高三理科(数学)试卷
【高三数学试题】高三数学试题1(理科)及参考答案
高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
河南省2023届高三上学期第一次考试数学理科试题(解析版)
“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
2024年高考数学(理科)真题试卷(全国甲卷)
2024年高考数学(理科)真题试卷(全国甲卷)1.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
若,则( )A.B.C.10D.2.已知集合,则( )A. B. C. D.3.若满足约束条件,则的最小值为( )A. B. C. D.4.记为等差数列的前项和,已知,,则( )A. B. C. D.5.已知双曲线的两个焦点分别为,点B.3( )A.4C.在该双曲线上,则该双曲线的离心率为2 D.6.设函数,则曲线在点积为( 处的切线与两坐标轴所围成的三角形的面) A. B. C. D.7.函数在区间的图象大致为( )A.B.C. D.8.已知,则( )A. B. C. D.9.设向量 A.,则( )“”是“”的必要条件B.“”是“ C.”的必要条件“”是“”的充分条件D.“”是“ 10.”的充分条件设为两个平面,为两条直线,且.下述四个命题:①若,则或②若,则或③若且,则 ④若与,所成的角相等,则 11. B.②④D.其中所有真命题的编号是( )A.①③C.①②③①③④在中,内角所对的边分别为,若,,则)(A. B. C.D.12.已知b是的等差中项,直线与圆交于两点,则B.2的最小值为( )A.1C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.14.的展开式中,各项系数中的最大值为_______________.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,15.,则圆台甲与乙的体积之比为_______________.已知且,则16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球._______________.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与之差的绝对值不大于三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150的概率为_______________.件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计9652215017.1.17.2.已知升级改造前该工厂产品的优级品率,设.为升级改造后抽取的n件产品的优级品率如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()附:0.0500.0100.001k3.8416.63510.82818.记为数列的前项和,已知18.1..求18.2.的通项公式;设,求数列的前项和19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF .均为等腰梯形,,,,为的中点.19.1.证明:平面19.2.;求二面角20.的正弦值.已知椭圆的右焦点为,点在上,且20.1.轴.求20.2.的方程;过点的直线交于两点,为线段的中点,直线交直线于点,证明:21.轴.已知函数21.1..当时,求21.2.的极值;当时,,求22.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.的取值范围.[选修4-4:坐标系与参数方程]在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为22.1..写出22.2.设直线l 的直角坐标方程;:(为参数),若与l相交于两点,若,求23..[选修4-5:不等式选讲]已知实数满足23.1..证明:;23.2.证明:参考答案1.A 解析:结合共轭复数与复数的基本运算直接求解..由,则故选:A2.D . 解析:由集合的定义求出,结合交集与补集运算即可求解.因为,所以,则,故选:D3.D 解析:画出可行域后,利用的几何意义计算即可得.实数满足,作出可行域如图:由可得,即的几何意义为的截距的,则该直线截距取最大值时,有最小值,此时直线过点,联立,解得,即,则故选:.D.4.B 解析:由结合等差中项的性质可得,即可计算出公差,即可得的值.由,则,则等差数列的公差,故故选:B.5.C 解析:.由焦点坐标可得焦距,结合双曲线定义计算可得由题意,,即可得离心率.设、、,则,,,则,则故选:C.6.A 解析:.借助导数的几何意义计算可得其在点其面积处的切线方程,即可得其与坐标轴的交点坐标,即可得.,则,即该切线方程为,即,令,则,令,则,故该切线与两坐标轴所围成的三角形面积故选:A.7.B 解析:利用函数的奇偶性可排除A、C .,代入可得,可排除D.,又函数定义域为,故该函数为偶函数,可排除A、C,又故可排除D.故选:B.8.B 解析:,先将弦化切求得,再根据两角和的正切公式即可求解.因为,所以,,所以对A 故选:B.9.C 解析:根据向量垂直和平行的坐标表示即可得到方程,解出即可,.,当时,则,所以,解得或对C ,即必要性不成立,故A错误;,当时,,故,所以对B ,即充分性成立,故C正确;,当时,则,解得对D ,即必要性不成立,故B错误;,当时,不满足,所以故选:C.10.A 解析:根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③不成立,即充分性不立,故D错误..对①,当,因为,,则,当,因为,,则,当既不在也不在内,因为,,则且,故①正确;对②,若,则与不一定垂直,故②错误;对③,过直线分别作两平面与分别相交于直线和直线,因为,过直线的平面与平面的交线为直线,则根据线面平行的性质定理知,同理可得,则,因为平面,平面,则平面,因为平面,,则,又因为,则,故③正确;对④,若与和所成的角相等,如果,则综上只有①③正确,故选:A.11.C 解析:,故④错误;利用正弦定理得,再利用余弦定理有,由正弦定理得到的值,最后代入计算即可.因为,则由正弦定理得由余弦定理可得.:即,:,根据正弦定理得,所以,因为为三角形内角,则,则故选:C.12.C 解析:.结合等差数列性质将代换,求出直线恒过的定点,采用数形结合法即可求解.因为成等差数列,所以,,代入直线方程得,即,令得,故直线恒过,设,圆化为标准方程得:,设圆心为,画出直线与圆的图形,由图可知,当时,最小,,此时.故选:C13.5 解析:先设展开式中第项系数最大,则根据通项公式有,进而求出可求解.即由题展开式通项公式为,且,设展开式中第项系数最大,则,,即,又,故,所以展开式中系数最大的项是第9项,且该项系数为故答案为:5..14.先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得 解析:解.由题可得两个圆台的高分别为,,所以.故答案为:15.64 解析:.将利用换底公式转化成来表示即可求解.由题,整理得,或,又,所以,故故答案为:64.16. 解析:根据排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就值分类讨论后可求随机事件的概率.从6个不同的球中不放回地抽取3的不同取次,共有种,设前两个球的号码为,第三个球的号码为,则,故,故,故,若,则,则为:,故有2种,若,则,则为:,,故有10种,当,则,则为:,故有16,种,当,则,同理有16种,当,则,同理有10种,当,则,同理有2种,共与的差的绝对值不超过时不同的抽取方法总数为,故所求概率为.故答案为:17.1.答案见详解 解析:略17.2.答案见详解 解析:由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为,用频率估计概率可得,又因为升级改造前该工厂产品的优级品率,则,可知所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了,.18.1. 解析:当时,,解得.当时,,所以即,而,故,故,∴数列是以4为首项,为公比的等比数列,所以.18.2. 解析:,所以故所以,.19.1.证明见详解; 解析:因为为的中点,所以,四边形为平行四边形,所以,又因为平面,平面,所以平面;19.2. 解析:如图所示,作交于,连接,因为四边形为等腰梯形,,所以结合(1,)为平行四边形,可得,又,所以为等边三角形,为中点,所以,又因为四边形为等腰梯形,为中点,所以,四边形为平行四边形,,所以为等腰三角形,与底边上中点重合,,,因为,所以,所以互相垂直,以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,,,,,设平面的法向量为,平面的法向量为,则,即,令,得,即,则,即,令,得,即,,则,故二面角的正弦值为.20.1. 解析:设,由题设有且,故,故,故,故椭圆方程为20.2.证明见解析. 解析:直线的斜率必定存在,设,,,由可得,故,故,又,而,故直线,故,所以,故,即21.1.轴.极小值为,无极大值. 解析:当时,,故,因为在上为增函数,故在上为增函数,而,故当时,,当时,,故在处取极小值且极小值为,无极大值. 21.2. 解析:,设,则,当时,,故在上为增函数,故,即,所以在上为增函数,故.当时,当时,,故在上为减函数,故在上,即在上即为减函数,故在上,不合题意,舍.当,此时在上恒成立,同理可得在上恒成立,不合题意,舍;综上,.22.1. 解析:由,将代入,故可得,两边平方后可得曲线的直角坐标方程为.22.2. 解析:对于直线的参数方程消去参数,得直线的普通方程为法1.:直线的斜率为,故倾斜角为,故直线的参数方程可设为,.将其代入中得设两点对应的参数分别为,则,且,故,,解得法2.:联立,得,,解得,设,,则,解得23.1.证明见解析 解析:因为,当时等号成立,则,因为,所以23.2.证明见解析;解析:。
四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)
四川省成都外国语学校2024届高三下学期高考模拟(三)数学(理科)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D .2.已知为虚数单位,若复数为纯虚数,则实数( )A .B .2C .D .43.“”是“方程表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知为锐角,若,则( )ABCD5.正方形的边长为2,是的中点,是的中点,则( )A .4B .3C .D .6.已知非零实数,满足,则下列不等式不一定成立的是( )A .B .C .D .7.已知函数,,则图象为如图的函数可能是( ){}240,A x x x x =-≤∈Z {}14B x x =-≤<A B = []1,4-[)0,4{}0,1,2,3,4{}0,1,2,3i ()242i z m m =---m =2±2-13m <<22113x y m m+=--αsin 22πα⎛⎫-= ⎪⎝⎭cos α=ABCD E AD F DC ()EB EF BF +⋅=4-3-a b 1a b >+221a b >+122a b +>24a b>1ab b>+()214f x x =+()sin g x x =A .B .C .D .8.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A .B .C.D .9.已知甲同学从学校的2个科技类社团,4个艺术类社团,3个体育类社团中选择报名参加,若甲报名了两个社团,则在仅有一个是艺术类社团的条件下,另一个是体育类社团的概率( )A .B .C .D .10.鼎湖峰,矗立于浙江省缙云县仙都风景名胜区,状如春笋拔地而起,其峰顶镶嵌着一汪小湖,传说黄帝炼丹鼎坠积水成湖.白居易曾以诗赋之:“黄帝旌旗去不回,片云孤石独崔嵬,有时风激鼎湖浪,散作晴天雨点来”.某校开展数学建模活动,有建模课题组的学生选择测量鼎湖峰的高度,为此,他们设计了测量方案.如图,在山脚测得山顶得仰角为,沿倾斜角为的斜坡向上走了90米到达点(,,,在同一个平面内),在处测得山顶得仰角为,则鼎湖峰的山高为( )米()()14y f x g x =+-()()14y f x g x =--()()y f x g x =()()g x y f x =cm 3cm 22π8π223π163π356131234A P 45︒15︒B A B P Q B P 60︒PQA .B .C .D .11.已知正方体的棱长为4,,分别是棱,的中点,则平面截该正方体所得的截面图形周长为( )A .6B .CD12.已知,分别是双曲线:(,)的左右焦点,过的直线分别交双曲线左、右两支于、两点,点在轴上,,平分,则双曲线的离心率( )ABCD .二、填空题:本题共4小题;每小题5分,共20分。
新课标Ⅰ高考数学理科真题试卷(含答案)
绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。
高考理科数学试卷全套
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数y=f(x)的图象如下,则f(0)的值为()A. -1B. 0C. 1D. 22. 已知等差数列{an}的公差为d,且a1=3,a5=13,则d=()A. 2B. 3C. 4D. 53. 在平面直角坐标系中,点P的坐标为(2,3),点Q在直线y=2x上,且PQ的长度为5,则点Q的坐标为()A. (1,2)B. (3,6)C. (-1,2)D. (-3,6)4. 若复数z=3+4i,则|z|=()A. 5B. 7C. 9D. 115. 已知向量a=(2,3),向量b=(1,-2),则a·b=()A. 7B. -1C. -7D. 16. 函数y=2x^2-3x+1的对称轴为()A. x=1/2B. x=1C. x=-1/2D. x=-17. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 165°8. 若等比数列{an}的首项a1=2,公比q=3,则第n项an=()A. 2×3^(n-1)B. 2×3^nC. 6×3^(n-1)D. 6×3^n9. 已知函数f(x)=x^3-3x+2,若f'(x)=0,则x=()A. -1B. 1C. -2D. 210. 在△ABC中,若a=3,b=4,c=5,则△ABC的面积S=()A. 6B. 8C. 10D. 12二、填空题(本大题共5小题,每小题5分,共25分。
把答案填写在题目的横线上。
)11. 已知等差数列{an}的首项a1=1,公差d=2,则第10项a10=______。
12. 函数y=√(x^2-1)的定义域为______。
13. 若复数z=1-i,则z的共轭复数为______。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高三期末数学理科试卷
一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()。
A. √2B. πC. 0.1010010001...D. 22. 已知函数f(x) = 2x - 1,若f(2x) = 4x - 3,则x的值为()。
A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()。
A. log23 = 3B. log22 = 1C. log32 = 2D. log42 = 34. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差为()。
A. 1B. 2C. 3D. 45. 下列函数中,在定义域内单调递减的是()。
A. y = 2x + 1B. y = x^2C. y = log2xD. y = 3^x6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()。
A. 0B. 1C. -1D. 不存在7. 已知直线l的方程为x - 2y + 1 = 0,则直线l的斜率为()。
A. 1B. -1C. 2D. -28. 若向量a = (1, 2),向量b = (2, 1),则向量a与向量b的点积为()。
A. 3B. 5C. 0D. -39. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的大小为()。
A. 75°B. 105°C. 120°D. 135°10. 已知等比数列{an}的首项为2,公比为3,则该数列的前5项和为()。
A. 62B. 78C. 90D. 105二、填空题(每题5分,共50分)11. 已知函数f(x) = x^2 - 2x + 1,若f(x) = 0,则x的值为______。
12. 若log2(3x - 1) = 3,则x的值为______。
13. 已知等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为______。
14. 若函数f(x) = x^3 - 3x + 2在区间[0, 2]上单调递增,则f(1)的值为______。
2023高考全国甲卷理科数学试卷及答案(详解)
2023高考全国甲卷理科数学试卷及答案(详解)高考数学常考知识点(1)总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,…,__研究,我们称它为样本。
其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法;②随机数表法;③计算机模拟法;④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查高中数学基础知识点归纳有界性设函数f(x)在区间X上有定义,如果存在M0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
单调性设函数f(x)的定义域为D,区间I包含于D。
如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。
单调递增和单调递减的函数统称为单调函数。
奇偶性设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
四川省攀枝花市2023届高三第三次统一考试理科数学试题
中该金属含量低于最原始的 5%时,至少需要循环使用该技术的次数为( )(参考数
据: lg2 » 0.301)
A.12
B.13
C.14
D.15
10.已知函数
f
(
x)
=
sin
æ çè
w
x
+
π 3
ö ÷ø
(w
>
0)
对任意
x
Î
æ çè
0,
3π 8
ö ÷ø
都有
f
(
x)
>
1 2
w ,则当
取
到最大值时, f ( x) 图象的一条对称轴为( )
7
天的最高气温的平均数为
28 ´
2
+
29 ´3 7
+
30
+
31
=
204 7
>
29
,D
错.
故选:D. 4.B
【分析】根据程序框图,明确该程序的功能是求分段函数
f
(x)
=
ìíîlxo-g12 ,xx,
x > 1的值,由此根 £1
据该函数值域,可求得答案. 【详解】由程序框图可知:运行该程序是计算分段函数的值,
(2)若射线q
=
π 6
(r
³
0) 分别与曲线 C1 , C2 相交于 A,B
两点,求△C2 AB
的面积.
23.已知函数 f ( x) = x -1 + x - 3 .
(1)解不等式 f ( x) £ x +1;
(2)设函数
f
(x)
的最小值为
c,正实数
高三理科数学期中考试卷
高三理科数学期中考试卷一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = x + 12. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的点积为()A. 4B. 5C. 6D. 73. 函数f(x) = x^2 - 4x + 3的零点个数为()A. 0B. 1C. 2D. 34. 已知等差数列{a_n}的首项为1,公差为2,则第5项a_5的值为()A. 9B. 10C. 11D. 125. 圆x^2 + y^2 = 9的圆心坐标为()A. (0, 0)B. (3, 0)C. (0, 3)D. (-3, 0)6. 函数y = sin(x)的周期为()A. πB. 2πC. π/2D. 4π7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B = ()A. {1, 2, 3}B. {2, 3}C. {1, 3, 4}D. {1, 2}8. 已知函数f(x) = x^2 + 2x + 1,g(x) = x^2 - 2x + 1,则f(x) - g(x) = ()A. 4xB. 2xC. 2D. 49. 已知直线y = 2x + 3与x轴的交点坐标为()A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)10. 函数y = ln(x)的定义域为()A. (-∞, 0)B. [0, +∞)C. (0, +∞)D. (-∞, +∞)二、填空题(每题4分,共20分)11. 已知函数f(x) = 3x - 2,若f(a) = 7,则a = _______。
12. 已知等比数列{b_n}的首项为2,公比为3,则第4项b_4 =_______。
13. 已知函数y = 2x^3 + 3x^2 - 5x + 1,求导数y' = _______。
天津市高三模拟考试(理科)数学试卷-带答案解析
天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。
高三数学试题(理科)
高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。
河南省郑州外国语学校2022届高三调研考试(一) 理科数学试卷(1)
一、单选题二、多选题1. 正方体中,的中点为,的中点为,则异面直线与所成角的大小为( )A.B.C.D.2.若,则( )A .64B .33C .32D .313.设,则“”是“直线和直线平行”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知,则的最小值为( )A.B.C.D.5. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的名学生中选派名学生参加,要求甲、乙、丙这名同学中至少有人参加,且当这名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的名学生不同的朗诵顺序的种数为A.B.C.D.6. 已知为虚数单位,复数满足,则( )A.B.C .3D.7. 若向量与对应的复数分别是,则向量对应的复数为( )A.B.C.D.8. 我国古代很早就有对等差数列和等比数列的研究成果.北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差数列求和的问题.现有一物品堆,从上向下数,第一层有1个货物,第二层比第一层多2个,第三层比第二层多3个,…,以此类推.记第层货物的个数为,则数列的前2021项和为( )A.B.C.D.9. 设a ,b ,c 都是正数,且,那么( )A.B.C.D.10.函数(其中的部分图象如图所示、将函数的图象向左平移个单位长度,得到的图象,则下列说法正确的是()A .函数为奇函数B.函数在上单调递减C .函数为偶函数D .函数的图象的对称轴为直线河南省郑州外国语学校2022届高三调研考试(一) 理科数学试卷(1)河南省郑州外国语学校2022届高三调研考试(一) 理科数学试卷(1)三、填空题四、解答题11. 已知抛物线,为坐标原点,为抛物线的焦点,准线与轴交于点,过点作不垂直于轴的直线与交于,两点.设为轴上一动点,为的中点,且,则( )A .当时,直线的斜率为B.C.D.若正三角形的三个顶点都在抛物线上,则的周长为12. 在平面直角坐标系中,已知点,则( )A.B.是直角三角形C .在方向上的投影向量的坐标为D.与垂直的单位向量的坐标为或13.在的二项展开式中,含的项的系数是________(用数字作答).14. 若正方形一条对角线所在直线的斜率为3,则该正方形的两条邻边所在直线的斜率分别为______,_____.15. 已知函数的图象经过坐标原点,则曲线在点处的切线方程是________.16.已知数列的前项和为,,.若、、成等比数列,求的值.17. 科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:(年龄/岁)26273941495356586061(脂肪含量/%)14.517.821.225.926.329.631.433.535.234.6根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图:(i )求;(i )计算样本相关系数(精确到0.01),并刻画它们的相关程度.(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.附:参考数据:,,,,,,参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为,.18. 在中,以,,分别为内角,,的对边,且(1)求;(2)若,,求的面积;(3)若,,求边上中线长.19. 已知椭圆的离心率为,过右焦点且不与坐标轴垂直的直线交于P,Q两点,点关于轴的对称点为,且.(1)求的方程;(2)设点关于轴的对称点为,直线RP交轴于点,直线ST与的另一交点为,证明:直线关于直线对称.20. 我国技术给直播行业带来了很多发展空间,加上受疫情影响,直播这种成本较低的获客渠道备受商家青睐,某商场统计了2022年1~5月某商品的线上月销售量y(单位:千件)与售价x(单位:元/件)的情况如下表示.月份12345售价x(元/件)6056585754月销售量y(千件)597109(1)求相关系数,并说明是否可以用线性回归模型拟合与的关系(当时,可以认为两个变量有很强的线性相关性;否则,没有很强的线性相关性)(精确到0.01);(2)建立关于的线性回归方程,并估计当售价为元/件时,该商品的线上月销售量估计为多少千件?(3)若每件商品的购进价格为元/件,如果不考虑其他费用,由(2)中结论,当商品售价为多少时,可使得该商品的月利润最大?(该结果保留整数)参考公式:对于一组数据,相关系数,其回归直线的斜率和截距的最小二乘估计分别为:.参考数据:.21. 已知函数(1)当时,求曲线在点处的切线方程;(2)若在定义域上存在极值,求的取值范围;(3)若恒成立,求.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桃江一中2011年下期期中考试
高三数学(理科)试题
命题人:丁凤群 核卷人:徐令芝 时量:120分钟 分值:150分
一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1
.设集合20.3{|0},2A x x m =-≤=,则下列关系中正确的是 ( )
A .m A ⊆
B .m A ∉
C .{}m A ⊆
D .{}m A ∈
2.已知i 是虚数单位,则3
61i i
-等于
( )
A .33i +
B .33i -
C .33i -+
D .33i --
3.已知命题2:,0p x x ∀∈≥R ;和命题2:,3,q x Q x ∃∈=则下列命题为真的是 ( )
A .p q ∧
B .()p q ⌝∨
C .()p q ∨⌝
D .()()p q ⌝∧⌝
4.设1
2
322()log (1)2
x e
x f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 ( ) A .(1,2)(3,)⋃+∞ B
.)+∞
C
.(1,2))⋃+∞
D .(1,2)
5.在ABC ∆中,角A ,B ,C
的对边分别为222,,,()tan a b c a c b B +-=若, 则角B 的值为
( )
A .
6π B .3
π
C .
56
6
π
π
或
D .
23
3
π
π或
6.如图,设D 是图中边长为4的正方形区域,E 是D 内函数2
y x =
图象下方的点构成的区域,向D 中随机投一点,则该点落入E 中的概率为 ( )
A .
15 B .14 C .13 D .1
2
7.如图是一个算法的程序框图,若该程序输出的结果为
4,5
则判断框中应填入的条件是 ( )
A .T>4
B .T<4
C .T>3
D .T<3
8.设函数()()f x x ∈R 为奇函数,1
(1),2
f =
(2)()(2),(5)f x f x f f +=+则= ( )
A .0
B .1
C .5
2
D .5
二、填空题(本大题共8小题,每小题5分,共35分。
将答案填写在答题卷指定位置) (一)必做题(9~13题)
9.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...
等于 .
10.随机抽查某中学高三年级100名学生的视力情况,得其频率分布直方图如右图所示。
已知前4组的
频数成等比数列,后6组的频数成等差数列,则视力在4.6到5.0之间的学生人数为 人。
11.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少
选一门,则不同的选法共有 种.(用数字作答)
12.若实数x ,y 满足⎩⎪⎨⎪
⎧
x ≤2,y ≤2,
x +y ≥2.
则目标函数z =y
x +1
的最大值是________.
13.给出下列五个命题:
①不等式0342
2
<+-a ax x 的解集为}3|{a x a x <<;
②若函数(1)y f x =+为偶函数,则()y f x =的图象关于直线1x =对称;
③若函数2
2
3()log (236)f x x mx m =-+-+在区间[3,2)-上是减函数,则43m -≤≤-
④函数)(x f y =的图像与直线a x =至多有一个交点;
⑤若直线l 的倾斜角为α,则其斜率为tan α
其中所有正确命题的序号是
(二)选做题(请考生在第14、15、16三题中任选两题作答,如果全做,则按前两题记分) 14.圆心在(-1,2),半径为4的圆的参数方程是
35 .
O AB AC C PC AB P P ︒∠15.如图,已知圆的直径与弦的夹角为,过点的切线与的延长线交于点,那么等于
三、解答题(共75分) 16.(本题满分12分) 已知函数2()sin 22sin f x x x =-
(I )求函数()f x 的最小正周期和对称中心。
(II) 求函数()f x 的最大值及()f x 取最大值时x 的集合。
17.(本题满分12分)某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规
定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别
是
311
,,424
,且各阶段通过与否相互独立. (1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列、数学期望.
18.(本题满分12分)在直三棱柱ABC —A 1B 1C 1中,CA=CB=CC 1=2,
90ACB ∠=︒,E 、F 分别是BA 、BC 的中点,G 是AA 1上一点,且
1.AC EG ⊥
(Ⅰ)确定点G 的位置; (Ⅱ)求二面角G-EF-A 的大小.
19.(本题满分12分)等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均
为正数,11b =,且2212b S +=, {}n b 的公比2
2
S q b =
(1)求n a 与n b ; (2)求数列
1
n
S 的前n 项和 20.(本题满分13分)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1) 求双曲线C 的方程;
(2) 若直线y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M 、N ,且线段MN 的垂直平分线过点
A (0,-1),求实数m 的取值范围.
21.(本题满分14分)已知函数()(1)ln 1f x x x x =+-+
(I )求曲线在(1,(1))f 处的切线方程;Ⅱ)若2
()1xf x x ax '≤++,求a 的取值范围;
(Ⅲ)证明:(1)()0x f x -≥。
23 .x x x a a -++≥R 16.如果关于的不等式的解集为,则的取值范围是。