精选2019-2020年数学九年级上册第22章 相似形22.2 相似三角形的判定沪科版习题精选【含答案解析】七十

合集下载

沪科版-数学-九年级上册-22.2 相似三角形的判定教案

沪科版-数学-九年级上册-22.2 相似三角形的判定教案

22.2 相似三角形的判定第1课时相似三角形及相似三角形的判定1┃教学过程设计┃5.怎样判定两个三角形相似?问题2:如图,在△ABC中,D为AB上任意一点,作DE∥BC,交边AC于E,△ADE与△ABC相似吗?思考:若DE平行于BC,那么△ABC与△AED相似吗?提问学生怎样判定两个三角形相似.1.什么样的两个三角形相似?2.怎样说明对应角相等?对应边长度的比相等?可指导学生通过度量,判断对应角是否相等,对应边长度的比是否相等.归纳:平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.问题3:观察一下,如图△ABC与△EDF相似吗?为什么?这两个三角形相似,已知条件与边有关吗?教师引导学生思考,并让学生合作讨论.学生讨论,得出:(1)只满足一对角相等不能判定两个三角形相似;(2)如果两个三角形中有两对角对应相等,那么这两个三角形相似.用实验的方法得到结论.相似三角形的判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.探索三角形相似的条件.三、运用新知,解决问题(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?(2)顶角相等的两个等腰三角形是否相似?为什么?进一步巩固所学知识.四、课堂小结,提炼观点本节课你学到了什么?(1)相似三角形的有关概念.(2)平行线截三角形相似.(3)相似三角形的判定定理1.加强教学反思,帮助学生系统整理知识.五、布置作业,巩固提升(1)教材78页和79页练习.(2)写出图中的相似三角形.加深认识,深化提高.┃教学小结┃【板书设计】相似三角形及相似三角形的判定1相似三角形:平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似判定1:两角分别相等的两个三角形相似.┃教学整体设计┃第2课时相似三角形的判定2、3【教学目标】1.会说出识别两个三角形相似的方法:两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.2.能依据条件,灵活运用三种识别方法正确判断两个三角形相似.【重点难点】重点:用相似三角形的判定定理判定两个三角形相似.难点:综合应用相似三角形的判定定理解决有关相似的问题.┃教学过程设计┃教学过程设计意图一、复习回顾,导入新课1.现在要判断两个三角形相似有哪几种方法?有两种方法:(1)根据定义;(2)两角分别相等的两个三角形相似.2.上节学的“两角分别相等的两个三角形相似”的判定定理是怎样得出的?二、师生互动,探究新知两边成比例且夹角相等的两个三角形相似吗?(1)如图,△ABC中,D、E分别是AB、AC上的三等分点(即AD=13AB,AE=13AC),那么△ADE与△ABC相似吗?你用的是哪一种方法?(2)思考:通过量角或量线段计算之后,可以得出:△ADE∽△ABC.从已知条件看,△ADE与△ABC有一对对应角相等,即∠A=∠A(是公共角),而另一个条件是AD=13AB,AE=13AC,即ADAB=13,AEAC=13,因此ADAB=AEAC.如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似吗?(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简单地说:两边成比例且夹角相等的两个三角形相似.教师归纳强调:对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似.(4)判定定理3:三边成比例的两个三角形相似.学生在作业本上证明,教师适时给予指导.三、运用新知,解决问题如图,△ABC中,D、E是AB、AC上的点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否相似,小张同学的判断理由是是这样的:解:因为AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9.由于ADAB≠AEAC,所以△ADE与△ABC不相似.你同意小张同学的判断吗?请你说说理由.四、课堂小结,提炼观点本节课你有什么收获?五、布置作业,巩固提升教材第82页练习第2、3、4题.┃教学小结┃【板书设计】相似三角形的判定2、3判定定理2:两边成比例且夹角相等的两个三角形相似.判定定理3:三边成比例的两个三角形相似.┃教学整体设计┃第3课时直角三角形的相似【教学目标】1.使学生了解直角三角形相似定理的证2.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.【重点难点】┃教学过程设计┃相似.三、运用新知,解决问题(1)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若BD=3.6 cm,BC∶AC=3∶4,则BC长为()A.4 cmB.5.6 cmC.6 cmD.7.2 cm(2)如图,已知:△ABC内接正方形DGFE,AH⊥BC于H,AH=5 cm,AD∶BD=2∶3.求BC的长.通过练习进一步加深对定理的理解,同时培养了学生的应用意识和能力.四、课堂小结,提炼观点(1)通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师、同学听听.(2)教师与同学聆听部分同学的收获.加强教学反思,帮助学生养成系统整理知识的习惯.五、布置作业,巩固提升教材第84页练习1、2、3、4题.加深认识,深化提高.┃教学小结┃【板书设计】直角三角形的相似定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.。

第22章 22.2.5 直角三角形相似的判定定理

第22章 22.2.5 直角三角形相似的判定定理

自我诊断 2. 已知:在 Rt△ABC 和 Rt△A′B′C直角三角形相似的条件为( D )
A.∠A=∠A′
B.A′ACC′=B′BCC′
C.AACB=AA′ ′CB′ ′
D.AACB=AB′′CC′′
易错点 2: 忽略“在直角三角形中”这一条件,导致错误.
自我诊断 3. 如图,△ABC 中,CD⊥AB,垂足为 D.下列条件中,①∠A+ ∠B=90°; ②AB2=AC2+BC2;③ABCC =CBDD;④CD2=AD·BD,能证明△ ABC 是直角三角形的有( C )
11.如图,P 是 Rt△ABC 的斜边 BC 上异于 B、C 的一点,过 P 点作直线 截△ABC,使截得的三角形与△ABC 相似,满足这样条件的直线共有
3 条.
12.如图,已知 AD 为△ABC 中 BC 边上的高,且CADD=12,AC= 5,AB= 2 5,求证:△ACD∽△BAD.
证明:∵AD 是 BC 边上的高,∴∠ADC=∠BDA=90°.∵AC= 5,AB= 2 5,∴AACB=12.又∵CADD=12,∴AACB=CADD.Rt△ACD∽Rt△BAD.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 8:13:46 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021

天元区第一中学九年级数学上册第22章相似形22.2相似三角形的判定第5课时判定两个直角三角形相似教案

天元区第一中学九年级数学上册第22章相似形22.2相似三角形的判定第5课时判定两个直角三角形相似教案

22.2 相似三角形的判定第5课时判定两个直角三角形相似教学目标【知识与技能】使学生了解直角三角形相似定理的证明方法并会应用.【过程与方法】1.类比证明两个直角三角形全等的方法,继续渗透和培养学生对类比思想的认识和理解.2.通过了解定理的证明方法培养和提高学生利用已学知识证明新命题的能力.【情感、态度与价值观】通过学习培养学生类比的意识,了解由特殊到一般的唯物辩证法的观点.重点难点【重点】直角三角形相似定理的应用.【难点】了解直角三角形相似判定定理的证题方法与思路.教学过程一、复习引入师:我们学习了几种判定三角形相似的方法?学生回答:5种.师:哪5种?教师找一名学生回答,另一名或两名学生补充完善.师:其中判定定理1、2、3的证明思路是什么?生:作相似证全等或作全等证相似.师:同学们还记得什么是“勾股定理”吗?生:记得.师:请你叙述一下.学生回答.二、共同探究,获取新知1.推理证明.师:判定两个直角三角形是否全等时,除了用那些一般的方法外还可以用“HL”的方法,那么判定两个直角三角形相似是否也有类似的方法呢?教师多媒体课件出示:如图,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,=,判断Rt△ABC与Rt△A'B'C'是否相似,为什么?师:已知一个直角三角形的斜边、一条直角边与另一个直角三角形的斜边、一条直角边对应成比例,你能判断这两个直角三角形是否相似吗?学生思考、讨论后回答.师:我们知道了哪些条件?生甲:两个直角对应相等.生乙:两边对应成比例.师:你再添加什么条件就能证出这两个三角形相似呢?生:还有剩下的一边也是对应成比例的.师:为什么要这样添加呢?生:因为添加了这个条件,就可以根据三边对应成比例的两个三角形相似判定这两个三角形相似了.师:那么你怎么证明它们也是对应成比例的呢?学生思考.生:设==k,则AB=kA'B'.AC=kA'C'.根据勾股定理BC可以用含AB、AC的式子表示,进而可以用含A'B'的式子表示,再用勾股定理就得到BC=kB'C',所以就得到了三边对应成比例,这两个三角形相似.师:你回答得太好了!现在请同学们写出具体的步骤,然后与课本上的对照,将不完善的地方改正.学生证明并修改.证明:设==k,则AB=kA'B',AC=kA'C'.∵BC===k=kB'C',∴===k,∴△ABC∽△A'B'C'.师:所以我们得到了判定两个直角三角形相似的一个定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.2.例题.教师多媒体课件出示:【例】如图,∠ABC=∠CDB=90°,CB=a,AC=b.问当BD与a、b之间满足怎样的函数表达式时,以点A、B、C为顶点的三角形与以点C、D、B为顶点的三角形相似?解:∵∠ABC=∠CDB=90°,当=时,△ABC∽△CDB.即=,BD=.又当=时,△ABC∽△BDC,即=,CD=.BD2=a2-()2,BD=.答:当BD=或BD=时,以点A、B、C为顶点的三角形与以点C、D、B为顶点的三角形相似.三、练习新知师:请同学们看课本84页练习1后回答.生甲:△ABF和△ACE.生乙:△EDB和△FDC.师:下面请同学们完成第2题.证明:(1)∵△ADC和△ACB是直角三角形.∴∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD(同角的余角相等),又∠ADC=∠CDB=90°,∴△ADC∽△CDB(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∵CD2=AD·BD(比例的基本性质).(2)∴∠B=∠B(公共角),∠ACB=∠CDB,∴△ABC∽△CBD(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∵BC2=AB·BD(比例的基本性质).∴∠A=∠A(公共角).∠ACB=∠ADC,∴△ABC∽△ACD(两角对应相等的两个三角形相似).∴=(相似三角形的对应边成比例).∴AC2=AB·AD(比例的基本性质).师:很好!现在请同学们看第3题.学生计算后回答,然后集体订正得到:解:(1)相似.证明如下:∵BC===6,∴==,==,∴=,∴这两个直角三角形相似.(2)相似.证明如下:∵A'B'===15,∴==,==,∴=,∴这两个直角三角形相似.四、巩固提高师:经过刚才的了解,同学们掌握得怎么样呢?让我出几道题目来考考大家.1.小明在一次军事夏令营活动中进行打靶训练,在用枪瞄准点B时要使眼睛O、准星A、目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A'.若OA=0.2m,OB=40 m,AA'=0.0015m,则小明射击到的点B'偏离目标点B的长度BB'约为( )A.3m【答案】B2.如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E点,且CD=2,DE=1,则BC 的长为( )A.2B.C.2D.4【答案】B3.在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,下列条件不能判断它们相似的是( )A.∠A=∠B'B.AC=BC,A'C'=B'C'C.AB=3BC,A'B'=3B'C'D.△ABC中有两边长为3、4,△A'B'C'中有两边长为6、8【答案】D4.如图,在△ABC中,∠C=90°,E是AC的中点,且AB=5,AC=4,过点E作EF⊥AB于点F,则AF= .【答案】第4题图第5题图5.如图,正方形ABCD的边长为4,AE=MN=2,那么当CM= 时,Rt△ADE与Rt△MNC相似.(M为BC边上的动点,N为CD边上的动点)【答案】或6.如图,长梯AB靠在墙壁上,梯脚B距墙80cm,梯上点D距墙70cm,量得BD的长为55cm,请你求出梯子的长.【答案】设梯子的长AB为xcm,由Rt△ADE∽Rt△ABC,得=,∴=,解得x=440.∴梯子的长是440cm.五、课堂小结师:直角三角形相似的判定除了本节定理外,前面判定任意三角形相似的方法对直角三角形同样适用,所以在证明两个直角三角形相似时不要忘了用证任意三角形相似的方法,在做题时要灵活选用合适的方法.在证明四条线段之间的关系时我们可以考虑证它们所在的两个三角形相似.教学反思教师在讲解例题时,应指出要使△ABC∽△CDB,应有点A与C,B与D,C与B成对应点,对应边分别是斜边和一条直角边,还可提问:(1)当BD与a、b满足怎样的关系时,△ABC∽△BDC?(答案:当=时△ABC∽△BDC,即=,BD=.因此,当BD=时,△ABC∽△BDC)(2)当BD与a、b满足怎样的关系时,△ABC与△BDC相似(不指明对应关系)?(答案:当BD=时,△ABC∽△CDB;当BD=时,△ABC∽△BDC)探索性题目是已知命题的结论,寻找使结论成立的题设,是探索充分条件,所以有一定难度,教材中为了降低难度,在例4中给了探索方向,即“当BD与a、b满足怎样的关系式时”,这种题目体现分析问题的思维方法,对培养学生研究问题的习惯有好处,教师要给予足够重视,但由于有一定的难度,只要求学生了解这类问题的思考方法,不应提高要求或增加难度.第2课时何时获得最大利润1.经历探索商品销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值.重点会根据实际问题列出二次函数关系式,并能运用二次函数的知识求出其最大(小)值.难点分析和表示实际问题中变量之间的二次函数关系,正确地列出二次函数关系式.一、情境导入前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y =ax2+bx+c,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系.那么究竟有什么样的关系呢?我们本节课将研究有关问题.二、探究新知1.课件出示:服装厂生产某品牌的T恤衫,每件的成本是10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销 5 000件,并且表示单价每降价0.1元,愿意多经销500件.厂家批发单价是多少时,可以获利最多?设批发单价为x(0<x≤13)元,那么(1)销售量可以表示为____________;(2)销售额可以表示为____________;(3)所获利润可以表示为____________;(4)当批发单价是____元时,可以获得最大利润,最大利润是____.分析:获利就是指利润,总利润应为每件T恤衫的利润(批发价一成本)乘T恤衫的数量,设批发单价为x元,则降低了(13-x)元,每降低0.1元,可多售出500件,则可多售出5 000(13-x)件,因此共售出5 000+5 000(13-x)件,若所获利润用y(元)表示,则y =(x-10)[5 000+5 000(13-x)].解:(1)销售量可以表示为5 000+5 000(13 -x)=70 000-5 000x.(2)销售额可以表示为x(70 000-5 000x)=70 000x-5 000x2.(3)所获利润可以表示为(70 000x-5 000x2)-10(70 000-5 000x)=-5 000x2+120 000x-700 000.(4)设总利润为y元,则y=-5 000x2+120 000x-700 000=-5 000(x-12)2+20 000∵-5 000<0 ,∴抛物线有最高点,函数有最大值.当x=12元时,y最大=20 000元.即当销售单价是12元时,可以获得最大利润,最大利润是20 000元.2.课件出示:某旅社有客房120间,每间房的日租金为160元,每天都客满.经市场调查发现,如果每间客房的日租金增加10元时,那么客房每天出租数会减少6间.不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?处理方式:让学生根据上面的利润问题的解法来解决这道题.三、举例分析例 1 还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x +60 000.我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.因为表达式是二次函数,所以求橙子的总产量y的最大值即是求函数的最大值.所以y=-5x2+100x+60 000=-5(x2-20x+100-100)+60 000=-5(x-10)2+60 500当x=10时,y最大=60 500.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60 400个以上?①当x<10时,橙子的总产量随增种橙子树的增加而增加;当x>10时,橙子的总产量随增种橙子树的增加而减小.②由图可知,增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵,都可以使橙子总产量在60 400个以上.例2 已知一个矩形的周长是24 cm.(1)写出这个矩形的面积S与一边长a的函数表达式;(2)画出这个函数的图象;(3)当a长多少时,S最大?解:(1)S=a(12-a)=-a2+12a=-(a2-12a+36-36)=-(a-6)2+36.(2)图象如下:(3)当a=6时,S最大=36.四、练习巩固1.关于二次函数y=ax2+bx+c的图象有下列命题:①当c =0时,函数的图象经过原点;②当c >0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不等实根; ③当a <0,函数的图象最高点的纵坐标是4ac -b24a;④当b =0时,函数的图象关于y 轴对称. 其中正确命题的个数有( )A .1个B .2个C .3个D .4个2.二次函数y =x 2-8x +c 的最小值为0,那么c 的值等于( ) A .4 B .8 C .-4 D .163.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8 元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?五、课堂小结1.通过本节课的学习,你有什么收获? 2.用二次函数解决实际问题有哪些步骤? 六、课外作业1.教材第49页“随堂练习”.2.教材第50页习题2.9第1~3题.本节课是应用函数模型分析与解决最大利润问题.例题中的实际问题司空见惯,但学生没有亲身经历,在上课前可以让学生利用课余时间对学校的商店做一个简单的调查,锻炼学生的实践能力.数学教学不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律.强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.二次函数与一元二次方程的关系教学目标【知识与技能】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.【过程与方法】经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.【情感态度】通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.教学重点①理解二次函数与一元二次方程的联系.②求一元二次方程的近似根.教学难点理解二次函数与一元二次方程的联系.教学过程一、情境导入,初步认识1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当 y=0 时,自变量x 的值,它是二次函数的图象与x轴交点的横坐标 .2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴无交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac>0时,抛物线与x轴有两个交点.学生回答,教师点评二、思考探究,获取新知探究1 求抛物线y=ax2+bx+c与x轴的交点例1 求抛物线y=x2-2x-3与x轴交点的横坐标.【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.探究2 抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?【教学说明】抛物线y=ax2+bx+c(a ≠0)与x轴的位置关系一元二次方程ax2+bx+c=0(a≠0)根的情况b2-4ac的值有两个公共点有两个不相等的实数根b2-4ac>0只有一个公共点有两个相等的实数根b2-4ac=0无公共点无实数根b2-4ac<0探究3 利用函数图象求一元二次方程的近似根提出问题:同学们可以估算下一元二次方程x2-2x-6=0的较小的根是什么?学生回答:【教学点评】x1≈-1.7.三、运用新知,深化理解1.(广东中山中考)已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根2.若一元二次方程x2-mx+n=0无实根,则抛物线y=-x2+mx-n图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限3.(x-1)(x-2)=m(m>0)的两根为α,β,则α,β的范围为()A.α<1,β>2B.α<1<β<2C.1<α<2<βD.α<1,β>24.二次函数y=ax2+bx+c与x轴的交点坐标为(1,0),(3,0),则方程ax2+bx+c=0的解为 .5.(湖北武汉中考)已知二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0),B(x2,0)两点,交y轴的正半轴于点C,且x21+x22=10.(1)求此二次函数的解析式;(2)是否存在过点D(0,-)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求出直线MN的解析式;若不存在,请说明理由.学生解答:【答案】1.D 2.C 3.D 4.x1=1,x2=35.解:(1)y=x2-4x+3 (2)存在 y=x-【教学说明】一元二次方程的根的情况和二次函数与x轴的交点个数之间的关系是相互的,根据根的情况可以判断交点个数,反之也成立.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:①求二次函数自变量的值与一元二次方程根的关系;②抛物线与x轴交点个数与一元二次方程根的个数的关系.③用函数图象求“一元二次方程的近似根”;教学反思通过本节课的学习,让学生用函数的观点解方程和用方程的知识求函数,取某一特值时,把对应的自变量的值都联系起来了,这样对二次函数的综合应用就方便得多了,从中让学生体会到各知识之间是相互联系的这一最简单的数学道理.11。

沪科版九年级数学上册《相似形》22.2.2利用角的关系判定两个三角形相似

沪科版九年级数学上册《相似形》22.2.2利用角的关系判定两个三角形相似

*8.【2019·海南】如图,在 Rt△ ABC 中,∠C=90°,AB
=5,BC=4.点 P 是边 AC 上一动点,过点 P 作 PQ
∥AB 交 BC 于点 Q,D 为线段 PQ 的中点,当 BD
平分∠ABC 时,AP 的长度为( )
8 A.13 C.2153
15 B.13 D.3123
阶段核心方法专训
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
BC=AC, 在△ BCE 和△ ACD 中,∠BCE=∠ACD,
CE=CD, ∴△BCE≌△ACD,∴AD=BE.
整合方法
(2)求证:△ABF∽△ADB.
解:由(1)知,△BCE≌△ACD, ∴∠CBE=∠CAD. ∵∠BMC=∠AMF, ∴∠AFB=∠ACB=60°=∠ABD. 又∵∠BAF=∠DAB, ∴△ABF∽△ADB.
1.如图所示的三个三角形中,相似的是( A )
A.①和② C.①和③
B.②和③ D.①②和③
阶段核心方法专训
2.【2019·玉林】如图,AB∥EF∥DC,AD∥BC, EF与AC交于点G,则相似三角形共有( C ) A.3对 B.5对 C.6对 D.8对
阶段核心方法专训
3.如图,在△ABC中,∠ACB=90°,CD⊥AB于 点D,下列结论:
点 E,交 CB 于点 F.若 AC=3,AB=5,则 CE
的长为( A )
3

沪科9年级数学上册第22章 相似形2 相似三角形的判定

沪科9年级数学上册第22章 相似形2 相似三角形的判定

感悟新知
知3-练
例4 如图 22.2-9,△ ABC 是等边三角形,点 D, E 分别 在CB, AC 的延长线上,∠ ADE=60°. 求证:△ ABD ∽△ DCE.
感悟新知
解题秘方:紧扣“两角分别相等的两个三角形相 似”找到两组角对应相等即可.
证明: ∵∠ ABC= ∠ ACB=60°, ∴∠ ABD= ∠ DCE=120°. ∵∠ ADB+ ∠ DAB= ∠ ABC=60°, ∠ ADB+ ∠ EDC= ∠ ADE=60°, ∴∠ DAB= ∠ EDC.∴△ ABD ∽△ DCE.
A.3 C. 125或 4
B.
25 4
D.4

25 4
感悟新知
解题秘方:先利用勾股定理求出 BC 的长,再分 类讨论 . 根据 “两角分别相等的两个 三角形相似”和“相似三角形的对应 边成比例”计算.
知3-练
感悟新知
知3-练
解:∵∠ BAC=90°, AB = 6, AC=8,∴ BC=
62+82=10. 当∠ EDC=90°时,∠ EDC= ∠ A. 又∵∠ DCE= ∠ ACB,∴△ CDE ∽△ CAB,
知1-练
(1) 求∠ AED和∠ ADE的度数;
解:∵∠BAC=45°,∠ACB=40°, ∴∠ABC=95°. ∵△ABC∽△ADE, ∴∠AED=∠ACB=40°,∠ADE=∠ABC=95°.
感悟新知
(2)求 DE 的长. 解:∵△ABC∽△ADE, ∴DBCE=AAEC=505+030=58. 又∵BC=70 cm,∴DE=43.75 cm.
5-1.如图, 在 △ ABC中,按如下步骤作图:
知3-练
(1) 以点 B 为圆心,BA 长为半径画弧,交BC 于点 D;

九年级数学教案第22章《相似三角形》知识点整理_0290文档

九年级数学教案第22章《相似三角形》知识点整理_0290文档
本文内容如下:【下载该文档后使用Word打开】
本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项----黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。这个点叫做黄金分割点。顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。(5)比例的性质基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。合比性质,主要作用:比例的互相转化。等比性质,在使用时注意成立的条件。二、相似三角形的判定平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。4、位似变换可把图形放大或者缩小。5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)

2022九年级数学上册 第22章 相似形22.2 相似三角形的判定第2课时 相似三角形的判定定理1

2022九年级数学上册 第22章 相似形22.2 相似三角形的判定第2课时 相似三角形的判定定理1

5 即3 2
AC 3
AC
,∴AC=
5 2
.
BA
12.如图,在△ABC中,AB=8 cm,BC=16 cm,点P从点A开始沿 AB边向点B以2 cm/s的速度运动,点Q从点B开始沿BC边向点C以4 cm/s 的速度运动.如果P,Q分别从A,B同时出发,经过几秒,以P,Q,B 为顶点的三角形与△ABC相似?
9、 人的价值,在招收诱惑的一瞬间被决定 。2022/5/62022/5/6Friday, May 06, 2022
10、低头要有勇气,抬头要有低气。2022/5/62022/5/62022/5/65/6/2022 9:04:01 AM
11、人总是珍惜为得到。2022/5/62022/5/62022/5/6M ay-226-May-22
解:△BCD∽△BAC.理由如下:∵BD= 4 ,AB
4
3
=3,BC=2,∴ B D 3 2 , B C 2 ,
BC 2 3 B A 3
∴ B D B C . ∵∠DBC=∠CBA, BC BA
∴△BCD∽△BAC.
(2)若CD=
5 3
,求AC的长.
解:∵△BCD∽△BAC,∴ C D B C ,
BC BA
16
8
过2秒或0.8秒时,以P,Q,B为顶点的三角形与△ABC相似.
1.利用两边成比例且夹角相等判定两个三角形相似时,易找错对应边而判断错误. 2.考虑问题不周全而出错.例如:在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3, 点N在AC边上.求当AN的长为多少时,△AMN与原三角形相似.解决此问题应分类讨论: ①△AMN∽△ABC;②△AMN∽△ACB.
6.△ABC如图,那么以下四个三角形中,与△ABC相似的 是( C)

沪科版数学九年级(上册)22.2相似三角形的判定-教案(1)

沪科版数学九年级(上册)22.2相似三角形的判定-教案(1)

相似三角形的判定【教学目标】1.理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角:2.掌握相似三角形判定定理的“预备定理”;3.能灵活运用三角形相似的判定定理证明和解决有关问题。

【教学重点】灵活运用三角形相似的判定定理证明和解决有关问题。

【教学难点】三角形相似的判定定理的探索与证明。

【课时安排】5课时。

【教学过程】【第一课时】三角形相似判定定理的“预备定理”。

一、复习旧知:前面我们学习了相似多边形及相似比的有关概念,下面请同学们思考以下几个问题:(一)辨析:1.四个角分别相等的两个四边形一定相似吗?2.四组对应边的比分别相等的两个四边形一定相似吗?3.什么样的两个多边形是相似多边形?4.什么是相似比(相似系数)?(二)简答:1.正方形和长方形或长宽之比不相等的两个矩形。

2.正方形和不是正方形的菱形或两组内角均不相等的菱形。

3.两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形。

4.相似多边形对应边长度的比叫做相似比或相似系数。

二、概念讲解:概念:如图1,AAB(2与八AB。

相似。

记作“△ABCs/XABt,”,读作“Z\ABC相似于左ABC,”。

注意:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角。

, 、ZA=ZA\ZB=ZB;ZC=ZC;△ABCs/XABC,V〉AB BC CA明确:对于,根据相似三角形的定义,应有……(引导学生明白定义的双重性。

)问题:将左ABC与左ABC,相似比记为ki,△ABC与8ABC相似比记为k?,那么幻与灯有什么关系?ki=k2能成立吗?说明:三角形全等是三角形相似的特例。

(一)类比猜想:1.两个三角形全等的判定有哪几种方法?2.全等是不是需要所有的对应边和对应角都相等?3.猜想:两个三角形相似是不是也需要所有的对应边?和对应角都相等?有没有简便的方法?(二)简析:1.两个三角形全等的判定方法有:SAS,ASA、SSS,AAS,直角三角形还有HL。

沪科版初中数学九年级上册第22章相似三角形的判定(共32张)

沪科版初中数学九年级上册第22章相似三角形的判定(共32张)
22.2类似三角形的判定(第1课时)
本节课内容:
1.认识类似三角形,知道类似三角形的表示方 法及类似比.
2.学习一个定理:类似三角形判定的预备定理.
1.认识类似三角形:
回顾:什么样的两个多边形是类似多边形?
类似多边形: 边数相同 对应角相等 对应边长度的比相等
类似三角形: 对应角相等 对应边长度的比相等
类似三角形基本性质:
类似三角形的对应角相等,三边对应成比例 符号语言:
∵△ABC∽△A′B′C′
∴∠A=∠A′,∠B=∠B′,∠C=∠C′,
AB BC CA . AB BC CA
认识: 根据三角形类似,利用其性质是解决角和线 段问题的重要方法!
4.类似三角形判定的预备定理:
温故知新:
平行线分线段成比例定理的推论?
3. 类似三角形的类似比:
3.类似三角形的类似比: 类似三角形的对应边的比类似比. 注意:类似比的表述有顺序性 △ABC 与△A′B′C′ 的类似比为k1:. .
△ABC∽△A′B′C′ △A′B′C′与△ABC 的类似比为k2 .
显然, k1 · k2 =1
显然,当且仅当三角形全等时
k1 =k2 =1
D A
C
x
E
3 213B
5
解:∵DE∥AB, ∠2=∠3
∵∠1=∠2 ∴∠1=∠3 ∴DE=BE=3 ∴△CDE∽△CAB
3(x+3)=5x x=4.5
∴DE∥BF, ∴△EDM∽△FBM,
(2):解:
(1):证明:∵AB=2EB,
AB=2DC, ∴EB=DC,
又,BE∥DC, ∴四边形BCDE是平行四边形
∴∠D=∠AFG,∠E=∠AGF,

九年级数学上册第22章相似形22.2相似三角形的判定第1课时相似三角形的概念与相似三角形判定的预备定

九年级数学上册第22章相似形22.2相似三角形的判定第1课时相似三角形的概念与相似三角形判定的预备定

22.2 第1课时 相似三角形的概念与相似三角形判定的预备定理知识点 1 相似三角形的有关概念1.如图22-2-1,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( )A. AD AB =AE EC =DE BCB. AD AB =AE AC =DEBCC. AD AE =AC AB =DE BC D. AD AC =AE AB =DEBC2.在△ABC 中,∠A =45°,∠B =35°,则与△ABC 相似的三角形的三个角的度数分别为( )A .35°,45°,45°B .45°,105°,35°C .45°,35°,110°D .45°,35°,100°图22-2-13.如图22-2-2,△ABC ∽△DEF ,相似比为1∶2.若BC =1,则EF 的长是( ) A .1 B .2 C .3 D .4图22-2-2知识点 2 由平行线截得相似三角形 4.[教材练习变式]如图22-2-3,已知在△ABC 中,DE ∥BC ,DF ∥AC ,则图中相似三角形的对数是( )A .1B .2C .3D .4图22-2-35.[2016·盐城]如图22-2-4,点F 在▱ABCD 的边AB 上,CF 交DA 的延长线于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( )A .0个B .1个C .2个D .3个图22-2-46.如图22-2-5,若AB ∥CD ∥EF ,则图中相似三角形的对数为( )A .1B .2C .3D .4图22-2-57.[2017·庐阳区二模]如图22-2-6,在△ABC 中,DE ∥BC ,AD DB =12,DE =3,则BC的长是( )A .6B .9C .10D .12图22-2-68.如图22-2-7,在▱ABCD 中,F 是BC 上一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:______________________.图22-2-79.如图22-2-8所示,在△ABC 中,DE ∥BC ,GF ∥AC ,GF ,DE 相交于点M ,则图中与△ABC 相似的三角形有( )A .1个B .2个C .3个D .4个图22-2-810.如图22-2-9所示,在▱ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,求DF ∶FC .图22-2-911.如图22-2-10,在▱ABCD中,F是BC延长线上一点,AF交BD于点O,与DC交于点E,则图中相似三角形共有(全等除外)( )A.3对B.4对C.5对D.6对图22-2-101.D2.D [. 3.B 4.C 5.C 6.C . 7.B8.答案不唯一,如△ABP∽△AED 9.]C10.解:∵四边形ABCD 是平行四边形, ∴AB ∥DC ,∴△DFE ∽△BAE , ∴DF AB =DE EB. ∵O 为▱ABCD 的对角线的交点, ∴OD =OB.又∵E 为OD 的中点, ∴DE =14DB ,则DE∶EB=1∶3, ∴DF∶AB=1∶3. 又∵DC=AB , ∴DF ∶DC =1∶3, ∴DF ∶FC =1∶2. 11. C。

九年级数学:第22章《相似三角形》知识点整理

九年级数学:第22章《相似三角形》知识点整理

初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 九年级数学教案编订:XX文讯教育机构第22章《相似三角形》知识点整理教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项----黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。

(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。

简称比例线段。

(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。

这个点叫做黄金分割点。

顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。

(5)比例的性质基本性质:内项积等于外项积。

(比例=====等积)。

主要作用:计算。

合比性质,主要作用:比例的互相转化。

等比性质,在使用时注意成立的条件。

二、相似三角形的判定平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。

三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。

2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。

沪科版九年级数学上册22.2相似三角形的判定优秀教学案例

沪科版九年级数学上册22.2相似三角形的判定优秀教学案例
本节课的亮点主要体现在教学情境的创设、问题驱动的学习、小组合作的学习方式、反思与评价的培养以及关注个体差异,全面提高学生的数学素养等方面。这些亮点使本节课成为一节符合教学实际、具有人性化教学语言的优质教学案例。
2.问题驱动的学习:本节课以问题为导向,引导学生通过观察、操作、猜想、验证等数学活动,自主探索相似三角形的判定方法。这种问题驱动的学习方式,使学生在解决问题的过程中,培养了他们的逻辑思维能力和空间想象能力。
3.小组合作的学习方式:本节课注重学生的小组合作学习,通过组织学生进行小组讨论、交流,培养他们的合作意识和团队精神。学生在小组合作的过程中,相互启发、共同进步,提高了他们的沟通能力。
二、教学目标
(一)知识与技能
1.让学生掌握相似三角形的判定方法,理解并能够运用AA相似定理、SSS相似定理、SAS相似定理和HL相似定理判断两个三角形的相似关系。
2.使学生了解相似三角形的性质,包括对应边的比例关系、对应角的相等关系,并能运用这些性质解决实际问题。
3.培养学生运用数学知识对现实生活中的事物进行观察、分析和解决问题的能力,提高他们的数学应用意识。
在案例背景中,我选择了与学生生活密切相关的事物作为教学素材,如建筑物、电路图等,让学生在探究中感受到数学与生活的紧密联系。同时,我注重引导学生运用已学的知识解决实际问题,从而提高他们的数学应用能力。此外,我还设计了一些富有挑战性的练习题,让学生在解答过程中加深对相似三角形判定方法的理解和运用。
在教学活动中,我充分尊重学生的的主体地位,鼓励他们积极参与、勇于尝试,培养他们的自主学习能力。同时,我注重发挥教师的主导作用,引导学生正确运用数学方法,克服困难,解决问题。在课堂氛围上,我努力营造轻松、愉快的学习氛围,使学生在愉悦的情感状态下学习,提高他们的学习效果。

沪科版数学九年级上册第22章相似形2相似三角形的性质(课件)

沪科版数学九年级上册第22章相似形2相似三角形的性质(课件)

C′
(2)△ABC与△A′B′C′类似吗?如果类似请说明 理由,并指出它们的类似比。
因为 AB BC CA 3 A'B' B'C' C' A' 4
所以△ABC∽△A′B′C′
A′
A
D
B
D′ B′
C C′
(3)图中还有其它类似三角形吗?请说明理由。
△ACD∽△A′C′D′
△BCD∽△B′C′D′
1.类似三角形对应高的比等于类似比, 类似三角形对应中线的比等于类似比, 类似三角形对应角平分线的比等于类似比。
2.类似三角形周长的比等于类似比, 类似三角形面积的比等于类似比的平方。
谢谢
类似三角形的性质
回顾与思考
某技术工人准备按照比例尺3∶4的图纸制作三角
形零件,如图,图纸上的△ABC表示该零件的横断面
△A′B′C′,CD和C′D′分别是它们的高。
(1)AA'BB' ,BB'CC' ,CC'AA' 各等于多少?
A
D B
A′
D′
B′
C
AB BC CA 3 A' B' B'C ' C ' A' 4
探究
图中(1)、(2)、(3)分别是边长为1、2、3的等边
三角形,它们都类似。
(2)与(1)的类似比=__2_∶___1____, (2)与(1)的面积比=__4_∶___1____; (3)与(1)的类似比=__3_∶___1____, (3)与(1)的面积比=__9_∶___1____。
已知:△ABC∽△A′B′C′,且类似比为k,AD、A′D′

九年级数学上册第22章相似形22.2相似三角形的判定第三课时

九年级数学上册第22章相似形22.2相似三角形的判定第三课时

AC
A 'B ' A 'C '
都等于给定的值k,量出它们的第三组对应(duìyìng)边BC和B'C'的长,它们的比
等于k吗?另外两组对应角∠B与∠B',∠C与∠C'是否相等?
改变(gǎibiàn)∠A或K值的大小,再试一试,是否有同样的结论?
实际上,我们(wǒ men)有利用两边和夹角判定两个三角形相似的方法:
ABBCAC0.625 A'B' B'C' A'C'
∴△ABC∽△A'B'C'
第十一页,共十五页。
2. 图中的两个三角形是否(shì fǒu)相似?
B
45
A
54
C 36 E 30
D
解:(1)∠ACB=∠ECD
BC 45 3 CD 30 2 AC 54 3 CE 36 2
BC AC CD CE
AB = BC = CA
A'B' B'C' C'A'
12/11/2021
求证: △ABC∽△A'B'C'
第七页,共十五页。
验证
证明:在线段A'B'(或它的延长线)上截取A'D=AB,过点D作 DE∥B'C',交A'C'于点E,根据(gēnjù)前面的结论可得△A'DE∽△A'B'C'
A'
A
D
E
B
C
15
20
27
40
25
45
(2) 1 5 5 27 9 25 5 45 9

九年级数学上册 第22章 相似形22.3 相似三角形的性质第1课时 相似三角形的性质定理1课件

九年级数学上册 第22章 相似形22.3 相似三角形的性质第1课时 相似三角形的性质定理1课件

C C′
F
F′
A
E
D
B A′
E′ D′ B′
第十六页,共十七页。
内容 总结 (nèiróng)
No 22.3 相似三角形的性质。第1课时 相似三角形的性质定理1。三角形中有各种各样的几何量,
例如三条边的长度,三个内角的度数,高、中线、角平分线的长度等,如果两个三角形相似, 那么它们的这些几何量之间有什么关系呢。现在, 我们研究相似三角形的其他几何量之间的关系.。 ∴ Rt△ABD∽Rt△A′B′D′.。相似三角形对应边上的高之比等于(děngyú)相似比.。AE与A′E′ 的比是多 少。相似三角形对应边上的中线之比等于(děngyú)相似比.。F′
22.3 相似(xiānɡ sì)三角形的性质
第1课时(kèshí) 相似三角形的性质定理1
第一页,共十七页。
新课导入 思考
三角形中有各种各样的几何量,例如三条边的 长度,三个内角的度数(dù shu),高、中线、角平分线 的长度等,如果两个三角形相似,那么它们的这些 几何量之间有什么关系呢?
第二页,共十七页。
为 BC 边上的中线. △ABC 与
B′
△A′B′C′ 的相似比是多少?AE
与A′E′ 的比是多少?
A′
E′
C′
A
k 1 AE 2 A'E'
第六页,共十七Байду номын сангаас。
BE C
(2)如右图两个(liǎnɡ ɡè)相似
三角形的比为 k, 则对应边上的 中线的比是多少呢?说说你判 断的理由是什么?
B′
AE k A 'E '
之的比角等平于分相线似.(xiānɡ sì)比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选2019-2020年数学九年级上册第22章相似形22.2 相似三角形的判定沪科
版习题精选【含答案解析】七十
第1题【单选题】
如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC^2=AP?AB;
④AB?CP=AP?CB,能满足△APC和△ACB相似的条件是( )
A、①②④
B、①③④
C、②③④
D、①②③
【答案】:
【解析】:
第2题【单选题】
如图所示,△ABC中,CD⊥AB于D,DE⊥AC于E,图中与△ADE相似的三角形有( )个.
A、1
B、2
C、3
D、4
【答案】:
【解析】:
第3题【单选题】
下列说法正确的是( )
A、所有的等腰三角形都相似
B、所有的直角三角形都相似
C、所有的等腰直角三角形都相似
D、有一个角相等的两个等腰三角形都相似
【答案】:
【解析】:
第4题【单选题】
如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有( )
A、4个
B、3个
C、2个
D、1个
【答案】:
【解析】:
第5题【单选题】
下列几个命题中正确的有( )(1)四条边相等的四边形都相似;(2)四个角都相等的四边形都相似;(3)三条边相等的三角形都相似;(4)所有的正六边形都相似。

A、1个
B、2个
C、3个
D、4个
【答案】:
【解析】:
第6题【单选题】
下列命题中,属于假命题的是( )
A、有一个锐角相等的两个直角三角形一定相似
B、对角线相等的菱形是正方形
C、抛物线y=y^2-20x+17的开口向上
D、在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/5
【答案】:
【解析】:
第7题【单选题】
如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形( )对.
A、4对
B、5对
C、6对
D、7对
【答案】:
【解析】:
第8题【填空题】
如图,添加一个条件:______,使△ADE∽△ACB.
A、∠ADE=∠C(答案不唯一)
【答案】:
【解析】:
第9题【填空题】
如图,点P是△ABC中AB边上的一点,过P作直线(不与AB重合)截△ABC,使截得的三角形与原三角形相似,满足条件的直线最多有______条.
A、4
【答案】:
【解析】:
第10题【填空题】
中任意一对相似三角形:______.
【答案】:
【解析】:
第11题【解答题】
如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .
【答案】:
【解析】:。

相关文档
最新文档