第1章 质点的振动
大学物理第一章-质点运动学和第二章-质点动力学基础
i
k
j
这样:A B ( Ax i Ay j Az k ) ( Bx i B y j Bz k )
矢量的数积(数乘): mA mAx i mAy j mAz k
z
Δr r ( A)
o
A
B
r ( B) y
x rA x Ai y A j rB xB i yB j 位移 r rB rA ( x x )i ( y y ) j B A B A 三维空间
r ( xB x A )i ( yB y A ) j ( zB z A )k 2 2 2 r x y z 位移的大小为
瞬时加速度 与瞬时速度的定义相类似,瞬时加速速度是一个 极限值 2 v
a lim
t 0
d r d v dt dt2 t
瞬时加速度简称加速度,它是矢量,在直角坐 标系中用分量表示:
2 d vx d x ax 2 dt dt d vy d2 y ay dt dt2 d vz d 2 z az dt dt2
§1-1
参考系与坐标系
时间
要定量描述物体的位臵与运动情况,就要运用 数学手段,采用固定在参考系上的坐标系。
常用的坐标系有直角坐标系 (x,y,z) ,极坐标系 (,),球坐标系(R,, ),柱坐标系(R, ,z )。 z z
z y x o x
o
R y R
参考方向
2. 空间和时间
切向单位矢量
法向单位矢量 n
et
显然,轨迹上各点处,自然坐标轴的方位不断变化。
第1章-质点运动学
z A.
(t )
.B
的变化情况,定义:质点
的平均加速度为
(t t )
O
a t
y
24
x
质点的(瞬时)加速度定义为:
d d r a lim 2 t 0 t dt dt
2
即:质点在某时刻或某位置的(瞬时)加速度等于
速度矢量 对时间的一阶导数,或等于矢径 r 对时
第一篇 力 学
1
内容提要
第一章 运动学 第二章 质点动力学(牛顿运动定律) 第三章 刚体力学
第四章 振动学基础
第五章 第六章 波动学基础
狭义相对论
2
第1章 质点运动学
§1-1 参考系、坐标系和理想模型
运动的可认知性——绝对运动与相对静止的辩证统一
案例讨论:关于物质运动属性的两种哲学论断 赫拉克利特:“人不能两次踏进同一条河流”
y
y
位置矢量 r 的大小(即质点P到原点o的距离)为
2 2 2 r r x y z
方向余弦: cos=x/r, cos=y/r, cos=z/r 式中 , , 取小于180°的值。
z
r
P(x,y,z)
z
C
cos2 + cos2 + cos2 =1
x
A
运动方程
—— 轨道方程。
11
消去时间t得:x2+y2=62
§1-3 位移 速 度
一.位移和路程
如图所示,质点沿曲线C运动。时刻t在A点,时 刻t+t在B点。 从起点A到终点B的有向线 段AB=r,称为质点在时间t内 的位移。 而A到B的路径长度S为 路程。
大学物理——第1章-质点运动学
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
大学物理第一章
r (t) x(t)i y(t) j z(t)k
标量形式 x x(t), y y(t), z z(t)
t 从上式消去参数 得轨迹方程 f ( x, y, z) 0
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
例如 质点的运动方程为
r R costi R sintj
速度的方向余弦 cos 0, cos 15 , cos 10t
上页 下页 返回 帮助
1-3 速度 加速度
第一章 质点运动学
(2)当t=1s时, 18.03m s-1
cos 0, cos 0.832, cos 0.555
即 90 , 33 42', 56
再求加速度矢量。由定义得 a 10k
质点是实际物体的一个理想模型,后面我们还会建立刚体、 理想气体、点电荷等理想模型,建立理想模型的方法在处理 实际问题中是很有意义的.
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
一、位置矢量和运动方程
1 位置矢量
在物理学中用一个有向线段来表示质点的位置. 这个有向线段
的长度为质点到原点的距离,方向规定为由坐标原点指向质点 所在位置P点,称为质点的位置矢量,简称位矢,记做r
解 由加速度的定义式 a d 恒量
dt
d a dt
a d t at C1
设当t=0时, 0 ,代入上式可得 C1 0
因此 0 at
由速度的定义式得
0
at
dx dt
d x (0 at) d t
上页 下页 返回 帮助
1-4 直线运动
第一章 质点运动学
积分可得 x (0 at) d t 0 d t at d t
大学物理第1章质点运动学的描述
t0
0 2 4
t 2s 4
2
t 2s
x/m
6
-6 -4 -2
例3 如图所示, A、B 两物体由一长为 l 的刚性 细杆相连, A、B 两物体可在光滑轨道上滑行.如物体 A以恒定的速率 v 向左滑行, 当 60 时, 物体B的 速率为多少? 解 建立坐标系如图, 物体A 的速度
1. 5 arctan 56.3 1
(2) 运动方程
x(t ) (1m s )t 2m
y(t ) ( m s )t 2m
1 4 2 2
1
由运动方程消去参数
1 -1 2 y ( m ) x x 3m 4
轨迹图
t 4s
6
t 可得轨迹方程为
y/m
三、位置变化的快慢——速度
速度是描写质点位置变化快慢和方向的物理量,是矢量。
速率是描写质点运动路程随时间变化快慢的物理量,是标量。 1 平均速度 在t 时间内, 质点从点 A 运动到点 B, 其位移为
B
y
r r (t t) r (t)
r (t t)
s r
质点是经过科学抽象而形成的理想化的物理模 型 . 目的是为了突出研究对象的主要性质 , 暂不考 虑一些次要的因素 .
二、位置矢量、运动方程、位移
1 位置矢量
确定质点P某一时刻在 坐标系里的位置的物理量称 . 位置矢量, 简称位矢 r
y
y j
r xi yj zk
j k 式中 i 、 、 分别为x、y、z
xA xB xB x A
yB y A
o
x
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
质点振动方程表达式
质点振动方程表达式质点的振动可以由一个简单的线性微分方程来描述。
该方程被称为谐振动方程,其表达式如下:m(d²x/dt²) + kx = 0在上述方程中,m是质点的质量,x是质点距离平衡位置的位移,t是时间,k是弹簧的劲度系数。
通过对谐振动方程的分析,我们可以得到质点振动的一些重要特征。
1. 振动的频率:质点的振动频率可以通过振动方程中的ω (角频率) 来计算,其中,ω = √(k/m)。
角频率是指在单位时间内振动中的完整周期数,通常以弧度/秒来表示。
振动频率是指单位时间内振动的完整周期数,通常以赫兹来表示。
2. 振动的周期:振动的周期是指一个完整的振动过程所需要的时间。
它可以通过振动频率的倒数来计算,即 T = 1/f。
其中,T是振动的周期,f是振动的频率。
3. 振幅和相位:振幅是指质点在振动过程中的最大位移,能够用来描述振动的强度。
相位是指质点周围的某个特定点在振动过程中的位置。
4. 能量的守恒:在谐振动中,能量是守恒的,即机械能保持不变。
质点的机械能包括势能和动能两部分,可以通过振动方程中的位移和速度来计算。
5. 振动的受迫响应:将外力作用在谐振动系统上,会导致系统产生受迫振动。
受迫振动的特点与驱动力的频率有关。
如果驱动力的频率等于系统的固有频率,称为共振现象。
除了谐振动方程,还有其他形式的振动方程可以用于描述质点的振动。
例如,对于阻尼振动,可以加上一个阻尼项和一个驱动力项;对于非线性振动,可以引入高阶项来考虑非线性效应。
这些振动方程是研究质点振动的基础,对于理解振动现象以及应用于各种领域的研究非常重要。
通过解振动方程,可以计算质点的位移、速度和加速度随时间的变化,从而得到质点振动的详细特征和行为。
物理学教程第三版第一章质点运动学
第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -7 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =t x 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为 2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图 1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v 0x =-10 m·s-1 , v 0y =15 m·s-1 ,则初速度大小为 120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为 222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′)1 -11 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得 v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -20 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -21 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。
第1章质点运动学
∆r = AB
•
•
r r = r (t + ∆t ) − r (t )
∆ ∆S S
•
r r(t) (t)
o o x x
∆r∆r
• B(t+ ∆ t) B(x2,y2,z2)
在直角坐标系中
r r r r r (t ) = x1i + y1 j + z1k, r r r r r (t + ∆t ) = x2i + y2 j + z2k
z
Y x
z
ϕ
r Y X (b)
θ
o
ϕ
(c)
r eθ
r o
r er
• P(r,θ ) o
v n
s • P (e)
τ
v
θ (d)
4
§1-2 理想模型
1. 质点模型 质点模型—— 如果物体的大小和形状在所研究的问题 中不起作用或作用很小, 中不起作用或作用很小 就可以把物体 抽象为只有质量的几何点。 抽象为只有质量的几何点。 在外力的作用下保持其大小、 2. 刚体模型 刚体模型—— 在外力的作用下保持其大小、形状不变 刚体。 的物体, 称为刚体 的物体 称为刚体。 以对理想模型的研究来代替对实际物体的研究, 以对理想模型的研究来代替对实际物体的研究 这是物 理学中常用的研究方法。 理学中常用的研究方法。
r ∆r = ∆x2 + ∆y2 + ∆z2
如果质点作直线运动 (如沿 轴运动 时 如沿x轴运动 如沿 轴运动)时
z
C A(x1,y1,z1)
•
∆S
•
r(t)
∆r
r r r r r (t ) = x1i , r (t + ∆t ) = x2i o r r r r ∆r = x2i − x1i = ∆xi
第1章 质点运动学共48页文档
(2) 位矢法 以O点为参考点
r
x(
t
)i
y(
t
)j
R
cos
t
i
R
sin
t
j
(3) 自然法
以O’点为参考点,逆时为正。
S R t
第一章 质点运动学
7
§1-2 质点的位移、速度和加速度
一、位移 描述质点位置变化的物理量
S
几何描述: 数学描述:
PrQ
r(
t
t
)
r(
t
)
r( t ) r( t t )
2、联系 从数学上看是微分与积分的关系
微分法 r a 积分法
微分法
积分法
ar ra
第一类问题(微分法) 第二类问题(积分法)
第一章 质点运动学
14
例:直杆AB两端可以分别在两固定而 相互垂直的直线导槽上滑动,已知杆 的倾角按φ=ωt 随时间变化,试求杆 上M点的运动规律。(运动方程、轨 迹、速度、加速度)
直角坐标系
j
i
k
i jk
分别是x、y、z方 向的单位矢量
在直角坐标系中可写成:
r xi yj zk
a
x i y axi ay
j
z
k
j azk
(A)
大小
2 x
2 y
2 z
a
ax2
a
2 y
az2
第一章 质点运动学
12
由基本关系式
有:
dx
i
dy
j
dz
k
dt dt dt
a
dx
b
2
sin
t
第一章 质点 运动学
rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt
R
s
A
角加速度:
t 0
O
x
lim
t 0
t
d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。
质
点
研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。
大学物理第1章 质点运动学
图1-12 变速圆周运动的加速度
1.3.3 圆周运动的角量描述
质点做圆周运动时,除了线量,还 可以用角量来描述其运动。 角量有角位置、角位移、角速度、 角加速度等。
图1-13 角位置和角位移
图1-14 角位移矢量
质点做匀速或匀变速圆周运动时的 角速度、角位移与角加速度的关系式为
2 0 0 t t / 2 2 2 0 2 ( 0 )
图1-1 公转的地球可以当作质点
但是,当研究地球自转时,由于地 球上各点的速度相差很大,因此,地球 自身的大小和形状不能忽略,此时,地 球不能作为质点处理,如图1-2所示。
但可把地球无限分割为极小的质元, 每个质元都可视为质点,地球的自转就成 为无限个质点(即质点系)运动的总和。
做平动的物体,不论大小、形状如 何,其体内任一点的位移、速度和加速 度都相同,可以用其质心这个点的运动 来概括,即物体的平动可视为质点的运 动。 所以,物体是否被视为质点,完全 取决于所研究问题的性质。
图1-4 位移
1.2.3 速度
v t 时间内的位移为 r , 若质点在 v 则定义 r 与 t 的比值为质点在这段时
间内的平均速度,写为
v v Dr v= Dt
其分量形式为
v v r x v y v z v v= = i+ j+ k t t t t
图1-5 速度推导用图
图1-3 位矢
1.2.2 位移
设在直角坐标系中,A,B为质点运动轨迹 上任意两点。t1时刻,质点位于A点,t2时刻,质 点位于B点,则在时间 t = t2 - t1 内,质点位矢的 长度和方向都发生了变化,质点位置的变化可用 uuu v uuu v 从A到B的有向线段 AB 来表示,有向线段 AB 称 为在 D t 时间内质点的位移矢量,简称位移。
大学物理学(上册)第1章 质点运动学
须在参考系上固连某种坐标系,这样,物体在某时刻的位置
即可用一组坐标表示.可见坐标系不仅在性质上具有参考系
的作用,而且还具有数学抽象作用.最常用的坐标系有:直角
坐标、球坐标、极坐标、柱坐标、自然坐标等.对物体运动
的描述决定于参考系而不是坐标系.
y
A
K
y
O
x
z
z
x 直角坐标系
K
r θ
A
O
x
极坐标系
O
y
o法向 sz
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s' s p1 r
p2
刻质点的位置,是个状态量. (2)位移与路程
r(t1) r (t2 )
P1P2 两点间的路程 s是不唯一的,可 O
2)轨道方程表示为 x2 y2 r 2
1.2.2 位移与路程
y
A r B
rA
rB
y
yB A r
r y A A
rB
B
yB yA
o
x
o
xA
xB x
xB xA
1.位移 经过时间间隔 t 后,质点位置矢量发生变化,由始
点A指向终点B 的有向线段AB称为点A到B 的位移矢量 r.位
因为 v(t) v(t dt)
所以 dv 0 dt
而 a a 0 所以
v(t)
O
dv
v(t dt)
a dv dt
例 设质点的运动方程为
r t xti y t j
第1章-质点运动学
动力学:
以牛顿运动定律为基础,研究物 体运动状态发生变化时所遵循规律的 学科。
§1-1 质点、参考 系、坐标系
1-1-1 质点
质点(particle) :具有一定质量的几何点 两种可以把物体看作质点来处理的情况:
• 作平动的物体,可 以被看作质点。 • 两相互作用着的物 体,如果它们之间的 距 离远大于本身的线度, 可以把这两物体看作质 点。
z
v r1 v r2
v v1 v v2
y
o
v v v ∆v = v2 − v1
x
v v1 v v2
平均加速度
v v ∆v −1 a= m ⋅s ∆t
v ∆v
结论:平均加速度的方向与速度增量的方向一致 结论:
当∆t→0时,平均加速度的极限即为瞬时加速度。
v v ∆v dv d 2 r v = = 2 瞬时加速度: a = lim dt dt ∆t → 0 ∆ t
v v v v v = v x i + v y j + vz k
速度的三个坐标分量:
dx dy dz vx = , vy = , vz = dt dt dt
速度的大小:
v 2 2 2 v = v = vx + v y + vz
• 速率
在∆t时间内,质点所经过路程∆s对时间的变化率
平均速率:
∆s −1 v= m ⋅s ∆t
v ∆θ e t (t )
Q ∆θ =
∆s
ρ
O
∆θ
v et (t + ∆t )
大学物理 第一章 质点运动学
是否等于瞬时速率? t 时刻位矢
瞬时速度的大小是否
r
等于瞬时速率?
A
r
r1
B t 时间内位移
x
t +t 时刻位矢
平面直角坐标系中的瞬时速度(简称速度)
v lim r dr
t0 t
dt
r(t) x(t)i y(t) j
v d r
dx
i
d
y
j
y
vy
v
dt dt dt
vx
vxi vy j
力 学
§1-1 参照系 &坐标系 质点 §1-2 位移、速度和加速度 §1-3 圆周运动 §1-5 牛顿运动定律 §1-6 牛顿运动定律的应用举例
1. 运动的绝对性 绝对静止的物体是没有的
地球自转 太阳表面的运动
太阳随银河系运动
为了确定一个物体的位置和描述一个物体的机
械运动,必须另选一个物体或内部无相对运动的物
3. 坐标系 为了定量地描述物体相对于参考系的 运动情况,要在参考系上选择一个固定的坐标系
坐标系选定后,运动物体A 中任一点 P 的位置
就可以用它在此坐标系中的坐标来描述
运动物体
运动参考系
y
A P(x,y,z)
运动物体
O
z 参考系
x
地面参考系
常用坐标系: 平面直角坐标系和自然坐标系
一、质点 一般情况下,运动物体的形状和大小都可能变化
y
y z koj
r
i
x
*P
x
方向的单位矢量.
z
位矢r 的值为
r
xi
yj
zk
r r x2 y2 z2
位矢 r 的方向余弦
第1章_质点运动学
加速度为速度对时间的
一阶导数
13
1-2 质点运动的描述
由于
v vxi vy j
a
dv
dvx
i
dv
y
j
axi
ay
j
dt dt dt
ax
dvx dt
ay
dv y dt
为加速度在 x、y 方向的分量。
a
加速度方向为速度变化的方
向,指向运动轨迹的凹的一侧。
3、质量的国际单位是千克(kg): 保存在巴黎国际计量局的铂铱圆 柱体质量为1千克。
7
1-1 质点运动的描述
二、参考系
运动是绝对的。同一物体的运动,由于我们选
取的参照系不同,对它的运动的描述就不同,这称 为运动描述的相对性。因此,描述运动必须指出参 照标准。
参考系:描写物体运动选择的标准物。
y
P (x, y, z)
18
1-2 质点运动的描述
四、圆周运动的描述 1、角量描述
角位置 质点的位置矢量与参考
方向的夹角。
角速度 d
dt
y v2 r B v1 A
x
角加速度
d
dt
d2
dt 2
若一个质点做圆周运动的角速度为恒定值,称
为匀速圆周运动,否则为变速圆周运动。
19
1-2 质点运动的描述
1-1 物理基准 1-2 质点运动的描述 1-3 相对运动 1-4 牛顿运动定律 1-5 动量 1-6 能量
6
1-1 物理基准
一、长度、时间和质量标准
物体运动相关的单位有三个——长度、时间和质量。 1、长度的国际单位是米(m):一米等于光在真空 中传播1/299,792,458秒所走的距离。 2、时间的国际单位是秒(s):一秒是从铯原子中放射 出9,192,631,770次光振动所需要的时间。
第1章 质点运动学
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别
∫
∫
第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
大学物理 - 1-6章练习附答案
第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。
解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。
质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。
解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。
质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。
解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,电容传声器有好的频响!一般用于测 量。
39
压强式动圈传声器
开路电压与音膜振速的关系:
E LBv
L:导线的长度;B:磁感 应强度 ——与振动的速度成正比! 一般要求频响尽量平坦,由于在力阻控制区,速度与 频率无关,力阻越大,传声器具有均匀频带范围越宽。 但过大的力阻会使传声器 的灵敏度降低。
22
1.3质点的强迫振动
一个振动系统受到阻力作用后振
动不能永远维持,它要渐渐衰减
到停止,因此要使振动持续不停, 就要不断从外部获得能量, 这种 受到外部持续作用的振动就称为 强迫振动.
23
强迫振动的一般规律
系统受到的外力或强迫力为
FF Fa cos t
强迫振动方程
简谐力
d 2 d M m 2 Rm K m Fa cos t dt dt
分析: (1) 衰减模量:振动位移振幅衰减到初始值的1/e倍的 时间 (单位为秒)
1
2M m Rm
16
(2)小阻尼对振动频率的影响:
2 2 0 02 2 0 1 2 0 1 2 0 0
如果: 0
2 0 02 2 0 1 2 0 0
Qm
静态位移振幅
0 M m
Rm
Fa lim | F | 0 0 Km
外力频率与固有频率的比值
位移振幅比
f z 0 f 0
A
| F |
0
Qm
2 z 2 ( z 2 1)2 Qm
归一化位移频率特性曲线 Qm1时,位移度响 应曲线最为均匀!
30
特点: 1. z<<1, 低频区,振动相应比较平坦,A的极限值等于1; 2. z=zr, 发生共振,位移共振条件
M m d 2 M m d 2 1; 2 2 2 Km1 dt Km 2 dt
10
二式相加,并且注意到 1 2
1 1 d 2 Mm 2 K m1 K m 2 dt
因此,等效劲度系数满足
M m d 2 2 K m dt
dA 0 dz
3. 位移共振频率
1 zr 1 2 2Qm
1 Qm 2
——位移共振频 率不等于系统固 有频率!
fr f0
1 1 2 f0 2Qm
品质因数越大,共振峰越高,共振现象越显著!
31
稳态振动——速度响应图
d v | F | sin(t ) dt
——小阻尼对振动频率的影响很小!
(3)小阻尼对振动幅度的影响:相隔一个周期的 相邻两次振动振幅的比值
17
A(t ) e T A(t T ) 0e (t T )
例:
0 e t
0.05 1 0
0
2 0 0 1 2 0 0
eT e2 / e0.1 1.3
Fa Fa Fa a ; va ; aa 2 M m M m Mm
——加速度与频率无关!
低频——弹性控制区:z 1: f f0
Fa Fa Fa 2 a ; va ; aa Km Km Km
——位移与频率无关!
37
z 中频——力阻控制区: 1: f f0
——振动称为简谐振动 有关物理参数:位移振幅:C; 圆频率:0; 初相位:0 周期:T=2/0; 频率: f=1/T
5
系统的固有频率
0 1 f 2 2
Km Mm
——影响固有频率的因素:劲度和质量
6
位移、速度、加速度的区别与联系
7
自由振动的能量
动能 势能
1 Ek M m v 2 ; 2
cos(0t 0 ) F cos(t )
第二项为稳态解,描 述了在外力作用下, 系统进行强制性振动 的状态,振幅恒定。
27
t
第一项为瞬态解, 描述了系统的自 由衰减振动,与 起振条件有关。
质点的稳态振动
当系统处于稳态时,系统以外力频率作等幅简谐振 动。
t
F exp(it )
令H=Fa/Mm(单位质量上作用的力), 外力采用复数形
式,于是运动方程为
d 2 d 2 2 0 H exp(it ) dt 2 dt
24
强迫振动方程是二阶的非齐次常微分方程,其一般解 应表示为该方程的一个特解与相应的齐次方程一般解 之和。
解=齐次方程的通解+特解
设特解的一般形式为 代入强 迫振动 方程
1 F exp(it )
Fa iFa F 2 M m i Rm K m Zm Fa exp i 0 | Zm | 2
25
力阻抗
Km Z m Rm i M m Rm iX m
第1章 质点振动 1.1 质点的自由振动 1.2 质点的衰减振动
1.3 质点的强迫振动
1.4 质点振动学的应用
1
在学习声学时,为什么需要先学振动知识?
绝大部分声音来自结构振动 振动与声波均属于机械波,它们遵从相同的 物理规律
2
1.1 质点的自由振动
当占有一定空间的振动系统的物理性质大致各点相同时, 可用质点振动来近似。决定一个系统是不是质点振动系 统,不是看它的绝对几何尺寸,而是看物体线度与振动 传播波长的比值。 自由振动方程
稳态振动——加速度响应图
d 2 2 a 2 | F | sin(t ) dt
C Qm z 2
2 z 2 ( z 2 1) 2 Qm
33
加速度共振频率
f r Qm f 0
2 f0 2 2Qm 1
加速度共振发生条件
1 Qm 2
——阻尼足够小!
2 0 exp ( 2 0 )t ——非振动情况!
15
假定 0
0 02 2
0 exp(i0t ) 0 exp(i0t) e t
实数形式
Ae t cos(0t 0 )
1 1 1 K m K m1 K m 2
K m1Km 2 Km Km1 Km 2
——两根弹簧的串联使系统的弹性减小
11
小结
自由振动系统的总能量为常数 两根弹簧的并接使系统的弹性增大 两根弹簧的串联使系统的弹性减小 振动问题常用复数解求解
12
1.2 质点的衰减振动
任何实际的机械系统在作自由振动时都会出现逐渐 衰减 的过程,亦即系统在 振动时始终会受到阻尼力的作用
1 E p K m 2 ; 2 总的振动能
Et Ek E p 1 1 2 M m v K m 2 2 2
8
弹簧的并联与串联 并联:二个弹簧的位移相等
1 2
因此,运动方程为
d 2 M m 2 K m11 K m 22 dt ( K m1 K m 2 ) K m
1.4 质点振动学的应用
位移、速度、加速度振幅
a
va
FaQm M m
2 0
z ( z 1) Q
2 2 2
2 m
FaQm z M m0 z ( z 1) Q
2 2 2 2 m
aa
Fa Qm z 2
2 M m z 2 ( z 2 1) 2 Qm
36
z 高频——质量控制区: 1: f f0
力抗
Km X m M m
力阻抗=力阻+i力抗; 力抗=质量抗+弹性抗
力阻抗的模 Z m 幅角
Rm ( M m
2
Km
)2
Xm 0 arctan Rm
26
强迫振动解=瞬态解+稳态解
Ae
Ae
t
cos(0t 0 ) F exp(it )
阻力的性质
(1)一般来说阻力应是速度 的函数;
(2)我们限于讨论小振动, 可以认为阻力与速度成线性 关系。
13
振动系统中的阻力为
d FR Rm dt
运动方程
——Rm称为阻力 系数或力阻
d 2 d M m 2 Rm K m 0 dt dt d 2 d 2 2 0 0 dt 2 dt
B
Qm z z ( z 1) Q
2 2 2 2 m
速度共振频率
fr f0
——速度共振频率等于 系统固有频率! 归一化的速度共振曲线
32
z
半宽度f: 速度振幅下降 2 时,两个频率点之差
Rm f 2 f1 f 1 f0 f0 Qm 0 M m
——阻尼越大,半宽度越大,速度响应曲线越平坦!
Km Km1 Km2
——两根弹簧的并接使系统的弹性增大
9
串联:二个弹簧中的弹性力相等
FK1 Km11 Km22 FK 2
因此,运动方程为
d 2 M m 2 FK FK 1 FK 2 dt d 2 d 2 M m 2 K m11 ; M m 2 K m 22 dt dt
——稳态振动
28
稳态振动——位移响应图
ReF exp(it ) | F | cos(t )
——表示:外力与振动存在相位差! 稳态振动的振幅
Fa | F | | Zm |
Fa Km R M m
2 m 2ຫໍສະໝຸດ 29引入新的物理参量: 力学品质因素
振动系统元件
质量块Mm 弹簧(弹性系数或劲度系数Km )
3
系统受力分析:弹力 FK 牛顿第二定律