热分析
热分析(ansys教程)
1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
热分析的原理与应用
热分析的原理与应用1. 热分析的基本原理热分析是一种通过对样品在不同温度或时间条件下的物理或化学变化进行分析的方法,其基本原理包括以下几个方面:•热重分析(TG):热重分析通过测量样品在升温过程中的质量变化来分析样品的成分和性质。
样品在升温时,其质量会随温度的变化而发生变化,这是因为样品中存在着各种物质的热分解、氧化、化合物变化等反应过程。
通过对样品质量随时间或温度的变化进行监测和分析,可以得到样品的热分解特性和成分信息。
•热差示扫描量热法(DSC):热差示扫描量热法是一种通过测量样品在升温或降温过程中与基准物质之间的温差来分析样品热性质的方法。
样品和基准物质在温度条件下可能会发生吸热或放热反应,从而产生温差。
通过测量样品和基准物质之间的温差,可以了解样品的热容量、热变化、相变等信息。
•差热分析(DTA):差热分析是一种通过测量样品和参比物在升温或降温过程中的温差来分析样品的性质和反应的方法。
样品和参比物在升温或降温过程中可能会发生物理或化学变化,从而产生温差。
通过测量样品和参比物之间的温差,可以推断出样品的热性质和反应特性。
2. 热分析的应用领域热分析在各个领域中有着广泛的应用,以下列举了其中的几个应用领域:•材料科学与工程:热分析可以用于材料的性能测试和品质控制。
通过热分析可以了解材料的热固化过程、热稳定性、相变行为、热膨胀系数等性质,从而指导材料的设计、工艺优化和使用条件的确定。
•环境科学:热分析可以用于环境污染物的检测和分析。
通过热分析可以了解样品中的有机和无机物质的热稳定性、燃烧特性等。
例如,使用热分析可以对废物和大气污染物中的有机物进行检测和定性分析。
•药物研发:热分析可以用于药物的研发过程中的药物稳定性测试和相变行为研究。
通过热分析可以了解药物在不同温度和湿度条件下的稳定性、热分解特性等,从而指导药物的储存和使用条件的确定。
•食品科学:热分析可以用于食品中成分和品质的分析和检测。
通过热分析可以了解食品中的蛋白质、脂肪、糖等成分的热稳定性、降解特性,从而判断食品的品质和存储条件。
热分析ppt幻灯片课件
结果解析与讨论
峰归属与物质鉴定
根据峰位、峰形等信息推断物质种类及结构 。
热稳定性评价
通过比较不同物质的热分解温度、热稳定性 参数等评估其热稳定性。
反应动力学分析
研究物质在加热过程中的反应速率、活化能 等动力学参数,揭示反应机理。
结果可靠性验证
采用多种方法对数据结果进行交叉验证,确 保结果准确性和可靠性。
04
原理
在程序控制温度下,测量 物质的质量与温度的关系 。
应用
用于研究物质的热稳定性 、分解过程、挥发过程等 热性质,以及进行物质的 定性和定量分析。
优点
设备简单,操作方便,可 测量宽温度范围内的热性 质。
缺点
对样品的均匀性要求较高 ,易受气氛影响。
热机械分析法
原理
在程序控制温度下,测量物质的尺寸或形状 变化与温度的关系。
反应平衡常数测定
利用热分析数据,可以计算化学反应的平衡常数 ,进而研究反应在不同温度下的平衡状态。
3
热化学方程式推导
基于热分析实验结果,可以推导化学反应的热化 学方程式,明确反应物和生成物之间的热力学关 系。
化学反应动力学研究
01
反应速率常数测定
通过热分析技术,可以测定化学 反应的速率常数,了解反应在不 同温度下的速率变化。
优点
可直观观察物质的尺寸或形状变化,对研究 物质的热机械性能有重要意义。
应用
用于研究物质的热膨胀、收缩、相变等热性 质,以及进行物质的定性和定量分析。
缺点
设备较复杂,操作要求较高,对样品的形状 和尺寸有一定要求。
04
热分析数据处理与解 析
数据处理基本方法
数据平滑处理
消除随机误差,提高数据信噪比。
热分析PPT课件下载
04
差示扫描量热法
差示扫描量热法基本原理
差示扫描量热法(DSC)是一种热分析方法,用于测量样品与参比物之间的功率差随温度或时间的变 化。
DSC基本原理是,在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关 系。
DSC曲线可以反映样品在加热或冷却过程中的吸热或放热行为,从而得到样品的热性能参数,如熔点、 玻璃化转变温度等。
热分析PPT课件下载
目 录
• 热分析概述 • 热重分析法 • 差热分析法 • 差示扫描量热法 • 热机械分析法 • 热分析实验技术与方法
01
热分析概述
热分析定义与原理
热分析定义
热分析是一种研究物质在加热或冷却 过程中物理和化学性质变化的技术。
热分析原理
通过测量物质在温度变化过程中的各 种热力学参数(如热容、热导率、热 膨胀系数等)和化学反应参数(如反 应热、反应速率等),来研究物质的 组成、结构和性质。
热机械分析(TMA)
测量物质在温度变化过程中的尺寸变 化,用于研究物质的热膨胀系数和机 械性能等。
02
热重分析法
热重分析法基本原理
热重分析法定义
01
通过测量物质在程序升温过程中的质量变化,研究物质的热稳
定性和热分解等性质的一种技术。
热重分析仪构成
02
主要由加热系统、温度控制系统、天平测量系统和记录系统组
根据实验需要选择合适的气氛,如空气、氧气、氮气等。
数据处理与结果分析方法
数据采集
使用专业的热分析软件对实验数据进行采集和记录。
数据处理
对采集到的实验数据进行平滑、去噪、基线校正等处理,以获得更 准确的实验结果。
结果分析
根据实验目的和数据处理结果,对样品的热性质进行分析和解释,如 热稳定性、热分解温度、热焓等。
热分析
两者都应尽可能一致,否则可能出现基线偏移、弯曲,甚至造成缓慢 变化的假峰; 气氛; 记录纸速:不同的纸速使DTA峰形不同; 升温速率:影响峰形与峰位; 样品用量:过多则会影响热效应温度的准确测量,妨碍两相邻热效应 峰的分离等。
(1)这个化合物透过重结晶或用其它溶剂进行过处理,本身含有吸附 水或溶剂,因此减重;
(2)高分子试样中的溶剂,未聚合的单体和低沸点的增塑剂的挥发等, 也造成减重。
可用以下方法消除影响 (1)无机化合物在较低温度下干燥,如硅胶、五氧化二磷干燥剂,把
吸湿水去掉。 (2)可控温下的真空抽吸,把单体及低沸点的增塑剂、挥发物分离出
图3 差热分析法测定相图 (a)测定的相图 (b)DTA曲线
图4 聚苯乙烯的DTA曲线
图5 为差热分析法用于共混聚合物鉴定示例。
依据共混物DTA曲线上的特征峰(熔融吸热峰)确定共混物由高压聚乙烯 (HPPE)、低压聚乙烯(LPPE)、聚丙烯(PP)、聚次甲氧基(POM)、尼 龙6(Nylon 6)、尼龙66(Nylon 66)和聚四氟乙烯(PTFE)7种聚合物 组成。
样品真实的热量变化与曲线峰面积的关系为
m·H=K·A
式中,m——样品质量;
H——单位质量样品的焓变; A——与H相应的曲线峰面积;
K——修正系数,称仪器常数。
应用
图8所示为双酚A型聚砜-聚氧化 丙烯多嵌段共聚物的差示扫描 量热曲线。
由图可知,各样品软段相转变 温度均高于软段预聚的转变温 度(206℃)。
图7 典型的DSC曲线
热量变化与曲线峰面积的关系
考虑到样品发生热量变化(吸热或放热)时,此种变化除传导到温度 传感装置(热电偶、热敏电阻等)以实现样品(或参比物)的热量补 偿外,尚有一部分传导到温度传感装置以外的地方,因而差示扫描量 热曲线上吸热峰或放热峰面积实际上仅代表样品传导到温度传感器装 置的那部分热量变化。
热分析
33
峰面积的计算
DTA峰面积的确定(基线有偏移 ) 1)分别反应开始前和反应终止后的基线延长线,它们离开 基线的点分别是Ta和Tf,联结Ta,Tp,Tf各点,便得峰面积, 这就是ICTA(国际热分析协会)所规定的方法。
14
测温热电偶的基本原理
构成差热电偶的材料为镍铬合金或铂铑合金,较常用的为铂 铑合金热电偶。取直径相同、长度相等的铂丝两根,取直径 与铂丝相等而长度适中的铂--铑合金丝一段,在弧光焰上, 将铂--铑合金丝的两端分别焊接于两根铂丝上,这样就制成 了铂-铂铑差热电偶。
15
测温热电偶的基本原理
16
差热分析仪器结构
8
测温热电偶的基本原理
由物理学得知,在金属中存在着许多自由电 子,这些电子能够在金属离子构成的晶体点 阵里自由移动,即作不规则的热运动。在通 常的温度下,电子虽然作热运动,却不会从 金属中逸出。电子要从金属中逸出,就得消 耗一定的功,这个功叫做逸出功。
9
测温热电偶的基本原理
当两种金属接触时,不规则热运动的电子将从一种金属转移 到另一种金属中去。假定有两种金属A和B,假定电子从金属 A中逸出的功大于由金属B中逸出的功,即VA>VB 。电子就 会从金属B中逸出而转移到金属A中。金属A中有过多的电子, 金属B中的电子少。金属A带负电,而金属B带正电。两金属 间就产生电位差VAB。电位VAB的存在,就出现一个电场。电 场阻止电子继续迁移到金属A中。电位差VAB 等于VB 与VA之 差,即:
34
物质产生热效应(吸热和放热)的原因
热分析技术
26
TG 篇 – 共混物和共聚物的组成分析
• 共聚物的热稳定性总是介于两种均聚物的 热稳定性之间,且随组成比的变化而变化; 共混物则出现各组份的失重,而且是各组 份纯物质的失重乘以百分含量叠加的结果。
27
PC/PBT 共混材料的热分解
28
2 差热分析(DTA)
差热分析(Differential Thermal Analysis,简称 DTA)
23
TG的应用
热稳定性与热分解行为
24
• TG篇-添加剂和杂质的分析 添加剂和杂质可分为两类: 一类是挥发性的,如水、增塑剂等,它们在 树脂分解之前已先逸出; 另一类是无机填料如二氧化硅、玻璃纤维 等,它们在树脂分解后仍然残留
25
NR/SBR 橡胶中增塑剂的分解
Mass loss / % 增塑剂 质量损失: -9.87 % DTG % / min
37
从常温至800℃范围内发生了三次热失重反应 1:220 ℃附近,约失重12%;
2:500 ℃时,累计失重约20%;
3:740 ℃ 时,累计失重约30% 对应的DTA曲线上,也出现了三次热反应
38
结合该物质的分子量进行分析,最后 得出它们所对应的化学反应过程为:
-H2O -CO -CO2
CaC2O4﹒H2O----CaC2O4----CaCO3----CaO
16
影响热分析测量的实验因素
升温速率 (1)提高升温速率使反应的起始温度 Ti , 峰温Tp和终止温度Tf增高。 ( 2 )快速升温是将反应推向在高温区以更快的速 度进行,即不仅使 DTA曲线的峰温 Tp升高,且峰 幅变窄,呈尖高状。 ( 3 )对多阶反应,慢速升温有利于阶段反应的相 互分离。
热分析方法的原理和应用
、质量损失速率、温度的倒数,求出相邻点间的差值,再 使用公式,通过作图法求得活化能E与反应级数n
• 极值法 在TG、DTG曲线上取包括峰值在内的一系列重量~温
度值,使用公式,利用作图法求得活化能E、频率因子A 与反应级数n
TG 曲线
图中所示的反应单从 TG 曲线上看,有点像一个单一步骤的过程
DTG
DTG 曲线
但从微分(DTG)曲线则明显区分出分解分为两个相邻的阶段
Sample
热重分析仪(TG)原理图
Furnace
Ba la nc e
NETZSCH 热重分析仪: TG 209 C Iris®
FT(IR23g0a癈s )cell
药物熔点的测定
药物纯度的测定
❖ 依据van’t Hoff方程 :
T = T0 - (RT02c / DHo).(1/F)
c = (T0 - Tm).DH0 / RT0
T / K为样品熔化过程中某一瞬间的温度;T0 / K为纯
化合物的熔点;Tm /K为样品的熔点; F为温度T时被测
样品熔化的摩尔分数, DH0 为熔化焓,c为样品中杂
质的分数。 ❖ 以熔化过程中样品温度T对1/F作图, 应为一直线,其截
速率常数 k 的意义
阿仑尼乌斯方程:k = A ·e -Ea/RT • A:指前因子,又称频率因子,与活化分子转化成产物分
子的速率有关。 • E方a:能活参化与能反应。,反其应大体小系反中映具了有反活应化速能率E随a 的温“度活的化变分化子程”度
。随着温度的升高,活化分子数增多,更多的分子具有了 活化能。活化能较大的反应,升高温度能够显著加快反应 速率,活化能较小的反应则反之。 • R:摩尔气体常数,R = 8.314 J·K-1·mol-1
热分析技术(最新版)PPT课件
特点
设备简单、操作方便、试样用量少; 但精度较低、分辨率差。
应用
研究物质的物理变化(晶型转变、熔 融、升华和吸附等)和化学变化(脱 水、分解、氧化和还原等)。
差示扫描量热法
原理
在程序控制温度下,测量输入到 物质和参比物的功率差与温度的
关系。
应用
测定多种热力学和动力学参数, 如比热容、反应热、转变热等; 研究高分子材料的结晶、熔融和
流体中由于温度差异引起的密度变 化而产生的宏观运动,是热量传递 的一种重要方式。
热辐射
物体通过电磁波的形式发射和吸收 能量,其辐射强度与物体温度、表 面性质等因素有关。
热分析中的物理量与单位
温度
热力学系统的一个物理属性,表示物体冷 热的程度,常用单位有摄氏度、华氏度、
开尔文等。
热容
物体在温度变化时所吸收或放出的热量与 其温度变化量之比,常用单位有焦耳/摄氏
环境科学领域应用
大气污染物分析
利用热分析技术可以对大气中的 污染物进行分析和鉴定,揭示大 气污染物的来源和危害。
土壤污染物分析
通过热分析技术可以分析土壤中 的污染物,评价土壤的污染程度 和生态风险。
环境样品热性质研究
利用热分析技术可以研究环境样 品的热性质,如热稳定性、热分 解温度等,为环境科学研究和环 境保护提供技术支持。
热机械分析法
原理
01
在程序控制温度下,测量物质在非振动载荷下的形变与温度的
关系。
应用
02
研究材料的热膨胀系数、玻璃化转变温度、流动温度等;评估
材料的尺寸稳定性、内应力和热震稳定性等。
特点
03
能直接测量材料的形变,反映材料的机械性能随温度的变化;
热分析的原理
热分析的原理
热分析是一种利用物质在升温过程中吸收或释放热量的特性来研究物质性质和组成的分析方法。
热分析方法主要包括热重分析和热量分析两种。
热重分析是利用物质在升温过程中失去质量的特性来研究物质的性质和组成,而热量分析则是利用物质在升温过程中吸收或释放热量的特性来研究物质的性质和组成。
热分析的原理可以总结为以下几点:
首先,热分析是基于物质在升温过程中吸热或放热的特性。
在升温过程中,物质会吸收热量使其温度升高,同时也会释放热量。
这种吸热或放热的过程可以反映出物质的性质和组成。
其次,热分析是基于物质在升温过程中发生物理和化学变化的特性。
在升温过程中,物质的性质和组成会发生变化,这些变化可以通过热分析方法来进行研究和分析。
另外,热分析是基于物质在升温过程中失去质量的特性。
在升温过程中,部分物质会发生分解或挥发,导致失去质量,这种失去质量的过程也可以用于研究物质的性质和组成。
最后,热分析是基于物质在升温过程中吸收或释放热量的特性。
在升温过程中,物质会吸收或释放热量,这种吸热或放热的过程可
以用于研究物质的性质和组成。
总的来说,热分析的原理是基于物质在升温过程中吸热或放热、发生物理和化学变化、失去质量以及吸收或释放热量的特性来进行
研究和分析。
通过热分析方法,可以了解物质的性质和组成,为科
学研究和工程应用提供重要的参考依据。
第三章热分析技术
从上述可以看出热分析技术的两个特点: 1)温度的变化是受程序控制的; 2)是一种很简便地测定因温度变化而引起材料物性改变的 方法,通常不涉及复杂的光谱仪或其他手段。 与热分析技术方法相应的现代热分析仪大致由五个部分 组成:程序控温系统、测量系统、显示系统、气氛控制系统、 操作和数据处理系统。 程序控温系统由炉子和控温两部分组成。测量系统是热 分析的核心部分。
三、差热分析
1、差热分析法的基本原理与差热分析仪 差热分析(DTA):是在程序控制温度条件下,测量试样与参比物 (是制在测量温度范围内不发生任何热效应的物质,如Al2O3, MgO等)之间的温度差与温度的函数关系。其基本原理见图。 在差热分析仪中,样品和参比物分别装在两个坩埚内,两个热 电偶是反向串联(同极相连,产生的热电势正好相反)。样品和参比 物同时升问,当样品未发生物理或化学状态变化时,样品温度(Ts) 和参比物温度(Tr)相同时,ΔT=0,相应的温差电势为0。当样品发 生物理或化学变化而发生放热或吸热时,样品温度(Ts)高于或低于 参比物温度(Tr),产生温差。相应的温差热电势经放大后送入记录 仪或计算机,从而得到以ΔT为纵坐标,温度或时间为横坐标的差热 分析曲线(简称DTA曲线)。
热电偶
样品
参比物 电热丝 金属
仪器
thermal analysis
2、 DTA的定义
差热分析(DTA)是在程序控制温度 下,建立被测量物质和参比物的温度差与 温度关系的一种技术。数学表达式为
△T=Ts-Tr=(T或t)
其中: Ts ,Tr分别代表试样及参比物温 度;T是程序温度;t是时间。记录的曲线 叫差热曲线或DTA曲线。
热量
温度
第三章热分析技术
物理 性质 方法名称 内容及定义 应用范围
热分析的原理
热分析的原理
热分析是一种通过测量物质在温度变化过程中的热量变化来研究物质性质和组成的分析方法。
热分析的原理主要包括热重分析和热量分析两种方法。
热重分析是通过检测样品在升温过程中质量的变化来分析样品的组成和性质;热量分析是通过测量样品在升温或降温过程中释放或吸收的热量来分析样品的性质和反应特征。
热分析的原理基于热力学和动力学的基本理论,通过研究样品在不同温度下的热量变化来推断样品的组成、结构和性质。
热分析可以用于研究物质的热稳定性、热分解特性、相变特性、反应动力学等方面的问题,是一种非常重要的分析手段。
在热重分析中,样品在升温过程中发生质量损失或增加,可以推断出样品中的挥发分、水分、热分解产物等成分的含量和性质。
通过热重分析,可以得到样品的热重曲线,从中可以判断样品的热稳定性、热分解特性等信息。
在热量分析中,通过测量样品在升温或降温过程中释放或吸收的热量,可以推断出样品的热容、热导率、热稳定性等性质。
热量分析通常包括差示扫描量热法(DSC)、示差热分析法(DTA)等方法,通过这些方法可以得到样品在不同温度下的热量变化曲线,从中可以推断出样品的相变温度、热容变化、热反应特性等信息。
总的来说,热分析的原理是通过测量样品在温度变化过程中的热量变化来研究样品的性质和组成。
热分析是一种非常重要的分析手段,广泛应用于材料科学、化学、生物学等领域。
通过热分析,可以了解样品的热稳定性、热分解特性、相变特性、反应动力学等信息,为科学研究和工程应用提供重要的参考依据。
热分析技术
热分析技术
热分析技术是一种实验室技术,旨在测量系统中物质交换的热量以及温度在高温、常
温或低温条件下的变化。
它是一种重要的性能测试技术,可用于测量纯物质和复合系统
(如润滑油)的热分析特性。
热分析技术有几种,其中最常用的方法是熔点分析和汽化分析。
熔点分析法可以精确
测定物质的熔点,使研究者了解温度特性和热性能分布。
它可以应用于多种物质,如金属、陶瓷、石膏、聚苯乙烯等,以测定熔点及热膨胀、僵硬等性能变化。
汽化分析法可精确测定物质的汽化温度和汽化熵。
它可以用于测定液体和气体体系的
汽化及汽化热量,从而推断出物质的可溶性和热性能变化。
此外,也有一些其他分析方法,如波谱分析、氧化分析、腐蚀分析、差热分析技术、
光散射分析和endothermic(内热)分析。
这些技术可以完全测试物质的热膨胀系数、僵
硬性等性能,进而研究材料在高温、常温或低温条件下的热特性。
热分析技术在化学工业、材料制造、能源利用和环境污染控制等领域都有重要应用,
是一种必不可少的性能测试技术工具。
此外,热分析技术还可以用于研究固态物质熔融温
度及混合物的混合熔点,有助于更快更准确地开发新的材料。
热分析的原理
热分析的原理
热分析是一种重要的热物性测试方法,用于研究物质在加热过程中的物化性质变化。
其原理基于物质在加热时对吸热或放热的反应,通过测定样品在加热或冷却过程中所产生的热量变化,可以推断出样品的热稳定性、相变特性、热储存能力等相关信息。
热分析实验常用的方法包括差示扫描量热法(DSC)、热重分析法(TGA)、动态热力学分析法(DTA)等。
这些方法在
原理上有所不同,但都是基于热量的变化进行分析。
在差示扫描量热法中,样品和对比样品(通常为惰性材料或纯金属)一同加热或冷却。
通过比较样品和对比样品之间的温度差异,可以计算出样品的吸热或放热量。
这种方法可以用于研究样品熔化、分解、相变等过程的特性。
热重分析法是通过测量样品在加热过程中的质量变化来得到有关信息的。
样品在加热时会经历失重或得重的过程,通过比较样品和空白容器的质量变化,可以推断出样品的热失重或热增重特性。
这种方法常用于研究样品的分解、氧化、脱水等过程。
动态热力学分析法是通过测量样品和参比样品之间的温差来得到有关信息的。
样品和参比样品一同加热或冷却,通过比较它们之间的温度差异,可以推断出样品的物理或化学变化。
这种方法常用于研究样品的相变、晶体结构变化、热化学反应等过程。
总之,热分析方法通过测量样品在加热过程中的热量变化来推断出其热物性特征。
它在材料科学、化学、生物学等领域中有着广泛的应用,对于理解和改进物质的热性质具有重要意义。
热分析PPT课件
热力学基础知识
热力学系统
研究对象,与周围环境有能量和 物质交换的体系
状态函数
描述系统状态的物理量,如温度、 压力、体积等
热力学第一定律
能量守恒定律在热力学中的应用, 表达式为ΔU=Q+W
热力学第二定律
热量不可能自发地从低温物体传 到高温物体,表达为ΔS≥0
热分析方法分类与特点
差热分析(DTA)
在程序控制温度下,测量物质与参比物之间的温度差随温 度变化的技术
06
热分析技术在材料科学中应用
材料性能表征与评估
热重分析(TGA)
通过测量材料在升温过程中的质量变化,研究其热稳定性、分解温 度、氧化稳定性等。
差热分析(DTA)
记录样品与参比物之间的温度差随温度变化的曲线,用于研究材料 的热效应、相变、反应动力学等。
差示扫描量热法(DSC)
测量样品与参比物之间的功率差随温度变化的曲线,用于研究材料 的熔点、结晶度、玻璃化转变温度等。
材料相变过程研究
01
相变温度的确定
通过热分析方法确定材料的固固相变、固-液相变、液-气相变 等相变温度。
02
相变动力学研究
03
相变机理探讨
研究材料在相变过程中的动力学 行为,如相变速率、相变活化能 等。
结合热分析数据与其他表征手段, 探讨材料相变的机理和影响因素。
材料老化、失效预测和寿命评估
热氧化稳定性评估
数据处理
将实验数据导入计算机,利用相关软件进行数据处理和 分析,如绘制热机械曲线、计算热膨胀系数等。
应用实例及优缺点分析
应用实例
研究材料的热稳定性、热膨胀性、相变等。
优点
可测量物质在宽温度范围内的热机械性能,提供丰富 的信息;实验操作简单,结果可靠。
高分子研究方法热分析
偏光显微镜(POM)
观察高分子材料在升降温过程中的结晶形态和 熔融行为。
DSC分析
通过测量高分子材料在升降温过程中的热量变化,研究其结晶度、熔融温度和 熔融焓等。
交联度及固化反应动力学研究
凝胶含量测定
通过测量高分子材料在溶剂中不溶部分的质量分数,评价其交联度。
动态热机械分析法原理及设备
测量材料的动态力学响应。
产生交变应力或应变。
DMA设备主要由以下几部 分组成
设备
传感器 振荡器
动态热机械分析法原理及设备
温控系统
控制测试温度。
数据采集与处理系统
记录并分析测试结果。
动态热机械曲线解析与实例
曲线解析
DMA测试得到的曲线主要包括储能模量-温度曲线、损耗模量-温度曲线和损耗因子-温 度曲线。通过这些曲线,可以分析材料的玻璃化转变、结晶、交联等结构变化以及分子
通过热重分析可以确定聚合物的热稳定性, 了解其在不同温度下的分解行为,为聚合物 的加工和使用提供指导。
利用热重分析可以研究聚合物共混物的相容 性,通过比较不同组分的热失重行为,判断 共混物中各组分之间的相互作用。
聚合物老化研究
添加剂对聚合物性能的影响
热重分析可用于研究聚合物材料的老化行为, 通过比较老化前后样品的热失重曲线,了解 老化对聚合物结构和性能的影响。
氧化诱导期测定
要点一
氧化诱导时间(OIT)
通过测量高分子材料在特定温度和氧气压力下开始发生自动 催化氧化反应的时间,评价其抗氧化性能。
要点二
氧化诱导温度(OIT)
在恒定氧气压力下,测量高分子材料开始发生自动催化氧化 反应的温度,用于评价其在不同温度下的氧化稳定性。
《热分析法》课件
检测材料相变
热分析法可以检测材料在加热或 冷却过程中的相变温度和相变热 量,有助于了解材料的热性能和 相变行为。
评估材料热导率
通过热分析法可以测量材料的热 导率,这对于材料在高温或低温 环境下的热传导性能评估具有重 要意义。
化学领域的应用
反应动力学研究
热分析法可以用于研究化学反应的动 力学过程,通过测量反应速率常数和 活化能等参数,有助于理解反应机理 和反应速率控制步骤。
加强热分析标准化和规范化的宣传与培训,提高相关人员的意识和素质,促进热分析的广泛应用和深入发展。
THANK YOU
随着科学技术的不断发展,热分析与光谱、色谱、质谱等分 析方法的联用将进一步提高热分析的准确性和可靠性。
热分析软件的开发
未来将有更多专门针对热分析的软件出现,这些软件将能够 实现数据的自动采集、处理、分析和可视化,提高热分析的 效率和精度。
交叉学科的研究与应用
热分析与材料科学的交叉
随着材料科学的快速发展,热分析将在材料性能表征、材料合成与制备等领域发 挥更加重要的作用。
03息量。ຫໍສະໝຸດ 热分析法的优势与局限性• 可用于研究物质在温度变化时的 性质变化,具有较高的灵敏度和 准确性。
热分析法的优势与局限性
01
局限性
02 对测试条件要求较高,如温度控制、气氛 控制等。
03
对于某些物质,可能存在较大的热历史效 应,影响测试结果的准确性。
04
对于某些复杂体系,可能需要结合其他分 析方法进行综合分析。
《热分析法》ppt课件
• 热分析法简介 • 热分析法的基本类型 • 热分析法的实验技术与操作 • 热分析法的应用实例 • 热分析法的未来发展与展望
01
热分析法简介
热分析的定义与技术分类
导热性较差时,更是如此。这时所测得的TG曲线就不能确切表
征随温度变化时反应进展的客观规律。因此,在实际测试中。 在仪器灵敏度允许的范围内,一般都应采用尽可能少的试样量
来进行实验。
3、试样形状、粒度和填装情况的影响
试样的形状和颗粒度大小的不同,对气体产物扩散的 影响也不同,它改变了反应速度,进而改变了TG曲线的 形状。一般来讲,大片状试样的分解温度比颗粒状的要高, 粗颗粒的试样比细颗粒的分解温度要高。此外,某些大晶 粒试样在加热过程产生烧爆现象,致使TG曲线上出现突 然失重,这种情况应加以避免。 试样的装填情况对TG曲线也有影响。一般试样填装 越紧密,试样颗粒间接触好,热传导性越好,因而温度滞 后现象越小。但是,这不利于气氛与试样颗粒间的接触, 或者是阻碍了分解气体的扩散和逸出。因此通常把试样放 入坩埚后,轻轻地敲一敲,铺成均匀的薄层,这样可以获 得重现性较好的TG曲线。
Temperature(oC)
3、热重分析的应用
热重分析主要研究试样在空气或惰性气体中的热稳
定性、热分解作用和氧化降解等化学变化。广泛用于
研究涉及质量变化的所有物理过程,可测定物料中的
水分、挥发物和残渣,也可测定试样对某种气体的吸
附和解吸。
TG的应用:材料的成分测定、材料中挥发性物质
的测定、材料的热稳定性和热老化寿命的研究、材料
3、差热分析的应用: 用DTA对材料进行鉴别主要是根据物质的相变 (包括熔融、升华和晶型转变)和化学变化(脱水、 分解和氧化还原等)所产生的吸热或放热峰。 有些材料常具有比较复杂的DTA曲线,虽然不能 对DTA曲线上所有的峰作出解释,但它们像“指纹” 一样表征着材料的种类。 DTA应用:材料相态结构的变化、玻璃微晶化热
40 -10 30 -20
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热分析特点:
• 应用的广泛性 • 动态条件下快速研究物质热特性的有效性 • 技术方法的多样性
差热分析法 -differential thermal analysis(DTA)
差热分析法(DTA)是在程序控制温度下,测 量试样与参比物质之间的温度差∆T与温度T (或时间t)关系的一种分析技术。通常使用 的参比物质是灼烧过的α-Al2O3或MgO。
差热曲线直接提供的信息主要有峰的位置、峰的面积、峰的 形状和个数。 • 差热峰反映试样加热过程中的热效应。 • 锋位置所对应的温度尤其是起始温度-鉴别物质及其变化 的定性依据; • 峰面积-代表反应的热效应总热量,是定量计算反应热的 依据; • 从峰的形状(峰高、峰宽、对称性等)-可求的热反应的 动力学参数; • 峰的数目表示在测温范围内试样发生变化的次数; • 峰的方向则指示变化是吸热还是放热(吸热,∆T<0,吸 热峰向下;放热,∆T>0,放热峰向上); 因此,根据差热曲线的情况就可以对试样进行具体分析,得 出有关信息。
• 目前使用最多的是一阶导数,即质量变化 速率作为温度或时间的函数被连续的记录 下来。 • 实验得到的微商热重曲线,即DTG曲线。
DTG曲线特点:
• 精确反映出每个失重阶段的起始反应温度、 最大反应速率和反应终止温度; • DTG曲线的峰面积与TG曲线上对应的失重 量成正比; • 当TG曲线对某些受热过程出现的台阶不明 显时,利用DTG曲线能明显区分。来自热重法可检测的变化过程:
TG
物理变化 化学变化
升华、汽化、吸附、 解吸、吸收
固体
气体
• 只要物质受热时发生质量的变化,都可以用热重 法来研究。但对于像熔融、结晶和玻璃化转变之 类的热行为,样品质量没有变化,热重分析方法 就不适用了。
热重曲线(TG曲线):
曲线的纵坐标m为质量,横坐标T 为温度。M以mg或剩余百分数﹪ 表示。温度单位用热力学温度(K) 或摄氏温度(℃)。Ti表示起始温 度,即积累质量变化到达热天平 可以检测时的温度。Tf表示终止 温度,即积累质量变化达到最大 值时的温度。Tf-Ti表示反应区间, 即起始温度与终止温度的温度间 隔。曲线中AB和CD,即质量保持 基本不变的部分叫作平台,BC部 分可称为台阶。
热量传递现象:
热量传递现象在热分析过程中是发生在程序 温度下样品和与其直接接触的环境之间及 样品内部的一种热量交换过程。 • 热传导 • 对流传热 • 热辐射
热分析的应用范围及特点:
• 热分析的应用范围: 1.测量物质加热(冷却)过程中的物理性质参数, 如质量、反应热、比热等; 2.由这些物理性质参数的变化,研究物质的成分、 状态、结构和其它各种物理化学性质,评定材料 的耐热性能,探索材料热稳定性和结构的关系, 研究新材料、新工艺等。 具体的研究内容有:熔化、凝固、升华、蒸发、 吸附、解吸、裂解、氧化还原、相图制作、物相 分析、纯度验证、玻璃化、固相反应、软化、结 晶、比热、动力学研究、反应机理、传热研究、 相变、热膨胀系数测定等等。
四种常见的DTA曲线峰形:
图表示了四种常见的DTA曲线峰形, 其中Ⅰ二级相变,是以水平基线的 改变为特征的;Ⅱ吸热峰,通常是 由熔融或熔化所引起的;Ⅲ吸热峰, 它是由分解或裂解引起的;Ⅳ放热 峰,这是由结晶相变引起的。由差 热分析的结果,从吸热和放热峰的 个数,形状和位置与相应温度,可 以方便地定性地确定出试样的热行 为,而且由于峰的面积正比于试样 热烩变化(±∆H)和试样量,因此可 用DTA曲线和峰面积的大小及形状 来半定量或定量的测定反应热。
差热分析仪基本结构:
差热分析仪通常由加热炉、温度控制系统、信号放大系统、 差热系统及记录系统组成。
DTA曲线及理论分析:
DTA曲线是指试样与参比物的温差(∆T)曲 线和温度(T)曲线的总称。
∆T=TS-TR
DTA曲线的几何要素:
1.零线:理想状态∆T=0的线 2.基线:实际条件下试样无热效应时的曲线部 分 3.吸热峰:TS<TR, ∆T<0时的曲线部分 4.放热峰:TS>TR, ∆T>0时的曲线部分 5.起始温度(Ti):热效应发生时曲线开始偏 离基线的温度 6.终止温度(Tf):曲线开始回到基线的温度
曲线分析:
定性分析:定性表征和鉴别物质 • 依据:峰温、形状和峰数目 • 方法:将实测样品DTA曲线与各种化合物的标 准(参考)DTA曲线对照。 定量分析 • 依据:峰面积。因为峰面积反映了物质的热效 应(热焓),可用来定量计算参与反应的物质 的量或测定热化学参数。 借助标准物质,可以说明曲线的面积与化学反 应、转变、聚合、熔化等热效应的关系。
影响TG曲线的因素:
• • • • • • • • • • 仪器因素 升温速率 炉内气氛 坩埚材料 支持器和炉子的几何形状 走纸速度,记录仪量程 天平和记录机构的灵敏度 样品因素 样品量 样品的几何形状 样品的装填方式 样品的属性
微商热重分析(DTG)是记录热重曲线对温
度或时间的导数的一种技术。
• 按照测定的物理量,如质量、温度、热量、尺寸、力学量、 声学量、光学量、电学量和磁学量等可对热分析方法加以 分类。
热稳定物质---热分析参比物
• 物质对热的稳定与不稳定是相对的。当物质在某 个温度下不发生化学变化和聚集态、相态变化, 通常就认为它在这一温度下是热稳定的或称为热 惰性的。不同的物质热稳定性不同,即使同一化 学组成的物质,由于结构不同,热稳定性也不一 样,这主要反映在热稳定温度范围的差异上。 • 化学纯的氧化镁(MgO)氟化钙(CaF2)在 1000℃以下是热稳定的;化学纯的α-Al2O3在1200 ℃以下是热稳定的。由于α-Al2O3具有很宽的热稳 定温度范围,因而常用在差热分析和差示扫描量 热法中用作参比物或稀释剂。
7.峰顶温度(Tp):吸、放热峰的峰形顶部 的温度,该点瞬间d(∆T)/dt=0 8.峰高:是指内插基线与峰顶之间的距离 9.峰面积:是指峰形与基线所围面积 10.外推起始点:是指峰的起始边钭率最大处 所作切线与外推基线的交点,其对应的温 度称为外推起始温度(Teo);根据ICTA共 同试样的测定结果,以外推起始温度(Teo) 最为接近热力学平衡温度。
按某种规律加 热或冷却,通 常是线性升温 和线性降温
热物理性质变化:
• • • • • • • • • • 运输性质变化 热力学性质(比热等)变化 溶解(固相转变为液相) 凝固(液相转变为固相) 升华(固态直接转变为气态) 凝华(气态直接转变为固态) 相变 热释电效应 热分解和热裂解 热稳定
热分析技术的分类:
DAST的TG-DTA曲线
实验条件为:ZRY-2P型综合热分析仪 (上海精科天平公司),静态空气气氛, 升温速度10℃/min,从37℃升至800℃. TG:失重分为两个阶段: 300-430,失重54.3% 470-650,失重45.6% DTA: 260有一吸热峰 302有一放热峰 353-650为一持续放热过程,放热峰 值为536 429有一小的放热峰
热分析
于跃娟 2011.3.16
热分析是近些年发展很快并已成为一门独立学科的
仪器分析方法,在许多科学技术领域和工业部门中 已得到了十分广泛的应用。
主要介绍:
差热分析法(DTA) 热重法(TG)
概述:
热分析是在程序控制温度下测量物质的物理
性质与温度关系的一类技术。
原始试样和在测 量过程中生成的 中间产物及最终 产物
热重-差热联用分析 ----结合DTA及TG的同步分析技术
• 优点:一个样品,一次升温就可以同时获 得样品的重量变化及热效应信息。
TG-DTA联用热分析的影响因素
• 升温速率:升温速率越大,热重曲线上的起始分 解温度和终止分解温度偏高。升温速率提高时, DTA曲线的峰温上升,峰面积与峰高也有一定上 升。 • 样品因素:(1)试样量:试样量大的TG曲线的 清晰度变差,并移向较高温度。同样试样用量对 DTA曲线也有很大影响,一般来说试样量少,差 热曲线出峰明显、分辨率高,基线漂移也小,因 此试样用量在热重/差热联用分析仪灵敏度范围内 尽量少。(2)粒度:粒度越细,TG曲线其实分 解温度越低,DTA曲线峰温越低。 • 气氛
差热分析的影响因素:
• 仪器因素 • 操作因素
仪器因素是指与差热分析仪有关的影响因素。
主要包括: • 加热方式、炉子的结构与尺寸 • 坩埚材料与形状 • 温度测量和热电偶性能 • 电子仪器的工作状态的影响等
操作因素是指操作者对样品与仪器操作条件选
取不同而对分析结果的影响。
主要包括 • 样品粒度:影响峰形和峰值,尤其是有气相参与的反应; • 参比物与样品对称性:包括用量、密度、粒度、比热容及 热传导等,两者都应尽可能一致,否则可能出现基线偏移、 弯曲,甚至造成缓慢变化的假峰; • 气氛 • 记录纸速:不同的纸速使DTA峰形不同; • 升温速率:影响峰形与峰位; • 样品用量:过多则会影响热效应温度的准确测量,妨碍两 相邻热效应峰的分离等。
Thank you!
热重法---Thermogravimetry,TG
热重法是在程序控制温度下借助热天平以获 得物质的质量与温度关系的一种技术。
热天平基本结构示意图,能记录的天平是最为重要的部分。
天平在加热过程中试样无质量变化时 仍能保持初始平衡状态;有质量变化 是天平失去平衡,并立即由传感器检 测并输出天平失衡信号。信号经测重 系统放大用以自动改变平衡复位器中 的电流,使天平重又回到初始平衡状 态。通过平衡复位器中的线圈电流与 试样质量变化成正比。因此,记录电 流的变化既能得到加热过程中试样质 量连续变化的信息,而试样温度同时 由测温热电偶测定并记录,于是得到 试样质量与温度关系的曲线。
一般样品量以5~10mg为宜。试样用量 越多,内部传热时间越长,形成的温度 梯度越大,DTA的分辨率下降,峰顶温 度会移向高温。
通常的升温速率是5~20℃/min。提高 升温速率常使峰温线性增高,同时会 使峰面积有某种程度的增大,使曲线 峰形状变得更陡更尖锐,导致分辨率 下降。 试样的粒度,试样要尽量 均匀,最好过筛。