变量,若E [X -E (X )]2 存在,则称其为X 的方差,记成Var(X ),即Var(X )=E {[X -E (X )]2} 并称)(X Var 为X 的标准差。
概率论2-4
概率密度函数的性质(P42)
(1)非负性
f ( x) 0, x (, )
(2)规范性
P{ x } 1
f ( x)dx 1
常利用这两个性质检验 一个函数能否作为连续随 机变量的密度函数。
x
f ( x)
设随机变量X的概率密度为
f ( x) ae
正面图案: 德国数学家、物理学家和天文 学家高斯头像
正态分布的密度函数的性质与图形(P47)
1 2
y
中间高 两边低
-
+
x
对称性 单调性 拐点
关于 x = 对称 (- ,)升,(,+ )降
1 ( , e ); 2
1,σ对密度曲线的影响
— 位置参数
相同,不同 图形相似,位置平移
1 2
1 21 1 2 2
1 0.75
— 形状参数 不同, 相同
越小,图形越陡; 2 1.25 越大,图形越平缓
Show[fn1,fn3]
小
0.5
大
0.4 0.3 0.2 0.1
-6
-5
-4
-3
-2
-1
几何意义 数据意义
大小与曲线陡峭程度成反比 大小与数据分散程度成正比
正态分布的分布函数
F ( x)
x 1 e 2 ( x )2 2
2
dx
F(x)
1
1 2
x
正态变量的条件
若随机变量X ① 受众多相互独立的随机因素影响
② 每一因素的影响都是微小的 ③ 且这些正、负影响可以叠加 则称 X 为正态 随机变量 可用正态变量描述的实例极多: 各种测量的误差; 人体的生理特征; 工厂产品的尺寸; 农作物的收获量; 海洋波浪的高度; 金属线抗拉强度; 热噪声电流强度; 学生的考试成绩;
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
概率论与数理统计第11讲二项概率公式
概率论与数理统计第11讲二项概率公式概率论与数理统计是一门研究随机现象的规律性和不确定性的数学学科。
在概率论与数理统计的学习中,二项概率公式是一个非常重要的内容。
本文将详细介绍二项概率公式的定义、应用以及相关的例题。
一、二项概率公式的定义二项概率公式是描述在n次独立重复试验中,成功的次数X服从二项分布的概率公式。
假设每次试验的成功概率为p,失败概率为q=1-p,则在n次试验中,成功的次数X服从二项分布B(n,p)。
二项概率公式的表达式为:P(X=k)=C(n,k)*p^k*q^(n-k)其中,C(n,k)表示从n个不同元素中取出k个元素的组合数,p^k表示成功概率p连续发生k次,q^(n-k)表示失败概率q连续发生n-k次。
二、二项概率公式的应用二项概率公式可以应用于很多实际问题的概率计算。
以下是几个常见的应用场景:1. 投硬币问题:假设有一枚公正的硬币,投掷10次,成功定义为正面朝上,失败定义为反面朝上。
求在10次投掷中正面朝上的次数为5的概率。
根据二项概率公式,可以得到:P(X=5)=C(10,5)*0.5^5*0.5^5=0.24612. 生产线问题:某工厂生产的产品中有10%的次品率。
从该工厂生产的产品中随机抽取20个,求其中有3个次品的概率。
根据二项概率公式,可以得到:P(X=3)=C(20,3)*0.1^3*0.9^17=0.30833. 游戏问题:某游戏中有一个抽奖系统,每次抽奖的中奖概率为0.02。
玩家连续抽奖100次,求中奖次数为2的概率。
根据二项概率公式,可以得到:P(X=2)=C(100,2)*0.02^2*0.98^98=0.2707三、二项概率公式的例题1. 掷一枚骰子10次,求得到6点的次数为3的概率。
根据二项概率公式,可以得到:P(X=3)=C(10,3)*(1/6)^3*(5/6)^72. 一批产品中有10%次品率,从中随机抽取40个,求其中有4个次品的概率。
根据二项概率公式,可以得到:P(X=4)=C(40,4)*(0.1)^4*(0.9)^363. 有一个有10个球的盒子,其中有4个红球和6个蓝球。
概率论与数理统计:第二章、第三章和第四章(1)
概率论与数理统计 第二章和第三章-、选择题1. 设随机变量,独立同分布,且的分布函数为,则的分布函数为( A ).(A) (B) (C) (D) 2. 设与为两个分布函数,其相应的概率密度函数与是连续函数,则必为概率密度的是 ( D ).(A) (B)(C) (D)3. 设随机变量,记,则( B ).(A) 随着的增加而增加 (B) 随着的增加而增加 (C) 随着的增加而减少 (D) 随着的增加而减少4. 设随机变量服从正态分布,服从正态分布,且,则必有( A ).(A)(B) (C) (D)二、填空题1. 设二维随机变量服从正态分布,则. 答案:2. 设随机变量服从参数为的指数分布,为常数且大于零,则.答案:3. 设随机变量服从参数为的泊松分布,则.X Y X F(x)Z=max{X,Y}2F (x)F(x)F(y)21-[1-F(x)][1-F(x)][1-F(y)]1F ()x 2F ()x 1()f x 2()f x 12()()f x f x 122()()f x F x 212()()f x F x 1212()()()()f x F x F x f x +2X~N(,) (0)μσσ>2p=P(X +)μσ≤p μp σp μp σX 211N(,)μσY 222N(,)μσ12P(|X-|<1)>P(|Y-|<1)μμ12<σσ12σσ>12<μμ12μμ>(X,Y)N(1,0;1,1;0)P{XY-Y<0}=12X 1a P{Y a+1|Y>a}=≤11e --X 12P{X=E(X )}=答案:4. 设随机变量与相互独立,且他们均服从区间上的均匀分布,则.答案:三、综合题(每题10分)1. 设袋中有个红球,个黑球与个白球,现有放回地从袋中取两次,每次取一球,以,,分别表示两次取球所取得的红球、黑球与白球的个数. (I) 求; (II) 求二维随机变量的概率分布(即联合分布律).解: (I).................... (5 分) (II) 与的可能取值均为, .................... (7 分), , , 故的概率分布为.................... (10 分)112e -X Y [0, 3]P(max{X,Y}1)=≤19123X Y Z P{X=1|Z=0}(X,Y)12212P{X=1,Z=0}466P{X=1|Z=0}=P{Z=0}912C ⨯==⎛⎫⎪⎝⎭X Y 0,1,2331P{X=0, Y=0}=664⨯=12231P{X=0, Y=1}=C 663⨯=221P{X=0, Y=2}=69⎛⎫= ⎪⎝⎭12131P{X=1, Y=0}=C 666⨯=12121P{X=1, Y=1}=C 669⨯=211P{X=2, Y=0}=636⎛⎫= ⎪⎝⎭(X,Y)2. 设二维随机变量的概率密度如下,试求.解:.................... (4 分).................... (8 分).................... (10 分)第四章-、选择题1. 设随机变量,,且相关系数,则( D ).(A) (B) (C) (D)2. 设随机变量与相互独立,且与存在,记,,则为( B ).(A ) (B) (C) (D)3. 设随机变量与不相关,且,,,则为( D ).(A ) (B) (C) (D)4. 设随机变量的分布函数为,其中为标准正态分布的分布函数,则为( C ).(X,Y)P{X>2Y}{2,01,010,(,)x y x y f x y --<<<<=其它x>2yP{X>2Y}=f(x,y)dxdy ⎰⎰120=dx (2)xx y dy --⎰⎰12057=()824x x dx -=⎰X~N(0,1)Y~N(1,4)XY 1ρ=P(Y=-2X-1)=1P(Y=2X-1)=1P(Y=-2X+1)=1P(Y=2X+1)=1X Y EX EY U=max{X,Y}V=max{X,Y}E(UV)EU EV ⋅EX EY ⋅EU EY ⋅EX EV ⋅X Y E(X)=2E(Y)=1D(X)=3E[X(X+Y-2)]-33-55X x-1F(x)=0.3(x)+0.7()2ΦΦ(x)ΦE(X)(A ) (B) (C) (D)5. 设连续型随机变量与相互独立且方差均存在,与的概率密度函数分别为与,随机变量的概率密度为,随机变量,则( D ).(A ) (B) (C) (D)二、填空题1. 已知正常男性成人血液中,每一毫升白细胞数平均是,均方差是,利用切比雪夫不等式估计每毫升白细胞数在之间的概率. 答案:2. 设二维随机变量服从正态分布,则. 答案:三、综合题(每题10分)1. 设A 和B 是试验E 的两个事件,且,,并定义随机变量,如下:,,试证明若随机变量与不相关,则与必定相互独立。
概率论-2-4 随机变量的分布函数
3 F lim F (x) 0; x F lim F (x) 1; x
(4) F(x 0) F(x),即 F(x) 是右连续的。
设函数F(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量 的值x1、x2,当x1>x2时都有F(x1)≥ F(x2),那么就 说 F(x)在这个区间上是增函数 (另一说法为单调不减函数)
数,函数F ( x) P( X x) ,称为 X 的分布函 数,有时也记做 FX (x).
显然,对任意 x1 x2
P(x1 X x2 ) P( X x2 ) P( X x1 ) F (x2 ) F (x1 )
2. 分布函数的性质
(1) 0 F(x) 1;
=
2
当 x 2 时,
F(x) = P(X=0) + P(X=1) + P(X=2) = 1
故
0, x 0
F
(
x)
1 13
, ,
0 x1 1 x 2
2 1, x 2
注意右连续
二、小结
随机变量的分布函数
F (x) P{X x}.
第四节 随机变量的分布函数
一、分布函数的概念及性质 二、小结
一、分布函数的概念及性质
引例
已知随机变量X的分布律为:
X 1 0 1 2 1111
p 4444
求: (1)P(X ≤-2); (2) P(X ≤--1); (3) P(X ≤1.5); (4) P(X ≤3);
1. 定义:设 X是一个随机变量,x 是任意实
如果对于属于I内某个区间上的任意两个自变量 的值x1、x2,当x1>x2时都有F(x1)≤ F(x2).那么就 说F(x)在这个区间上是减函数
《概率论》 第二章 基本定理
方法二
按乘法法则
1 1 A3 A2 3 P ( AB ) 2 A5 10
1 A3 3 P ( A) 1 , A5 5
P ( AB ) 3/10 1 由乘法法则 P ( B A) P ( A) 3/5 2
注 条件概率的计算方法: (1) 若问题比较简单,可根据实际意义,直接由定 义求P(B|A); (2) 当问题比较复杂时,可在原样本空间中先求出 P(AB)和P(A),再由乘法公式求出P(B|A).
1 2 2 1 207 C4 C 46 276 C C 4 46 , P ( A1 ) , P ( A ) 3 2 3 980 C 50 19600 C 50
C 43 P ( A3 ) 3 C 50
4 . 19600
故 P ( A1 A2 A3 ) P ( A1 ) P ( A2 ) P ( A3 )
定理2 若A,B为任意两事件,则
P ( A B ) P ( A) P ( B ) P ( AB ).
推广 三个事件和的情况
P ( A1 A2 A3 )
P ( A1 ) P ( A2 ) P ( A3 ) P ( A1 A2 ) P ( A2 A3 ) P ( A1 A3 ) P ( A1 A2 A3 ).
例如 同时抛掷一大一小两枚硬币,设事件 A={大硬币正面},B={小硬币正面} 则基本事件共有4种情况: {大正,小正},{大正,小反},{大反,小正},{大反,小反}
2 1 2 1 , P(B)= , 于是 P(A)= 4 2 4 2 1 P(AB)= 4
有P(AB) = P(A)P(B) ,可见, A、B相互独立.
概率论与数理统计第二版_课后答案_科学出版社_王松桂_张忠占_参考答案_最新
12 32 3 P{ X = 2} = 1 − P{ X = 0} − P{ X = 1} = 1− − = 19 95 95
2.7 解:(1)设 X 表示 4 次独立试验中 A 发生的次数,则 X~B(4,0.4) P ( X ≥ 3) = P ( X = 3) + P ( X = 4) = C 40.430.61 + C 40.44 0.60 = 0.1792 (2)设 Y 表示 5 次独立试验中 A 发生的次数,则 Y~B(5,0.4)
P{ X = P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } + P{ A1 A2 A3 A4 } 1} = = 2 18 17 16 18 2 17 16 18 18 2 16 18 17 16 2 32 × × × + × × × + × × × + × × × = 20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17 95
0
1
1
2
2
(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=
C
1 2
0.710.31 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.40 0.62 + C 20.7 2 0.30 × C 20.410.61 = 0.5628
a ≈ 184 厘米
2.19 解:X 的可能取值为 1,2,3。
2 C4 6 因为 P ( X = 1) = 3 = = 0.6 ; C 5 10
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计 第4章
dx 令t
t2 2
x
,得
E( X )
1 2
( t )e
dt
1-91
31
1 E( X ) x e 2
( x )2 2 2
dx 令t
t2 2
x
,得
E( X )
1 2
( t )e
t2 2
得
从而
的概率密度为:
1-91
21
故所求数学期望分别为
1-91
22
三.数学期望的性质
性质1: 设 C 为常数,则 性质2: 设 C 为常数,X 为随机变量, 则有 性质3: 设 X , Y 为任意两个随机变量, 则有 为 n 个随机变量,
推论1 设
为常数,则
1-91
23
性质4 设X 和Y 是相互独立的随机变量,则有
证: 因为 X 和 Y 相互独立,所以 于是
推广:
1-91 24
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值 解 引入随机变量
显然有
1-91
25
例7. 将 n只球随机放入M 只盒子中去,设每只球 落入各个盒子是等可能的,求有球的盒子数 X 的 均值
1-91
18
例5. 设某公共汽车站于每小时的10分, 50分发车, 乘客在每小时内任一时刻到达车站是随机的。求 乘客到达车站等车时间的数学期望。
解: 设T 为乘客到达车站的时刻, 则
其概率密度为
设Y 为乘客等车时间,则
1-91
19
已知
1-91
概率论第2章ppt课件
(5) P{恰好2.5分钟}
.
11
第2章 随机变量及其分布
解:
习题19
(1) P{至多3分钟} P { X 3 } F X (3 ) 1 e 0 .4 3 0 .69 (2) P{至少4分钟}
P { X 4 } 1 P { X 4 } 1 F X ( 4 ) e 0 .4 4 0 .20
同理 P{X2}5219 P{X3}4217
36 36
36 36
P{X4}3215 P{X5}2213
36 36
36 36
P{X 6} 1 36
.
3
第2章 随机变量及其分布
习题8
8. 甲乙两人投篮,投中的概率分别为0.6和0.7。今各投三次。求(1)两人投中次数 相等的概率;(2)甲比乙投中次数多的概率.
.
9
第2章 随机变量及其分布
习题16
16. 有一繁忙的汽车站,每天有大量汽车通过,设一辆汽车在一天的某段时间内 出事故的概率为0.0001. 在某天的该时间段内有1000量汽车通过。问出事故的车辆 数不小于2的概率是多少?(利用泊松定理计算)
解:令在该段时间内发生事故的车辆数目为X, 根据题意知:
0
20
22 4
令 y x2
AI1A1 4
I b3/2
.
15
第2章 随机变量及其分布
习题22(2)
22(2) 研究了英格兰在1875年~1951年期间,在矿山
发生导致不少于10人死亡的事故的频繁程度,得知
相继两次事故之间的时间T(日)服从指数分布,其
概率密度为
fT
(t)
1
et
241
, /241
(1) 解:从8杯酒中随机地挑选4杯,共有
概率论和数理统计第二章课后习题答案解析
概率论与数理统计课后习题答案第二章1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最 大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律;(2) X 的分 布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时, F (x )=P (X ≤x )=0当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)3.射手向目标独立 地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函 数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的 分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 e a λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1)(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降 落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【 解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有 一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.000 1,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊 松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0 001)8.已知在五重贝努里试验中成功的次数X 满足P {X = 1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率; ( 2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1 )32(0)eP X -== (2) 52(1)1(0)1eP X P X -≥=-==-11.设P { X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }= mm m p p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -= 即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑ 即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e |x |, ∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰11e 2x -=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰33128[(150)]()327p P X =>==(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰ 100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1)求P{2<X≤5},P {4<X≤10},P{|X|>2},P{X>3}; (2)确定c使P{X>c}=P{X≤c}.【解】(1)23353(25)222XP X P---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222XP X P----⎛⎫-<≤=<≤⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X>=>+<-323323222215151122220.691510.99380.6977X XP PΦΦΦΦ-----⎛⎫⎛⎫=>+<⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522XP X PΦ->=>=-=-(2) c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06XP X P⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】120160160200160 (120200)XP X Pσσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故4031.251.29σ≤=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩ (1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d x F x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e |x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d x xF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即 /2()0.9985z αΦ= 查表得 /2 2.96z α= 28.设随机变量的分布律为2 1 0 13 【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====故的分布律为29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1). (1) 求Y =e X的概率密度;(2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=⎰故 2/2ln d ()1()(ln )e ,0d 2πy Y Y x F y f y f y y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤2111222y y y P X P X ⎛⎫---⎛⎫=≤=-≤≤ ⎪ ⎪ ⎪⎝⎭⎝⎭(1)/2(1)/2()d y X y f x x ---=⎰故 d 1211()()d 4122Y Y XX y y f y F y f f y y ⎡⎤⎛⎫⎛⎫--==+-⎢⎥ ⎪ ⎪ ⎪ ⎪-⎢⎥⎝⎭⎝⎭⎣⎦(1)/4121e ,1212πy y y --=>-(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+- 2/2e ,02πy y -=> 31.设随机变量X ~U (0,1),试求:(1) Y =e X的分布函数及密度函数; (2) Z =2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1XY F y P y =≤=即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥ /21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x xx x -=+⎰⎰ 222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为22,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。
概率论与数理统计第四版_习题答案(完整版)
(1)从 0≤P(AB)≤P(A)知,当 AB=A,即 A∩B 时 P(AB)取到最大值,最大值为 P(AB)=P(A)=0.6, (2)从(*)式知,当 A∪B=S 时,P(AB)取最小值,最小值为 P(AB)=0.6+0.7-1=0.3 。 7.[ 四 ] 设 A , B , C 是三事件,且 P( A) P( B ) P(C )
P( A) 1 P( A ) 0.7, P( B ) 1 P( B) 0.6, A AS A( B B ) AB AB 注意 ( AB)( AB ) . 故有
P (AB)=P (A)-P (A B )=0.7-0.5=0.2。 再由加法定理, P (A∪ B )= P (A)+ P ( B )-P (A B )=0.7+0.6-0.5=0.8 于是 P( B | A B )
8.[五] 在一标准英语字典中具有 55 个由二个不相同的字母新组成的单词,若从 26 个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少? 记 A 表“能排成上述单词”
2 ∵ 从 26 个任选两个来排列,排法有 A26 种。每种排法等可能。
字典中的二个不同字母组成的单词:55 个 ∴
P( A)
(2)至少有 2 个次品的概率。 记:A 表“至少有 2 个次品” B0 表“不含有次品” ,B1 表“只含有一个次品” ,同上,200 个产品不含次品,取法
1100 400 1100 有 200 种,200 个产品含一个次品,取法有 1 199 种
概率论与数理统计习题答案 第四版 盛骤
(浙江大学)
浙大第四版(高等教育出版社)
第一章 概率论的基本概念
概率论-2-4分布函数
1 2
1
arcsin
x a
,
a xa
1,
xa
(3)随机变量X的密度函数为
f
(x)
F ( x)
1
0,
a2 x2 , a x a 其它.
答案:D
答案:B
答案:A
答案:A
本节练习
习题二:12
F (4) F (2) 1 0 1 5 1 1.
3
63 2
答案:B
四、连续型随机变量的分布函数
已知连续型RV.X的概率密度为f(x),则其分布
函数为 F(x) P{X x} P{ X x}
f (x)
即有
F
(
x)
x
f
(
x)dx
ox
x
F(x)在点x的函数值,等于曲线f(x)之下,Ox轴的区间
x)
1
x
x
,
x0
0,
x0
(1)求X的概率密度函数 f ( x).
(2)用分布函数求概率
PX 3, P 2 X 5, PX 1.
解 在 x 0 处 F (x) 具有连续导数,故按题设得
f
(
x)
F
(
x)
(1
1 x)2
,
0,
x0 x 0
而在 x 0
时,由
F
(
x)
1
x
x
,
0, F (x) 不可导, 因为
F(x)的图形为 F( x)
1
a
bx
例5 (1)设r.v X服从指数分布,其概率密度为
f ( x) 1 ex ,
0,
求X的分布函数F(x).
概率论第二章第四节
分布函数
密度函数
则称X为连续性随机变量,其中函数f (x)称为X的
概率密度函数, 简称概率密度.
连续型随机变量的分布函数一定是连续函数.
3
x
2. 密度函数的性质
用这两条性质判断 F( x) f (t)dt
是否为连续型随机
1
f (x) 0 ;
变量的密度函数
(非负性)
y
f (x)
2 f ( x)dx 1 ; (归一性)
0
3
2
1 2
kx2
3 0
2 x
1 4
x
2
4
3
9 2
k
1 4
,
令 9k 1 1 k 1.
24
6
9
(2)
x
求X的分布函数,F(x) f
0,
x0,
x xdx , 0 x 3
(t )dt
,
f
(
x)
206x,,2x
,
0 x3, 3 x4,
其他.
F ( x)
06
3xdx
x
x
(2 )d x ,
0
0,
o
x 0, 1 ex ,
x 0, 0,
x
x 0,
x 0.
18
(3) 指数分布的背景 电子元件的寿命; 生物的寿命; 电话的通话时间; ……
“寿命”服从指数分 布
指数分布广泛 应用于可靠性 理论和排队论
19
指数分布的重要性质 :“无记忆性”.
对于任意s, t 0 , 有 P{X s t X s} P{(X s t) ( X s)}
证明 Z X 的分布函数为
概率论与数理统计第四章课后习题及参考答案
概率论与数理统计第四章课后习题及参考答案1.在下列句子中随机地取一个单词,以X 表示取到的单词包含的字母的个数,试写出X 的分布律,并求)(X E .Have a good time解:本题的随机试验属于古典概型.所给句子共4个单词,其中有一个单词含一个字母,有3个单词含4个字母,则X 的所有可能取值为1,4,有41)1(==X P ,43)4(==X P ,从而413434411)(=⋅+⋅=X E .2.在上述句子的13个字母中随机地取一个字母,以Y 表示取到的字母所在的单词所含的字母数,写出Y 的分布律,并求)(Y E .解:本题的随机试验属于古典概型.Y 的所有可能取值为1,4,样本空间Ω由13个字母组成,即共有13个样本点,则131)1(==Y P ,1312)4(==Y P ,从而1349131241311)(=⋅+⋅=Y E .3.一批产品有一、二、三等品及废品4种,所占比例分别为60%,20%,10%和10%,各级产品的出厂价分别为6元、8.4元、4元和2元,求产品的平均出厂价.解:设产品的出厂价为X (元),则X 的所有可能取值为6,8.4,4,2,由题设可知X 的分布律为X 68.442P6.02.01.01.0则16.51.021.042.08.46.06)(=⨯+⨯+⨯+⨯=X E (元).4.设随机变量X 具有分布:51)(==k X P ,5,4,3,2,1=k ,求)(X E ,)(2X E 及2)2(+X E .解:3)54321(51)(=++++=X E ,11)54321(51)(222222=++++=X E ,274)(4)()44()2(222=++=++=+X E X E X X E X E .5.设离散型随机变量X 的分布列为k k kk X P 21)!2)1((=-=, ,2,1=k ,问X 是否有数学期望.解:因为∑∑∞=∞==⋅-111212)1(k k k k kkk 发散,所以X 的数学期望不存在.6.设随机变量X 具有密度函数⎪⎩⎪⎨⎧≤≤-=其他.,0,22,cos 2)(2πππx x x f 求)(X E 及)(X D .解:因为x x 2cos 在]2,2[ππ-上为奇函数,所以0d cos 2d )()(222=⋅==⎰⎰-∞+∞-πππx x x x x f x X E ,2112d cos 2d )()(2222222-=⋅==⎰⎰-∞+∞-ππππx x x x x f x X E ,故2112)]([)()(222-=-=πX E X E X D .7.设随机变量X 具有密度函数⎪⎩⎪⎨⎧<<-≤<=其他.,0,21,2,10,)(x x x x x f 求)(X E 及)(X D .解:1d )2(d d )()(2112=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,67d )2(d d )()(2121322=-+==⎰⎰⎰∞+∞-x x x x x x x f x X E ,61)]([)()(22=-=X E X E X D .8.设随机变量X 在)21,21(-上服从均匀分布,求)sin(X Y π=的数学期望与方差.解:由题可知X 的密度函数为⎪⎩⎪⎨⎧<<-=其他.,0,2121,1)(x x f 则0d 1sin d )(sin )][sin()(2121=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21d 1sin d )(sin )]([sin )(21212222=⋅===⎰⎰-∞+∞-x x x x f x X E Y E πππ,21)]([)()(22=-=Y E Y E Y D .9.某正方形场地,按照航空测量的数据,它的边长的数学期望为350m ,又知航空测量的误差随机变量X 的分布列为X (m)30-20-10-0102030P05.008.016.042.016.008.005.0而场地边长随机变量Y 等于边长的数学期望与测量误差之和,即X Y +=350,求场地面积的数学期望.解:设场地面积为S ,则2Y S =,16.01042.0016.0)10(08.0)20(05.030)(⨯+⨯+⨯-+⨯-+⨯-=X E 005.03008.020=⨯+⨯+,16.01042.0016.0)10(08.0)20(05.0)30()(222222⨯+⨯+⨯-+⨯-+⨯-=X E 18605.03008.02022=⨯+⨯+,故)350700(])350[()()(2222++=+==X X E X E Y E S E 122686350)(700)(22=++=X E X E .10.A ,B 两台机床同时加工零件,每生产一批较大的产品时,出次品的概率如下表所示:A 机床次品数X 0123概率P7.02.006.004.0B 机床次品数X 0123概率P8.006.004.010.0问哪一台机床加工质量较好.解:44.004.0306.022.017.00)(=⨯+⨯+⨯+⨯=X E ,8.004.0306.022.017.00)(22222=⨯+⨯+⨯+⨯=X E ,6064.0)]([)()(22=-=X E X E X D ,44.010.0304.0206.018.00)(=⨯+⨯+⨯+⨯=Y E ,12.110.0304.0206.018.00)(22222=⨯+⨯+⨯+⨯=Y E ,9264.0)]([)()(22=-=Y E Y E Y D ,)()(Y E X E =,但)()(Y D X D <,故A 机床加工质量较好.11.设随机变量X 与Y 相互独立,且方差存在,试证:22)]()[()()]([)()()(Y E X D Y D X E Y D X D XY D ++=,由此得出)()()(Y D X D XY D ≥.证:22)]([])[()(XY E XY E XY D -=222)]()([)(Y E X E Y X E -=2222)]([)]([)()(Y E X E Y E X E -=2222)]([)]([})]([)(}{)]([)({Y E X E Y E Y D X E X D -++=22)]()[()()]([)()(Y E X D Y D X E Y D X D ++=.因为)(X D ,)(Y D ,2)]([X E ,2)]([Y E 非负,所以)()()(Y D X D XY D ≥.12.已知随机变量X 的密度函数为⎩⎨⎧≤≤++=其他.,010,)(2x c bx x a x f又已知5.0)(=X E ,15.0)(=X D ,求a ,b ,c .解:c b a x c bx x a x x f ++=++==⎰⎰∞+∞-2131d )(d )(1102,c b a x c bx x a x x x f x X E 213141d )(d )()(5.0102++=++===⎰⎰∞+∞-,⎰⎰++-=-==∞+∞-1222d )()5.0(d )()]([)(15.0xc bx x a x x x f X E x X D 41314151-++=c b a ,解之得12=a ,12-=b ,3=c .13.设),(Y X 的分布律为(1)求)(X E 及)(Y E ;(2)设XYZ =,求)(Z E ;(3)设2)(Y X Z -=,求)(Z E .解:(1)2)13.00(3)1.001.0(2)1.01.02.0(1)(=++⨯+++⨯+++⨯=X E ,0)1.01.01.0(1)3.001.0(0)01.02.0()1()(=++⨯+++⨯+++⨯-=Y E ,(2)1.01)3.001.0(00)31(1.021(2.01)(⨯+++⨯+⨯-+⨯-+⨯-=Z E 1511.0311.021-=⨯+⨯+,(3)1.0)01(0)]1(3[1.0)]1(2[2.0)]1(1[)(2222⨯-+⨯--+⨯--+⨯--=Z E 51.0)13(1.0)12(1.0)11(3.0)03(0)02(22222=⨯-+⨯-+⨯-+⨯-+⨯-+.14.设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,0,10,20,3),(y x yx y x f求)(X E ,)(Y E ,)(Y X E +及)(22Y X E +.解:⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(911d d 31020=+⋅=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x yf Y E d d ),()(95d d 31020=+⋅=⎰⎰y x y x y ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(916d d 3)(1020=+⋅+=⎰⎰y x y x y x ,⎰⎰∞+∞-∞+∞-+=+y x y x f y x Y X E d d ),()()(2222613d d 3)(102022=+⋅+=⎰⎰y x y x y x .15.),(Y X 在区域}1,0,0|),{(≤+≥≥=y x y x y x D 上服从均匀分布,求)(X E ,)23(Y X E -及)(XY E .解:由题可知),(Y X 的联合密度函数为⎩⎨⎧≤≤-≤≤=其他.,0,10,10,2),(y y x y x f ⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(31d d 21010==⎰⎰-yy x x ,⎰⎰∞+∞-∞+∞--=-y x y x f y x Y X E d d ),()23()23(31d d )23(21010=-=⎰⎰-yy x y x ,⎰⎰∞+∞-∞+∞-=y x y x xyf XY E d d ),()(121d d 21010==⎰⎰-y y x xy .16.设二维随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧>+≤+=.1,0,1,1),(2222y x y x y x f π证明:随机变量X 与Y 不相关,也不相互独立.证:⎰⎰⎰⎰⋅=⋅=∞+∞-∞+∞-πθθππ201d d cos 1d d 1)(r r r y x x X E ,同理,0)(=Y E ,⎰⎰⎰⎰⋅⋅=⋅=∞+∞-∞+∞-πθθθππ201d d sin cos 1d d 1)(r r r r y x xy XY E ,0)()()(),cov(=-=Y E X E XY E Y X ,故随机变量X 与Y 不相关.当11≤≤-x 时,ππ21112d 1d ),()(22x y y y x f x f x x X -===⎰⎰---∞+∞-,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2x x x f X π同理,⎪⎩⎪⎨⎧≤≤--=其他.,0,11,12)(2y y y f Y π易得)()(),(y f x f y x f Y X ≠,故随机变量X 与Y 不相互独立.17.设随机变量1X ,2X 的概率密度分别为⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x f x ,⎩⎨⎧≤>=-.0,0,0,e 4)(42y y y f y 试用数学期望的性质求:(1))(21X X E +及)32(221X X E -;(2)又设1X ,2X 相互独立,求)(21X X E .解:由题可知1X ~)2(E ,2X ~)4(E ,则21)(1=X E ,41)(2=X E ,161)(2=X D ,81)]([)()(22222=+=X E X D X E .(1)43)()()(2121=+=+X E X E X X E ,85)(3)(2)32(221221=-=-X E X E X X E .(2)81)()()(2121==X E X E X X E .18.(1)设1X ,2X ,3X 及4X 独立同在)1,0(上服从均匀分布,求)51(41∑=k k kX D ;(2)已知随机变量X ,Y 的方差分别为25和36,相关系数为4.0,求Y X U 23+=的方差.解:(1)由题易得121)(=i X D ,)51(41∑=k k kX D )(5141∑==k kkX D )](4)(3)(2)([514321X D X D X D X D +++=21)4321(121512222=+++⋅=.(2)由已知25)(=X D ,36)(=Y D ,4.0)()(),cov(==Y D X D Y X XY ρ,得12),cov(=Y X ,)2,3cov(2)2()3()23()(Y X Y D X D Y X D U D ++=+=513),cov(232)(2)(322=⋅⋅++=Y X Y D X D .19.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如果到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求)(X E (设每位旅客在各个车站下车是等可能的,并设各旅客是否下车相互独立).解:引入随机变量⎩⎨⎧=站无人下车.,在第站有人下车;,在第i i X i 01,10,,2,1 =i .易知1021X X X X +++= .按题意,任一旅客在第i 站不下车的概率为9.0,因此20位旅客都不在第i 站下车的概率为209.0,在第i 站有人下车的概率为209.01-,也就是209.0)0(==i X P ,209.01)1(-==i X P ,10,,2,1 =i .由此209.01)(-=i X E ,10,,2,1 =i .进而)()()()()(10211021X E X E X E X X X E X E +++=+++= 784.8)9.01(1020=-=(次).20.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求)(X E .解:引入随机变量⎩⎨⎧=号盒子.号球未放入第第号盒子号球放入第第i i i i X i ,0,,1,n i ,,2,1 =,则n X X X X +++= 21,显然n X P i 1)1(==,则nX P i 11)0(-==,n i ,,2,1 =,从而nX E i 1)(=,n i ,,2,1 =,于是1)()()()()(2121=+++=+++=n n X E X E X E X X X E X E .21.设随机变量),(Y X 的分布律为试验证X 和Y 是不相关的,但X 和Y 不是相互独立的.证:0)25.00(2)025.0(1)025.0()1()25.00(2)(=+⨯++⨯++⨯-++⨯-=X E ,5)25.00025.0(4)025.025.00(1)(=+++⨯++++⨯=Y E ,0)4(25.0)8(0225.0125.0)1(02)(⨯-+⨯-+⨯+⨯+⨯-+⨯-=XY E 025.0804=⨯+⨯+,所以0)()()(),cov(=-=Y E X E XY E Y X ,故X 与Y 不相关.易知25.025.00)2(=+=-=X P ,5.0025.025.00)1(=+++==Y P ,0)1,2(==-=Y X P ,有)1()2()1,2(=-=≠=-=Y P X P Y X P ,故X 与Y 不相互独立.22.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其他.,0,10,10,),(y x y x y x f 求)(X E ,)(Y E ,)(X D ,)(Y D ,)(XY E ,),cov(Y X 及XY ρ.解:127d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,125d d )(d d ),()(1010222=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,得127)(=Y E ,14411)(=Y D ,31d d )(d d ),()(1010=+==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ.23.设X ~),(2σμN ,Y ~),(2σμN ,且X ,Y 相互独立.求Y X Z βα+=1和Y X Z βα-=2的相关系数(α,β是不为0的常数).解:由题可知μ==)()(Y E X E ,2)()(σ==Y D X D ,则2222)]([)()(σμ+=+=X E X D X E ,2222)]([)()(σμ+=+=Y E Y D Y E ,μβαβα)()()(1+=+=Y X E Z E ,μβαβα)()()(2-=-=Y X E Z E ,222221)()()()()(σβαβαβα+=+=+=Y D X D Y X D Z D ,222222)()()()()(σβαβαβα+=+=-=Y D X D Y X D Z D ,)()])([()(222221Y X E Y X Y X E Z Z E βαβαβα-=-+=))(()()(22222222σμβαβα+-=-=Y E X E ,222212121)()()()(),cov(σβα-=-=Z E Z E Z Z E Z Z ,22222121)()(),cov(21βαβαρ+-==Z D Z D Z Z Z Z .24.设),(Y X 的联合概率密度为⎩⎨⎧≤≤≤≤--=.,0,10,10,2),(其他y x y x y x f (1)求),cov(Y X ,XY ρ和)32(Y X D -;11(2)X 与Y 是否独立?解:(1)125d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,41d d )2(d d ),()(1010222=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x x y x y x f x X E ,61d d )2(d d ),()(1010=--==⎰⎰⎰⎰∞+∞-∞+∞-y x y x xy y x y x xyf XY E ,14411)]([)()(22=-=X E X E X D ,由轮换对称性,125)(=Y E ,14411)(=Y D ,1441)()()(),cov(-=-=Y E X E XY E Y X ,111)()(),cov(-==Y D X D Y X XY ρ,)3,2cov(2)3()2()32(Y X Y D X D Y X D -+-+=-144155),cov(12)(3)(222=-+=Y X Y D X D .(2)当10≤≤x 时,x y y x y y x f x f X -=--==⎰⎰∞+∞-23d )2(d ),()(10,其他,0)(=x f X ,故⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(x x x f X 同理,⎪⎩⎪⎨⎧≤≤-=其他.,0,10,23)(y y y f Y 因为)()(),(y f x f y x f Y X ≠,故X 与Y 不相互独立.。
《概率论和数理统计》第三版-课后习题及答案解析.
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F(x)=P{X≤x}=0
当0≤x≤1时,由题意可得 F(x)=P{X≤x}=P{X<0}+P{0≤X≤x}=kx2
(5) 对任意实数b,若X~ f(x), (-<x<),则P{X=b}=0
命题 连续随机变量取任一常数的概率为零 强调 概率为0 的事件未必不发生
注意: 对于连续型随机变量X , P{X = a} = 0
P{a X b} P{a X b}
P{a X b} P{a X b}
b
1
x
e 100 dx
e2
0.1353
200 100
例 设X服从参数为3的指数分布,求它的密度函数
及 P{X 1} 和 P{1 X 2}
解
X的概率密度
f
(x)
1 3
e
x 3
x0
0 x 0
P{X 1}
f (x)dx
1
x
e 3dx
1
e3
1
13
P{1 X 2}
2
1
x
e3
பைடு நூலகம்dx
1
e
解 根据题意,客车停靠站的时间T ~U[10,45],其概
率密度为
f
(t
)
45
1
10
1 35
0
10 t 45 其他
所求概率为 P{20 T 40}
40 1 dt 4
20 35 7
2. 指数分布(p45) 定义 若连续型随机变量X的概率密度为
f
(
x)
1
x
e
x0
( 0为常数)
F(x)
0.08 0.06 0.04 0.02
y f (x)
-10
-5
5
x
x
注意:密度曲线在某点a处的高度,并不能反映X取a值的概率。 但是,这个高度越大,则X取a附近值的概率就越大。也就是 说,密度曲线的高度反映了概率集中在该点附近的程度。这
也就是“概率密度”一词的由来。
概率密度函数的性质(P42)
而F(1) =x2 ,另外F(1)= P{X≤1}=1,所以k=1
所以 F(x)=x2 当x≥1时,由题意{X≤x}是必然事件,故
F(x)=P{X≤x}=1 综上所述,既得X的分布函数为
0
F
(
x)
x
2
1
x0 0 x 1
x 1
§2.4 连续型随机变量及 其概率密度
1、连续型 随机变量的概念
定义 (P42)如果对于随机变量X的分布函数 F(x), 存 在一个非负可积函数 f ( x ), 使对于任意实数x,有
c
c ba ba
(c,d) (a,b), P{c X d} d 1 d x d c c ba ba
即 X 落在(a,b)内任何长为 d – c 的小区间的 概率与小区间的位置无关, 只与其长度成正 比.
例 设长途客车到达某一个中途停靠站时间T在12点
10分至12点45分之间是等可能的,某旅客于12:20到 达该车站,等候20min后离开,求他在这段时间能赶 上客车的概率。
二、几个常用的连续型分布
1. 均匀分布(p44)
若X~f(x)=
1 , a x b b a
0,其它
f(x)
。。
0a b x
则称X在(a, b)内服从均匀分布。记作 X~U(a, b)
对任意实数c, d (a<c<d<b),都有
P{c X d}= d f (x)dx= d 1 dx=d c
0
x0
则称X服从参数为 的指数分布.
分布函数
X E( )
F
(
x)
1
e
x
0
x0 x0
f ( x)
0
x
F( x) 1
0
x
例 某种电子元件的寿命X(以h记)服从指数分布,
其概率密度为
f
(
x)
1 100
x
e 100
0
x0 其他
求此元件的寿命至少为200h的概率。
解 根据题意,所求的概率为
P{X 200}
x/6 0x3 f (x) 2 x / 2, 3 x 4
0, 其他
(2)X的分布函数为
F(x)=
0 x x dx 06 3x dx
x2
12
x
(2
x )dx
3
2x
x2
0
1
6
3
2
4
(3)P{1 X 7} F(7) F(1) 41
22
48
x<0 0 x3
3 x4 x4
(1)非负性
f (x) 0, x (, )
(2)规范性
f (x)dx 1
P{ x } 1
常利用这两个性质检验
一个函数能否作为连续随
f (x)
机变量的密度函数。
设随机变量X的概率密度为
f (x) ae x
求常数a.
答:
a
1
2
(3)对于x1, x2 (x1 x2 )
P{x1 X x2} F (x2 ) F (x1)
x
F (x) P{X x} f (t) d t x
则称 X 是 连续型随机变量 ,其中函数f ( x )称为X的
概率密度函数(Probability density function),简记为
概率密度.
常记为
X~ f(x) , (-<x<+)
分布函数与密度函数几何意义
f ( x)
2 3
03
例 .电子元件的寿命X(年)服从参数为1/3的指
数分布
(1)求该电子元件寿命超过2年的概率。
而F(1) =x2 ,另外F(1)= P{X≤1}=1,所以k=1
所以 F(x)=x2 当x≥1时,由题意{X≤x}是必然事件,故
F(x)=P{X≤x}=1
解、X可能取[0,1]上的任何实数。
当x<0时,{X≤x}是不可能事件,于是
F(x)=P{X≤x}=0
当0≤x≤1时,由题意可得 F(x)=P{X≤x}=P{X<0}+P{0≤X≤x}=kx2
f ( x)
x2 f (x) x1 f (x)d x
x2 f (x)d x x1
0.08 0.06 0.04 0.02
-10
-5
x1
5
x2
x
(4) 若x是f(x)的连续点,则
dF(x) f (x) dx
设随机变量X的分布函数为 求f(x)
F
(
x)
1
1 ex 2 1e
x
2
x0 x0
a f (t)dt
F(b) F(a)
例、设随机变量X具有概率密度
kx 0 x 3
f(x)=
2
x 2
,
3
x
4
0,, 其他
(1)确定常数k,(2)求X的分布函数,(3)求P{1 X 7}
解(1)由
+
f (t)dt=1,得
3 kxdx+
4
(2
x
2 )dx=1,得k=
1
0
3
2
6
X的概率密度为