椭圆(高三一轮复习文科)

合集下载

椭圆及其性质一轮复习

椭圆及其性质一轮复习
例 4、已知 F1,F2 是椭圆x42+y2=1 的左、右焦点,P 是椭圆上的一个动点, 求|P→F1+P→F2|的最小值.
【解析】 设点 P(x0,y0),由题意,得 F1(- 3,0),F2( 3,0),则
P→F1=(- 3-x0,-y0),P→F2=( 3-x0,-y0), 所以P→F1+P→F2=(-2x0,-2y0), 所以|P→F1+P→F2|= 4x20+4y20=2 4-4y20+y20=2 -3y20+4. 因为点 P 在椭圆上,所以 0≤y02≤1, 所以当 y02=1 时,|P→F1+P→F2|取得最小值 2.
椭圆复习课
考向一 椭圆的定义及其应用
例 1、(1)一动圆与已知圆 O1:(x+3)2+y2=1 外切, 与圆 O2:(x-3)2+y2=81 内切,试求动圆圆心的轨迹方程. (2)求过点 A(2,0)且与圆 x2+4x+y2-32=0 内切的圆的 圆心的轨迹方程.
(1)如图所示,设动圆的圆心为 C,半径为 r.
(1) 由题意,得 P,Q 分别是椭圆长轴和短轴上的端点, 且椭圆的焦点在 x 轴上,
所以 a=2 3,b=2,
所以椭圆的标准方程为1x22 +y42=1.
(2) 与椭圆x42+y32=1 有相同的焦点且经过点(2,- 3).
(2) 设椭圆x42+y32=1 的左、右焦点分别为 F1,F2, 则 F1(-1,0),F2(1,0), 所以所求椭圆的焦点在 x 轴上.
A.0,
2 2
B. 22,1
C.0,
3 2
D. 23,1
变式 4、已知椭圆 C:xa22+by22=1(a>b>0),点 A,B 是长轴的两个端点,
A 若椭圆上存在点 P,使得∠APB=120°,则该椭圆的离心率的取值范围是( )

全国高考数学一轮复习-椭圆知识点总结

全国高考数学一轮复习-椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 22焦点弦:椭圆过焦点的弦。

3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

一轮复习专题48 椭圆、双曲线、抛物线(知识梳理)

一轮复习专题48 椭圆、双曲线、抛物线(知识梳理)

专题48椭圆、双曲线、抛物线(知识梳理)一、椭圆(一)椭圆的基本定义和方程1、椭圆的定义:设1F 、2F 是定点,P 为动点,则满足a PF PF 2||||21=+(a 为定值且||221F F a >)的动点P 的轨迹称为椭圆,符号表示:a PF PF 2||||21=+(||221F F a >)。

注意:当||221F F a =时为线段21F F ,当||221F F a <时无轨迹。

2、椭圆的方程及图像性质定义方程a y c x y c x 2)()(2222=+-+++ac y x c y x 2)()(2222=-++++标准方程12222=+b y a x (0>>b a )12222=+b x a y (0>>b a )一般方程122=+ny mx (0>m ,0>n ,n m ≠)推导方程22222b x ab y +-=(0>>b a )22222a x ba x +-=(0>>b a )范围][a a x ,-∈,][b b y ,-∈][b b x ,-∈,][a a y ,-∈图形焦点坐标焦点在x 轴上)0(1,c F -,)0(2,c F 焦点在y 轴上)0(1c F -,,)0(2c F ,对称性对称轴:x 轴、y 轴对称中心:原点(这个对称中心称为椭圆的中心)顶点)0(1,a A -、)0(2,a A 、)0(1b B -,、)0(2b B ,)0(1a A ,、)0(2a A -,、)0(1,b B 、)0(2,b B -轴长轴21A A 的长为:a 2(a 为长半轴)短轴21B B 的长为:b 2(b 为短半轴)离心率椭圆的焦距与长轴长度的比叫做椭圆的离心率ace =,)10(,∈e ,e 越大越扁,e 越小越圆焦距:cF F 221=222c b a +=3、椭圆12222=+by a x (0>>b a )的图像中线段的几何特征(如图):(1)a PF PF 2||||21=+,e PM PF PM PF ==2211,c a PM PM 2212||||=+;(2)a BF BF ==||||21,c OF OF ==||||21,2221||||b a B A B A +=+;(3)c a F A F A -==||||2211,c a F A F A +==||||1221。

2019年高考数学(文)一轮复习精品资料:专题42椭圆(教学案)含解析

2019年高考数学(文)一轮复习精品资料:专题42椭圆(教学案)含解析

2019年高考数学(文)一轮复习精品资料1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质高频考点一 椭圆的定义及其应用【例1】 (1)已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( )A. 2B.2C.2 2D. 3(2)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________. 【答案】(1)A (2)x 225+y 216=1【解析】(1)由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,【举一反三】 (1)(如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF →1⊥PF →2.若△PF 1F 2的面积为9,则b =________.【答案】(1)A (2)3规律方法 椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.【变式探究】 (1)已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3(2)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________. 【答案】(1)A (2)x 225+y 216=1【解析】(1)由椭圆定义知,⎩⎪⎨⎪⎧|AF 1|+|AF 2|=8,|BF 1|+|BF 2|=8,两式相加得|AB |+|AF 1|+|BF 1|=16,即△AF 1B 周长为16,又因为在△AF 1B 中,有两边之和是10,所以第三边长度为16-10=6.选A.(2)设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r .所以|PC 1|+|PC 2|=10>|C 1C 2|, 即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上, 得点P 的轨迹方程为x 225+y 216=1.高频考点二 求椭圆的标准方程【例2】 (1)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.(2)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.(3)已知椭圆的长轴长是短轴长的3倍,且过点A (3,0),并且以坐标轴为对称轴,则椭圆的标准方程为________. 【答案】(1)x 216+y 28=1 (2)x 2+3y 22=1 (3)x 29+y 2=1或y 281+x 29=1【解析】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4. ∴b 2=8,∴椭圆C 的方程为x 216+y 28=1. (2)设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF →1=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,法二 设椭圆的方程为x 2m +y 2n=1(m >0,n >0,m ≠n ),则由题意知⎩⎪⎨⎪⎧9m =1,2m =3×2n 或⎩⎪⎨⎪⎧9m =1,2n =3×2m ,解得⎩⎪⎨⎪⎧m =9,n =1或⎩⎪⎨⎪⎧m =9,n =81. ∴椭圆的标准方程为x 29+y 2=1或y 281+x 29=1.【方法规律】根据条件求椭圆方程常用的主要方法是定义法和待定系数法.定义法的要点是根据题目所给条件确定动点的轨迹满足椭圆的定义,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a ,b .【举一反三】(1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________.【答案】(1)y 210+x 26=1 (2)y 220+x 24=11,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1.【变式探究】(1)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1D.x 24+y 2=1(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.【答案】(1)A (2)x 24+y 23=1【解析】(1)依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.高频考点三 椭圆的几何性质例3、(1)(2016·全国Ⅲ卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34(2)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1【答案】(1)A (2)A【解析】(1)设M (-c ,m ),则E ⎝⎛⎭⎪⎫0,am a -c ,OE 的中点为D , 则D ⎝ ⎛⎭⎪⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c ,所以a =3c ,所以e =13.(2)设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32. 【举一反三】(1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2(2)(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.【答案】(1)C (2)22知M为线段QF的中点,且OM⊥FQ.又O为线段F1F的中点,∴F1Q∥OM,∴F1Q⊥QF,|F1Q|=2|OM|.【感悟提升】(1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系.②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.(2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.【变式探究】 已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为A ,P 为C 1上任一点,MN 是圆C 2:x2+(y -3)2=1的一条直径,与AF 平行且在y 轴上的截距为3-2的直线l 恰好与圆C 2相切.(1)求椭圆C 1的离心率;(2)若PM →·PN →的最大值为49,求椭圆C 1的方程.考点四直线与椭圆的位置关系【例4】设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,【举一反三】如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e . 解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=+22+-22=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)方法一 连接F 1Q ,如图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,-2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,(2+2)|PF 1|=4a , 即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4, 解得e =12⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫42+2-12=6- 3. 方法二 如图,由椭圆的定义,|PF 1|+|PF 2|=2a , |QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此,4a -2|PF 1|=2|PF 1|,得|PF 1|=2(2-2)a , 从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2,因此e =c a =|PF 1|2+|PF 2|22a=-22+2-2=9-62=6- 3.【变式探究】已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x =3交于点M .(1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.当直线AB 的斜率存在时,设其方程为y =k (x -1)(k ≠1),设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y -1=y 1-1x 1-2(x -2). 令x =3,得点M ⎝⎛⎭⎪⎫3,y 1+x 1-3x 1-2,由⎩⎪⎨⎪⎧x 2+3y 2=3,y =k x -,得(1+3k 2)x 2-6k 2x +3k 2-3=0,所以x 1+x 2=6k 21+3k 2,x 1x 2=3k 2-31+3k2,直线BM 的斜率k BM =y 1+x 1-3x 1-2-y 23-x 2,因为k BM -1 =k x 1-+x 1-3-kx 2-x 1---x 2x 1--x 2x 1-=k --x 1x 2+x 1+x 2-3]-x 2x 1-=k -⎝ ⎛⎭⎪⎫-3k 2+31+3k 2+12k 21+3k 2-3-x 2x 1-=0所以k BM =1=k DE ,所以BM ∥DE . 综上可知,直线BM 与直线DE 平行.1. (2018年全国I 卷) 已知椭圆:的一个焦点为,则的离心率为A. B. C.D.【答案】C【解析】根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.2. (2018年全国卷Ⅱ)已知,是椭圆的两个焦点,P 是C 上的一点,若,且,则C的离心率为A.B.C.D.【答案】D3. (2018年浙江卷)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】设,由得因为A,B在椭圆上,所以,与对应相减得,当且仅当时取最大值.4. (2018年全国III卷)已知斜率为k的直线L与椭圆交于A,B两点.线段AB的中点为.(1)证明:;(2)设F为C的右焦点,P为C上一点,且.证明:.【答案】(1)证明见解析(2)证明见解析【解析】同理.所以.故.5. (2018年天津卷)设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而当时,,不合题意,舍去;当时,,,符合题意.所以,的值为.6. (2018年北京卷)已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)由题意得,所以,又,所以,所以,又,所以可设,直线的方程为,由消去可得,则,即,又,代入①式可得,所以,所以,同理可得.故,,因为三点共线,所以,将点的坐标代入化简可得,即.7. (2018年江苏卷)如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P 的坐标为.综上,直线l 的方程为.1.[2017·北京高考]已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n x -m ,y =n2-m x -,解得点E 的纵坐标y E =-n-m 24-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.2.【2017浙江,2】椭圆22194x y +=的离心率是A B 5 C .23D .59【答案】B 【解析】94533e -==,选B . 3.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .3][9,)+∞C .(0,1][4,)+∞D .3][4,)+∞【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=4.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B 3 C 2 D .13【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即22d a a b==+,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率2633c e a ===,故选A.5.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心椭圆C 截直线y =1所得线段的长度为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,圆N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与圆N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ) 22142x y +=.(II) 3π.【解析】又()0,N m -,所以2222222121km m ND m k k ⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭整理得()()22422241321m k k ND k++=+ ,因为NF m =,所以()()()2422222224318312121k k ND k NFkk+++==+++.令283,3t k t =+≥,由(*)得 22m -<<且0m ≠.故12NF ND≥, 设2EDF θ∠=, 则1sin 2NF NDθ=≥, 所以θ的最小值为π6,从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,()(m ∈⋃时, EDF ∠取到最小值π3. 6. 【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)4737(,77 【解析】解:(1)设椭圆的半焦距为c .(第17从而直线1l 的方程: ()0011x y x y +=-+, ① 直线2l 的方程: ()0011x y x y -=--. ② 由①②,解得2001,x x x y y -=-=,所以20001,x Q x y ⎛⎫-- ⎪⎝⎭.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=. 由22002201{ 143x y x y-=+=,解得004737x y ==; 220022001{ 143x y x y +=+=,无解.因此点P的坐标为⎝⎭.1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】B【解析】如图,在椭圆中,11,,242OF c OB b OD b b ===⨯=,在Rt OFB △中,||||||||OF OB BF OD ⨯=⨯,且222a b c =+,代入解得224a c =,所以椭圆的离心率为12e =,故选B. 2.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||||()FM k a c =-,||||OE k a =,设OE 的中点为H,由OBH FBM △∽△,得1||||2||||OE OB FM BF =,即||2||()k a a k a c a c =-+,整理得13c a =,所以椭圆离心率为13e =,故选A .3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<. 【答案】(Ⅰ)14449;(Ⅱ))32,2.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4. 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=.(Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故22121|||2134k AM x k k+=++=+. 由题设,直线AN 的方程为1(2)y x k =-+,故同理可得2121||k kAN +=由2||||AM AN =得222343+4k k k =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t '=-+=-≥,所以()f t 在(0,)+∞单调递增.又(3)153260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)内,所2k <<.4.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I)求椭圆C的方程及离心率;(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】(Ⅰ)2214xy+=;3=e.5.【2016高考山东文数】(本小题满分14分)已知椭圆C:(a>b>0)的长轴长为4,焦距为2. (I)求椭圆C的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值.【答案】(Ⅰ)22142x y +=.(Ⅱ)(i)见解析;(ii)直线AB 6【解析】(Ⅰ)设椭圆的半焦距为c. 由题意知24,22a c == 所以222,2a b a c ==-=所以椭圆C 的方程为22142x y +=.(Ⅱ)(ⅰ)设0000(,)(0,0)P x y x y >>, 由M(0,m),可得00(,2),(,2).P x m Q x m - 所以直线PM 的斜率002m m mk x x -== ,直线QM 的斜率0023m m mk x x --'==-. 此时3k k '=-. 所以k k'为定值–3.(ⅱ)设1122(,),(,)A x y B x y . 直线PA 的方程为y=kx+m , 直线QB 的方程为y=–3kx+m.联立 22,1,42y kx m x y =+⎧⎪⎨+=⎪⎩由00,0m x >>,可知k>0,所以16k k +≥6k =时取得.6=,即7m =,符号题意. 所以直线AB 66.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.【答案】(Ⅰ)22143x y +=(Ⅱ)6【解析】(Ⅰ)解:设(,0)F c ,由113||||||c OF OA FA +=,即113()c c a a a c +=-,可得2223a c c -=,又7.【2016高考四川文科】(本小题满分13分)已知椭圆E :22221(0)x y a b a b +=>>的一个焦点与短轴的两个端点是正三角形的三个顶点,点1)2P 在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12 的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E交于C ,D ,证明:MA MB MC MD ⋅=⋅.【答案】(1)2214x y +=;(2)证明详见解析. 【解析】(Ⅰ)由已知,a=2b.又椭圆22221(0)x y a b a b +=>>过点1(3,)2P ,故2213414b b+=,解得21b =. 所以椭圆E 的方程是2214x y +=. (Ⅱ)设直线l 的方程为1(0)2y x m m =+≠,1122(,),(,)A x y B x y , 由方程组221,41,2x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩ 得222220x mx m ++-=,①方程①的判别式为24(2)Δm =-,由Δ>0,即220m ->,解得22m -<<由①得212122,22x x m x x m +=-=-.所以M 点坐标为(,)2m m -,直线OM 方程为12y x =-, 由方程组221,41,2x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩得22(2,2,22C D -.所以25)(2)224MC MD m m m ⋅=-+⋅=-.又222212121212115[()()][()4]4416MA MB AB x x y y x x x x ⋅==-+-=+- 22255[44(22)](2)164m m m =--=-. 所以=MA MB MC MD ⋅⋅.1.【2015高考广东,文8】已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .2.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A . 3(0,2 B .3(0,]4 C .3[2 D .3[,1)4【答案】A【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设(0,)M b ,则4455b ≥,故1b ≥,从而221a c -≥,203c <≤, 03c <≤E 的离心率的取值范围是3(0,]2,故选A . 3.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .2【解析】设()F ,0c 关于直线b y x c =的对称点为(,)Q m n ,则有1222n bm c cn b m c⎧⋅=-⎪⎪-⎨+⎪=⨯⎪⎩,解得3222222,c b bc bc m n a a --==,所以3222222(,)c b bc bc Q a a --在椭圆上,即有32222422(2)(2)1c b bc bc a a b --+=,解得222a c =,所以离心率2c e a ==. 4.【2015高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 【答案】(Ⅰ)255(Ⅱ)详见解析. 【解析】(Ⅰ)解:由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b a c b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫ ⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a . 又()b a ,-=,从而有()22225616561a b b a -=+-=⋅ 由(Ⅰ)得计算结果可知,522b a =所以0=⋅,故AB MN ⊥.5.【2015高考北京,文20】(本小题满分14分)已知椭圆C:2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(I )求椭圆C 的离心率;(II )若AB 垂直于x 轴,求直线BM 的斜率;(III )试判断直线BM 与直线D E 的位置关系,并说明理由.【答案】(I )3;(II )1;(III )直线BM 与直线D E 平行.【解析】121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=-- 0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.6.【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为6,过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向.(I )求2C 的方程;(II )若AC BD =,求直线l 的斜率.【答案】(I )22198y x += ;(II) 64±.【解析】(I )由21:4C x y =知其焦点F 的坐标为(0,1),因为F 也是椭圆2C 的一个焦点,所以221a b -=因AC 与BD 同向,且AC BD =,所以AC BD =,从而3142x x x x -=-,即3412x x x x -=-,于是2234341212()4()4x x x x x x x x +-=+- ③设直线l 的斜率为k ,则l 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩得2440x kx --=,由12,x x 是这个方程的两根,12124,4x x k x x ∴+==-④7.【2015高考山东,文21】平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m 交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 3. 【解析】(I )由题意知22311,4a b+=223a b -=,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y +=(II )由(I )知椭圆E 的方程为221164x y +=. (i )设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 因为2200 1.4x y +=又2200()()1164x y λλ--+=,即22200() 1.44x y λ+= 所以2λ=,即||2.||OQ OP = (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得8.【2015高考陕西,文20】如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离心率为2.(I)求椭圆E 的方程;(II)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.【答案】(I)2212xy+=; (II)证明略,详见解析.【解析】(Ⅰ)由题意知212cba==,综合222a b c=+,解得2a=,所以,椭圆的方程为9.【2015高考四川,文20】如图,椭圆E:22221x ya b+=(a>b>0)的离心率是2,点P(0,1)在短轴CD上,且PC PD⋅=-1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅为定值?若存在,求λ的值;若不存在,请说明理由.所以12122242,2121k x x x x k k +=-=-++ 从而OA OB PA PB λ⋅+⋅=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1=22(24)(21)21k k λλ--+--+=-21221k λλ---+所以,当λ=1时,-21221k λλ---+=-3此时,OA OB PA PB λ⋅+⋅=-3为定值 当直线AB 斜率不存在时,直线AB 即为直线CD此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅=-2-1=-3 故存在常数λ=-1,使得OA OB PA PB λ⋅+⋅为定值-3.10.【2015高考天津,文19】(本小题满分14分) 已知椭圆22221(a b 0)x y a b+=>>的上顶点为B ,左焦点为F ,(I )求直线BF 的斜率;(II )设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ l .(i )求l 的值; (ii )若75||sin PM BQP Ð,求椭圆的方程. 【答案】(I )2;(II )(i )78 ;(ii )22 1.54x y +=【解析】(I )设(),0F c - ,由已知5c a =及222,a b c =+ 可得5,2a c b c == ,又因为()0,B b ,(。

2025高考数学一轮复习-41.1-椭圆的概念及基本性质【课件】

2025高考数学一轮复习-41.1-椭圆的概念及基本性质【课件】

椭圆的标准方程
2 (1) 已知椭圆的长轴长是短轴长的3倍,过点A(3,0),且以坐标 轴为对称轴,则椭圆的标准方程为________________________.
【解析】 方法一:若椭圆的焦点在 x 轴上,设方程为ax2ቤተ መጻሕፍቲ ባይዱ+by22=1(a>b>0).由题意得
2a=3×2b, a92+b02=1,
2025高考数学一轮复习-41.1-椭圆的概念及基本性质
激活思维
1.已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点
5,-3 22
,则它的
标准方程是( ) A. x2 + y2 =1
36 100 C.x2+ y2 =1
6 10
B. x2 +y2 =1 100 36
D. x2 +y2=1 10 6
ay22+bx22=1(a>b>0)
顶点坐标
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)


长轴 A1A2 的长为__2_a___;短轴 B1B2 的长为___2_b__

焦距
|F1F2|=__2_c___
离心率
(2) 如图,P为圆B:(x+2)2+y2=36上一动点,
1
点A的坐标为(2,0),线段AP的垂直平分线交BP于点 Q,则点Q的轨迹方程为___x9_2+__y5_2=__1____.
【解析】 连接AQ(图略).因为线段AP的垂直平分线交BP于点Q,所以|AQ|=|PQ|,所 以|AQ|+|BQ|=|PQ|+|BQ|=6. 又|AB|=4,所以|AQ|+|BQ|>|AB|,所以点 Q 的轨迹是以 A,B 为焦点的椭圆,且 2a =6,2c=4,所以 a2=9,c2=4,b2=a2-c2=5,故点 Q 的轨迹方程为x92+y52=1.

高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲

高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲

高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

椭圆(高三复习课教案)

椭圆(高三复习课教案)

椭 圆(高三复习课)阜阳三中 谭含影一、教学内容分析圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算,并且为复习双曲线和抛物线奠定了基础。

二、学生学习情况分析本班是普通文科班,此课之前,学生已经学习过相关内容。

此时,学生已有一定的学习基础和学习兴趣。

总体上来讲,由于学生应用数学知识的意识不强,创造力较弱,分析问题不透彻,知识体系不完整,使得学生在对椭圆定义的理解及其标准方程的灵活运用上有一定的难度。

因此根据尝试教学法,教学过程中遵循“练习探索——自主复习——课堂研究——巩固运用”的四个要素,侧重学生的“练”、“思”、“究”的自主学习。

通过学生的“练”、“ 思”、“究” ,再到教师的“讲”, 使学生的学习达到“探索有所得,研究获本质”。

三、教学目标1、知识与能力:能用自己的语言描述椭圆的定义;准确地写出椭圆两种形式的标准方程;能根据椭圆的定义及标准方程画出椭圆的几何图形;并概括出椭圆的简单几何性质。

2、过程与方法:通过了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;理解数形结合的思想,并能用数形结合的思想结合椭圆的有关性质,解决椭圆的简单应用问题。

3、情感、态度与价值观:通过与同学、老师的交流、合作与探究,体会合作学习的乐趣;通过对椭圆的定义、几何图形、基本性质的探索,体会椭圆的几何图形与方程之间的相互联系和相互转化的规律,感受数学的严谨性;逐步形成细心观察、认真分析、善于总结的良好思维习惯。

四、教学重点与难点教学重点:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。

2、了解椭圆的简单应用。

教学难点:椭圆的定义和简单几何性质的应用,理解数形结合的思想。

五、教学过程 1、知识梳理 构建网络问题1:平面内与两个定点F 1、F 2的距离之和为常数的点的轨迹是什么? 常数大于12||F F 时,点的轨迹是椭圆常数等于12||F F 时,点的轨迹是线段F 1F 2 常数小于12||F F 时,点的轨迹不存在问题2:平面内到定点F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗? 常数e (0<e <1)点的轨迹是椭圆问题3:椭圆的标准方程的两种形式是什么?12222=+b y a x , 12222=+ay b x , (a >b >0) 分别表示中心在原点,焦点在 x 轴和y 轴上的椭圆问题4:椭圆的几何性质有哪些?2、要点训练 知识再现例1 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,求椭圆的离心率。

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

椭圆-高考文科数学总复习

椭圆-高考文科数学总复习

A组基础对点练1.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4 D.9解析:由4=25-m2(m>0)?m=3,故选 B.答案:B2.方程kx2+4y2=4k表示焦点在x轴上的椭圆,则实数k的取值范围是() A.k>4B.k=4C.k<4 D.0<k<4解析:方程kx2+4y2=4k表示焦点在x轴上的椭圆,即方程x24+y2k=1表示焦点在x轴上的椭圆,可得0<k<4,故选 D. 答案:D3.已知椭圆的中心在原点,离心率e=12,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为()A.x24+y23=1 B.x28+y26=1C.x22+y2=1 D.x24+y2=1解析:依题意,可设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知可得抛物线的焦点为(-1,0),所以c=1,又离心率e=ca=12,解得a=2,b2=a2-c2=3,所以椭圆方程为x24+y23=1,故选A.答案:A4.椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,左、右焦点分别为F1,F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为()A.12B.55C.14D.5-2解析:由题意可得2|F1F2|=|AF1|+|F1B|,即4c=a-c+a+c=2a,故e=ca=12.答案:A5.(2018·郑州模拟)如图,△P AB 所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,若tan ∠ADP +2tan ∠BCP =10,则点P 在平面α内的轨迹是()A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分解析:由题意可得|P A||AD |+2|PB||BC |=10,则|PA|+|PB |=40>|AB |=6,又因为P ,A ,B 三点不共线,故点P 的轨迹是以A ,B 为焦点的椭圆的一部分.答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k >2,解得0<k<1.答案:(0,1) 7.若椭圆的方程为x 210-a +y2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a)=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率等于13,其焦点分别为A ,B.C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB|+|CA||AB|,因为点C 在椭圆上,所以由椭圆定义知|CA|+|CB|=2a ,而|AB|=2c ,所以sin A +sin B sin C =2a 2c =1e =3.答案:39.已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c.(1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c ,代入椭圆,得c 2a 2+y2b 2=1.解得|y|=b 2a =|AF 2|,即b 2a =36c ,∴a 2-c 2=36ac.∴e 2+36e -1=0,解得e =32. (2)设M(0,b),N(0,-b),P(x 0,y 0),则直线MP 的方程为y =y 0-bx 0x +b.令y =0,得点R 的横坐标为bx 0b -y 0. 直线NP 的方程为y =y 0+bx 0x -b.令y =0,得点Q 的横坐标为bx 0b +y 0.∴|OR →|·|OQ →|=b 2x 20b 2-y 20=a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a>b>0),其中e =12,焦距为2,过点M(4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程.(2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y23=1. (2)由题意可知A ,B ,M 三点共线,设点A(x 1,y 1),点B(x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意.则AB 所在直线l 的斜率存在,设为k ,则直线l 的方程为y =k(x -4).由y =k x -4,x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47,可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0.则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2),AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组能力提升练1.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y2m=1恒有公共点,则实数m 的取值范围是()A .(1,2]B .[1,2)C .[1,2)∪(2,+∞)D .[1,+∞)解析:联立直线与椭圆的方程,消去y 得(2k 2+m)x 2+4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k 2-4(2k 2+m)(2-2m)≥0,即2k 2+m -1≥0恒成立,因为k ∈R ,所以k 2≥0,则m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).答案:C2.已知椭圆E :x 2a 2+y2b2=1(a>b>0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是()A.0,32 B.0,34C.32,1D.34,1解析:根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF|+|BF|)=8,所以a =2.又d =|3×0-4×b|32+-42≥45,所以1≤b<2,所以e =ca=1-b 2a2=1-b 24.因为1≤b<2,所以0<e ≤32.答案:A3.已知P(1,1)为椭圆x 24+y22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2),则x 214+y 212=1,①x 224+y 222=1,②①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2,∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 29+y24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN|+|BN |=________. 解析:根据已知条件画出图形,如图.设MN 的中点为P ,F 1、F 2为椭圆C 的焦点,连接PF 1、PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴|AN|+|BN|=2|PF 1|+2|PF 2|=2(|PF 1|+|PF 2|)=2×6=12.答案:125.已知点A(0,-2),椭圆E :x 2a 2+y2b 2=1(a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程.(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△POQ 的面积最大时,求l 的方程.解析:(1)设F(c,0),由条件知,2c=233,得c= 3.又ca=32,所以a=2,b2=a2-c2=1.故E的方程为x24+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入x24+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>34时,x1,2=8k±24k2-34k2+1.从而|PQ|=k2+1|x1-x2|=4k2+1·4k2-34k2+1.又点O到直线PQ的距离d=2k2+1,所以△OPQ的面积S△OPQ=12d·|PQ|=44k2-34k2+1.设4k2-3=t,则t>0,S△OPQ=4tt2+4=4t+4t.因为t+4t≥4,当且仅当t=2,即k=±72时等号成立,且满足Δ>0.所以,当△OPQ的面积最大时,l的方程为y=72x-2或y=-72x-2.6.(2018·保定模拟)椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程.(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.解析:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3得,c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)因为B(2,0),P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)k ≠0,k ≠±12,①把①代入x 24+y 2=1,解得P 8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.②①与②联立解得M 4k +22k -1,4k2k -1. 由D (0,1),P 8k 2-24k 2+1,-4k4k2+1,N(x,0)三点共线知-4k 4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k 2k +122k +12-22k -12=2k +14,则2m -k =2k +12-k =12(定值).。

高三数学一轮复习(知识点归纳与总结):椭圆

高三数学一轮复习(知识点归纳与总结):椭圆

高三数学一轮复习(知识点归纳与总结):椭圆高三数学一轮复习(知识点归纳与总结):椭圆第五节椭圆[备考方向要明了][归纳知识整合]1.椭圆的定义(1)满足以下条件的点的轨迹是椭圆①在平面内;②与两个定点F1、F2的距离之和等于常数;③常数大于|F1F2|.(2)焦点:两定点.(3)焦距:两焦点间的距离.[探究] 1.在椭圆的定义中,若2a=|F1F2|或2a|F1F2|,则动点的轨迹如何?提示:当2a=|F1F2|时动点的轨迹是线段F1F2;当2a|F1F2|时,动点的轨迹是不存在的.2.椭圆的标准方程和几何性质高三数学一轮复习(知识点归纳与总结):椭圆[探究] 2.椭圆离心率的大小与椭圆的扁平程度有怎样的关系?提示:离心率e =ca 越接近1,a 与c 就越接近,从而b =a 2-c 2就越小,椭圆就越扁平;同理离心率越接近0,椭圆就越接近于圆.[自测牛刀小试]1.椭圆x 216+y 28=1的离心率为( )A.13 B.12 C.33D.22解析:选D ∵a 2=16,b 2=8,∴c 2=8,∴e =c a =2 2.2.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3高三数学一轮复习(知识点归纳与总结):椭圆解析:选A 根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A.14B.12 C .2 D .4解析:选A 由题意知a 2=1m ,b 2=1,且a =2b ,则1m =4,得m =14. 4.若椭圆x 216+y 2m 2=1过点(-2,3),则其焦距为( ) A .2 3B .2 5C .4 3D .4 5解析:选C 把点(-2,3)的坐标代入椭圆方程得m 2=4,所以c 2=16-4=12,所以c =23,故焦距为2c =4 3.5.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析:由题意知|OM |=12|PF 2|=3,则|PF 2|=6.故|PF 1|=2×5-6=4. 答案:4[例1] (1)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 是周长是( )A .23B .6C .4 3D .12 (2)(2012山东高考)已知椭圆C :x 2a 2+y 2b 2=1(a b 0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) 高三数学一轮复习(知识点归纳与总结):椭圆A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 [自主解答] (1)根据椭圆定义,△ABC 的周长等于椭圆长轴长的2倍,即4 3.(2)由离心率为32得,a 2=4b 2,排除选项B ,双曲线的渐近线方程为y =±x ,与椭圆的四交点组成的四边形的面积为16可得在第一象限的交点坐标为(2,2),代入选项A 、C 、D ,知选项D 正确.[答案] (1)C (2)D―――――――――――――――――――用待定系数法求椭圆方程的一般步骤(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;(2)设方程:根据上述判断设方程x 2a 2+y 2b 2=1(a b 0)或x 2b 2+y 2a2=1(a b 0);(3)找关系:根据已知条件,建立关于a 、b 、c 或m 、n 的方程组;(4)得方程:解方程组,将解代入所设方程,即为所求.注意:用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为mx 2+ny 2=1(m 0,n 0).1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到椭圆的两个焦点的距离之和为12,则椭圆G 的方程为______________.解析:设椭圆方程为x 2a 2+y 2b 2=1(a b 0),根据椭圆定义2a =12,即a =6,又c a =32,得c =33,故b 2=a 2-c 2=36-27=9,故所求椭圆方程为x 236+y 29=1. 答案:x 236+y 29=1 2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a b 0)的左、右焦点,P 为椭圆C 上一点,且PF 1⊥PF 2.若△PF 1F 2的面积为9,则b =________.解析:设椭圆的焦点坐标为(±c,0)根据椭圆定义和△PF 1F 2是一个面积等于9的直角三角形,高三数学一轮复习(知识点归纳与总结):椭圆有????? |PF 1|+|PF 2|=2a ,①|PF 1||PF 2|=18,②|PF 1|2+|PF 2|2=4c 2. ③①式两端平方并把②、③两式代入可得4c 2+36=4a 2,即a 2-c 2=9,即b 2=9,故b =3.答案:3[例2] (2012安徽高考)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a b 0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.[自主解答] (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12. (2)法一:a 2=4c 2,b 2=3c 2,直线AB 的方程可为y =-3(x -c ).将其代入椭圆方程3x 2+4y 2=12c 2,得B ????85c ,-335c . 所以|AB |=1+3????85c -0=165c . 由S △AF 1B =12|AF 1||AB |sin ∠F 1AB =12a 165c 32=235a 2=403,解得a =10,b =5 3. 法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a . 由S △AF 1B =12a 85a 32=235a 2=403知,a =10,b =5 3.高三数学一轮复习(知识点归纳与总结):椭圆―――――――――――――――――――椭圆离心率的求法求椭圆的离心率(或范围)时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.3.椭圆x 2a 2+y 2b 2=1(a b 0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12 C.1+54D.3+14 解析:选B 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12. 4.椭圆x 2a 2+y 25=1(a 为定值,且a 5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△F AB 的周长的最大值是12,则该椭圆的离心率是________.解析:设椭圆右焦点为F ′,由图及椭圆定义知,|AF |+|AF ′|=|BF |+|BF ′|=2a .又△F AB 的周长为|AF |+|BF |+|AB |≤|AF |+|BF |+|AF ′|+|BF ′|=4a ,当且仅当AB过右焦点F ′时等号成立,此时4a =12,则a =3,故椭圆方程为x 29+y 25=1, 所以c =2,所以e =c a =23. 答案:23[例3] 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段高三数学一轮复习(知识点归纳与总结):椭圆AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得????? (2+c )2+1=10,c a =12,解得????? c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由????? y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0,①则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,????? x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点M ????-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km 3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,????? x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2|x 1-x 2|=39612-m 2.设点P 到直线AB 距离为d ,则d =|8-2m |32+22=2|m -4|13.高三数学一轮复习(知识点归纳与总结):椭圆设△ABP 的面积为S ,则S =12|AB |d =36(m -4)2(12-m 2). 其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值.故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 方程为3x +2y +27-2=0.高三数学一轮复习(知识点归纳与总结):椭圆――――――――――――――――――― 直线与椭圆相交时的常见问题的处理方法5.(2013洛阳模拟)已知椭圆x 2a 2+y 2b 2=1(a b 0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B . (1)若|AB |=4269,求k 的值;(2)求证:不论k 取何值,以AB 为直径的圆恒过点M .解:(1)∵由题意知c a =22,b =1. 由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1. 由??? y =kx -13,x 22+y 2=1,得(2k 2+1)x 2-43kx -169=0. Δ=169k 2-4(2k 2+1)×???-169=16k 2+6490恒成立.设A (x 1,y 1),B (x 2,x 2),则x 1+x 2=4k 3(2k 2+1),x 1x 2=-169(2k 2+1),∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=4(1+k 2)(9k 2+4)3(2k 2+1)=4269,化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)证明:∵MA =(x 1,y 1-1),MB =(x 2,y 2-1),∴MAMB =x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-43k (x 1+x 2)+169高三数学一轮复习(知识点归纳与总结):椭圆=-16(1+k 2)9(2k 2+1)-16k 29(2k 2+1)+169=0.∴不论k 取何值,以AB 为直径的圆恒过点M .1个规律――椭圆焦点位置与x 2、y 2系数之间的关系给出椭圆方程x 2m +y 2n=1时,椭圆的焦点在x 轴上?m n 0;椭圆的焦点在y 轴上?0m n .1种思想――数形结合思想在椭圆几何性质中的运用求解与椭圆几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2种方法――求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程.3种技巧――与椭圆性质、方程相关的三种技巧(1)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(2)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0e 1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.答题模板――直线与圆锥曲线的位置关系[典例] (2012北京高考满分14分)已知曲线C :(5-m )x 2+(m -2)y 2=8(m ∈R ).高三数学一轮复习(知识点归纳与总结):椭圆(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y =1与直线BM交于点G.求证:A,G,N三点共线.高三数学一轮复习(知识点归纳与总结):椭圆[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:方程的曲线是焦点在x 轴上的椭圆*****DD→椭圆的标准方程x 2a 2+y 2b 2=1(a >b >0).2.审结论,明确解题方向观察所求结论:求m 的范围D→需建立关于m 的不等式.3.建联系,找解题突破口由椭圆的标准方程D→DDDDDD→确定a 2,b 2a 2=85-m ,b 2=8m -2*****→建立关于m 的不等式5-m >0,m -2>0,85-m >8m -2解不等式组,得m 的取值范围.第(2)问1.审条件,挖解题信息观察条件:m =4;曲线C 与y 轴交于A ,B 与直线y =kx +4交于M ,N ;直线y =1与直线BM 交于G *****DDDD→把m =4代入曲线C 的方程并令x =0,得A 、B 的坐标曲线C 的方程x 2+2y 2=8,A (0,2),B (0,-2).2.审结论,明确解题方向观察所证结论:证明A ,G ,N 三点共线*****→利用斜率转化证明k AN =k AG . 3.建联系,找解题突破口联立方程y =kx +4与x 2+2y 2=8,消元DDDDDD→利用根与系数的关系确定M ,N 的坐标满足的条件*****DD→写出BM 的方程并令y =1写出G 的坐标*****DDD→写出k AN ,k AG 的表达式证明k AN -k AG =0. [准确规范答题](1)曲线C 是焦点在x 轴上的椭圆,当且仅当????? 5-m >0,m -2>0,85-m >8m -2,?(3分) 解得72<m <5,所以m 的取值范围是????72,5.?(4分) (2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2).?(5分)高三数学一轮复习(知识点归纳与总结):椭圆由?????y =kx +4,x 2+2y 2=8,得(1+2k 2)x 2+16kx +24=0.?(6分) 因为直线与曲线C 交于不同的两点,所以Δ=(16k )2-4(1+2k 2)×24>0,即k 2>32.?(7分)设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=-16k 1+2k 2,x 1x 2=24 1+2k 2.?(8分) 直线BM 的方程为y +2=y 1+2x 1x ,点G 的坐标为????3x 1y 1+2,1.?(9分)因为直线AN 和直线AG 的斜率分别为k AN =y 2-2x 2,k AG =-y 1+23x 1,?(11分) 所以k AN -k AG =y 2-2x 2+y 1+23x 1=kx 2+2x 2+kx 1+63x 1=43k +2(x 1+x 2)x 1x 2=43k +2×1+2k 2241+2k 2=0. 即k AN =k AG .?(13分)故A ,G ,N 三点共线.?(14分)[答题模板速成]解直线与圆锥曲线位置关系的一般步骤:?高三数学一轮复习(知识点归纳与总结):椭圆一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012上海高考)对于常数m ,n ,“mn 0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 因为当m 0,n 0时,方程mx 2+ny 2=1表示的曲线不是椭圆,但当方程mx 2+ny 2=1表示的曲线是椭圆时,m 0,n 0,mn 0.2.已知椭圆:x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4C .4或8D .以上均不对解析:选C 由?????10-m 0,m -20,得2m 10,由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.3.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 3解析:选D 依题意得|AC |=5,所以椭圆的焦距为2c =|AB |=4,长轴长2a =|AC |+高三数学一轮复习(知识点归纳与总结):椭圆|BC |=8,所以短轴长为2b =2a 2-c 2=216-4=4 3.4.(2013汕尾模拟)已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.5.以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是( )A .内切B .相交C .相离D .无法确定解析:选A 如图,设线段是PF 1,O 1是线段PF 1的中点,连接O 1O ,PF 2,其中O 是椭圆的中心,F 2是椭圆的另一个焦点,则在△PF 1F 2中,由三角形中位线定理可知,两圆的连心线的长是|OO 1|=12|PF 2|=12(2a -|PF 1|)=a -12|PF 1|=R -r . 6.(2012新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a b 0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12B.23C.34D.45解析:选C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e =34. 二、填空题(本大题共3小题,每小题5分,共15分)7.若椭圆x 2a 2+y 2b 2=1(a b 0)与曲线x 2+y 2=a 2-b 2恒有公共点,则椭圆的离心率e 的取值范围是__________.解析:由题意知,以半焦距c 为半径的圆与椭圆有公共点,故b ≤c ,所以b 2≤c 2,即a 2≤2c 2,高三数学一轮复习(知识点归纳与总结):椭圆所以22≤c a .又c a 1,所以22≤e 1. 答案:????22,1 8.(2012江西高考)椭圆x 2a 2+y 2b2=1(a b 0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.解析:依题意得|F 1F 2|2=|AF 1||BF 1|,即4c 2=(a -c )(a +c )=a 2-c 2,整理得5c 2=a 2,得e =c a =55 . 答案:559.已知椭圆C :x 2a 2+y 2b 2=1(a b 0)的离心率为32 .过右焦点F 且斜率为k (k 0)的直线与椭圆C 相交于A ,B 两点.若AF =3FB ,则k =________.解析:根据已知c a =32,可得a 2=43c 2,则b 2=13c 2,故椭圆方程为3x 24c 2+3y 2c2=1,即3x 2+12y 2-4c 2=0.设直线的方程为x =my +c ,代入椭圆方程得(3m 2+12)y 2+6mcy -c 2=0.设A (x 1,y 1),B (x 2,y 2),则根据AF =3FB ,得(c -x 1,-y 1)=3(x 2-c ,y 2),由此得-y 1=3y 2,根据韦达定理y 1+y 2=-2cm m 2+4,y 1y 2=-c 23(m 2+4),把-y 1=3y 2代入得,y 2=cm m 2+4,-3y 22=-c 23(m 2+4),故9m 2=m 2+4,故m 2=12,从而k 2=2,k =±2. 又k 0,故k =2.答案:2三、解答题(本大题共3小题,每小题12分,共36分)10.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为F 1,F 2,且|PF 1|=453,|PF 2|=253. 由椭圆定义知2a =|PF 1|+|PF 2|=25,即a =5.由|PF 1||PF 2|知,|PF 2|垂直焦点所在的对称轴,所以在Rt △PF 2F 1中,sin ∠PF 1F 2=|PF 2||PF 1|=12. 可求出∠PF 1F 2=π6,2c =|PF 1|cos π6=253,高三数学一轮复习(知识点归纳与总结):椭圆从而b 2=a 2-c 2=103. 所以所求椭圆方程为x 25+3y 210=1或3x 210+y 25=1. 11.已知椭圆G :x 2a 2+y 2b 2=1(a b 0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.解:(1)由已知得c =22,c a =63,解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由????? y =x +m ,x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4. 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△P AB 的面积S =12|AB |d =92. 12.(2012重庆高考)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.高三数学一轮复习(知识点归纳与总结):椭圆(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解:(1)如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a b 0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,故∠B 1AB 2为直角,因此|OA |=|OB 2|,得b =c 2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12|B 1B 2||OA |=|OB 2||OA |=c 2b =b 2. 由题设条件S △AB 1B 2=4,得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1. (2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4m m 2+5,y 1y 2=-16m 2+5,又2B P=(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P 2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16高三数学一轮复习(知识点归纳与总结):椭圆=-16m 2-64m 2+5,由PB 2⊥QB 2,得2B P 2B Q =0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.1.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足PF 1PF 2=0,则e 21+e 22(e 1e 2)2的值为________.解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,|F 1F 2|=2c ,由题意得|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2,∴|PF 1|2+|PF 2|2=2a 21+2a 22.又∵PF 1PF 2=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2,即2a 21+2a 22=4c 2.∴???a 1c 2+????a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22(e 1e 2)2=2. 答案:22.已知F 1,F 2为椭圆x 2100+y 2b 2=1(0b 10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1||PF 2|的最大值;(2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值.解析:(1)由题意得|PF 1|+|PF 2|=20,则|PF 1||PF 2|≤????|PF 1|+|PF 2|22=100,当且仅当|PF 1|=|PF 2|时,等号成立,故(|PF 1||PF 2|)max =100.(2)因为S △F 1PF 2=12|PF 1||PF 2|sin 60°=6433,所以|PF 1||PF 2|=2563.① 又?????|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2=400,|PF 1|2+|PF 2|2-4c 2=2|PF 1||PF 2|cos 60°,所以3|PF 1||PF 2|=400-4c 2.②由①②得c =6,则b =a 2-c 2=8. 3.已知平面内曲线C 上的动点到定点(2,0)和定直线x =22的比等于22. (1)求该曲线C 的方程;。

高三一轮复习--椭圆的定义及几何性质

高三一轮复习--椭圆的定义及几何性质

椭圆的定义及几何性质一、复习目标:1.掌握椭圆的定义、几何图形及标准方程 2.会用待定系数法求椭圆的标准方程 3.理解数形结合的思想 二、基础知识回顾 1.定义:①平面内与两个定点12,F F 的距离之和等于常数等于2a (122___a F F ),这个动点的轨迹叫椭圆(这两个定点叫 ).②点M 与一个定点的距离和它到一条定直线的距离的比是常数e ,e ∈ ,则P 点的轨迹是椭圆。

定点叫做双曲线的 ,定直线l 叫做双曲线的 。

③,,a b c 之间的关系 。

2.标准方程及几何性质:(1)若椭圆的焦点在x 轴上,则椭圆的标准方程为 ,焦点坐标为 ,焦距为 ,横坐标的取值范围是 ,纵坐标的取值范围是 ,图像关于 对称,顶点坐标为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 。

(2)若椭圆的焦点在y 轴上,则椭圆的标准方程为 ,焦点坐标为 ,焦距为 ,横坐标的取值范围是 ,纵坐标的取值范围是 ,图像关于 对称,顶点坐标为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 。

3.椭圆参数的几何意义(如图):(1)12PF PF += ,(2)12PM PM += , (3)1212||||||||PF PF PM PM == ;(4)1122A F A F == ;(5)1221A F A F == ;(6) 1PF ≤≤ ;(7)12BF BF == ,12OF OF == ;12OB OB ==;(8)21F PF ∆中结合定义122PF PF a +=与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来,设122F PF θ∠=,则12PF F S ∆= ,三、例题分析: 题型1.椭圆的定义例1.下列说法中,正确的是( )A .平面内与两个定点1F ,2F 的距离和等于常数的点的轨迹是椭圆B .与两个定点1F ,2F 的距离和等于常数(大于12F F )的点的轨迹是椭圆C .方程()2222210x y a c a a c +=>>-表示焦点在x 轴上的椭圆 D .方程()222210,0x y a b a b+=>>表示焦点在y 轴上的椭圆练习1:1F ,2F 是定点,126FF =,动点M 满足126MF MF +=,则点M 的轨迹是( )A .椭圆B .直线C .线段D .圆题型2.椭圆的标准方程例2.求适合下列条件的椭圆的标准方程: (1)离心率为22,准线方程为8±=x ; (2)长轴与短轴之和为20,焦距为54练习2:已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.题型3.椭圆的焦距例3.椭圆63222=+y x 的焦距是( )A .1B .)23(2-C .52D .)23(2+练习3:椭圆1422=+y m x 的焦距为2,则m 的值是( )A .5B .3C .1或3D .不存在题型4.求椭圆的的离心率例 4. 已知1F 为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当11PF F A ⊥,//PO AB (O 为椭圆中心)时,求椭圆的离心率.练习4:椭圆的中心是原点O O ,它的短轴长为22,相应于焦点(,0)F c (0c >)的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。

三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。

二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解

专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3B .6C .8D .125.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 17.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12 C .13 D .148.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( ) A .12B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( ) A .△ABF 2的周长为定值 B .AB 的长度最小值为1 C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠= 三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.20.(2019·江苏·高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=c e a ==22b ∴=,所以方程为4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3 B .6 C .8 D .12【答案】B【分析】根据椭圆中,,a b c 的关系即可求解. 【详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B.5.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 1290,PF ∠1,||PF =故选D.7.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.148.(2021·全国·高考真题(理))设B是椭圆2222:1(0)x yC a ba b+=>>的上顶点,若C上的任意一点P都满足||2PB b≤,则C的离心率的取值范围是()A.⎫⎪⎪⎣⎭B.1,12⎡⎫⎪⎢⎣⎭C.⎛⎝⎦D.10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( )A .12 B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( )A .△ABF 2的周长为定值B .AB 的长度最小值为1C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]【详解】因为11AF F B λ=,则A 三点共线,2ABF 周长21=≠,B 错.,则12AF AF ⊥,A 在上、下顶点处,不妨设A解得0x =⎧⎪⎨或,422,-12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤ ⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠=三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m+--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解 【详解】由于22670x my m +--=是圆,1m ∴= 即:圆22670x y x +--= 其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 称性将ADE 的周长转化为【详解】∵椭圆的离心率为2213y c =,即2a OF c =,两点,DE 为线段∴ADE 的周长等于24a a a +=四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.【答案】23由2AF FB =可得x 的坐标代入椭圆方程中化简可求出离心率 【详解】因为2AF FB =,设A 4⋅⋅⋅⋅⋅⋅①②①-②得:,1220y y +=,18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 【答案】(Ⅰ)32;(Ⅱ)221123x y +=.19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.5520.(2019·江苏·高考真题)如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.43因为BF2=2a,EF1+EF2=2a,所以EF1=EB,21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.的面积是BPQ 面积的23,x y y kx +=⎧⎨=⎩所以,k 的值为12-.。

椭圆一轮复习(含书后重点习题)

椭圆一轮复习(含书后重点习题)

椭圆2018考纲:1. 掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2. 了解椭圆的简单应用.3. 理解数形结合的思想.知识点一 椭圆的定义平面内与两个定点F 1,F 2的距离的和等于 的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.在椭圆的定义中,当2a =|F 1F 2|时,动点的轨迹是 ;当2a <|F 1F 2|时,动点的轨迹 .知识点二 椭圆的标准方程和几何性质考点一 椭圆的定义及标准方程例1. (1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 .(2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.求|AF 2|= .(3)(选修2-1 47页习题A 2(3))已知焦距为4的椭圆方程 (4)(选修2-1 47页习题A 2(4))已知长轴长是短轴长的5倍,且过点(6,2)P 的椭圆方程(5)(选修2-1 41页例3)已知,B C 是两个定点, 8BC ,且ABC 的周长等于18,这个三角形的顶点A 的轨迹方程为 .(6).已知圆E :x 2+⎝⎛⎭⎫y -122=94经过椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点F 1,F 2,与椭圆C 在第一象限的交点为A ,且F 1,E ,A 三点共线,则椭圆C 的方程为____________.(7).(选修2-1 43页练习B 2)已知点(6,0)B 和(6,0)C -,过点B 的直线l 与过点C 的直线m 相交于点A ,设直线l 的斜率为1k ,直线m 的斜率为2k ,如果1249k k ∙=-,点A 的轨迹方程为 . (8).已知点P 是圆F 1:(x +1)2+y 2=16上任意一点(F 1是圆心),点F 2与点F 1关于原点对称.线段PF 2的垂直平分线m 分别与PF 1,PF 2交于M ,N 两点.求点M 的轨迹C 的方程.考点二 椭圆的几何性质 方向1 焦点三角形例2.(1).以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2(2).(选修2-1 48页习题B 5)已知点P 为椭圆2214x y +=上任意一点,12,F F 是椭圆的两个焦点那么12PF PF 的最大值 ,2212PF PF +的最小值 .(3).(选修2-1 47页习题A 5)已知12,F F 是椭圆22195x y +=的两个焦点,点P 在椭圆上且123F PF π∠=,求12PF F 的面积方向2 椭圆的离心率例2 (1).已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A .(22,1)B .(12,1)C .(0,22)D .(0,12)(2).已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63 B.33 C.23D.13(3).椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且|PF 1→|·|PF →2|的最大值的取值范围是[2c 2,3c 2],其中c =a 2-b 2.则椭圆M 的离心率e 的取值范围是( )A.⎣⎡⎦⎤33,22 B.⎣⎡⎭⎫22,1 C.⎣⎡⎭⎫33,1D.⎣⎡⎭⎫13,12(4) 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 .(5)已知椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( )A .e ≤12B .e ≥14 C.14≤e ≤12 D .0<e ≤14或12≤e <1方向3 最值问题(1) 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8(2) 已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),M 为平面内一点,|AM→|=1,且PM →·AM →=0,则|PM →|的最小值为________.考点三 直线与椭圆的位置关系例3. (1).(选修2-1 70页习题A 2)已知点M 是直线l 被椭圆22436x y +=所截得的线段AB 的中点,则直线l 的方程为 .(2).(选修2-1 70页习题A 3) 已知直线y x m =+与椭圆2214x y +=相交于,A B 两点,当m 变化时,求AB 的最大值 .(3).设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程.1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为2. 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y=0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,13. 已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,F 为椭圆C 的右焦点,圆x 2+y 2=4上有一动点P ,P 不同于A ,B 两点,直线P A 与椭圆C 交于点Q ,则k PBk QF的取值范围是( )A.⎝⎛⎭⎫-∞,-34∪⎝⎛⎭⎫0,34 B .(-∞,0)∪⎝⎛⎭⎫0,34 C .(-∞,-1)∪(0,1) D .(-∞,0)∪(0,1)课时作业55 椭圆一、选择题1.椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.592.焦点在y 轴上,焦距等于4,离心率等于22的椭圆的标准方程是( )A.x 216+y 212=1B.x 212+y 216=1C.x 24+y 28=1D.x 28+y 24=1 3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A.14 B.12 C .2 D .44.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,四个顶点构成的四边形的面积为4,过原点的直线l (斜率不为零)与椭圆C 交于A ,B 两点,F 1,F 2分别为椭圆的左、右焦点,则四边形AF 1BF 2的周长为( )A .4B .4 3C .8D .8 35.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)6.如图,过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆C 的离心率的取值范围是( )A .(0,12)B .(23,1)C .(12,23)D .(0,12)∪(23,1)二、填空题7过椭圆x 216+y 24=1内一点M (2,1)引一条弦,使得弦被M 点平分,则此弦所在的直线方程为____________.8若曲线x 24+k +y 21-k=1表示椭圆,则实数k 的取值范围是________.9已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b2=1相交于A 、B 、C 、D 四点,若椭圆C 1的一个焦点为F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________.三、解答题10知椭圆的长轴长为6,离心率为13,F 2为椭圆的右焦点.(1)求椭圆的标准方程; (2)点M 在圆x 2+y 2=8上,且M 在第一象限,过M 作圆x 2+y 2=8的切线交椭圆于P ,Q 两点,判断△PF 2Q 的周长是否为定值并说明理由.11知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2.(1)若椭圆E 的长轴长、短轴长、焦距成等差数列,求椭圆E 的离心率;(2)若椭圆E 过点A (0,-2),直线AF 1,AF 2与椭圆的另一个交点分别为点B ,C ,且△ABC 的面积为50c9,求椭圆E 的方程.(教材习题精选)1.(选修2-1 47页习题A 4)已知椭圆2255kx y +=的一个焦点坐标是(2,0),则k =2. (选修2-1 48页习题B 1)已知方程22(37)(34)512m x m y m +++=+表示的曲线是椭圆,则实数m 的取值范围 .3. (选修2-1 48页习题B 2)已知点(1,1)A ,而且1F 是椭圆22195x y +=的左焦点,P 是椭圆上任意一点,则1PF PA +的最大值是 ,最小值是 .4. (选修2-1 48页习题B 3)已知12,F F 是椭圆22194x y +=的两个焦点,点P 在椭圆上,如果12PF F 是直角三角形,则点P 的坐标 .5. (选修2-1 48页习题B 4)在Rt ABC 中,1AB AC ==,如果一个椭圆通过,A B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,那么这个椭圆的焦距 .高考题精选 1.(2018全国新课标Ⅱ文)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为( )A .B .CD2.(2018全国新课标Ⅱ理)已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A. B . C . D .3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.(AB 班做)1.(2018·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1211F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 23121314圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .152.(2018浙江)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.3.(2018·河南省南阳、信阳等六市模拟)椭圆C :x 24+y 23=1的上、下顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是________.4.(2018·广东惠州一调)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0)、F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.。

高考数学一轮复习--椭圆知识点与题型复习

高考数学一轮复习--椭圆知识点与题型复习

椭圆知识点与题型复习一、基础知识 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数2a (2a >|F 1F 2|)的动点P 的轨迹叫做椭圆,这两个定点F 1,F 2叫做椭圆的焦点. 2.椭圆的标准方程(1)中心在坐标原点,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).(2)中心在坐标原点,焦点在y 轴上的椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).3.椭圆的几何性质注:长轴与短轴的交点叫做椭圆的中心.离心率表示椭圆的扁平程度.当e 越接近于1时,c 越接近于a ,从而b =a 2-c 2越小,因此椭圆越扁.二、常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b 2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).三、考点解析考点一 椭圆的标准方程例、(1)已知椭圆的中心在原点,焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为( )A.x 26+y 24=1B.x 216+y 236=1C.x 236+y 216=1D.x 249+y 29=1 (2)已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________. 跟踪训练1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1B.x 29+y 28=1C.x 29+y 25=1D.x 216+y 212=1 2.椭圆C 的中心在原点,焦点在x 轴上,若椭圆C 的离心率等于12,且它的一个顶点恰好是抛物线x 2=83y 的焦点,则椭圆C 的标准方程为______________.3.已知椭圆中心在原点,且经过A (3,-2)和B (-23,1)两点,则椭圆的标准方程为________.考点二 椭圆的定义及其应用例、(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 24=1D.x 29+y 25=1 (2)已知点P (x ,y )在椭圆x 236+y 2100=1上,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的面积为18,则∠F 1PF 2的余弦值为________.变式练习1.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7 2.(变结论)若本例(2)条件不变,则△PF 1F 2的内切圆的面积为________. 考点三 椭圆的几何性质考法(一) 求椭圆离心率的值(或范围)例、(1)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C.3-12D.3-1 (2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.]23,0( B.]43,0( C )1,23[. D.)1,43[ [解题技法]求椭圆离心率的方法:(1)定义法:根据条件求出a ,c ,直接利用公式e =ca求解.(2)方程法:根据条件得到关于a ,b ,c 的齐次等式(不等式),结合b 2=a 2-c 2转化为关于a ,c 的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).考法(二) 与椭圆性质有关的最值问题例、已知点F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,点M 是该椭圆上的一个动点,那么|MF 1―→+MF 2―→|的最小值是( )A .4B .6C .8D .10[解题技法]椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形. (2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系. 跟踪训练1.P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠P AF =12,则椭圆的离心率e 为( ) A.23 B.22 C.33 D.122.已知P 在椭圆x 24+y 2=1上,A (0,4),则|P A |的最大值为( )A.2183 B.763C .5D .25 3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 的离心率的取值范围是( ) A.)1,32[ B.]22,31[ C.)1,31[ D.]31,0( 课后作业1.椭圆以x 轴和y 轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的标准方程为( ) A.x 24+y 2=1 B.y 216+x 24=1 C.x 24+y 2=1或y 216+x 24=1 D.x 24+y 2=1或y 24+x 2=1 2.已知方程x 2|m |-1+y 22-m=1表示焦点在y 轴上的椭圆,则m 的取值范围为( )A.⎪⎭⎫ ⎝⎛∞-23, B .(1,2 ) C .(-∞,0)∪(1,2) D .(-∞,-1)∪⎪⎭⎫ ⎝⎛23,1 3.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.124.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( ) A.32 B.332 C.94 D.1545.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( ) A .1 B.2 C .2 D .226.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.59C.49D.5137.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________.8.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆方程为________.9.已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B =________.10.点P 是椭圆上任意一点,F 1,F 2分别是椭圆的左、右焦点,∠F 1PF 2的最大值是60°,则椭圆的离心率e =________.11.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.12.已知焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,求PF ―→·P A ―→的最大值和最小值.提高练习1.P 为椭圆x 225+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,过P 点作PH ⊥F 1F 2于点H ,若PF 1⊥PF 2,则|PH |=( )A.254B.83 C .8 D.94 2.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.。

高三数学一轮复习 椭圆知识点总结

高三数学一轮复习 椭圆知识点总结

高三数学一轮复习椭圆部分知识点总结一、定义平面内到两定点1F 、2F 的距离之和等于常数2a (122a F F >)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距()122F F c =.(1)()222210x y a b a b+=>>中,a x a b y b -≤≤-≤≤.(2)()222210y x a b a b+=>>中,b x b a y a -≤≤-≤≤.2.对称性()222210x y a b a b +=>>和()222210y x a b a b+=>>都关于x 轴对称、y 轴对称、原点对称.其中原点也成为椭圆的对称中心.3.顶点椭圆()222210x y a b a b+=>>中,顶点为长轴的左右端点()1,0A a -、()2,0A a 和短轴的两个端点()10,B b -和()20,B b .其中12A A 叫做椭圆的长轴、12B B 叫做椭圆的短轴.椭圆的长轴长为2a ,短轴长为2b .4.离心率椭圆的离心率c e a=,01e <<.并且0e →时椭圆越圆,1e →时椭圆越扁.圆的离心率0e =.(3)椭圆焦点三角形中,利用椭圆定义和余弦定理求12PF PF ⋅,进而求焦点三角形的面积.六、.椭圆第二定义(课外知识补充)平面内到定点距离与定直线距离比值等于常数()01e e <<的点的轨迹为椭圆.其中定点为椭圆的一个焦点,定直线为椭圆的一条准线,常数e 为椭圆的离心率.由椭圆第二定义可推出以下结论:(1)椭圆上的点到焦点的距离的最大值为a c +,最小值为a c -(在长轴端点处取得).(2)椭圆上的点到原点距离的最大值为a ,最小值为b (在长轴与短轴端点处取得).(3)椭圆短轴的一个端点与长轴的两端点所成角,是椭圆上所有点与长轴两端点所成角中的最大角.(4)椭圆短轴的一个端点与椭圆两焦点所成角,是椭圆上所有点与两焦点所成角中的最大角.七、.直线与椭圆位置关系的常规解决方法联立直线与椭圆方程构成的方程组,消元化简,然后利用韦达定理解决相关问题.八、弦长公式.1212线有两焦点,否则此等式无意义.2.联立方程组法通过联立直线与椭圆(双曲线)的方程组得到一元二次方程后,利用韦达定理(即根与系数关系)求解。

文科椭圆的知识点总结

文科椭圆的知识点总结

文科椭圆的知识点总结一、定义椭圆是平面上一点到两个固定点的距离之和为常数的所有点的轨迹。

设点F1(x1,y1)和F2(x2,y2)是平面上给定的两点,离心率为e(0<e<1),则椭圆E是满足下面条件的点P(x,y)的轨迹:PF1+PF2=2a其中PF1和PF2分别表示点P到点F1和点F2的距离,a为常数,称为椭圆的半长轴。

在离心率e已知的情况下,椭圆的半短轴b可以表示为:b=a√(1-e^2)根据椭圆的定义,椭圆是两个焦点之间距离的轨迹,通常可以通过图形来直观地理解椭圆的定义。

二、性质1. 对称性:椭圆相对于长轴和短轴都具有对称性。

关于长轴、短轴、焦点、中心对称均为椭圆的性质。

2. 离心率:椭圆的离心率e定义为焦点之间的距离除以长轴的长度,即e=c/a。

离心率描述了椭圆的扁平程度,如果离心率接近于1,椭圆趋向于是一条直线;如果离心率接近于0,椭圆趋向于是一个圆。

3. 参数方程:椭圆也可以通过参数方程进行描述。

设椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中a为长轴的一半,b为短轴的一半。

θ为参数在0到2π之间变化。

4. 直径:椭圆有两个特殊的直径,即长轴和短轴。

长轴的两个端点称为椭圆的顶点,短轴的两个端点称为椭圆的辅顶点。

5. 焦点:椭圆上与长轴两端的两点叫做椭圆的焦点。

椭圆的焦点与长轴的关系可以通过数学公式x^2/a^2+y^2/b^2=1推导得出。

6. 相交角:椭圆上两条相交弦的夹角的两个端点在同侧。

设椭圆的两条相交弦的直线方程为ax+by+c=0,ax+by+d=0,其中a、b不同时为0,亦即两条线的斜率不相等。

两条直线分别和椭圆相交于四点,设在第一个方程上交于P1、P2,第二个方程上交于P3、P4。

那么P1P2P3P4是一个凸四边形,<P1P2P3=P,<P1P3P4=Q。

请问P和Q是多少。

7. 圆环面积公式:椭圆上两点P、Q,有两条相交弦OP、OQ,设切线OP´、OQ´。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c a b
2
一、基础梳理自测
2、椭圆的标准方程和简单几何性质
焦点在x轴上, 中心在原点的椭圆
范围: a x a,b y b
y
B2 P
A1
F1
o
B1
F2
A2
对称轴:坐标轴 对称性 : 对称中心:原点 顶点 : A 1 ( a ,0 ) , A 2 ( a ,0 ) , x B 1 ( 0 , b ) , B 2 ( 0 , b )
二、考点突破探究 考点二 求椭圆的标准方程
例3、已知椭圆以坐标轴为对称轴,且长轴是 短轴的3倍,并且过点P(3,0),求椭圆的标准 方程。
用待定系数法求椭圆方程的一般步骤
(1)作判断:根据条件判断椭圆的焦点在x轴上,还是 在y轴上,还是两个坐标轴都有可能.
x2 y2 (2)设方程:根据上述判断设方程 2 2 ( 1 a > b > 0) a b y2 x2 或 2 2 ( 1 a > b > 0). a b
变式训练
x2 y2 (2012年江西高考文)椭圆 2 2 ( 1 a > b > 0)的左、右 a b 顶点分别是A、B,左、右焦点分别是F1 ,F2 .若 AF1 , F1 F2 , F1 B 成等比数列,则此椭圆的离心率为
椭圆离心率的求法
求椭圆的离心率(或范围)时,一般是依据
题设得出一个关于a、b、c的等式(或不等式), 利用a2=b2+c2消去b,即可求得离心率或离心
定 义 图 形 |PF1|+|PF2|=2a (2a>2c>0)
方 程 焦 点 a,b,c之间 的关系 离心率
2 2 x2 y2 y x 2 1 a b 0 2 1 a b 0 2 2 a b a b
F(±c,0)
2 2
F(0,±c)
c e (0 e 1) a
(3)找关系:根据已知条件,建立关于a、b、c的方程
组. (4)得方程:解方程组,将解代入所设方程,即为所求.
二、考点突破探究 考点三 椭圆的简单几何性质(一)
例4、(2010广东高考文)若一个椭圆长轴的长度、 短轴的长度、和焦距成等差数列,则该椭圆的 离心率是(
4 A、 5

3 B、 5 2 C、 5 1 D、 5
率的范围.
小结:你今天有什么收获?
ห้องสมุดไป่ตู้长轴:| A1 A2 | 2 a
短轴: | B1 B 2 | 2 b
焦距 :| F1F2 | 2c
二、考点突破探究 考点一 椭圆定义的应用 x2 y2 例1、椭圆 1的两个焦点分别为F1、F2 .作过F2的 36 100 直线并与y轴垂直,交椭圆于A、B两点,则ABF1的
周长为
变式训练1 :过F2的直线不与y轴垂直,则ABF1的 周长为
变式训练2:点A在椭圆上且不与F1、F2共线,则AF1 F2 的周长为
2a 2c
二、考点突破探究 考点二 求椭圆的标准方程
x2 y2 例2、(2014大纲卷)已知椭圆C: 2 2 ( 1 a > b > 0)的 a b 3 左、右焦点为F1,F2,离心率为 ,过F2的直线l交C 3 于A、B两点.若AF1 B的周长为4 3,求C的方程。
椭圆(一)
一、基础梳理自测
1、椭圆的定义
在平面内到两个定点F1,F2的距离之和等于常数 (大于 | F1F2 |)的点的轨迹.
若 PF1 PF2 F1F2 ,则动点P的轨迹是线段F1F2; 若 PF1 PF2 F1F2 ,则动点P的轨迹不存在。
一、基础梳理自测
2、椭圆的标准方程和简单几何性质
相关文档
最新文档