新人教版七年级下第5章相交线与平行线练习A卷

合集下载

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

人教版七七年级下册数学第5章相交线与平行线单元测试卷A(附有答案解析)

人教版七七年级下册数学第5章相交线与平行线单元测试卷A(附有答案解析)

七年级(下)数学(R)单元测试第五章平行线 A卷满分100分,考试时间90分钟班级姓名一、选择题(每小题3分,共30分)1.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.(2016春•邻水县期末)下列图形中,∠1与∠2不是对顶角的有()A.1个B.2个C.3个D.0个3.有下列四个命题,其中是真命题的是()A.相等的角是对顶角B.同位角相等C.互补的角是邻补角D.平行于同一条直线的两条直线互相平行4.(2016•来宾)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.(2016春•东明县期中)下列说法中正确的是()A.在同一平面内,两条直线的位置只有两种:相交和垂直B.有且只有一条直线垂直于已知直线C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离6.(2016•济宁)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16cm B.18cm C.20cm D.21cm7.(2016•东营)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.(2016春•祁阳县期末)点P是直线l外一点,A、B、C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm9.(2016春•微山县期末)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③B.①②④C.①③④D.①③10.(2015春•丰台区期末)在同一平面内有2014条直线a1,a2,…,a2014,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,依此类推,那么a1与a2014的位置关系是()A.垂直B.平行C.垂直或平行 D.重合二、填空题(每小题3分,共18分)11.(2016春•广州校级期末)把命题改成“如果…,那么…”的形式:邻补角相等..12.(2016春•江门校级期中)若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=50°,则∠1的度数为130°.13.(2016春•淮安月考)如图,将一长方形纸条折叠后,若∠1=70°,则∠2= .14.(2016•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为25 °.15.(2016•湖州)如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90 度.16.(2016秋•商水县期末)如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14 .三、解答题(共52分)17.(2016春•南陵县期中)如图所示,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(6分)(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.18.(2016春•隆化县期末)如图,EF∥AD,∠1=∠2.说明:∠DGA+∠BAC=180°.请将说明过程填写完成.(7分)解:∵EF∥AD,(已知)∴∠2= .()又∵∠1=∠2,()∴∠1=∠3,()∴AB∥,()∴∠DGA+∠BAC=180°.()19.(2016秋•罗山县期末)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.(6分)20.(2016春•乌拉特前旗期末)如图,在边长为1的正方形网格中,平移△ABC,使点A平移到点D.(6分)(1)画出平移后的△DEF;(2)求△ABC的面积.21.(2016春•鄄城县期末)如图:平行线AB、CD被直线AE所截.(7分)(1)写出∠AFD的对顶角;(2)写出∠AFD的邻补角;(3)如果∠BAF=100°,求∠AFD和∠AFC的度数.22.(2016春•慈溪市期末)如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.(7分)23.(2016秋•郑州期末)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE平分∠COF.(8分)(1)用含有α的代数式表示∠COE的度数;(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.24.(2015秋•营山县校级期中)已知如图(5分)(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.参考答案一、选择题(每题3分,共30分)1.解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.2.解:根据对顶角的定义可知:图中只有第二个是对顶角,其它都不是.故选C3.解:A、相等的角是对顶角,不符合对顶角的定义,也不成立,B、前提条件没有确定,同位角不一定相等,不成立,C、互补的角是邻补角也不成立;D、平行于同一直线的两条直线平行,成立,是真命题.故选D.4.解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a ∥b,∴符合题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C5.解:A、在同一平面内,两条直线的位置只有两种:相交和平行,垂直是相交的一种情况,故A错误;B、一条直线的垂线有无数条,故B错误;C、根据平行公理的推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故C正确;D、点到直线的距离指的是线段的长度,而非垂线段,故D错误.故选C.6.解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.7.解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.8.解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短),2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选:C.9.解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.10.解:∵a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,∴a1⊥a2,a1⊥a3,a1∥a4,a1∥a5…以四次为一个循环,⊥,⊥,∥,∥规律:下标除以4余数为2或3垂直,下标除以4余数为0或1平行,2014÷4的余数为2,∴a1⊥a2014,所以直线a1与a2014的位置关系是:a1⊥a2014.故选A.二、填空题(每小题3分,共18分)11.解:把命题“邻补角相等”改写为“如果…那么…”的形式是:如果两个角是邻补角,那么这两个角相等.故答案是:如果两个角是邻补角,那么这两个角相等.12.解:∵∠2的邻补角是∠3,∠3=50°,∴∠2=180°﹣∠3=130°.∵∠1的对顶角是∠2,∴∠1=∠2=130°.故答案为:130°.13.解:∵四边形AEFG是长方形,∴EF∥AG,∵∠1=70°,∴∠ECB=∠1=70°,∴∠FCB=180°﹣70°=110°,∵沿CD折叠,∴∠2=∠FCD=∠FCB=55°,故答案为:55°.14.解:∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.15.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.16.解:同位角有∠4与∠9,∠5与∠1,∠2与∠6,∠7与∠9,∠8与∠4,∠3与∠7,∴a=6,内错角有∠7与∠1,∠4与∠6,∠5与∠9,∠2与∠9,∴b=4,同旁内角有∠7与∠4,∠1与∠6,∠6与∠9,∠1与∠9,∴c=4,∴a+b+c=6+4+4=14,故答案为:14.三、解答题(共52分)17.解:如图所示(1)沿AB走,两点之间线段最短;(2)沿AC走,垂线段最短;(3)沿BD走,垂线段最短.18.解:∵EF∥AD,(已知)∴∠2=∠3.(两直线平行,同位角相等)又∵∠1=∠2,(已知)∴∠1=∠3,(等量代换)∴AB∥DG,(内错角相等,两直线平行)∴∠DGA+∠BAC=180°(两直线平行,同旁内角互补).19.解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.20.解:(1)所作图形如图所示:;(2)S△ABC=4×4﹣×1×4﹣×2×3﹣×2×4=7.21.解:(1)∠AFD的对顶角是∠EFC;(2)∠AFD的邻补角是∠EFD、∠AFC;(3)∵AB∥DC,∠BAF=100°,∴∠AFD+∠BAF=180°,∠AFC=∠BAF=100°,∴∠AFD=180°﹣∠BAF=180°﹣100°=80°,即∠AFD=80°,∠AFC=100°.22.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.23.(1)∵CB∥OA,∴∠C+∠AOC=180°.∵∠C=100°,∴∠AOC=80°.∴∠EOB=∠EOF+∠FOB=∠COF+∠FOA=(∠COF+∠FOA)=∠AOC=40°.又OE平分∠COF,∴∠COE=∠FOE=40°﹣α;(2)∠OBC:∠OFC的值不发生改变.∵BC∥OA,∴∠FBO=∠AOB,又∵∠BOF=∠AOB,∴∠FBO=∠BOF,∵∠OFC=∠FBO+∠FOB,∴∠OFC=2∠OBC,即∠OBC:∠OFC=∠OBC:2∠OBC=1:2.24.解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。

【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。

人教版七年级下册数学第五章相交线与平行线-测试题含答案

人教版七年级下册数学第五章相交线与平行线-测试题含答案
【详解】
图中对顶角有:∠AOC 与∠BOD、∠AOD 与∠BOC,共 2 对.
故选 B.
【点睛】
本题主要考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的
两个角.本题关键是分清楚已知的角是哪两条直线相交形成的,根据角的两条边,找出它的
反向延长线形成的夹角即可
8.C
【解析】
【详解】
然后由 AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.
【详解】
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠BAC=120°,
∴∠ACD=180°-120°=60°,
∵AC∥DF,
∴∠ACD=∠CDF,
∴∠CDF=60°.
故选 A.
【点睛】
本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
A.120°
B.125°
C.135°
10.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=(

D.145°
)
第 2 页
A.60°
B.65°
C.50°
D.45°
二、填空题
11.如图, AB、CD 相交于点 O , OE 平分 AOD ,若 BOC 60 ,则 COE 的度数是
∴∠1=∠EBC=16°,
故选:C.
【点睛】
考查了平行线的性质,解题时注意:两直线平行,内错角相等.
4.D
【解析】
【分析】
直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三
条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.
【详解】

最新人教版七年级下册第五章《相交线与平行线》测试题(含答案)

最新人教版七年级下册第五章《相交线与平行线》测试题(含答案)

人教版七年级数学第五章相交线与平行线单元复习题人教版七年级数学第五章相交线与平行线单元复习题一、选择题1.下列图形中,能将其中一个三角形平移得到另一个三角形的是( A )A. B.C. D.2.邻补角是( D )A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且互补的两个角D.有一条公共边,另一边互为反向延长线的两个角3.对于图中标记的各角,下列条件能推理得到a∥b的是(D )A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=1804.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交5.下列图形中,∠1和∠2是同旁内角的是( A )6.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( B )A. B. C. D.7.如图5-3-17,直线a,b被直线c所截,下列说法正确的是( D )图5-3-17A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b8.已知点P是直线l外一点,A,B,C是直线l上三点,PA=4cm, PB=5cm,PC=2cm,则点P到直线l的距离( C )A.小于2 cmB.等于2 cmC.不大于2 cmD.等于4 cm9.在同一平面内,不重合的两条直线的位置关系是( C )A.平行 B.相交C.平行或相交 D.平行、相交或垂直10.如图,线段AB是线段CD经过平移得到的,那么线段AC与BD的关系是( A )A.平行且相等B. 平行C.相交D. 相等二、填空题11.如图,直径为2 cm的圆O1平移3 cm到圆O2,则图中阴影部分的面积为______ cm2.【答案】612.图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,测量的根据是_________.【答案】对顶角相等13.如图,∠ACD=∠A,∠BCF=∠B,则∠A+∠B+∠ACB等于______ .【答案】180°14.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.【答案】50°15.如图,剪刀在使用的过程中,随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠AOB)也相应理由是 .【答案】变大对顶角相等16.如图是一个平行四边形,请用符号表示图中的平行线:__________________.【答案】 AB∥CD,AD∥BC三、解答题17.填空并完成以下证明:如图5-3-18,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:AB⊥AB.图5-3-18证明:∵FH⊥AB(已知),∴∠BHF=________.∵∠1=∠ACB(已知),∴DE∥BC,(___________________)∴∠2=____________.(_____________________________)∵∠2=∠3(已知),∴∠3=__________,(______________)∴AB∥FH(________________)∴∠BDC=∠BHF=______________°,(_____________________________)∴AB⊥AB.答案:90°同位角相等,两直线平行∠BAB两直线平行,内错角相等∠BAB 等量代换同位角相等,两直线平行 90 两直线平行,同位角相等18.如图,三条直线AB,CD,EF交于一点,若∠1=30°,∠2=70°,求∠3的度数.解:如图,∵∠4=∠2=70°(对顶角相等),∴∠3=180°-∠1-∠4=180°-30°-70°=80°.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画 EG∥BC交AC于点 G,过点F画人教版七年级数学下册第五章相交线与平行线单元综合能力测试卷一、选择题(每小题3分,共30分)1、如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°2、如图所示,点在的延长线上,下列条件中能判断...( )A. B. C. D.3、如图,直线AB 和CD 交于点O ,若∠AOD =134°,则∠AOC 的度数为( )A.134°B.144°C.46°D.32°4、如图,将直线沿着AB 方向平移得到直线,若∠1=50°,则∠2的度数是( )A.40°B.50°C.90°D.130°5、下列选项中能由左图平移得到的是( )A. B. C. D.6、下列四个说法中,正确的是( ) A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变直线的方向C.两条直线被第三条直线所截,内错角相等D.两直线相交形成的四个角相等,则这两条直线互相垂直7、如图,三角形ABC 中,∠C =90°,AC =3,点P 是BC 边上一动点,则AP 的长不可能E AC CD AB //E DCBA432143∠=∠21∠=∠DCE D ∠=∠ 180=∠+∠ACDD 1l 2l是()A.3B.2.8C.3.5D.48、如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数为()A.80°B.70°C.60°D.50°9、如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的∠A=120°,第二次拐的∠B=150°,第三次拐的∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140°D.150°10、如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90°B.∠B=∠D=90°C.AC=BDD.点A,D到BC的距离相等11、如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2B.3C.4D.512、一辆汽车在广场上行驶,两次转弯后要想行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°,第二次向左拐130°B.第一次向左拐30°,第二次向右拐30°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°二、填空题(每小题3分,共15分)13、把命题“等角的余角相等”改写成“如果…,那么…”的形式是.14、如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_______.15、如图,直线AB,CD相交于点O,OE⊥AB,点O为垂足,若∠EOD=58°,则∠AOC 的度数是__________.16、图形在平移时,下列特征中不发生改变的有___________.(把你认为正确的序号都填上)①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.17.如图,∠AOB的两边,OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是______.三、解答题(本大题共7小题,共69分)18、(8分)将图中的三角形向左平移4格,再向下平移2格.19、(9分)在图中画一条从张家村到公路最近的路线.20、(10分)如图,AD∥BC,E为AB上一点,过E点作EF∥AD交DC于F,问EF与BC的位置关系,并说明理由.21、(10分)某宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2m,其侧面如图所示,求买地毯至少需要多少元?22、(10分)如图,已知BC⊥AB,DE⊥AB,且BF∥DG.求证:∠1=∠2.23、(10分)如图,已知∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.24、(12分)如图,直线AB,CD相交于点O,OM⊥AB于点O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.参考答案1、B;2、B.3、C.4、B5、C.6、D7、B8、C9、D.10、D11、D12、B13、如果两个角是等角的余角,那么它们相等14、53°15、32°16、①③④⑤⑥17、70°18、19、从张家村到公路最近的路线为过张家村作公路的一条垂线段,如图.20、EF∥BC.理由:∵AD∥BC,EF∥AD,∴EF∥BC.21、利用平移线段,把楼梯的横竖向上向左平移,构成一个长方形,长宽分别为6m,4m,∴地毯的长度为6+4=10(m),地毯的面积为10×2=20(m2),∴买地毯至少需要20×40=800(元).22、∵BC ⊥AB ,DE ⊥AB ,∴∠ADE =∠ABC.又∵BF ∥DG,∴∠ADG =∠ABF,∴∠ADE -∠ADG =∠ABC -∠ABF,∴∠1=∠2.23、∵∠3=∠4,∴CF ∥BD ,∴∠6+∠2+∠3=180°.∵∠6=∠5,∠2=∠1,∴∠5+∠1+∠3=180°,∴ED ∥FB.24、(1)∵OM ⊥AB ,∴∠1+∠AOC =90°.∵∠1=∠2,∴∠2+∠AOC =90°.∴∠NOD =180°-(∠2+∠AOC) =.(2)已知∠BOC =4∠1,即90°+∠1=4∠1,可得∠1=30°,∴∠AOC =90°-30°=60°,∴∠BOD =60°,∴∠MOD =90°+∠BOD =150°.人教版-七年级下册-第五章 -相交线与平行线-专题练习(含答案)一、单选题1.两条直线相交所成的四个角都相等时,这两条直线的位置关系是( )A. 平行B. 相交C. 垂直D. 不能确定2.在同一平面内,已知直线a 、b 、c 相互平行,直线a 与b 的距离是4cm ,直线b 与c 的距离是6cm ,那么直线a 与c 的距离是( )A. 2cmB. 5cmC. 2cm 或5cmD. 2cm 或10cm3.下列结论正确的是( )A. 不相交的两条直线叫做平行线1809090︒-︒=︒B. 两条直线被第三条直线所截,同位角相等C. 垂直于同一直线的两条直线互相平行D. 平行于同一直线的两条直线互相平行4.下面的每组图形中,左面的平移后可以得到右面的是()A. B. C. D.5.下列命题中,是真命题的是()A. 一个角的余角大于这个角B. 邻补角一定互补C. 相等的角是对顶角D. 有且只有一条直线与已知直线垂直6.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A. 155°B. 145°C. 135°D. 125°7.如图,在正方形ABCD 中,A,B,C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点 D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)8.如图,由已知条件推出的结论,正确的是()A. 由∠1=∠5,可以推出AD∥CBB. 由∠4=∠8,可以推出AD∥BCC. 由∠2=∠6,可以推出AD∥BCD. 由∠3=∠7,可以推出AB∥DC9.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A. 100°B. 120°C. 140°D. 160°10.如图,在四边形ABCD中,连接AC、BD,若要使AB∥CD,则需要添加的条件是()A. ∠1=∠2B. ∠2=∠3C. ∠3=∠4D. ∠4=∠5二、填空题11.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.试判断CD与AB的位置关系,并说明理由.请完成下列解答:解:CD与AB的位置关系为:________,理由如下:∵DG⊥BC,AC⊥BC(已知),∴________(________),∴∠ACD=∠2(________),∵∠1=∠2(已知),∴∠ACD=∠1,∴FE∥CD(________),∵EF⊥AB(已知),∴________.12.如图,直线AB、CD、EF相交于点O,∠AOE的对顶角是________.13.已知下列命题:①若a>0,b>0,则a+b>0;②若a²≠b²,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是________.14.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为________.15.(2017•威海)如图,直线l1//l2,∠1=20°,则∠2+∠3=________.16.如图,已知直线AB、CD、EF相交于点O,AB⊥CD,∠DOE=127°,则∠COE=________°,∠AOF=________°.三、综合题17.如图,在方格纸中,直线AC与CD相交于点C.(1)过点E画直线EF,使EF⊥AC;(2)分别写出(1)中三条直线之间的位置关系;(3)根据你观察到的EF与CD之间的位置关系,用一句话来表达你的结论.18.画图:(1)先将方格纸中的图形(图1)向左平移5格,然后再向下平移3格.(2)如图2,已知四边形ABCD,试将其沿箭头方向平移,其平移的距离为线段BC的长度.19.如图,∠1=75°,∠A=60°,∠B=45°,∠2=∠3,FH⊥AB于H.(1)求证:DE∥BC;(2)CD与AB有什么位置关系?证明你的猜想.20.△ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′________;B′________;C′________;(2)说明△A′B′C′由△ABC经过怎样的平移得到?________.(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为________;(4)求△ABC的面积.答案一、单选题1.【答案】C【解析】【解答】解:两条直线相交所成的四个角都相等时,则每一个角都为90°,所以这两条直线垂直.故选C.【分析】两条直线相交所成的四个角都相等时,根据这四个角的和为360°,得出这四个角都是90°,由垂直的定义即可得出这两条直线互相垂直.2.【答案】D【解析】【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为6cm,∴a与c的距离=6cm﹣4cm=2cm;当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为6cm,∴a与c的距离=6cm+4cm=10cm,综上所述,a与c的距离为2cm或10cm.故选D.【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.3.【答案】D【解析】【解答】解:A、在同一平面内,不相交的两条直线叫做平行线,故A不符合题意;B、两直线平行,同位角相等,故B不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相平行,故C不符合题意;D、平行于同一直线的两条直线互相平行,故D符合题意;故选:D.【分析】根据平行公理及推论,可得答案.4.【答案】D【解析】【解答】解:A、两图形不全等,故本选项错误;B、两图形不全等,故本选项错误;C、通过平移得不到右边的图形,只能通过轴对称得到,故本选项错误;D、左面的图形平移后可以得到右面图形,故本选项正确.故选:D.【分析】根据平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,即可判断出答案.5.【答案】B【解析】【解答】A.一个角的余角不一定大于这个角,如:50°,故A不符合题意;B.邻补角一定互补,故B不符合题意;C.相等的角不一定是对顶角,故C不符合题意;D.过一点有且只有一条直线与已知直线垂直,故D不符合题意.故答案为:B.【分析】根据一个角的余角不一定大于这个角,邻补角一定互补,故B不符合题意,相等的角不一定是对顶角,过一点有且只有一条直线与已知直线垂直,进行判别即可.6.【答案】D【解析】【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选D.【分析】由对顶角相等可求得∠BOD,根据垂直可求得∠EOB,再利用角的和差可求得答案.7.【答案】B【解析】【解答】∵在正方形ABCD 中,A、B、C 三点的坐标分别是(-1,2),(-1,0),(-3,0),∴D(-3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故答案为:B.【分析】根据正方形的性质,及平行于坐标轴的直线上的点的坐标特点得出D点的坐标,再根据平移的性质即可得出平移后点D的坐标。

人教版七年级数学下册第五章《相交线与平行线》测试卷(含答案)

人教版七年级数学下册第五章《相交线与平行线》测试卷(含答案)

人教版七年级数学下册第五章《相交线与平行线》测试卷学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.下列说法正确的是()A. 同位角相等B. 在同一平面内,如果a⊥b,b⊥c,则a⊥cC. 相等的角是对顶角D. 在同一平面内,如果a∥b,b∥c,则a∥c2.如图,下列说法中错误的是 ( )A. ∠GBD和∠HCE是同位角;B. ∠ABD和∠ACH是同位角;C. ∠FBC和∠ACE是内错角;D. ∠GBC和∠BCE是同旁内角.3.如图是一汽车探照灯纵剖面,从位于O点的灯泡发出的两束光线OB,OC经过灯碗反射以后平行射出,如果,,则的度数是()A. B. C. D.4.下列说法中可能错误的是()A. 过直线外一点有且只有一条直线与已知直线平行B. 过一点有且只有一条直线与已知直线垂直C. 两条直线相交,有且只有一个交点D. 若两条直线相交成直角,则这两条直线互相垂直5.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A. 向右平移1格,向下3格B. 向右平移1格,向下4格C. 向右平移2格,向下3格D. 向右平移2格,向下4格6.下列命题错误的是( )A. 同位角相等,两直线平行.B. 两直线平行,同旁内角互补.C. 对顶角相等.D. 点到直线的距离是直线外一点到这条直线的垂线段.7.在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.8.下列说法中:(1)两条直线相交只有一个交点;(2)两条直线不是一定有公共点;(3)直线AB与直线BA是两条不同的直线;(4)两条不同的直线不能有两个或更多公共交点.其中正确的是()A. (1)(2)B. (1)(4)C. (1)(2)(4)D. (2)(3)(4)9.下列语句属于命题的个数是()(1)宣城市奋飞学校是市文明单位(2)直角等于90°(3)对顶角相等(4)奇数一定是质数吗?A. 1B. 2C. 3D. 410.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线二、填空题(本大题共5小题,共15分)11.如图,已知AB∥CD,∠ABP=34°,∠DCP=27°,那么∠BPC=______.12.如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠AEG=______度.13.一个宽度相等的纸条,如下图这样折叠,则∠1等于______.14.如图,∠1=83°,∠2=97°,∠3=100°,则∠4=______.15.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.若∠EOD=20°,则∠COB=________.第13题图第14题图第15题图三、计算题(本大题共2小题,共18分)16.(本题满分6分)将如图所示的三角形ABC,先水平向右平移5格得三角形DEF,再竖直向下平移4格得到三角形GHQ.作出这两个三角形,并标上字母。

新人教版七年级下册第五章《相交线与平行线》测试卷及答案

新人教版七年级下册第五章《相交线与平行线》测试卷及答案

人教版七年级下册第五章《相交线与平行线》单元过关测试卷一、选择题(每小题3分,共30分)1.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25° B.35° C.50° D.65°2.如图,直线AB与CD相交于点O,则下列选项错误的是()A.∠1=∠3 B.∠2+∠3=180°C.∠4的邻补角只有∠1 D.∠2的邻补角有∠1和∠3两个角3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于()A.60° B.50° C.40° D.30°4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )A.如图①,展开后测得∠1=∠2 B.如图②,展开后测得∠1=∠2,且∠3=∠4 C.如图③,展开后测得∠1=∠2,且∠3=∠4 D.如图④,展开后测得∠1+∠2=180°6.如图,AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A.互余B.相等C.互补D.不等7.如图,△ABC沿BC方向平移a cm后,得到△A′B′C′,已知BC=6 cm,BC′=17 cm,则a的值为()A.10 cm B.11 cm C.12 cm D.13 cm8.如图,下列命题是假命题的是()A.如果∠2=∠3,那么a∥c B.如果a∥b,a∥c,那么b∥cC.如果∠4+∠5=180°,那么∠2=∠3 D.如果∠4=∠6,那么∠1+∠3=180°9.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70° B.60° C.55° D.50°10.如图,AB∥EF,BC⊥CD,垂足为C,则∠1,∠2,∠3之间的关系为()A.∠2=∠1+∠3 B.∠1+∠2+∠3=180°C.∠1+∠2-∠3=90° D.∠2+∠3-∠1=90°二、填空题(每小题3分,共18分)11.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD=____.12.如图,DE∥BC,∠1=40°,当∠B=____°时,EF∥AB.13.如图,长方形ABCD中,AB=3,BC=4,则图中五个小长方形的周长之和为____.14.把命题“两条平行线被第三条直线所截得的同位角的平分线互相平行”改写成“如果……那么……”的形式为,它是一个___命题.(填“真”或“假”)15.如图,∠ACB=90°,CD⊥AB,垂足为D,AB=13 cm,AC=5 cm,BC=12 cm,那么点B到AC的距离是____,点A到BC的距离是____,点C到AB的距离是____.16.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=____.三、解答题(共52分)17.(8分)画图并填空,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是;(2)确定由B地到河边l的最短路线的依据是.18.(8分)如图,直线AB,CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB,∠BOF的度数.19.(8分)如图,已知∠1=50°.(1)当∠2=____°时,a∥b;(2)当∠3=____°时,c∥d;(3)若∠1+∠5=180°,且∠3∶∠4=3∶2,求∠6的度数.20.(8分)如图,∠FED=∠AHD,∠GF A=40°,∠HAQ=15°,∠ACB=70°,且AQ平分∠F AC,试说明:BD∥GE∥AH.21.(8分)已知∠ABC的两边与∠DEF的两边平行,即BA∥ED,BC∥EF.(1)如图①,若∠B=40°,则∠E=____°;(2)如图②,猜想∠B与∠E有怎样的关系?试说明理由;(3)如图③,猜想∠B与∠E有怎样的关系?试说明理由;(4)22.(12分)已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,点P是直线l3上任意一点.(1)如图①,当点P在线段CD上时,若∠P AC=30°,∠PBD=50°,求∠APB的度数;(2)如图②,当点P在DC的延长线上时,试探索∠APB,∠P AC,∠PBD之间有怎样的关系?并说明理由;(3)如图③,当点P在CD的延长线上时,猜想∠APB,∠P AC,∠PBD之间的关系为.第五章《相交线与平行线》单元过关测试卷参考答案一、选择题A CB AC A B C A C二、填空题11.50°12.4013.1414.如果两条平行线被第三条直线所截,那么同位角的平分线互相平行真6015.12 51316.9.5°三、解答题17.(1)两点之间,线段最短;(2)垂线段最短.18.解:∠COB=40°,∠BOF=100°.19.(1)50;(2)130;(3)∵∠3∶∠4=3∶2,∴设∠3=3x人教版数学七年级下册第五章相交线与平行线单元练习含答案人教版数学七年级下册第五章相交线与平行线单元练习1.下列说法中正确的是( )A.两条直线相交所成的角是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.不相等的角一定不是对顶角2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2与∠3互余 B.∠2与∠3互补C.∠2=∠3 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠57. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个 B.2个 C.3个 D.4个9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.11. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC =__________,∠AOC=___________.12. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是垂线段_____________13. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线_______所截得的_______角;(2)∠2和∠BAC是直线CE,AB被直线______所截得的________角;(3)∠3和∠ABC是直线_______,_______被直线_______所截得的__________角;14. 如图,过点A画直线l的平行线,能画条15. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是内错角,两直线 .16. 如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=__人教版七年级数学下册第五章相交线与平行线:平行线性质与判定练习卷一、选择题1.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数是( )A.1B.2C.3D.42.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.2个B.3个C.4个D.5个3.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°4.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对5.如图,AB//CD,用含∠1、∠2、∠3的式子表示∠4,则∠4的值为()A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠1D.∠2+∠3-∠1-180°6.如图,已知AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°7.如图,将一张长方形的纸片沿折痕E、F翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM的度数为()A.30°B.36°C.45°D.60°8.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于 ( )A.50°B.60°C.75°D.85°9.把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( )(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.A.1个B.2个C.3个D.4个10.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走。

新人教版七年级下册第五章《相交线与平行线》检测试卷及答案

新人教版七年级下册第五章《相交线与平行线》检测试卷及答案

七年级人教版数学下册第 5 章订交线与平行线单元测试题人教版七年级数学下册第 5 章订交线与平行线单元检测题一、选择题:1.下边四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点起码有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线订交所成的四个角中,假如此中有一个角是直角,那么其他三个角也必定相等.此中错误的选项是()A. ( 1)( 2)( 4)B. ( 1)( 3)( 4)C.( 2)( 3)( 4)D.(1)( 2)( 3)2.点 P为直线 MN外一点 , 点 A、B、C为直线 MN上三点 ,PA=4 厘米 ,PB=5 厘米 ,PC=2 厘米 , 则 P到直线MN的距离为()A.4 厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图 , 以下结论错误的选项是()A. ∠1与∠ B是同位角B.∠ 1与∠ 3 是同旁内角C. ∠2与∠ C是内错角D.∠ 4与∠ A是同位角4.如图, AB∥CD, CD⊥EF,若∠ 1=125°,则∠ 2=()A.25 °B.35°C.55°D.65°5.如图, a∥ b,将三角尺的直角极点放在直线 a 上,若∠ 1=40°,则∠ 2=()A.30 °B.40°C.50°D.60 °6. 将以下图的图案经过平移后能够获得的图案是()A. B. C. D.7.如图,AB ∥ CD,AE 均分∠CAB交 CD于点 E, 若∠C=50°, 则∠AED=()A.65 °B.115 °C.125 °D.130 °8.如图, AE∥BD,∠ 1=120°,∠ 2=40°,则∠ C的度数是()A.10 °B.20°C.30°D.40°9.以下图,已知AB∥CD, EF均分∠ CEG,∠ 1=80°,则∠ 2 的度数为 ()A.20°B.40°C.50°D.60°10.如图,若两条平行线EF, MN与直线 AB, CD订交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A. ①②B.②③人教版七年级下册第五章订交线与平行线单元提升检测题一、单项选择题(共 10 题;共 30 分)1.对于命题若a2=b2,下边四组对于a, b 的值中,能说明这个命题属于假命题的是()A. a=3, b=3B. a=-3, b=-3C. a=3,b=-3D. a=-3, b=-22.以下图,直线a∥ b,A 是直线 a 上的一个定点,线段BC 在直线 b 上挪动,那么在挪动过程中△ABC的面积 ()A. 变大B变.小C不.变D无.法确立3. 如图所给的图形中只用平移能够获得的有()A.1个B.2个C. 3 个4.如图,直线a∥ b,将向来角三角形的直角极点置于直线D.b 上,若∠4 个1=28 °,则∠2的度数是()A.62 °5.如图,将木条的度数起码是(a,b 与)B. 108c 钉在一同,∠C. 118 °1=70 °,∠ 2=50 °,要使木条 a 与D. 152 °b 平行,木条 a 旋转新人教版七年级下册第五章《相交线与平行线》检测试卷及答案A.10 °B.20C.50°D.70°6.如图,直线,直线l与直线a,b分别订交于A、 B 两点,过点 A 作直线 l 的垂线交直线 b 于点 C,若,则的度数为()A. B. C. D.7.如图,直线 AB∥ EF,点 C是直线 AB 上一点,点 D 是直线 AB外一点,若∠ BCD=95°,∠CDE=25°,则∠ DEF的度数是()A. 110 °B. 115C. 120°D. 125 °°8.如图,直线l1∥ l2 ,且分别与直线l 交于 C,D 两点,把一块含30°角的三角尺按以下图的位置摆放 .若∠ 1=52°,则∠ 2 的度数为()A. 92 °B. 98C. 102°D. 108°°9.以下图,点 E 在 AC 的延伸线上,以下条件中能判断AB∥ CD 的是()A. ∠3=∠ 4B.∠ D=∠ DCE C∠. 1=∠ 2 D.∠ D+∠ACD=180°10.如图,已知AB∥ CD∥ EF, FC均分∠ AFE,∠ C=25°,则∠ A 的度数是()A.25 °B.35C.45°D.50 °°二、填空题(共 6 题;共 24 分)11.如图 ,将△ ABC 沿 BC 方向平移 2cm 获得△ DEF, 若△ ABC 周长为 16cm,则四边形ABFD 周长为.12.如图, AB∥ CD,且∠ A=25°,∠ C=45°,则∠ E 的度数是 ________.13.如图, AB∥ CD, CB 均分∠ ACD.若∠ BCD=28°,则∠ A 的度数为 ________.14.如图,∠ 1=70°,直线 a 平移后获得直线 b ,则∠ 2-∠ 3= ________15.如图,若∠ 1=∠ D=39°,∠ C 和∠ D 互余,则∠ B=________16.如图, m∥ n,∠ 1=110 °,∠ 2=100 °,则∠ 3=________ °.三、解答题(共7 题;共 46 分)17.如图,直线AB、 CD 订交于 O,射线 OE 把∠ BOD 分红两个角,若已知∠BOE=∠ AOC,∠E OD=36°,求∠ AOC的度数.18.以下图是小明自制对顶角的“小仪器”表示图:( 1 )将直角三角板 ABC 的 AC 边延伸且使 AC固定;( 2 )另一个三角板 CDE的直角极点与前一个三角板直角极点重合;( 3 )延伸 DC,∠ PCD与∠ ACF就是一组对顶角,已知∠1=30°,∠ ACF为多少 ?19.如图 ,已知 AD 均分∠ CAE,CF∥ AD,∠ 2=80 °,求∠ 1 的度数 .20.如图 ,直线 l1∥ l2,∠ BAE=125°,∠ ABF=85°,则∠ 1+∠ 2 等于多少度 ?21.如图,直线 a∥ b,射线 DF 与直线 a 订交于点 C,过点 D 作 DE⊥ b 于点 E,已知∠ 1=25 °,求∠ 2 的度数.22.直线 EF分别与直线 AB, CD 订交于点 P 和点 Q, PG均分∠ APQ,QH 均分∠ DQP,而且∠1=∠ 2,说出图中哪些直线平行,并说明原因.23.如图,已知 DE⊥ AC 于 E 点,BC⊥ AC 于点 C,FG⊥AB 于 G 点,∠ 1=∠ 2,求证: CD⊥AB.答案一、单项选择题1. C2. C3.B4.C5.B6.C7.C8.B9. C 10. D 二、填空题11.20cm 12.70 ° 13.124 °14.110 °15.129 °16.150三、解答题17.解:∵∠ AOC=∠ BOD 是对顶角,∴∠ BOD=∠AOC,∵∠ BOE= ∠ AOC,∠ EOD=36o,∴∠ EOD=2∠BOE=36o,∴∠ EOD=18o,∴∠ AOC=∠ BOE=18o+36o=54o.18.解:∵∠ PCD=90°-∠ 1,又∵∠ 1=30 °,∴∠ PCD=90°-30 °=60 °,而∠ PCD=∠ ACF,∴∠ ACF=60°.19.解:∵ CF∥ AD,∴∠ CAD=∠ 2=80°,∠ 1=∠DAE,∵AD 均分∠ CAE,∴∠ DAE=∠ CAD=80°,∴∠ 1=∠ DAE=80°则∠ 1=∠ 3,∠2=∠ 4.∵l1∥ l 2,∴AC∥BD,∴∠ CAB+∠ DBA=180°,∵∠ 3+∠ 4+∠CAB+∠ DBA=125°+85°=210°,∴∠ 3+∠ 4=30°,∴∠ 1+∠ 2=30°.21.解:过点 D 作 DG∥ b,∵a∥ b,且 DE⊥ b,∴DG∥ a,∴∠ 1=∠ CDG=25°,∠ GDE=∠3=90°∴∠ 2=∠ CDG+∠GDE=25°+90°=115°.22.解: PG∥ QH, AB∥ CD.∵PG 均分∠ APQ,QH 均分∠ DQP,∴∠ 1=∠ GPQ=∠ APQ,∠PQH=∠ 2=∠ PQD.又∵∠ 1=∠ 2,∴∠ GPQ=∠ PQH,∠ APQ=∠ PQD.∴PG∥ QH, AB∥ CD23.证明:∵ DE⊥ AC, BC⊥ AC,∴DE∥BC,∴∠ 2=∠ DCF,又∵∠ 1=∠2,∴∠ 1=∠ DCF,∴GF∥ DC,又∵ FG⊥ AB,∴CD⊥AB.人教版七年级数学下册第五章订交线与平行线尖子生培优测试一试卷一、单项选择题(共 10 题;共 30 分)1.以下句子中,不属于命题的是A. 正数大于全部负数吗?()B. 两点之间线段最短C.两点确立一条直线D.会飞的动物只有鸟2.如图:已知∠1=40 °,要使直线a∥ b,则∠2=()A.50 °B. 40C. 140 °D. 150°3.如图,若∠ 1= 50°,则∠ 2 的度数为()A. 30°B. 40C. 50°D. 90°4.如图,AD 是∠ EAC的均分线,AD∥BC,∠ B= 30°,则∠ C 为()A.30 °B. 60C.80 °D. 120 °5.如图,直线 l1∥ l2, AB 与直线 l1垂直,垂足为点B,若∠ ABC=37°,则∠ EFC的度数为()新人教版七年级下册第五章《相交线与平行线》检测试卷及答案A. 127 °B. 133C. 137°D. 143°°6.如图, AB∥CD, EF⊥ AB 于 E,若∠ 1=60 °,则∠ 2 的度数是()A.35 °B.30C.25°D.20°7.如图,∥,直线分别交、于点,,均分,已知,则=()A. B. C. D.8.以下图形能够由一个图形经过平移变换获得的是()A. B. C. D.9.如图, Rt△ABC 沿直角边BC所在的直线向右平移获得△DEF,以下结论中错误的选项是().A. △ABC与△DEF能够重合B.∠DEF= 90°C. AC= DFD. EC=CF10.如图,已知AB∥ CD, BC均分∠ ABE,∠ C=33°,则∠ CEF的度数是()A.16 °B.33C.49°D.66°二、填空题(共 6 题;共 24 分)11.如图,三角形 ABC经过平移获得三角形DEF,那么图中平行且相等的线段有________对;若∠ BAC=50°,则∠ EDF=________12.如图,直线 a∥ b,∠ BAC的极点 A 在直线 a 上,且∠ BAC=100°.若∠ 1=34 °,则∠ 2=________ .°13.如图交AB 于点于点A,若,则________度14.如图,立方体棱长为2cm ,将线段 AC 平移到 A1C1的地点上,平移的距离是________cm.15.如图,直线 a 与直线 b、c 分别订交于点A、B,将直线 b 绕点 A 转动,当∠ 1=∠ ________时, c∥ b16.如图, AB∥ CD,∠ 1=64 °, FG 均分∠ EFC,则∠ EGF=________.三、解答题(共7 题;共 46 分)17.以下图,点 E 在直线 DF 上,点∠AGB=∠EHF,∠ C=∠ D,请到断∠B 在直线 AC 上,直线 AF 分别交 BD,CE于点 G,H.若A 与∠ F 的数目关系,并说明原因.18.如图,点 A、 B、 C、 D 在一条直线上, EA⊥ AD,FB⊥ AD,垂足分别为 A、 B,∠ E=∠F,CE与 DF 平行吗?为何?19.MF⊥ NF 于 F, MF 交 AB 于点 E,NF 交 CD 于点 G,∠ 1=140 °,∠ 2=50 °,试判断 AB 和CD 的地点关系,并说明原因.20.已知:如图, BE// CD,∠ A=∠ 1.求证:∠ C=∠ E .21.如图,已知 AB∥CD,BC∥ ED,请你猜想∠ B 与∠ D 之间拥有什么数目关系,并说明原因.22.如图, EF∥CD,∠ 1=∠ 2,∠ ACB=45°,求∠ DGC的度数.23.如图,直线 EF∥ GH,点 A 在 EF 上, AC 交 GH 于点 B,若∠ FAC=72°,∠ ACD=58°,点D 在 GH 上,求∠ BDC的度数.答案一、单项选择题1. A2.B3.B4. A5.A6.B7. C8.B9.D 10.D二、填空题11.6;50° 12.4613.4214.2 ;15.316.64 °三、解答题17.解:∠ A=∠ F 原因 ;∵∠ AGB=∠ DGF(对顶角相等 )∠AGB=∠EHF ∴∠ DGF=∠ DGF,∴BD∥CE,∠C=∠ABD,∵∠ D=∠ C∴∠ ABD=∠ D∴AC∥ DF,∴∠ A=∠ F18.解: CE∥ DF,原因以下:∵ AE⊥ AD,BF⊥ AD,∴∠ A=∠ FBD,∴ AE∥BF,∴∠E=∠EGF,又∵∠ E=∠ F,∴∠ EGF=∠ F,∴ CE∥ DF19.解:延伸 MF 交 CD 于点 H∠1=90∠ FH,2140∴∠ CHF=1405-902=50°,∠C HF=∠2,AB∥ CD20.证明:∵∠ A=∠ 1,∴D E//AC .∴∠ E=∠ EBA .∵BE//CD ,∴∠ EBA=∠ C .∴∠ C=∠E .21.解:猜想:∠ B+∠D=180°.原因以下:∵ AB∥ CD,∴∠ B=∠C,∵BC∥ ED,∴∠ C+∠ D=180°,∴∠ B+∠D=180°.22.解:∵ EF∥CD,∴∠ 2=∠ 3,∵∠ 1=∠ 2,∴∠ 1=∠ 3,∴DG∥ BC,∴∠ DGC=180°﹣∠ ACB=135°.23.解:∵ EF∥GH,∴∠ ABD+∠FAC=180°,∴∠ ABD=180°﹣72°=108°,∵∠ ABD=∠ ACD+∠ BDC,∴∠ BDC=∠ABD﹣∠ ACD=108°﹣58°=50°.。

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷及答案解析

2023年七年级数学下第5章《相交线与平行线》测试卷一.选择题(共10小题)
1.三条直线相交,交点最多有()
A.1个B.2个C.3个D.4个
2.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于(

A.159°B.161°C.169°D.138°
3.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC )
的度数为(
A.40°B.50°C.60°D.140°
4.下列命题正确的是()
A.圆内接四边形的对角互补
B.平行四边形的对角线相等
C.菱形的四个角都相等
D.等边三角形是中心对称图形
5.下列命题是假命题的是()
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
6.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路(图中
第1页共16页。

新人教版七年级下册第五章《相交线与平行线》测试卷(含答案)

新人教版七年级下册第五章《相交线与平行线》测试卷(含答案)

人教版七年级下册 第五章 相交线与平行线 单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,可以由其中一个图形通过平移得到的是( )2.直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( )A .23°B .42°C .65°D .19°3.如图,∠BAC =90°,AD ⊥BC 于点D ,则下列结论中:①AB ⊥AC ;②AD 与AC 互相垂直;③点C 到AB 的垂线段是线段AB ;④点A 到BC 的距离是线段AD 的长度;⑤线段AB 的长度是点B 到AC 的距离;⑥线段AB 是点B 到AC 的距离.其中正确的有( )A .3个B .4个C .5个D .6个4.如图6,将直尺与含30°角的三角尺摆放在一起.若∠1=20°,则∠2的度数是( )A .50°B .60°C .70°D .80° 5.下列说法正确个数为( )①三角形在平移过程中,对应线段一定平行或共线; ②三角形在平移过程中,对应线段一定相等; ③三角形在平移过程中,对应角一定相等; ④三角形在平移过程中,面积一定相等. A .4个 B .3个 C .2个 D .1个6.如图,直线AB ∥CD ,直线EF 分别与直线AB ,CD 相交于点G ,H.若∠1=135°,则∠2的度数为()A B CA .65°B .55°C .45°D .35° 7.如图①~④,其中∠1与∠2是同位角的有( )A .①②③④B .①②③C .①③D .① 8.如图,能判断直线AB ∥CD 的条件是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°9.如图,直线AB ,CD 相交于点O ,下列条件中,不能说明AB ⊥CD 的是( )A .∠AOD=90°B .∠AOC=∠BOC C .∠BOC+∠BOD=180°D .∠AOC+∠BOD=180°10.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=60°,则∠AED′=( )A 、50°B 、55°C 、60°D 、65° 二、填空题(每小题3分,共24分)11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度. 12.如图,有一块长为32 m 、宽为24 m 的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m 2.AEDBC FD′ C′60°第11题图第12题图13.如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED 的度数为_______.14.如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是________.15.一大门栏杆的平面示意图如图12所示,BA垂直地面AE于点A,AB平行于地面AE.若∠BAB=150°,则∠ABC=________.16.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于_________.17.如图14,直线AB∥AB∥AB,则∠α+∠β-∠γ=_________.18.一副直角三角尺叠放如图①所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为________________________.三、解答题(共66分)19.(10分)如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于点F;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?20. (10分)如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行并且过网格的格点.21. (10分)图中的4个小三角形都是等边三角形,边长为1.3 cm,你能通过平移三角形ABC得到其他三角形吗?若能,请说出平移的方向和距离.22.如图,∠ABC=∠ADC,BF,DE分别平分∠ABC,∠ADC,且∠1=∠3,AB与DC平行吗?为什么?解:AB ∥DC.理由如下:BF DE ABC ADC(____)111=ABC,2___(____)22ABC ADC(____)1=___()1=3(____)2=____(____)___(____)∠∠∴∠∠∠=∠∠=∠∴∠∠∠∠∴∠∠∴,分别平行,等量代换∥___ 23. (12分)如图,AB ∥DC ,AC 和BD 相交于点O, E 是CD 上一点,F 是OD 上一点,且∠1=∠A. (1)试说明FE ∥OC;(2)若∠BFE=70°,求∠DOC 的度数.24. (14分)已知AO ⊥OB ,作射线OC ,再分别作∠AOC 和∠B0C 的平分线OD,OE. (1)如图1,当∠BOC= 70°时,求∠DOE 的度数;(2)如图2,当射线OC 在∠AOB 内绕O 点旋转时,∠D0E 的大小是否发生变化?说明理由. (3)当射线0C 在∠AOB 外绕O 点旋转且∠AOC 为钝角时,画出图形,直接写出相应的∠DOE 的度数参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.C 8.D 9.C 10.C11.11012.66013.50°14.60°15.120°16.90°17.180°18.45°,60°,105°,135°19.(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.20.如图所示:EF∥AC,PQ∥AC,MN∥AC,且它们都过格点.21. (10分)将△ABC沿着射线AF的方向平移1.3 cm得△FAE;将△ABC沿着射线BD 的方向平移1.3 cm得△ECD;将△ABC平移不能得到△AEC.22.已知ADC角平分线的定义已知 2 已知 3等量代换ABDC 内错角相等,两直线平行23.(1)∵AB∥CD,∴∠A=∠C .又∠1=∠A,∴∠C=∠1.∴FE∥OC.(2)由(1)知FE∥OC,∴∠BFE+∠DOC =180°又∠BFE=70°,∴∠DOC =110°.24.(1)因为AO⊥OB,所以∠AOB=90°.因为∠BOC=70°,所以∠AOC=90°-∠BOC =20°.因为OD,OE分别平分∠AOC和∠B人教版七年级下册 第五章 相交线与平行线 单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,可以由其中一个图形通过平移得到的是( )2.直线AB ∥CD ,∠B =23°,∠D =42°,则∠E =( )A .23°B .42°C .65°D .19°3.如图,∠BAC =90°,AD ⊥BC 于点D ,则下列结论中:①AB ⊥AC ;②AD 与AC 互相垂直;③点C 到AB 的垂线段是线段AB ;④点A 到BC 的距离是线段AD 的长度;⑤线段AB 的长度是点B 到AC 的距离;⑥线段AB 是点B 到AC 的距离.其中正确的有( )A .3个B .4个C .5个D .6个4.如图6,将直尺与含30°角的三角尺摆放在一起.若∠1=20°,则∠2的度数是( )A .50°B .60°C .70°D .80° 5.下列说法正确个数为( )①三角形在平移过程中,对应线段一定平行或共线; ②三角形在平移过程中,对应线段一定相等; ③三角形在平移过程中,对应角一定相等; ④三角形在平移过程中,面积一定相等. A .4个 B .3个 C .2个 D .1个6.如图,直线AB ∥CD ,直线EF 分别与直线AB ,CD 相交于点G ,H.若∠1=135°,则∠2的度数为()A B CA .65°B .55°C .45°D .35° 7.如图①~④,其中∠1与∠2是同位角的有( )A .①②③④B .①②③C .①③D .① 8.如图,能判断直线AB ∥CD 的条件是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°9.如图,直线AB ,CD 相交于点O ,下列条件中,不能说明AB ⊥CD 的是( )A .∠AOD=90°B .∠AOC=∠BOC C .∠BOC+∠BOD=180°D .∠AOC+∠BOD=180°10.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=60°,则∠AED′=( )A 、50°B 、55°C 、60°D 、65° 二、填空题(每小题3分,共24分)11.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3= 度. 12.如图,有一块长为32 m 、宽为24 m 的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m 2.AEDBC FD′ C′60°第11题图第12题图13.如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,则∠AED 的度数为_______.14.如图,点P是∠NOM的边OM上一点,PD⊥ON于点D,∠OPD=30°,PQ∥ON,则∠MPQ的度数是________.15.一大门栏杆的平面示意图如图12所示,BA垂直地面AE于点A,AB平行于地面AE.若∠BAB=150°,则∠ABC=________.16.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于_________.17.如图14,直线AB∥AB∥AB,则∠α+∠β-∠γ=_________.18.一副直角三角尺叠放如图①所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°,其他所有可能符合条件)的度数为________________________.三、解答题(共66分)19.(10分)如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于点F;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?20. (10分)如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行并且过网格的格点.21. (10分)图中的4个小三角形都是等边三角形,边长为1.3 cm,你能通过平移三角形ABC得到其他三角形吗?若能,请说出平移的方向和距离.22.如图,∠ABC=∠ADC,BF,DE分别平分∠ABC,∠ADC,且∠1=∠3,AB与DC平行吗?为什么?解:AB ∥DC.理由如下:BF DE ABC ADC(____)111=ABC,2___(____)22ABC ADC(____)1=___()1=3(____)2=____(____)___(____)∠∠∴∠∠∠=∠∠=∠∴∠∠∠∠∴∠∠∴,分别平行,等量代换∥___ 23. (12分)如图,AB ∥DC ,AC 和BD 相交于点O, E 是CD 上一点,F 是OD 上一点,且∠1=∠A. (1)试说明FE ∥OC;(2)若∠BFE=70°,求∠DOC 的度数.24. (14分)已知AO ⊥OB ,作射线OC ,再分别作∠AOC 和∠B0C 的平分线OD,OE. (1)如图1,当∠BOC= 70°时,求∠DOE 的度数;(2)如图2,当射线OC 在∠AOB 内绕O 点旋转时,∠D0E 的大小是否发生变化?说明理由. (3)当射线0C 在∠AOB 外绕O 点旋转且∠AOC 为钝角时,画出图形,直接写出相应的∠DOE 的度数参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.C 8.D 9.C 10.C11.11012.66013.50°14.60°15.120°16.90°17.180°18.45°,60°,105°,135°19.(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.20.如图所示:EF∥AC,PQ∥AC,MN∥AC,且它们都过格点.21. (10分)将△ABC沿着射线AF的方向平移1.3 cm得△FAE;将△ABC沿着射线BD 的方向平移1.3 cm得△ECD;将△ABC平移不能得到△AEC.22.已知ADC角平分线的定义已知 2 已知 3等量代换ABDC 内错角相等,两直线平行23.(1)∵AB∥CD,∴∠A=∠C .又∠1=∠A,∴∠C=∠1.∴FE∥OC.(2)由(1)知FE∥OC,∴∠BFE+∠DOC =180°又∠BFE=70°,∴∠DOC =110°.24.(1)因为AO⊥OB,所以∠AOB=90°.因为∠BOC=70°,所以∠AOC=90°-∠BOC =20°.因为OD,OE分别平分∠AOC和∠B人教版七年级数学下册第五章相交线与平行线单元提升人教版七年级数学下册第五章相交线与平行线单元提升一、选择题1.下列现象不属于平移的是( C )A.飞机起飞前在跑道上加速滑行B.汽车在笔直的公路上行驶C.游乐场的过山车在翻筋斗D.起重机将重物由地面竖直吊起到一定高度2.下列语句是命题的是( C )A.延长线段AB B.你吃过午饭了吗C.直角都相等D.连接A,B两点3.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°4.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个5.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35° B.40°C.45° D.60°6.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是( D )7.如图所示,点P到直线l的距离是( B )A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度8.如图,下列说法错误的是( D )A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角9.在同一平面内的两条不重合的直线的位置关系( C )A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直10.下列说法中,正确的有( A )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个二、填空题11.已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.12.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.13.如图,已知∠1+∠2=100°,则∠3=130°.14.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.15.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.16.如图,直角三角形ABO的周长为88,在其内部的n个小直角三角形的周长之和为88.三、解答题17.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.18.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF;(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠EOA和∠BOF.19.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE 平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°. (2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°. 所以∠COF =18。

新人教版七年级下册第五章《相交线与平行线》测试题(含答案解析)

新人教版七年级下册第五章《相交线与平行线》测试题(含答案解析)

人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为 D,则点 B 到直线 CD的距离是指()A.线段 BC的长度B.线段 CD的长度C.线段 AD 的长度D.线段 BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按以下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°9.如图,将三角板与直尺贴在一同,使三角板的直角极点C(∠ ACB=90°)在直尺的一边上,若∠ 2=56°,则∠ 1的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠2的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠ A=70°,O 是 AB 上一点,直线OD 与 AB 所夹的∠ AOD=100°,要使 OD∥ AC,直线OD 绕点 O 按逆时针方向起码旋转.15.将一块 60°的直角三角板DEF搁置在 45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为 a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线A B∥ CD,而且被直线 MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,人教版七年级下册第五章订交线与平行线检测题一、选择题 (每题 3 分,共 30 分)1.在如图的四个汽车标记图案中,能用平移变换来剖析其形成过程的图案是( D )2.(2016 ·柳州)如图,与∠1是同旁内角的是( D )A.∠2 B.∠3 C.∠ 4 D.∠5,第 3题图),第4题图)3.如图,直线AB⊥CD,垂足为O,EF是过点O的直线,若∠1=50°,则∠2的度数为(A)A. 40°B. 50°C. 60°D. 70°4.如图,直线a,b都与直线c订交,给出以下条件:①∠1=∠2;②∠3=∠6;③∠4+∠ 7= 180°;④∠ 5+∠ 8=180° .此中能使 a∥b 建立的条件有 ( D )A.1个B.2 个C.3个D.4个5.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数为( A )A. 46°B. 44°C. 36°D. 22°,第 5 题图),第 9 题图),第 10题图)6.(2016 ·常州)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是(A)A.2 B.4 C.5 D.77.以下语句错误的选项是( C )A.连结两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共极点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成的线段平行(或在同一条直线上)且相等8.以下命题:①内错角相等;②同旁内角互补;③直角都相等;④若n< 1,则 n2- 1<0.此中真命题的个数有( A )A.1个B.2 个C.3个D.4个9.如图,AB∥EF∥CD,点G在AB上,GE∥BC,GE的延伸线交DC的延伸线于点H,则图中与∠ AGE 相等的角共有 ( A )A.6个B.5 个C.4个D.3个10.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=( A )A. 30°B. 35°C. 36°D. 40°二、填空题 (每题 3 分,共 24 分 )11.(2016 ·漳州)如图,若a∥b,∠1=60°,则∠2的度数为__120__度.12.如图,由点A观察点B的方向是__南偏东 60°__.,第 11 题图),第 12题图),第13题图)13.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__80__度.14.平移线段AB,使点A挪动到点C的地点,若AB=3 cm,AC=4 cm,则点B挪动的距离是 __4_cm__.15.如图,增补一个适合的条件__答案不独一,如∠DAE =∠B 或∠EAC =∠ C__使AE ∥BC.( 填一个即可 ),第 15题图),第 17 题图),第18)16.命“相等的角是角”是__假__命(填“真”或“假”),把个命改写成“假如⋯⋯那么⋯⋯”的形式__假如两个角相等,那么两个角是角 __.17.如,直l1∥l2,AB⊥l1,垂足O,BC与l2订交于点E,若∠ 1= 40°,∠ ABC=__130° __.18.如,AB∥CE,∠B=60°,DM均分∠BDC,DM⊥DN,∠NDE=__30°__.三、解答 (共 66 分)19.(6分)画并填空:如,画出自 A 地 B 地去河l 的最短路.(1)确立由 A 地到 B 地最短路的依照是__两点之段最短__;(2)确立由 B 地到河l 的最短路的依照是__垂段最短 __.解:接 AB, B 作 BC⊥l,折 ABC 即所求的最短路,略20.(6分)如,直AB,CD订交于点O,OE均分∠BOD,OE⊥OF,∠DOF=70°,求∠AOC 的度数.解:∵OE ⊥OF ,∴∠ EOF = 90°,∵∠ DOF = 70°,∴∠ DOE =20°,∵OE 均分∠BOD ,∴∠ BOD= 40°,∴∠ AOC=∠BOD= 40°21.(6分)如图,EF∥BC,AC均分∠BAF,∠B=80°.求∠C的度数.解:∵EF ∥BC,∴∠ B+∠ BAF = 180°,∴∠ BAF = 180°-∠B= 180°- 80°= 100° .又∵AC 均分∠BAF ,∴∠ FAC =1∠BAF = 50°.∵ EF ∥ BC,∴∠ C=∠FAC,∴∠ C= 50°222.(8分)如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.人教版七年级数学下册第五章订交线与平行线单元测试题一、选择题 ( 每题 3 分,共 30 分 )1.以下图形能够由一个图形经过平移变换获得的是()A B C D2.以下说法中, 正确的个数是()(1) 相等且互补的两个角都是直角;(2)互补角的均分线相互垂直 ;(3)邻补角的均分线相互垂直 ;(4)一个角的两个邻补角是对顶角 .A.1B.2C.3.43 以下图, △ABC的三个极点分别在直线a, b上 , 且a∥b,∠1=120°, ∠2=80°, 则∠ 3 的度数是()A.40°B.60°C.80°D.120°4.如图,以下判断:①∠ A 与∠ 1 是同位角;②∠ A 与∠ B 是同旁内角;③∠ 4 与∠1是内错角;④∠ 1 与∠ 3 是同位角.此中正确的选项是 ()A .①②③B.①②④C.②③④D.①②③④5.如图,直线AD ∥BC .若∠ 1= 42°,∠ BAC= 78°,则∠ 2 的度数为 ()A . 42°B .50° C.60° D .68°6.如图,∠ BAC= 90°, AD⊥ BC 于点 D,则以下结论中:①AB⊥ AC;② AD 与 AC 互相垂直;③点 C 到 AB 的垂线段是线段 AB;④点 A 到 BC 的距离是线段 AD 的长度;⑤线段 AB的长度是点 B 到 AC 的距离;⑥线段 AB 是点 B 到 AC 的距离.此中正确的有()A.3个B.4 个C.5 个D.6 个7.如图,将直尺与含30°角的三角尺摆放在一同.若∠1= 20°,则∠ 2 的度数是 ()A . 50°B .60° C.70° D .80°8,,,向左拐50°, 那么第二次向右拐()A.40°B.50°C.130°D.150°9.如图,已知∠1=∠ 2,有以下结论:①∠3=∠ D;② AB∥ AB;③ AD ∥ BC;④∠ A+∠ D= 180°.此中正确的有()A.1个B.2 个C.3 个D.4 个10.如图, AB∥ AB∥ AB,则以下各式中正确的选项是()A .∠ 1= 180 °-∠ 3B.∠ 1=∠ 3-∠ 2C.∠ 2+∠ 3= 180 °-∠ 1D.∠ 2+∠ 3= 180 °+∠ 1二、填空题 (每题 4 分,共 24 分 )11.如图,点 D 在∠ AOB 的均分线 OC 上,点 E 在 OA 上,ED ∥ OB,∠ 1= 25°,则∠AED 的度数为 _______.12.一大门栏杆的平面表示图以下图, BA 垂直地面 AE 于点 A, AB 平行于地面 AE. 若∠ BAB = 150°,则∠ ABC =________.13.如图, C 岛在 A 岛的北偏东 50°方向, C 岛在 B 岛的北偏西 40°方向,则从 C 岛看A,B 两岛的视角∠ ACB 等于 _________.14.以下图 , AB⊥CD于O, EF为过点O 的直线, MN均分∠ AOC,若∠ EON=100°,那么∠EOB=,15.已知∠α是锐角 , ∠α与∠β互补 , ∠α与∠γ互余 , 则∠β - ∠ γ的值等于.16.如图所示 , ∠AOB=75°, ∠AOC=15°,OD是∠BOC的平分线 , 则∠BOD=.三、解答题 (共 66 分)17. (8 分) 如图,增补以下结论和依照.∵∠ ACE=∠ D(已知 ),∴_____∥______(___________________________) .∵∠ ACE=∠ FEC (已知 ),∴______∥______(___________________________) .∵∠ AEC=∠ BOC(已知 ),∴_____∥______(_____________________________) .∵∠ BFD+∠ FOC = 180°(已知 ),∴_____∥ ______(______________________________) .18.(8 分 )如图,直线 AB 与 AB 订交于点O,OP 是∠ BOC 的均分线, OE⊥ AB, OF ⊥ AB.(1)图中除直角和平角外,还有相等的角吗?请写出两对:①__________________ ;② _________________________________________ .(2)假如∠ AOD = 40°,求∠ COP 和∠ BOF 的度数.19. (8 分) 如图,已知∠ ABC= 180 °-∠ A, BD⊥ AB 于点 D, AB⊥ AB 于点 F.(1)求证: AD ∥BC ;(2)若∠ 1= 36°,求∠ 2 的度数.20.(10 分) 如图,点 C 在∠ AOB 的一边 OA 上,过点 C 的直线 DE ∥ OB,CF 均分∠ AAB ,CG⊥ CF 于点 C.(1)若∠ O= 38°,求∠ ECF 的度数;(2)试说明 CG 均分∠ OAB 的原因;(3)当∠ O 为多少度时,AB 均分∠ OCF ,请说明原因.21.(10 分 )如图, BD ⊥ AC 于点 D,AB⊥ AC 于点 F,∠ AMD =∠ AGF,∠ 1=∠ 2= 35°.(1)求∠ GFC 的度数;(2)求证: DM ∥ BC.22. (10 分)是大众汽车的标记图案,此中蕴涵着很多几何知识.依据下边的条件完成证明.已知:如图,BC∥ AD ,BE∥AF .(1)求证:∠ A=∠ B;(2)若∠ DOB = 135 °,求∠ A 的度数.23. (12分 ) 有一天李小虎同学用《几何画板》绘图, 他先画了两条平行线AB, CD,而后在平行线间画了一点 E,连结 BE, CE后(如图(1)所示),他用鼠标左键点住点E,拖动后,分别获得图(2)(3)(4),这时忽然想 , ∠B, ∠D与∠BED之间的度数有没有某种联系呢?接着李小虎同学通过利用《几何画板》的“胸怀角度”和“计算”的功能, 找到了这三个角之间的关系.(1)你能商讨出图 (1) 至 (4) 中的∠B, ∠D与∠BED之间的关系吗 ?(2)请从所得的四个关系中 , 选一个说明它建立的原因.参照答案一、10.D二、11. 50°【分析】∵DE∥ OB,∴∠ EDO=∠1=25°.∵ OD均分∠ AOB,∴∠ AOD=25°,∴∠ AED =25°+ 25°= 50°.12. 120 °【分析】如答图,过点 B 作 BF ⊥ AB, AB⊥ AE.∴∠ ABF = 90°.∵ AB⊥ AE,∴AE ∥BF .∵AB∥AE ,∴ AB∥ BF.∵∠ BAB = 150°,∴∠ CBF = 180°-∠ BAB= 30°.则∠ ABC =∠ ABF +∠ CBF= 120°.13. 90°14.. 55°15. . 90° ( 分析: ∠ α与∠β互补 , 有∠α +∠β =180 ° , ∠α与∠γ互余 , 有∠α +∠γ=90° , 可推出∠β- ∠ γ =90°. )16.30三、17. CE DF同位角相等,两直线平行EF AD内错角相等,两直线平行AE BF同位角相等,两直线平行EC DF同旁内角互补,两直线平行18. (1)∠ COE=∠ BOF∠COP=∠BOP、∠COB=∠AOD (写出随意两对即可 )解: (2) ∵∠ AOD =∠BOC= 40°,1∴∠ COP=∠BOC= 20°.∵∠ AOD= 40°,∴∠ BOF =90°- 40°= 50°.19.(1)证明:∵∠ ABC= 180 °-∠A,∴∠ ABC+∠ A= 180°,∴AD∥ BC.(2)解:∵ AD ∥BC ,∠ 1= 36°,∴∠ 3=∠ 1= 36°.∵BD⊥ AB, AB⊥ AB,∴BD∥ AB,∴∠ 2=∠ 3= 36°.20.解: (1)∵ DE∥ OB,∠ O= 38°,∴∠ ACE=∠ O= 38°.∵∠ AAB+∠ ACE= 180°,∴∠ AAB=142°.∵CF 均分∠ AAB,1∴∠ ACF=∠ AAB= 71°,∴∠ ECF=∠ ACE +∠ ACF = 109°.(2)∵ CG⊥ CF,∴∠ FCG = 90°,∴∠ DCG +∠ DCF = 90°.又∵∠ GCO+∠ DCG +∠ DCF +∠ ACF = 180°,∴∠ GCO+∠ FCA = 90°.∵∠ ACF=∠ DCF ,∴∠ GCO=∠ GAB,即 CG 均分∠ OAB.(3)当∠ O= 60°时, AB 均分∠ OCF .原因以下:当∠ O= 60°时,∵ DE∥ OB,∴∠ DCO=∠ O= 60°,∴∠ AAB=120°,又∵CF 均分∠AAB,∴∠ DCF = 60°,∴∠ DCO=∠DCF ,即 AB 均分∠OCF .21.解: (1)∵ BD ⊥ AC, AB⊥ AC,∴BD∥ AB,∴∠ ABG=∠ 1=35°,∴∠ GFC= 90°+ 35°= 125°.(2)∵ BD ∥ AB,∴∠ 2=∠ CBD,∴∠ 1=∠ CBD,∴GF∥ BC.∵∠ AMD =∠AGF ,∴MD∥ GF,∴DM∥ BC.22.解: (1)证明:∵BC∥AD ,∴∠ B=∠ DOE .又∵BE∥AF,∴∠ DOE=∠A,∴∠ A=∠B.(2)∵∠ DOB =∠ EOA,由 BE∥ AF,得∠EOA +∠A= 180°,∴∠ DOB+∠ A= 180°.又∵∠ DOB = 135°,∴∠ A= 45°.23.解:由于AB⊥BC, 因此∠ 3+∠EBC=90 ° ( 垂直定义 ) .由于∠ 1+∠ 2=90 ° , ∠2=∠ 3, 因此∠ 1+∠3=90°( 等量代换 ) .因此∠ 1=∠EBC(等角的余角相等 ) .因此BE∥DF( 同位角相等 ,两直线平行 ) .24.解 :(1)图(1):∠ BED=∠ B+∠ D;图(2):∠ B+∠ BED+∠ D=360°;图(3):∠ BED=∠ D-∠ B;图(4):∠ BED=∠ B-∠ D.(2)选图 (3) .原因以下 : 以下图 , 过点E作EF∥AB.由于AB∥CD, 因此EF∥CD, 因此∠D=∠DEF,∠ B=∠BEF,由于∠ BED=∠。

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)

七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版数学七年级下册第五章相交线与平行线测试卷(含答案)

人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。

2022年人教版七年级数学下册第五章相交线与平行线章节训练试卷(含答案详解)

2022年人教版七年级数学下册第五章相交线与平行线章节训练试卷(含答案详解)

七年级数学下册第五章相交线与平行线章节训练(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列说法中,真命题的个数为()①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A.1个B.2个C.3个D.4个2、如图,△ABC沿直线BC向右平移得到△DEF,己知EC=2,BF=8,则CF的长为()A.3 B.4 C.5 D.63、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.125°B.115°C.105°D.95°4、如图,直线AB ,CD 相交于点O ,90AOE ∠=︒,90DOF ∠=︒,OB 平分DOG ∠,给出下列结论:①当50AOF ∠=︒时,50DOE ∠=︒;②OD 为EOG ∠的平分线;③若150AOD ∠=︒时,30EOF ∠=︒;④BOG EOF ∠=∠.其中正确的结论有( )A .4个B .3个C .2个D .1个5、下列语句中,正确的有( )①一条直线的垂线只有一条;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;③两直线相交,则交点叫垂足;④互相垂直的两条直线形成的四个角一定都是直角.A .0个B .1个C .2个D .3个6、如图,直线b 、c 被直线a 所截,则1∠与2∠是( )A .对顶角B .同位角C .内错角D .同旁内角7、 “小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是( )A .平移变换B .翻折变换C .旋转变换D .以上都不对8、直线AB 、BC 、CD 、EG 如图所示.若∠1=∠2,则下列结论错误的是( )A.AB∥CD B.∠EFB=∠3C.∠4=∠5D.∠3=∠5 9、以下命题是假命题的是()A 2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行10、下列命题中是假命题的是()A.实数与数轴上的点一一对应B.内错角相等,两直线平行C.平行于同一条直线的两条直线互相平行D.如果一个角的两边分别平行于另一个角的两边,那么这两个角相等二、填空题(5小题,每小题4分,共计20分)1、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.2、如图,AC平分∠DAB,∠1=∠2,试说明AB CD∥.证明:∵AC平分∠DAB___( )___,∴∠1=∠__________( )____,又∵∠1=∠2____( )____,∴∠2=∠__________( )____,∴AB∥__________( )____.3、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.4、将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式_________.5、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.三、解答题(5小题,每小题10分,共计50分)1、如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A B C D,则阴影部分的面积为多少2''''cm.2、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB的两个端点都在格点上,点P也在格点上;(1)在图①中过点P作AB的平行线;(2)在图②中过点P作PQ⊥AB,垂足为Q;连接AP和BP,则三角形ABP的面积是.3、已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在MON∠内部作射线OC,且OC恰好平分BOM∠.(1)若24∠=︒,求AOM∠的度数;CON(2)若2∠的度数.∠=∠,求AOMBON CON4、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.5、读下列语句,用直尺和三角尺画出图形.(1)点P是直线AB外的一点,直线CD经过点P,且CD与AB平行;(2)直线AB与CD相交于点O,点P是AB、CD外的一点,直线EF经过点P,且EF∥AB,与直线CD相交于点E.---------参考答案-----------一、单选题1、B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.2、A【分析】证明BE=CF即可解决问题.【详解】解:由平移的性质可知,BC=EF,∴BE=CF,∵BF=8,EC=2,∴BE+CF=8-2=6,∴CF=BE=3,故选:A.【点睛】本题考查平移变换,解题的关键是熟练掌握平移的性质.平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.3、A【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.4、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵150∠=︒,AOD∴∠BOD=180°-150°=30°,∴30∠=︒EOF故③正确;若OD为EOG∠的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定30∠=︒,EOF∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.5、C【分析】根据垂线的性质和定义进行分析即可.【详解】解:①一条直线的垂线只有一条,说法错误;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直,说法正确;③两条直线相交,则交点叫垂足,说法错误;④互相垂直的两条直线形成的四个角一定是直角,说法正确.正确的共有2个;故选:C.【点睛】此题主要考查垂线的性质和定义以及真假命题的判断.6、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.7、A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A.【点睛】本题考查了平移变换,利用了平移的定义.8、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.9、A【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.10、D【分析】根据题意利用实数的性质、平行线的判定等知识分别判断后即可得出正确选项.【详解】解:A、实数与数轴上的点一一对应,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、平行于同一直线的两条直线平行,正确,是真命题,不符合题意;D、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意.故选:D.【点睛】本题考查命题与定理的知识,解题的关键是了解实数的性质、平行线的判定等知识.二、填空题1、130°【解析】【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.【详解】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHG=180°﹣∠EHD=130°.故答案为:130°.【点睛】本题主要考查平行线的性质,邻补角,属于基础题.2、已知 3 角平分线的定义已知 3 等量代换CD内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.3、50【解析】【分析】先求出∠BOD,根据平角的性质即可求出∠AOC.【详解】∵OE是∠DOB的角平分线,当∠DOE=20°∴∠BOD=2∠DOE=40°∵OC⊥OD,∴∠AOC=180°-90°-∠BOD=50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质.4、如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半【解析】【分析】由题意将命题的条件改成如果的内容,将命题的结论改为那么的内容进行分析即可.【详解】解:将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.故答案为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.【点睛】本题主要考查命题与定理,理解“如果…那么…”的意义并找到命题的条件和结论是解题的关键.5、120【解析】【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC =120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.三、解答题1、18【分析】利用平移的性质求出空白部分矩形的长,宽即可解决;【详解】由题意可得,空白部分是矩形,长为()523cm cm -=,宽为()312cm cm -=,∴阴影部分的面积253223218cm =⨯⨯-⨯⨯=;【点睛】本题主要考查了矩形的性质,平移的性质,准确计算是解题的关键.2、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC 即为所求.(2)如图②,PQ即为所求.三角形ABP的面积为111 343131425 222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.3、(1)48°;(2)45°.【分析】(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°-∠BOM 计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;【详解】解:(1)∵∠MON=90°,∠CON=24°,∴∠MOC=90°-∠CON=66°,∵OC平分∠MOB,∴∠BOM=2∠MOC=132°,∴∠AOM=180°-∠BOM=48°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;【点睛】本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.4、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.5、(1)见解析;(2)见解析【分析】(1)过直线AB外的点P作CD//AB即可;(2)先画两条相交直线AB与CD交于点O,再过直线AB、CD外的一点P作AB的平行线EF且交直线CD于点E.【详解】解: (1)如图所示:(1)如图所示:【点睛】本题主要考查了相交线与平行线的作图,培养学生的理解能力和动手操作能力以及数形结合思想成为解答本题的关键.。

人教版七年级下册第5章相交线与平行线练习A卷含答案

人教版七年级下册第5章相交线与平行线练习A卷含答案

新人教版七年级下第5章相交线与平行线练习A卷姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠52.下列图形中∠1和∠2是对顶角的是()A.B.C.D.3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55°B.65°C.75°D.85°4.如图,能判定EC∥AB的条件是()A.∠B=∠ACB B.∠A=∠ACE C.∠B=∠ACE D.∠A=∠ECD 5.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25°B.35°C.50°D.65°6.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°7.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=8.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′9.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°10.如图,已知AB⊥GH,CD⊥GH,直线CD,EF,GH相交于一点O,若∠1=42°,则∠2等于()A.130°B.138°C.140°D.142°11.观察下面图案,在A.B、C、D四幅图案中,能通过如图的图案平移得到的是( )A. B. C. D.12.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行二、填空题(本大题共6小题,每小题4分,共24分)13.一个角的度数为20°,则它的补角的度数为.14.如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为.15.下列命题中,(1)一个锐角的余角小于这个角;(2)两条直线被第三条直线所截,内错角相等;(3)a,b,c是直线,若a⊥b,b⊥c,则a⊥c;(4)若a2+b2=0,则a,b都为0.是假命题的有.(请填序号)16.如图,已知∠1=∠2=∠3=62°,则∠4=度.17.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′= .18.如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是.三、解答题(本大题共8小题,共78分)19.如图,AB∥DC,∠1=∠B,∠2=∠3.(1)ED与BC平行吗?请说明理由;(2)AD与EC的位置关系如何?为什么?(3)若∠A=48°,求∠4的度数.注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)ED∥BC,理由如下:∵AB∥DC,(已知)∴∠1=∠__________.(__________)又∵∠1=∠B,(已知)∴∠B=__________,(等量代换)∴__________∥__________.(__________)(2)AD与EC的位置关系是:__________.∵ED∥BC,(已知)∴∠3=∠__________.(__________)又∵∠2=∠3,(已知)∴∠__________=∠__________.(等量代换)∴__________∥__________.(__________)20.读下列语句,并画出图形:直线AB、CD是相交直线,点P是直线AB,CD外一点,直线EF经过点P,且与直线AB平行,与直线CD相交于点E.21.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.22.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.23.如图,AB∥CD,EF交AB于点G,交CD与点F,FH交AB于点H,∠AGE=70°,∠BHF=125°,FH平分∠EFD吗?请说明你的理由.24.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.25.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.26.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.新人教版七年级下第5章相交线与平行线练习A卷答案解析一、选择题1. 分析:根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.解:A.∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.2. 分析:一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.故选D.3.分析:根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.解:∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.4. 分析:直接利用平行线的判定定理判定即可求得答案.注意排除法在解选择题中的应用.解:∵当∠B=∠ECD或∠A=∠ACE时,EC∥AB;∴B正确,A,C,D错误.故选B.5. 分析:先根据三角形内角和定理求出∠C的度数,然后根据两直线平行内错角相等即可求出∠ABC的大小.解:∵CB⊥DB,∴∠CBD=90°,∴∠C+∠D=90°,∵∠D=65°,∴∠C=25°,∵AB∥CD,∴∠BAC=∠C=25°.故选A.6. 分析:由AB∥CD,∠1=50°,根据两直线平行,同旁内角互补,即可求得∠BEF的度数,又由EG平分∠BEF,求得∠BEG的度数,然后根据两直线平行,内错角相等,即可求得∠2的度数.解:∵AB∥CD,∴∠BEF+∠1=180°,∵∠1=50°,∴∠BEF=130°,∵EG平分∠BEF,∴∠BEG=∠BEF=65°,∴∠2=∠BEG=65°.故选C.7. 分析:反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.8. 分析:过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选B.9.分析:根据邻补角的定义求出∠3,再根据两直线平行,同位角相等解答.解:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选:B.10. 分析:根据平行线的判定推出AB∥CD,根据平行线的性质求出∠BPF,即可求出∠2的度数.解:如图:∵AB⊥GH,CD⊥GH,∴∠GMB=∠GOD=90°,∴AB∥CD,∴∠BPF=∠1=42°,∴∠2=180°﹣∠BPF=180°﹣42°=138°,故选B.11. 分析:根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.解:根据平移得到的是B.故选:B.12. 分析:根据平行线的定义及平行公理进行判断.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选A.二、填空题13. 分析:根据邻补角的定义列式求解解:∵两角互补,和为180°,∴它的补角=180°-20°=160°故答案为160°14. 分析:先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC=30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.解:∵∠CDE=150°,∴∠BDC=180°﹣150°=30°,∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°,∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.故答案为120°.15. 分析:利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.解:(1)一个锐角的余角小于这个角,错误,是假命题;(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;(3)a,b,c是直线,若a⊥b,b⊥c,则a∥c,故错误,是假命题;(4)若a2+b2=0,则a,b都为0,正确,为真命题,故答案为(1)(3).16. 分析:因为∠1=∠2=∠3=62°,所以可知两直线a、b平行,由同旁内角互补求得∠4结果.解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.17. 分析:直接利用平移的性质得出顶点C平移的距离.解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C平移的距离CC′=5.故答案为:5.18. 分析:先根据直线a∥b,∠2=65°得出∠FDE的度数,再由EF⊥CD于点F可知∠DFE=90°,故可得出∠1的度数.解:∵直线a∥b,∠2=65°,∴∠FDE=∠2=65°,∵EF⊥CD于点F,∴∠DFE=90°,∴∠1=90°﹣∠FDE=90°﹣65°=25°.故答案为:25°.三、解答题19. 分析:只需要根据两直线平行的判定方法及性质填写对应的空即可解:(1)ED∥BC,理由如下:∵AB∥DC,(已知),∴∠1=∠AED(两直线平行,内错角相等),又∵∠1=∠B(已知),∴∠B=∠AED(等量代换),∴ED∥BC(同位角相等,两直线平行),故答案为:AED,两直线平行,内错角相等,∠AED,ED,BC;(2)AD与EC的位置关系是:AD∥EC,∵ED∥BC(已知),∴∠3=∠CED(两直线平行,内错角相等),又∵∠2=∠3(已知),∴∠2=∠CED(等量代换),∴AD∥EC(内错角相等,两直线平行),故答案为:AD∥EC,CED,两直线平行,内错角相等,2,CED,AD,EC,内错角相等,两直线平行.20. 分析:首先画出两条相交直线,然后再在直线AB,CD外确定点P,然后点P作直线EF与直线AB平行即可.解:如图所示:.21.分析:根据对顶角的性质得到BD∥CE的条件,然后根据平行线的性质得到∠B=∠C,已知∠C=∠D,则得到满足AB∥EF的条件,再根据两直线平行,内错角相等得到∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD;又∵∠C=∠D,∴∠D=∠ABD,∴AB∥EF,∴∠A=∠F.22. 分析:根据平行线的性质求得∠3的度数,即可求得∠2的度数解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.23. 分析:由平行线的性质可找出相等和互补的角,根据角的计算找出∠EFD=2∠DFH=110°,从而得出FH平分∠EFD的结论.解:FH平分∠EFD,理由如下:∵AB∥CD,∴∠CFE=∠AGE,∠BHF+∠DFH=180°,∵∠AGE=70°,∠BHF=125°,∴∠CFE=70°,∠DFH=55°,∵∠EFD=180°﹣∠CFE=110°,∴∠EFD=2∠DFH=110°.∴FH平分∠EFD.24. 分析: 根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.解:BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).25. 分析:由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).26. 分析:(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.。

(人教版七年级下册)第5章 相交线与平行线测试卷(附答案)

(人教版七年级下册)第5章  相交线与平行线测试卷(附答案)

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:12. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.13. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.14. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.15. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.16. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .17. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.18. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )19. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.20. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA∠=∠.交CA于G.求证1221.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.参考答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级下第5章相交线与平行线练习A卷卄口考号:1.如图,与Z 1是同旁内角的是(B.Z 3C.Z 4D.Z 5)4.2下列图形中Z 1和Z 2是对顶角的是()C.Z B=Z ACED. / A=Z ECD5.如图,AB// CD CB丄DB, Z D=65,则Z ABC的大小是(A. 25°B. 35C. 50°D. 65姓名: 班级:、选择题(本大题共12小题,每小题4分,共48分)6.如图,AB// CD,直线EF交AB于点E,交CD于点F, EG平分/ BEF,交CD于点o C. 65° D. 90°7.能说明命题“对于任何实数a, |a| >-a”是假命题的一个反例可以是(A. a=- 2 B.C. a=18.如图,/ AOB的一边OA为平面镜,/ AOB=37 36在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则/ DEB的度数是(A. 75° 36'B. 75° 12'C. 74° 36'D. 74° 12'9.如图,已知直线a、b被直线c所截. a // b,Z 仁120°, 则/ 2的度数为(C. 120°D. 130°CD,10.如图,B.EF,GH相交于一点O,若/ 1=42°,则/ 2等于A. 130°11.观察下面图案,在 A . B C D 四幅图案中,能通过如图的图案平移得到的是()□ A ,U B. Hl I二12. 下列说法不正确的是()A. 过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过直线外一点只能画一条直线与已知直线垂直D. 平行于同一直线的两直线平行二、填空题(本大题共 6小题,每小题4分,共24分) 13. 一个角的度数为20°,则它的补角的度数为 _____________ .14. 如图,已知直线 AB// CD BE 平分/ ABC 交CD 于 D, / CDE=150 ,则/C 的度数为 _________15. 下列命题中,(1) 一个锐角的余角小于这个角; (2)两条直线被第三条直线所截,内错角相等;(3) a , b , c 是直线,若a 丄b , b 丄c ,贝U a 丄c ; (4)若a 2+b 2=0,贝U a , b 都为 0.是假命题的有 ___________ .(请填序号)16. 如图,已知/ 仁/ 2=7 3=62°,则/ 4= _______________度.17.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“ 10”,则顶点C 平移的距离CC = _____________.18. _________________________________________________________________ 如图,直线a// b, EF±CD于点F,/ 2=65°,则/ 1的度数是_______________________________三、解答题(本大题共8小题,共78分)19. 如图,AB// DC, / 仁/ B,/ 2=/ 3.(1)ED与BC平行吗?请说明理由;(2)AD与EC的位置关系如何?为什么?(3)若/ A=48°,求/ 4的度数.注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第( 3)小题要写出解题过程.解:(1)ED// BC,理由如下:•/ AB// DC,(已知)•• / 仁/ ________ . ( ___________ )又•••/仁/ B,(已知)•••/ B= _____ ,(等量代换)•- _________ // __________ . ( ___________ )(2) ________________________________ AD与EC的位置关系是:.•/ ED// BC,(已知)• / 3=/ __________ . ( ___________ )又•••/ 2=/ 3,(已知)•/ __________ =/ ____________ .(等量代换)•- _________ // __________ . ( ___________ )\43 k20. 读下列语句,并画出图形:直线AB CD是相交直线,点P是直线AB, CD外一点,直线EF经过点P,且与直线AB 平行,与直线CD相交于点E.21. 如图所示,点B E分别在AC DF上, BD CE均与AF相交,/ 1 = / 2,Z C=Z D,求证:22. 如图,直线a// b,点B在直线上b上,且AB丄BC, /仁55°,求/ 2的度数.23・如图,AB// CD EF交AB于点G交CD与点F, FH交AB于点H, / AGE=70 ,/ BHF=125 ,E 」________ n卞C --------- sZ—n24. 如图,四边形ABCDh/ A=Z C=90°, BE平分/ ABC DF平分/ ADC BE与DF有何FH平分/ EFD吗?请说明你的理由.如图所示,已知/ 1+Z 2=180°,/ 3=/ B,试判断/ AED 与/ C 的大小关系,并对结论进如图,已知射线 AB 与直线 CD 交于点 O, OF 平分/ BOCOGL OF 于O, AE// OF,且/ A=30° (1)求/ DOF 的度数; (2)试说明OD 平分/ AOG25.26.行说理.G新人教版七年级下第5章相交线与平行线练习A卷答案解析一、选择题1. 分析:根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.解:A.Z 1和/2是对顶角,不是同旁内角,故本选项错误;B、/1和/ 3是同位角,不是同旁内角,故本选项错误;C、/ 1和/ 4是内错角,不是同旁内角,故本选项错误;D/ 1和/ 5是同旁内角,故本选项正确;故选D.2. 分析:一个角的两边分别是另一个角的反向延伸线,这两个角是对顶角.依据定义即可判断.解:互为对顶角的两个角:一个角的两边分别是另一个角的反向延伸线.满足条件的只有D.故选D.3. 分析:根据两直线平行,同旁内角互补可求出/ AFD的度数,然后根据对顶角相等求出/2的度数.解:••• AB// CD•••/ 1+Z F=180°,•••/ 仁115°,•••/ AFD=65 ,•••/ 2和/ AFD是对顶角,•••/ 2=Z AFD=65 ,故选B.4. 分析:直接利用平行线的判定定理判定即可求得答案. 注意排除法在解选择题中的应用.解:•.•当/ B=Z ECD或/ A=Z ACE时,EC// AB;• B正确,A, C, D错误.故选B.5. 分析:先根据三角形内角和定理求出/ C的度数,然后根据两直线平行内错角相等即可求出/ ABC的大小.解:••• CB丄DB•••/ CBD=90 ,•••/ C+Z D=90°,•••/ D=65,•Z C=25,•/ AB// CD•Z BAC Z C=25.故选A.6. 分析:由AB/ CD Z仁50°,根据两直线平行,同旁内角互补,即可求得Z BEF的度数,又由EG平分Z BEF求得Z BEG的度数,然后根据两直线平行,内错角相等,即可求得Z 2的度数.解:••• AB// CD•Z BEF+Z 仁180°,•••Z 1=50°,•Z BEF=130°,•/ EG平分Z BEF,•Z BEG=-Z BEF=65°,•Z 2=Z BEG=65 .故选C.7. 分析:反例就是符合已知条件但不满足结论的例子•可据此判断出正确的选项.解:说明命题“对于任何实数a, |a| >- a”是假命题的一个反例可以是a=- 2,故选A8. 分析:过点D作DF丄AO交OB于点F.根据题意知,DF是Z CDE的角平分线,故Z仁Z 3;然后又由两直线CD// OB推知内错角Z 仁Z 2;最后由三角形的内角和定理求得Z DEB的度数.解:过点D作DF丄AO交OB于点F. •• •入射角等于反射角,• Z 1=Z 3,AB/ CD根据平行线的性质求出7,即可求出7 2的•/ CD// OB•••/仁/ 2 (两直线平行,内错角相等);•••/ 2=7 3 (等量代换);在Rt△DOF中,7 ODF=90 , 7 AOB=37 36•••7 2=90°—37°36' =52° 24•••在厶DEF中,7 DEB=180 —272=75°12'.3,再根据两直线平行,同位角相等解答.解:如图,7 3=180°—7 仁180°- 120° =60°,•/ a // b,• 7 2=7 3=60°.10.度数.•/ AB丄GH CDL•••/ GMB W GOD=90 ,••• AB// CD•••/ BPFN 1=42°,•••/ 2=180°-/ BPF=180 - 42° =138°,故选B.11. 分析:根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移可直接得到答案.解:根据平移得到的是B.故选:B.12. 分析:根据平行线的定义及平行公理进行判断.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选A.二、填空题13. 分析:根据邻补角的定义列式求解解:T两角互补,和为180°,•它的补角=180° -20 ° =160°故答案为160°14. 分析:先利用邻补角可计算出/ BDC=3°0 ,再利用平行线的性质得/ ABD=/BDC=3°0 ,接着根据角平分线定义得/ CBD/ ABD=30,然后根据三角形内角和计算/ C的度数.解:I / CDE=150,•/ BDC=180 - 150°=30°,•/ AB / CD•/ ABD=/ BDC=3°0 ,•/ BE平分/ ABC•/ CBD=/ ABD=30°,•/ C=180°-/ BDC-/ CBD=18°0 - 30°- 30° =120°故答案为120°.15. 分析:利于锐角的定义、平行线的性质、垂直的定义等知识分别判断后即可确定正确的选项.解:(1) 一个锐角的余角小于这个角,错误,是假命题;(2)两条直线被第三条直线所截,内错角相等,正确,是真命题;(3)a, b, c是直线,若a丄b, b丄c,贝U a// c,故错误,是假命题;(4)若a2+b2=0,则a, b都为0,正确,为真命题,故答案为(1) (3).16. 分析:因为/仁/ 2=7 3=62°,所以可知两直线a、b平行,由同旁内角互补求得/4结果.解:•••/ 仁/ 3,两直线a、b平行;•••7 2=7 5=62°,•••74与7 5互补,• 7 4=180°- 62°=118°.17. 分析:直接利用平移的性质得出顶点C平移的距离.解:••把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“ 10”,•三角板向右平移了5个单位,•顶点C平移的距离CC =5.故答案为:5.18. 分析:先根据直线a / b, 7 2=65 °得出7 FDE的度数,再由EF丄CD于点F可知7DFE=90,故可得出7 1的度数.解:••直线a/ b,7 2=65 °,•7 FDE=/ 2=65°,• EF± CD于点F,•••/ DFE=90 ,•••/ 仁90°-/ FDE=90°- 65° =25°.故答案为:25°.三、解答题19. 分析:只需要根据两直线平行的判定方法及性质填写对应的空即可解:(1)ED// BC理由如下:••• AB// DC (已知),•/仁/ AED(两直线平行,内错角相等),又•••/仁/ B (已知),•/ B=/ AED(等量代换),• ED// BC (同位角相等,两直线平行),故答案为:AED两直线平行,内错角相等,/ AED ED, BC;(2)AD与EC的位置关系是:AD// EC,••• ED// BC (已知),•/ 3=/ CED(两直线平行,内错角相等),又•••/ 2=/ 3 (已知),•/ 2=/ CED(等量代换),• AD// EC (内错角相等,两直线平行),故答案为:AD// EC CED两直线平行,内错角相等, 2 , CED AD, EC,内错角相等,两直线平行.20. 分析:首先画出两条相交直线,然后再在直线AB, CD外确定点P ,然后点P作直线EF与直线AB平行即可.21. 分析:根据对顶角的性质得到BD//CE的条件,然后根据平行线的性质得到/ B=/ C,已知/ C=/ D,则得到满足AB// EF的条件,再根据两直线平行,内错角相等得到/ A=/ F.证明:•••/ 2=Z 3,/ 仁/ 2, •••/ 仁/ 3, ••• BD// CE •••/ C=/ ABD 又•••/ C=/ D, •••/ D=/ ABD • AB// EF , •••/ A=/ F. 22. 分析:根据平行线的性质求得/ 3的度数,即可求得/ 2的度数解: •/ AB 丄 BC, •••/ ABC=90 , :丄 1+/ 3=90° •// 1=55° • / 3=35°, 23. 分析:由平行线的性质可找出相等和互补的角,从而得出FH 平分/ EFD 的结论. 解:FH 平分/ EFD,理由如下: •/ AB// CD ,• / CFE=/ AGE / BHF+/ DFH=180 , •••/ AGE=70 , / BHF=125 , • / CFE=70 , / DFH=55 ,根据角的计算找出/EFD=2Z DFH=11O ,•/ a // b ,•••/ EFD=180 -/ CFE=11C° ,•••/ EFD=2/ DFH=110 .••• FH平分/ EFD24. 分析:根据四边形的内角和定理和/ A=Z C=90° 得/ ABC+Z ADC=180 ;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.解: BE// DF.理由如下:•••/ A=Z C=90°(已知),•••/ ABC+Z ADC=180 (四边形的内角和等于360 ° ).•/ BE平分Z ABC DF平分Z ADC•Z 1=Z 2=l z ABC z 3=Z4=丄/ ADC(角平分线的定义).2 2•Z 1+Z 3=丄(Z ABC+Z ADC =— X 180° =90°(等式的性质).2 [2又Z 1+Z AEB=90 (三角形的内角和等于180°),•Z 3=Z AEB (同角的余角相等).• BE / DF (同位角相等,两直线平行).25. 分析:由图中题意可先猜测Z AED=Z C,那么需证明DE// BC.题中说Z 1+Z 2=180°,而Z 1+Z 4=180°所以Z 2=Z 4,那么可得到BD// EF,题中有Z 3=Z B,所以应根据平行得到Z 3与Z ADE之间的关系为相等.就得到了Z B与Z ADE之间的关系为相等,那么DE// BC证明:•••/ 1+Z 4=180 °(邻补角定义)Z 1+ Z 2=180 °(已知)•Z 2=Z 4 (同角的补角相等)• EF/ AB (内错角相等,两直线平行)•Z 3=Z ADE(两直线平行,内错角相等)又TZ B=Z 3 (已知),•Z ADE Z B (等量代换),• DE/ BC (同位角相等,两直线平行)•Z AED Z C (两直线平行,同位角相等).26. 分析:(1)根据两直线平行,同位角相等可得/ F0B2 A=30°,再根据角平分线的定义求出/ C0F2 FOB=30,然后根据平角等于180。

相关文档
最新文档