2021届高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第4节幂函数与二次函数教学案含解析新人教A版
数学复习:第二章函数的概念、基本初等函数(Ⅰ)及函数的应用.函数模型及其应用
2.8 函数模型及其应用1.函数的实际应用(1)基本函数模型:函数模型函数解析式一次函数模型二次函数模型指数型函数模型f(x)=ba x+c(a,b,c 为常数,a>0且a≠1,b≠0)对数型函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂型函数模型f(x)=ax n+b(a,b为常数,a≠0)比较函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的单调性单调____函数单调____函数单调____函数增长速度越来越____越来越____相对平稳图象的变化随x值增大,图象与____轴接近平随x值增大,图象与____随n值变化而不同行轴接近平行2。
函数建模(1)函数模型应用的两个方面:①利用已知函数模型解决问题;②建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.(2)应用函数模型解决问题的基本过程:、、、.自查自纠1.(1)f(x)=ax+b(a,b为常数,a≠0)f(x)=ax2+bx+c(a,b,c为常数,a≠0)(2)增增增快慢y x2.审题建模解模还原手机的价格不断降低,若每隔半年其价格降低错误!,则现在价格为2 560元的手机,两年后价格可降为()A.900元B.810元C.1 440元D.160元解:半年降价一次,则两年后降价四次,其价格降为2 560×错误!错误!=810元.故选B.(错误!)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1。
3≈0。
11,lg2≈0.30)()A.2018年B.2019年C.2020年D.2021年解:设x年后该公司全年投入的研发资金为200万元,由题可知,130(1+12%)x=200,解得x=log1。
高考第一轮复习——一次函数、二次函数、基本初等函数(理科-)
一、学习目标:1. 了解基本初等函数(一次函数、二次函数、指数函数、对数函数、幂函数)的实际背景。
了解实数指数幂的意义及对数的作用、了解指数函数与对数函数互为反函数的性质。
2. 理解指数、对数的概念及其运算性质,理解指数函数、对数函数,一次函数、二次函数、幂函数的图象与性质。
3. 掌握幂的运算、对数运算及指数函数、对数函数、一次函数、二次函数性质的应用二、重点、难点:重点:(1)指数幂、对数的运算(2)对一次函数、二次函数、指数函数、对数函数的图象与性质的理解。
难点:一次函数、二次函数、指数函数、对数函数的图象与性质的应用三、考点分析:函数这部分内容是高考中的重点与难点,基本的初等函数是高考函数基础知识考查的重点,因此第一轮的复习重点是把握基本函数的基础知识及其简单的应用,这部分知识点是高考命题的“黄金”知识点,命题的题型有选择题、填空题、中等类型的大题等。
注:(1)二次函数的解析式的确定方法有三种形式①一般式:若已知二次函数经过A ,B ,C 三点,可设解析式为c bx ax x f ++=2)(,把三点坐标代入求出a ,b ,c 的值。
②零点式:若已知二次函数图象与x 轴有两个交点)0,(),0,(21x B x A ,可设解析式为:))(()(21x x x x a x f --=,再根据其余的条件确定a 的值。
③顶点式:若已知二次函数的顶点坐标(h ,k ),则可设函数解析式为:k h x a x f +-=2)()(的形式,再根据另外的条件确定a 的值。
(2)二次函数的最值的确定(i )若R x ∈,a >0,当abx 2-=时,函数取得最小值a b ac x f 44)(2min -=;若R x ∈,a<0,当abx 2-=时,函数取得最大值a b ac x f 44)(2max -=。
(ii )当)(],,[n m n m x <∈(或其他区间),讨论对称轴与区间[m ,n ]的三种位置关系。
4 第4讲 二次函数与幂函数
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
18
2.当 0<x<1 时,f(x)=x1.1,g(x)=x0.9,h(x)=x-2 的大小关系是________. 解析:如图所示为函数 f(x),g(x),h(x)在(0,1)上的图象,由此可知 h(x)>g(x)>f(x).
答案:h(x)>g(x)>f(x)
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
15
(2)易知函数 y=x12的定义域为[0,+∞),在定义域内为增函数,所以a3+ -12≥ a≥0, 0, 解得 a+1<3-2a,
-1≤a<23. 【答案】 (1)C (2)-1,23
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
16
幂函数的性质与图象特征的关系 (1)幂函数的形式是 y=xα(α∈R),其中只有一个参数 α,因此只需一个条件即可确定其解 析式. (2)判断幂函数 y=xα(α∈R)的奇偶性时,当 α 是分数时,一般将其先化为根式,再判断. (3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0,+∞)上单调递减,则 α<0.
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
17
1.已知幂函数 f(x)=xm2-2m-3(m∈Z)的图象关于 y 轴对称,并且 f(x)在第一象限是单调递 减函数,则 m=________. 解析:因为幂函数 f(x)=x m2-2m-3 (m∈Z)的图象关于 y 轴对称, 所以函数 f(x)是偶函数,所以 m2-2m-3 为偶数,所以 m2-2m 为奇数,又 m2-2m<0, 故 m=1. 答案:1
高考数学一轮复习第2章函数的概念及基本初等函数Ⅰ第4节二次函数与幂函数课件理新人教A版
第四节 二次函数与幂函数
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.了解幂函数的概念.
2.结合函数 y=x,y=x2,y
幂函数一般不单独命题,常与指数、对数
=x3,y=1x,y=x12的图象,函数交汇命题;二次函数的图象与应用仍是 1.逻辑推理
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
图象
定义域 值域
(-∞,+∞) 4ac4-a b2,+∞
f(x)=ax2+bx+c(a<0)
(-∞,+∞) -∞,4ac4-a b2
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
单调性
在-∞,-2ba上单调递减; 在 6 ___-__∞__,__-__2b_a__上单调递增; 在 5 ___-__2b_a_,__+__∞___上单调递 在-2ba,+∞上单调递减 增
考点二 二次函数的图象与性质 |题组突破|
4.如图是二次函数 y=ax2+bx+c 图象的一部分,图象过点 A(-3,0),对称轴为 x =-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的 是( )
A.②④ B.①④ C.②③ D.①③
解析:选 B 因为图象与 x 轴交于两点,所以 b2-4ac>0,即 b2>4ac,①正确;对称 轴为 x=-1,即-2ba=-1,2a-b=0,②错误;结合图象知,当 x=-1 时,y>0,即 a -b+c>0,③错误;由对称轴为 x=-1 知,b=2a.又函数图象开口向下,所以 a<0,所 以 5a<2a,即 5a<b,④正确.故选 B.
:第二章 函数的概念及基本初等函数(Ⅰ) (6)
第二章函数的概念及基本初等函数(Ⅰ)第四节二次函数与幂函数A级·基础过关|固根基|1.幂函数y=f(x)经过点(3,3),则f(x)是()A.偶函数,且在(0,+∞)上是增函数B.偶函数,且在(0,+∞)上是减函数C.奇函数,且在(0,+∞)上是减函数D.非奇非偶函数,且在(0,+∞)上是增函数解析:选D设幂函数的解析式为y=xα,将(3,3)代入解析式得3α=3,解得α=12,∴y=x12,其是非奇非偶函数,且在(0,+∞)上是增函数.故选D.2.(2019届成都模拟)已知幂函数f(x)=xα,当x>1时,恒有f(x)<x,则α的取值范围是()A.(0,1) B.(-∞,1)C.(0,+∞) D.(-∞,0)解析:选B当x>1时,恒有f(x)<x,即当x>1时,函数f(x)=xα的图象在y =x的图象的下方,作出幂函数f(x)=xα在第一象限的图象,由图象可知(图略)α<1时满足题意.故选B.3.(2019届陕西西安联考)已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是()A.(-∞,-1) B.(-1,2]C.[-1,2] D.[2,5]解析:选C∵f(x)=-x2+4x=-(x-2)2+4,∴当x=2时,f(2)=4,由f(x)=-x2+4x=-5,解得x=5或x=-1,∴要使函数在[m,5]的值域是[-5,4],则-1≤m ≤2,故选C .4.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{x |-2<x <2}B .{x |x >2或x <-2}C .{x |0<x <4}D .{x |x >4或x <0}解析:选D 因为函数f (x )=ax 2+(b -2a )x -2b 为偶函数,所以b -2a =0,故f (x )=ax 2-4a =a (x -2)(x +2).因为f (x )在(0,+∞)上单调递增,所以a >0.根据二次函数的性质可知,不等式f (2-x )>0的解集为{x |2-x >2或2-x <-2}={x |x <0或x >4},故选D .5.(2019届河南南阳模拟)设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A .(-∞,0]B .⎣⎢⎡⎭⎪⎫0,57C .(-∞,0)∪⎝ ⎛⎭⎪⎫0,57D .⎝ ⎛⎭⎪⎫-∞,57解析:选D 由题意知,f (x )<-m +4对于x ∈[1,3]恒成立,即m (x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式m (x 2-x +1)<5等价于m <5x 2-x +1.∵当x =3时,5x 2-x +1取最小值57,∴若要不等式m <5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m <57,因此,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,57,故选D . 6.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B .13C .7D .5解析:选B 由题意得,函数f (x )=2x 2-mx +3图象的对称轴为x =m 4=-2,所以m =-8,即f (x )=2x 2+8x +3,所以f (1)=2+8+3=13.故选B .7.(2019届宁夏银川一中模拟)已知点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,设a =f ⎝ ⎛⎭⎪⎫33,b =f (ln π),c =f ⎝ ⎛⎭⎪⎫22,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .b <a <c解析:选A ∵点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,∴⎩⎪⎨⎪⎧m -1=1,(m -1)m n =8,解得⎩⎪⎨⎪⎧m =2,n =3,∴f (x )=x 3,且f (x )在(-∞,+∞)上单调递增.又33<22<1<ln π,∴a <c <b ,故选A .8.已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________.解析:由题意得,m 2-m =3+m ,即m 2-2m -3=0, ∴m =3或m =-1.当m =3时,f (x )=x -1,区间[-3-m ,m 2-m ]为[-6,6],f (x )在x =0处无意义,故舍去;当m =-1时,f (x )=x 3,[-3-m ,m 2-m ]为[-2,2],满足题意,∴f (m )=f (-1)=(-1)3=-1.答案:-19.已知二次函数y =x 2+2kx +3-2k ,则顶点位置最高时函数的解析式为____________.解析:由题意,可知y =x 2+2kx +3-2k =(x +k )2-k 2-2k +3,所以该函数的顶点坐标为(-k ,-k 2-2k +3).设顶点的纵坐标为y =-k 2-2k +3=-(k +1)2+4,所以当k =-1时,顶点位置最高,此时函数的解析式为y =x 2-2x +5.答案:y =x 2-2x +510.(2019届福建养正中学模拟)已知函数f (x )=2x ,g (x )=x 2+2ax (-3≤x ≤3). (1)若g (x )在[-3,3]上是单调函数,求a 的取值范围; (2)当a =-1时,求函数y =f [g (x )]的值域. 解:(1)g (x )=(x +a )2-a 2的图象的对称轴为x =-a , ∵g (x )在[-3,3]上是单调函数,∴-a ≥3或-a ≤-3,即a ≤-3或a ≥3, 故a 的取值范围为(-∞,-3]∪[3,+∞).(2)当a =-1时,f [g (x )]=2x 2-2x (-3≤x ≤3),令u =x 2-2x ,y =2u ,∵x ∈[-3,3],∴u =x 2-2x =(x -1)2-1∈[-1,15], 而y =2u 是增函数,∴12≤y ≤215, ∴函数y =f [g (x )]的值域是⎣⎢⎡⎦⎥⎤12,215.11.已知函数f (x )=bx 2-2ax +a (a ,b ∈R )的图象过点⎝ ⎛⎭⎪⎫12,14.(1)当a =2时,求函数f (x )在[0,3]上的最大值和最小值;(2)若a <0,求使函数f (x )的定义域为[-1,1],值域为[-2,2]的a 的值. 解:(1)∵函数f (x )=bx 2-2ax +a (a ,b ∈R )的图象过点⎝ ⎛⎭⎪⎫12,14,∴14=b ×⎝ ⎛⎭⎪⎫122-2a ×12+a ,解得b =1.∴当a =2时,f (x )=x 2-4x +2,其图象关于x =2对称, ∴f (x )在[0,2]上单调递减,在[2,3]上单调递增, ∴f (x )在[0,3]上的最小值为f (2)=-2. 又f (0)=2,f (3)=-1,∴f (x )在[0,3]上的最大值为f (0)=2.(2)由(1)知,f (x )=x 2-2ax +a =(x -a )2-a 2+a ,当-1≤a <0时,有⎩⎨⎧f (1)=2,f (a )=-2,即⎩⎨⎧f (1)=1-a =2,f (a )=a -a 2=-2,解得a =-1; 当a <-1时,有⎩⎨⎧f (-1)=-2,f (1)=2,即⎩⎨⎧1+2a +a =-2,1-2a +a =2,解得a =-1(舍去). 综上所述a =-1.B 级·素养提升 |练能力|12.(2019届湖南五市十校联考)已知函数f (x )=⎩⎨⎧3,x <0,x 2-2ax +2a ,x ≥0的图象上恰好有两对关于原点对称的点,则实数a 的取值范围是( )A .(1,3)B .⎝ ⎛⎭⎪⎫32,+∞C .(-1,3)D .(3,+∞)解析:选D 依题意,当x >0时,f (x )的图象与直线y =-3有两个交点,所以⎩⎪⎨⎪⎧--2a 2>0,f (a )<-3,解得a >3.故选D .13.(2019届合肥质检)函数f (x )=-x 2+3x +a ,g (x )=2x -x 2,若f [g (x )]≥0对x ∈[0,1]恒成立,则实数a 的取值范围是( )A .[-e ,+∞)B .[-ln 2,+∞)C .[-2,+∞)D .⎝ ⎛⎦⎥⎤-12,0解析:选C 如图所示,在同一坐标系中画出y =x 2+1,y =2x,y =x 2+32的图象,由图象可知,在[0,1]上,x 2+1≤2x <x 2+32恒成立,即1≤2x -x 2<32,当且仅当x =0或x =1时等号成立,∴1≤g (x )<32,∴f [g (x )]≥0⇒f (1)≥0⇒-1+3+a ≥0⇒a ≥-2,即实数a 的取值范围是[-2,+∞),故选C .14.(2019届菏泽联考)已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.解析:∵当x ∈[-1,1]时,|f (x )|≤1恒成立. ∴⎩⎪⎨⎪⎧|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1;|f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知,要满足题意,则图象的对称轴为x =0,∴2-m =0,m =2,∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.答案:-1915.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x (x >0)图象上一动点,若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析:设P ⎝ ⎛⎭⎪⎫x ,1x ,x >0,则|P A |2=(x -a )2+⎝ ⎛⎭⎪⎫1x -a 2=x 2+1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2=⎝ ⎛⎭⎪⎫x +1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2-2.令t =x +1x ,则由x >0,得t ≥2.所以|P A |2=t 2-2at +2a 2-2=(t -a )2+a 2-2, 由|P A |取得最小值,得⎩⎪⎨⎪⎧a ≤2,22-4a +2a 2-2=(22)2或⎩⎪⎨⎪⎧a >2,a 2-2=(22)2,解得a =-1或a =10. 答案:-1,10。
第2章 函数概念与基本初等函数Ⅰ 第4节 幂函数与二次函数
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理 1.幂函数
(1)幂函数的定义 一般地,形如___y_=__x_α___的函数称为幂函数,其中x是自变量,α为常数. (2)常见的五种幂函数的图象
索引
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
索引
感悟提升
求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二 次函数解析式的形式,一般选择规律如下:
索引
训练1 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值 为f(-1)=0,则f(x)=______x_2+___2_x_+__1. 解析 设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a, 由已知f(x)=ax2+bx+1, 所以a=1,b=2a=2,故f(x)=x2+2x+1.
D.f(m+1)<0
索引
角度2 二次函数的单调性与最值
例3 (1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取
值范围是( D )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
解析 当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意. 当 a≠0 时,f(x)的对称轴为直线 x=3- 2aa,
第二章 函数概念与基本初等函数Ⅰ
索引
考试要求
1.了解幂函数的概念;结合函数 y=x,y=x2,y=x3,y=x12,y=1x的图象, 了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、 不等式之间的关系解决简单问题.
高考数学1第二章基本初等函数考点汇总
高考数学1第二章基本初等函数考点汇总一、指数函数(一)指数与指数幂的运算1.根式的概念:一样地,假如,那么叫做的次方根(n th root),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.现在,的次方根用符号表示.式子叫做根式(radical),那个地点叫做根指数(radical exponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.现在,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根能够合并成±( >0).由此可得:负数没有偶次方根;0的任何次方根差不多上0,记作。
注意:当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样能够推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一样地,函数叫做指数函数(exponential functio n),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范畴,底数不能是负数、零和1.2、指数函数的图象和性质a>1 0图象特点函数性质向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数二、对数函数(一)对数1.对数的概念:一样地,假如,那么数叫做以为底的对数,记作:( —底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数.对数式与指数式的互化(二)对数的运算性质假如,且,,,那么:○1 ? + ;○2 - ;○3 .注意:换底公式( ,且; ,且; ).利用换底公式推导下面的结论(1) ;(2) .(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,差不多上形式定义,注意辨别。
全国近年高考数学一轮复习第2章函数、导数及其应用第4讲幂函数与二次函数学案(2021年整理)
(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第4讲幂函数与二次函数学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第2章函数、导数及其应用第4讲幂函数与二次函数学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第2章函数、导数及其应用第4讲幂函数与二次函数学案的全部内容。
第4讲幂函数与二次函数板块一知识梳理·自主学习[必备知识]考点幂函数的图象和性质1.五种幂函数图象的比较2.幂函数的性质比较[必会结论]1.一元二次不等式恒成立的条件(1)ax2+bx+c>0(a≠0)恒成立的充要条件是错误!(2)ax2+bx+c<0(a≠0)恒成立的充要条件是错误!2.二次函数表达式的三种形式(1)一般式:y=ax2+bx+c(a≠0).(2)顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).(3)两根式:y=a(x-x1)(x-x2)(其中a≠0,x1,x2是二次函数的图象与x轴的两个交点的横坐标).[考点自测]1.判断下列结论的正误.(正确的打“√",错误的打“×”)(1)幂函数的图象都经过点(1,1)和(0,0).( )(2)二次函数y=ax2+bx+c(x∈R),不可能是偶函数.()(3)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!.( )(4)当α<0时,幂函数y=xα是定义域上的减函数.( )答案(1)×(2)×(3)×(4)×2.[2018·济南诊断]已知幂函数f(x)=kxα的图象过点错误!,则k+α=( )A.错误!B.1C。
高考数学一轮复习第二章函数概念与基本初等函数第4课时二次函数与幂函数教案(1)
二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x )=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0)。
③零点式:f(x)=a(x-x1)(x-x2)(a≠0)。
(2)二次函数的图像和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图像定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在x∈错误!上单调递减;在x∈错误!上单调递增在x∈错误!上单调递增;在x∈错误!上单调递减对称性函数的图像关于x=-错误!对称2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α〈0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减。
【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
(×)(2)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( ×)(3)在y=ax2+bx+c(a≠0)中,a决定了图像的开口方向和在同一直角坐标系中的开口大小.(√)(4)函数y=2x 12是幂函数。
( ×)(5)如果幂函数的图像与坐标轴相交,则交点一定是原点。
( √)(6)当n〈0时,幂函数y=x n是定义域上的减函数。
(×)1.已知a,b,c∈R,函数f(x)=ax2+bx+c。
若f(0)=f(4)〉f(1),则()A.a>0,4a+b=0B.a〈0,4a+b=0C.a>0,2a+b=0 D。
a〈0,2a+b=0答案A解析因为f(0)=f(4)〉f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-错误!=2,所以4a+b=0,故选A.2.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.错误!B.错误!C。
2025版高考数学一轮总复习知识梳理第2章函数概念与基本初等函数Ⅰ第4讲幂函数与二次函数
第四讲 幂函数与二次函数知 识 梳 理学问点一 幂函数 函数y =x y =x 2 y =x 3y =x 12y =x -1图象定义域 R R R [0,+∞)(-∞,0)∪ _(0,+∞)__ 值域 R [0,+∞)R [0,+∞) (-∞,0)∪ _(0,+∞)__奇偶性奇 函数偶 函数 奇 函数非奇非偶 函数奇 函数单调性在R 上单 调递增在 (-∞,0)上单调递减, 在 (0,+∞) 上单调递增在R 上 单调递增在 [0,+∞) 上单调递增在 (-∞,0) 和 (0,+∞) 上单调递减公共点(1,1)学问点二 二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0) f (x )=ax 2+bx +c (a <0)图象定义域 R R值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝ ⎛⎦⎥⎤-∞,4ac -b 24a单调性在 ⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在 ⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增,在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减1.二次函数解析式的三种形式: (1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0); (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.一元二次不等式恒成立的条件:(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”.双 基 自 测题组一 走出误区1.推断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =12x 12是幂函数.( × ) (2)y =x 0的图象是一条直线.( × )(3)幂函数y =x -1是定义域上的减函数.( × ) (4)幂函数的图象不行能出现在第四象限.( √ ) (5)若幂函数y =x α是偶函数,则α为偶数.( × )(6)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值确定是4ac -b24a .( × ) 题组二 走进教材2.(必修1P 91练习T1改编)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为 y =x -12 ,在区间 (0,+∞) 上单调递减.[解析] ∵f (x )的图象过点⎝ ⎛⎭⎪⎫2,22, ∴2α=22=2-12,∴α=-12,∴f (x )=x -12.由f (x )的图象可知,f (x )的减区间是(0,+∞).3.(必修1P 100T5改编)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )单调递减,则m 的值为( A )A .-1B .1C .2或-1D .2[解析] 利用幂函数的定义及性质列式计算并推断.∵f (x )=(m 2-m -1)xm 2+m -3是幂函数,∴m 2-m -1=1,即(m -2)(m +1)=0,解得m =2,或m =-1,又当x ∈(0,+∞)时,f (x )单调递减,∴m 2+m -3<0,当m =2时,m 2+m -3=3>0,不合题意,舍去;当m =-1,m 2+m -3=-3<0,符合题意,故m =-1.故选A.4.(必修1P 53T2改编)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,确定下列各式的正负:b > 0,ac < 0,a -b +c < 0.[解析] ∵a <0,-b2a >0,∴b >0.∵ca =x 1x 2<0,∴ac <0,a -b +c =f (-1)<0.5.(必修1P 58T6改编)已知f (x )=x 2-2 025x ,若f (m )=f (n ),m ≠n ,则f (m +n )等于( C ) A .2 025 B .-2 025 C .0D .10 025[解析] 先求出函数的对称轴方程,利用二次函数的对称性求解即可.函数f (x )=x 2-2 025x 的对称轴为直线x =2 0252,∵f (m )=f (n ),∴m ,n 关于函数f (x )=x 2-2 025x 图象的对称轴对称,∴m +n =2 025,∴f (m +n )=f (2 025)=0.故选C.题组三 走向高考6.(2013·浙江文,7,5分)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( A )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0[解析] 由f (0)=f (4),得f (x )=ax 2+bx +c 的图象的对称轴为直线x =-b2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,∴a >0,故选A. 7.(2024·上海)下列幂函数中,定义域为R 的是( C ) A .y =x -1B .y =x -12C .y =x 13 D .y =x 12[解析] 选项A 中函数的定义域为(-∞,0)∪(0,+∞),选项B 中函数的定义域为(0,+∞),选项C 中函数的定义域为R ,选项D 中函数的定义域为[0,+∞),故选C.8.(2024·上海,7)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= -1 .[解析] ∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3, 又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.。
高三数学复习专题-函数与基本初等函数-第2章第4节-课件
走向高考 ·高考总复习 ·北师大版 ·数学
1.( 文 ) 若 f(x) = x2 - ax + 1 有 负 值 , 则 实 数 a 的 取 值 范 围 是
()
A.a>2或a<-2
B.-2<a<2
C.a≠±2 D.1<a<3
[答案] A [解析] f(x)有负值,则必须满足f(x)的图像与x轴有两个不 同的交点,其充要条件是:Δ=(-a)2-4>0,
4.幂函数概念 形 如 _y_=__xα_(_α_∈__R_)___ 的 函 数 称 为 幂 函 数 , 其 中 x 是 _自__变__量___,α为___常__数_.
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
5.幂函数的图像与性质 (以 y=x,y=x2,y=x3,y=1x,y=x12 为例).
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
已知二次函数f(x)的图像过A(-1,0),B(3,0),C(1,-8). (1)求f(x)的解析式; (2)求f(x)在x∈[0,3]上的最值; (3)求不等式f(x)≥0的解集.
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
[解析] a=(-1.2)3 =(1.2)3 >(1.1)3 >(0.9)2 ,
即 c<b<A.
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
课堂典例讲练
第二章 函数与基本初等函数
走向高考 ·高考总复习 ·北师大版 ·数学
求二次函数的解析式
已知二次函数f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为15; (3)f(x)=0的两根立方和等于17. 求f(x)的解析式. [思路分析] 从所给条件 f(1+x)=f(1-x)知,f(x)的图像关 于直线 x=1 对称,又 f(x)的最大值为 15,可设 f(x)=a(x-1)2 +15,其中 a<0,问题转化为利用条件(3):方程 f(x)=0 的两根
北师版高考总复习一轮理科数精品课 第2章 函数的概念与性质 第4节 幂函数与二次函数
1
a= ,所以
9
1
f(x)= (x+2)2-1,即
9
1 2 4 5
f(x)= x + x- .
9
9 9
考点三
二次函数的图像与性质(多考向探究)
考向1.二次函数的图像
典例突破
例3.如图是二次函数y=ax2+bx+c(a≠0)图像的一部分,
图像过点A(-3,0),对称轴为直线x=-1.给出下面四个结论:
选项符合题意,故选C.
考向2.二次函数的单调性与最值
典例突破
例4.(2021新疆乌鲁木齐模拟)若定义在R上的二次函数f(x)的值域为[-4,
+∞),且满足f(1+x)=f(1-x),f(2)=-3.
(1)求函数f(x)的解析式;
(2)求f(x)在[t,t+1]上的最小值g(t).
解:(1)由于f(1+x)=f(1-x),则二次函数f(x)的图像关于直线x=1对称,因为二次
衍生考点
核心素养
1.幂函数的图像与性质
2.二次函数的解析式
3.二次函数的图像
4.二次函数的性质
5.三个“二次”之间的关
系
1.数学抽象
2.直观想象
3.数学运算
4.逻辑推理
强基础 增分策略
1.幂函数
(1)幂函数的定义
一般地,函数 y=xα
叫作幂函数,其中x是自变量,α是常数.
微点拨幂函数的特点:①自变量x处在幂底数的位置,幂指数α为常数;②xα图像上的一些特殊
点,如函数图像与y轴的交点,与x轴的交点等.
从这三方面入手,能准确地判断出二次函数的图像,反之,也能从图像中得
数学一轮复习第二章函数导数及其应用第四节二次函数与幂函数学案含解析
第四节二次函数与幂函数最新考纲考情分析1。
了解幂函数的概念.2.结合函数y=x,y=x2,y=x3,y=1x,y=的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题。
1。
幂函数一般不单独命题,而常与指数函数,对数函数交汇命题,题型一般为选择题、填空题,主要考查幂函数的图象和性质.2.对二次函数相关性质的考查是命题热点,大多以选择题、填空题出现.3.试题难度以中、低档题为主,个别试题难度较大.知识点一二次函数的图象和性质1。
二次函数解析式的三种形式:(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).2.一元二次不等式恒成立的条件:(1)ax2+bx+c〉0(a≠0)恒成立的充要条件是“a〉0且Δ〈0”;(2)ax2+bx+c〈0(a≠0)恒成立的充要条件是“a<0且Δ<0”.知识点二幂函数1.定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.2.常见的五种幂函数的图象和性质比较1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)函数y=是幂函数.(×)(2)当n>0时,幂函数y=x n在(0,+∞)上是增函数.(√)(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.(×)(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是错误!.(×)解析:(1)由于幂函数的解析式为f(x)=xα,故y=不是幂函数,(1)错.(3)由于当b=0时,y=ax2+bx+c=ax2+c为偶函数,故(3)错.(4)对称轴x=-错误!,当-错误!小于a或大于b时,最值不是4ac-b24a,故(4)错.2.小题热身(1)已知幂函数f(x)=k·xα的图象过点错误!,则k+α=(C)A。
2021版新高考数学一轮复习讲义:第二章第二讲 函数的定义域、值域 (含解析)
第二讲 函数的定义域、值域ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理·双基自测知识梳理知识点一 函数的定义域 函数y =f (x )的定义域1.求定义域的步骤:(1)写出使函数式有意义的不等式(组); (2)解不等式(组);(3)写出函数定义域.(注意用区间或集合的形式写出) 2.求函数定义域的主要依据 (1)整式函数的定义域为R . (2)分式函数中分母不等于0.(3)偶次根式函数被开方式大于或等于0. (4)一次函数、二次函数的定义域均为R . (5)函数f (x )=x 0的定义域为{x |x ≠0}. (6)指数函数的定义域为R . (7)对数函数的定义域为(0,+∞). 知识点二 函数的值域 基本初等函数的值域: 1.y =kx +b (k ≠0)的值域是R . 2.y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a};当a <0时,值域为{y |y ≤4ac -b 24a}.3.y =kx(k ≠0)的值域是{y |y ≠0}.4.y =a x (a >0且a ≠1)的值域是(0,+∞).5.y =log a x (a >0且a ≠1)的值域是R .重要结论1.定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集. 3.函数f (x )与f (x +a )(a 为常数a ≠0)的值域相同.双基自测题组一 走出误区1.(多选题)下列结论正确的是( CD )A .若两个函数的定义域与值域相同,则这两个函数相等B .函数y =xx -1定义域为x >1 C .函数y =f (x )定义域为[-1,2],则y =f (x )+f (-x )定义域为[-1,1] D .函数y =log 2(x 2+x +a )的值域为R ,则a 的取值范围为(-∞,14]题组二 走进教材2.(必修1P 17例1改编)函数f (x )=2x -1+1x -2的定义域为( C ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)[解析] 使函数有意义满足⎩⎪⎨⎪⎧2x -1≥0x -2≠0,解得x ≥0且x ≠2,故选C .3.(必修1P 32T5改编)函数f (x )的图象如图,则其最大值、最小值分别为( B )A .f (32),f (-32)B .f (0),f (32)C .f (-32),f (0)D .f (0),f (3)4.(必修1P 39BT1改编)已知函数f (x )=x +9x ,x ∈[2,4]的值域为[6,132].[解析] 当x =3时取得最小值6,当x =2取得最大值132,值域为[6,132]. 题组三 考题再现5.(2018·江苏,5分)函数f (x )=log 2x -1的定义域为[2,+∞).[解析] 要使函数f (x )有意义,则log 2x -1≥0,即x ≥2.则函数f (x )的定义域是[2,+∞). 6.(2016·北京,5分)函数f (x )=xx -1(x ≥2)的最大值为2. [解析] 解法一:(分离常数法)f (x )=x x -1=x -1+1x -1=1+1x -1,∴x ≥2,∴x -1≥1,0<1x -1≤1,∴1+1x -1∈(1,2],故当x =2时,函数f (x )=xx -1取得最大值2.解法二:(反解法)令y =x x -1,∴xy -y =x ,∴x =y y -1.∵x ≥2,∴y y -1≥2,∴y y -1-2=2-y y -1≥0,解得1<y ≤2,故函数f (x )的最大值为2.解法三:(导数法)∵f (x )=xx -1,∴f ′(x )=x -1-x (x -1)2=-1(x -1)2<0,∴函数f (x )在[2,+∞)上单调递减,故当x =2时,函数f (x )=xx -1取得最大值2.KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 求函数的定义域——多维探究角度1 求具体函数的定义域例1 (1)(2015·湖北,5分)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( C )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6](2)(2020·衡中调研卷)函数y =1log 0.5(x -2)+(2x -5)0的定义域为(2,52)∪(52,3).[解析] (1)依题意知,⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3.即函数的定义域为(2,3)∪(3,4]. (2)使函数有意义满足⎩⎪⎨⎪⎧log 0.5(x -2)>02x -5≠0,解得2<x <3且x ≠52,定义域为(2,52)∪(52,3).角度2 求抽象函数的定义域例2 已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( B ) A .(-1,1) B .(-1,-12)C .(-1,0)D .(12,1)[分析] 求抽象函数定义域的关键,f 后面括号内部分取值范围相同.[解析] 由函数f (x )的定义域为(-1,0),则使函数f (2x +1)有意义,需满足-1<2x +1<0,解得-1<x <-12,即所求函数的定义域为(-1,-12).[引申1]若将本例中f (x )与f (2x +1)互换,结果如何?[解析] f (2x +1)的定义域为(-1,0),即-1<x <0,∴-1<2x +1<1,∴f (x )的定义域为(-1,1). [引申2]若将本例中f (x )改为f (2x -1)定义域改为[0,1],求y =f (2x +1)的定义域,又该怎么办?[解析] ∵y =f (2x -1)定义域为[0,1].∴-1≤2x -1≤1,要使y =f (2x +1)有意义应满足-1≤2x +1≤1,解得-1≤x ≤0, 因此y =f (2x +1)定义域为[-1,0].名师点拨 ☞函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 〔变式训练1〕(1)(角度1)(2020·安徽宣城八校联考)函数y =-x 2+2x +3lg (x +1)的定义域为( B )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3](2)(角度1)(2020·安徽芜湖检测)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( D )A .-2B .-1C .1D .2(3)(角度2)(2020·广东华南师大附中月考)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( B )A .[0,1]B .(0,1)C .[0,1)D .(0,1][解析] (1)由已知得⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得x ∈(-1,0)∪(0,3].故选B .(2)因为-2x +a >0,所以x <a 2,所以a2=1,得a =2.故选D .(3)由题意,函数f (x )的定义域为[-1,1],即-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1.又g (x )满足1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .考点二 求函数的值域——师生共研例3 求下列函数的值域. (1)y =1-|x |1+|x |;(2)y =-2x 2+x +3; (3)y =x 2+x +1x ;(4)y =x -1-2x ; (5)y =x +1-x 2;。
高考数学大一轮复习 第二章 函数概念与基本初等函数 4 第4讲 二次函数与幂函数课件 理
12/11/2021
第四页,共四十九页。
2.二次函数
(1)二次函数解析式的三种形式 ①一般式:f(x)=_____ax_2_+__bx_+__c_(a_≠__0_)_____. ②顶点式:f(x)=_____a_(x_-__m_)_2+__n_(a_≠__0_)____. ③零点式:f(x)=____a_(x_-__x_1)_(x_-__x_2)_(a_≠__0_)___.
12/11/2021
第二十三页,共四十九页。
法二:(利用顶点式) 设 f(x)=a(x-m)2+n(a≠0). 因为 f(2)=f(-1), 所以抛物线的对称轴为 x=2+(2-1)=12. 所以 m=12.又根据题意函数有最大值 8,所以 n=8, 所以 f(x)=ax-122+8. 因为 f(2)=-1,所以 a2-122+8=-1, 解得 a=-4,所以 f(x)=-4x-122+8=-4x2+4x+7.
调递减,则 a 的取值范围是( )
A.a≥3
B.a≤3
C.a<-3
D.a≤-3
解析:选 D.函数 f(x)=x2+4ax 的图象是开口向上的抛物线,其 对称轴是 x=-2a,由函数在区间(-∞,6)内单调递减可知, 区间(-∞,6)应在直线 x=-2a 的左侧, 所以-2a≥6,解得 a≤-3,故选 D.
4a .( )
12/11/2021
第十页,共四十九页。
(5)二次函数 y=ax2+bx+c,x∈R 不可能是偶函数.( ) (6)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同 一直角坐标系中的开口大小.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√
调 在____-__2_ba_,__+__∞_____上单 性
数学(理)一轮复习 第二章 基本初等函数、导数及其应用 第讲 二次函数与幂函数
第4讲二次函数与幂函数1.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x错误!,y=x-1.(2)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α〈0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a〉f(x)=ax2+bx+0)c(a<0)图象定义域(-∞,+∞)(-∞,+∞)值域错误!错误!单调性在错误!上单调递减;在错误!上单调递增在错误!上单调递增;在错误!上单调递减对称性函数的图象关于x=-错误!对称1.辨明两个易误点(1)对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.会用两种数学思想(1)数形结合是讨论二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(2)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.1.错误!幂函数y=f(x)经过点(2,错误!),则f(9)为( )A.81 B.错误!C。
错误!D.3D 设f(x)=xα,由题意得错误!=2α,所以α=错误!。
2021届高考数学一轮复习资料
2021届⾼考数学总复习⼀轮复习资料⽬录专题1 集合与常⽤逻辑⽤语1§1.1 集合的概念与运算1§2 命题及其条件、充分条件与必要条件2§3 简单的逻辑连接词、全称量词与存在量词3专题2 函数概念与基本初等函数Ⅰ5§1 函数及其表⽰5§2 函数的单调性与最值7§3 函数的奇偶性与周期性8§4 ⼆次函数与幂函数9§5 指数与指数函数11§6 对数与对数函数12§7 函数的图像15§8 函数与⽅程17§9 实际问题的函数建模18专题3 导数及其应⽤20§1 导数的概念及运算20§2 导数的应⽤222.1 导数与函数的单调性222.2 导数与函数的极值、最值23§3 定积分与微积分基本定理26专题4 三⾓函数、解三⾓形27§1 任意⾓、弧度制及任意⾓的三⾓函数27§2 同⾓三⾓函数基本关系式及诱导公式29§3 三⾓函数的图像与性质31§4 函数y=Asin(ωx+φ)的图像及应⽤32§6 简单的三⾓恒等变换35§7 正弦定理、余弦定理36§8 解三⾓形的综合运⽤37 专题5 平⾯向量39§1 平⾯向量的概念及线性运算39§2 平⾯向量基本定理及坐标表⽰41§3 平⾯向量的数量积42§4平⾯向量应⽤举例43专题6 数列44§1 数列的概念与简单表⽰法44§2 等差数列及其前n项和46§3 等⽐数列及其前n项和47§4 数列求和49专题7 不等式50§1 不等关系与不等式50§2 ⼀元⼆次不等式及其解法52§3 ⼆元⼀次不等式(组)与简单的线性规划问题53§4 基本不等式及其应⽤55专题8 ⽴体⼏何与空间向量57§1 简单⼏何体的结构、三视图和直观图57§2 空间图形的基本关系与公理59§3 平⾏关系61§4 垂直关系64§5 简单⼏何体的⾯积与体积66§6 空间向量及其运算68§7 ⽴体⼏何中的向量⽅法707.1 证明平⾏与垂直707.2 求空间⾓和距离72专题9 平⾯解析⼏何74§1 直线的⽅程74§3 圆的⽅程78§4 直线与圆、圆与圆的位置关系80§5 椭圆82§6 抛物线84§7 双曲线86§8 曲线与⽅程88§9 圆锥曲线的综合问题90专题10 计数原理99§1 分类加法计数原理与分步乘法计数原理99§2 排列与组合100§3 ⼆项式定理102专题11 统计与统计案例104§1 随机抽样104§2 统计图表、⽤样本估计总体106§3 变量间的相关关系、统计案例108专题12 概率、随机变量及其分布110§1 随机事件的概率110§2 古典概型113§3 ⼏何概型115§4离散型随机变量及其分布列116§5 ⼆项分布及其应⽤118§6离散型随机变量的均值与⽅差、正态分布120专题13 推理与证明、算法、复数122§1 归纳与类⽐122§2综合法与分析法、反证法124§3 数学归纳法126§4 算法与算法框图128§5 复数130专题14 系列4选讲132§1 ⼏何证明选讲1321.1 相似三⾓形的判定及有关性质1321.2 直线与圆的位置关系133§2 坐标系与参数⽅程1342.1 坐标系1342.2 参数⽅程135§3 不等式选讲1363.1 绝对值不等式1363.2 不等式的证明138专题1 集合与常⽤逻辑⽤语§1.1 集合的概念与运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、⽆序性.(2)元素与集合的关系是属于或不属于两种,⽤符号∈或∉表⽰.(3)集合的表⽰法:列举法、描述法.(4)常见数集的记法2.集合间的基本关系3.集合的运算4.集合关系与运算的常⽤用结论(1)若有限集A 中有n 个元素,则A 的⼦集个数为2n 个,⾮空⼦集个数为2n -1个,真⼦集有2n -1个. (2)A ⊆B A ∩B =A A ∪B =B . 典例例 设集合A ={0,-4},B ={x |x 2+2(a +1)x+a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________.易易错分析 集合B 为⽅方程x 2+2(a +1)x +a 2-1=0的实数根所构成的集合,由B ⊆A ,可知集合B 中的元素都在集合A 中,在解题中容易易忽视⽅方程⽆无解,即B =∅的情况,导致漏漏解. 解析 因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是⽅方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关集合⾃然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR关系⾃然语⾔符号语⾔Venn 图⼦集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或 B=A )真⼦集集合A 是集合B 的⼦集,且集合B 中⾄少有⼀个元素不在集合A 中A ⊊B集合相等集合A ,B 中元素相同或集合A ,B 互为⼦集A =B集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }1.遗忘空集致误解得a=1;②当B≠∅且B A时,B={0}或B={-4},并且Δ=4(a+1)2-4(a2-1)=0,解得a=-1,此时B={0}满⾜足题意;③当B=∅时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1.综上所述,所求实数a的取值范围是a≤-1或a=1.答案 (-∞,-1]∪{1}温馨提醒 (1)根据集合间的关系求参数是⾼考的⼀个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B,若已知A⊆B或A∩B=∅,则考⽣很容易忽视A=∅⽽造成漏解.在解题过程中应根据集合A分三种情况进⾏讨论.[⽅方法与技巧]1.集合中的元素的三个特征,特别是⽆无序性和互异性在解题时经常⽤用到.解题后要进⾏行行检验,要重视符号语⾔言与⽂文字语⾔言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进⾏行行合理理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的⼜又⼀一体现.[失误与防范]1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).对可以化简的集合要先化简再研究其关系运算.2.空集是任何集合的⼦子集,是任何⾮非空集合的真⼦子集,时刻关注对空集的讨论,防⽌止漏漏解.3.解题时注意区分两⼤大关系:⼀一是元素与集合的从属关系;⼆二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进⾏行行集合交、并、补运算的常⽤用⽅方法,其中运⽤用数轴图示法时要特别注意端点是实⼼心还是空⼼心.§2 命题及其条件、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.思想与⽅法系1.等价转化思想在充要条件中的应⽤列典例例 (1)已知p:(a-1)2≤1,q:任意x∈R,ax2-ax+1≥0,则p是q成⽴的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知条件p:x2+2x-3>0;条件q:x>a,且┐q的⼀个充分不必要条件是┐p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析 (1)由(a-1)2≤1解得0≤a≤2,∴p:0≤a≤2.当a=0时,ax2-ax+1≥0对任意x∈R恒成⽴立;当a≠0时,由得0<a≤4,∴q:0≤a≤4.∴p是q成⽴立的充分不不必要条件.(2)由x2+2x-3>0,得x<-3或x>1,由┐q的⼀个充分不必要条件是┐p,可知┐p是┐q的充分不必要条件,等价于q是p的充分不必要条件.∴{x|x>a}⊊{x|x<-3或x>1},∴a≥1.答案 (1)A (2)A温馨提醒 (1)本题⽤到的等价转化①将┐p,┐q之间的关系转化成p,q之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对⼀些复杂、⽣疏的问题,利⽤等价转化思想转化成简单、熟悉的问题,在解题中经常⽤到.[⽅方法与技巧]1.写出⼀一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的⼏几种判断⽅方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利利⽤用A B与┐B ┐A;B A与┐A ┐B;A B与┐B ┐A的等价关系,对于条件或结论是否定形式的命题,⼀一般运⽤用等价法.(3)利利⽤用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)}:若A⊆B,则p是q的充分条件或q是p的必要条件;若A⊊B,则p是q的充分不不必要条件,若A=B,则p是q的充要条件.[失误与防范]1.当⼀一个命题有⼤大前提⽽而要写出其他三种命题时,必须保留留⼤大前提.2.判断命题的真假及写四种命题时,⼀一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的⽅方向,正确理理解“p的⼀一个充分⽽而不不必要条件是q”等语⾔言.§3 简单的逻辑连接词、全称量量词与存在量量词1.全称量量词与存在量量词(1)常见的全称量词有“所有”“每⼀个”“任何”“任意⼀条”“⼀切”等.(2)常见的存在量词有“有些”“⾄少有⼀个”“有⼀个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:┐p且┐q;p且q的否定:┐p或┐q.4.简单的逻辑联结词(1)命题中的“且”、“或”、“⾮”叫作逻辑联结词.(2)简单复合命题的真值表:p q┐p┐q p或q p且q真真假假真真真假假真真假假真真假真假假假真真假假1.常⽤逻辑⽤语及其应⽤⼀一、命题的真假判断典例例 已知命题p:存在x∈R,x2+1<2x;命题q:若mx2-mx-1<0恒成⽴,则-4<m<0,那么( )A.“┐p”是假命题B.q是真命题C.“p或q”为假命题D.“p且q”为真命题解析 由于x2-2x+1=(x-1)2≥0,即x2+1≥2x,所以p为假命题;对于命题q,当m=0时,有-1<0,恒成⽴立,所以命题q为假命题.综上可知:┐p为真命题,p且q为假命题,p或q为假命题,故选C.答案 C温馨提醒 判断与⼀元⼆次不等式有关命题的真假,⾸先要分清是要求解⼀元⼆次不等式,还是要求⼀元⼆次不等式恒成⽴(有解、⽆解),然后再利⽤逻辑⽤语进⾏判断.⼆二、求参数的取值范围典例例 已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x∈R,使得x2+4x+a=0”.若命题“p且q”是真命题,则实数a的取值范围是________.解析 若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x∈R,使x2+4x+a=0,知Δ=16-4a≥0,a≤4,因此e≤a≤4.答案 [e,4]温馨提醒 含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要⾸先考虑简单命题为真时参数的范围.三、利利⽤用逻辑推理理解决实际问题典例例 (1)甲、⼄、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市⽐⼄多,但没去过B城市;⼄说:我没去过C城市;丙说:我们三⼈去过同⼀城市.由此可判断⼄去过的城市为________.(2)对于中国⾜球参与的某次⼤型赛事,有三名观众对结果作如下猜测: 甲:中国⾮第⼀名,也⾮第⼆名; ⼄:中国⾮第⼀名,⽽是第三名; 丙:中国⾮第三名,⽽是第⼀名.竞赛结束后发现,⼀⼈全猜对,⼀⼈猜对⼀半,⼀⼈全猜错,则中国⾜球队得了第________名.解析 (1)由题意可推断:甲没去过B 城市,但⽐比⼄乙去的城市多,⽽而丙说“三⼈人去过同⼀一城市”,说明甲去过A ,C 城市,⽽而⼄乙“没去过C 城市”,说明⼄乙去过城市A ,由此可知,⼄乙去过的城市为A .(2)由上可知:甲、⼄乙、丙均为“p 且q ”形式,所以猜对⼀一半者也说了了错误“命题”,即只有⼀一个为真,所以可知丙是真命题,因此中国⾜足球队得了了第⼀一名. 答案 (1)A (2)⼀温馨提醒 在⼀些逻辑问题中,当字⾯上并未出现 “或”“且”“⾮”字样时,应从语句的陈述中搞清含义,并根据题⽬进⾏逻辑分析,找出各个命题之间的内在联系,从⽽解决问题.[⽅方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字⾯面上未出现“或”、“且”时,要结合语句句的含义理理解.2.要写⼀一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律律是“改量量词,否结论”. [失误与防范]1.p 或q 为真命题,只需p 、q 有⼀一个为真即可;p 且q 为真命题,必须p 、q 同时为真.2.两种形式命题的否定p 或q 的否定:⾮非p 且⾮非q ;p 且q 的否定:⾮非p 或⾮非q . 3.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定⽽而得到的命题,它既否定其条件,⼜又否定其结论;“命题的否定”即“⾮非p ”,只是否定命题p 的结论.专题2 函数概念与基本初等函数Ⅰ§1 函数及其表示1.函数与映射2.函数的有关概念函数映射两集合 A 、B设A ,B 是两个⾮空数集设A ,B 是两个⾮空集合对应关系 f :A →B 如果按照某个对应关系f ,对于集合A 中任何⼀个数x ,在集合B 中都存在唯⼀确定的数f (x )与之对应集合A 与B 间存在着对应关系f ,⽽且对于A 中的每⼀个元素x ,B 中总有唯⼀的⼀个元素y 与它对应名称称f :A →B 为从集合A 到集合B 的⼀个函数称对应f :A →B 为从集合A 到集合B 的⼀个映射记法y =f (x )(x ∈A )对应f :A →B 是⼀个映射(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫作⾃变量,集合A 叫作函数的定义域,集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)函数的表⽰法表⽰函数的常⽤⽅法有列表法、图像法和解析法. 3.分段函数若函数在其定义域的不同⼦集上,因对应关系不同⽽分别⽤⼏个不同的式⼦来表⽰,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由⼏个部分组成,但它表⽰的是⼀个函数. 4.常⻅见函数定义域的求法典例例 (1)(2014·课标全国Ⅰ)设函数f (x )=则使得f (x )≤2成⽴的x 的取值范围是________. (2)(2015·⼭山东)设函数f (x )=则满⾜f (f (a ))=2f (a )的a 的取值范围是( ) A. B.[0,1] C. D.[1, +∞) 解析 (1)当x <1时,e x -1≤2,解得x ≤1+ln 2, ∴x <1.当x ≥1时,≤2,解得x ≤8,∴1≤x ≤8. 综上可知x ∈(-∞,8].(2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥,∴≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥,故选C.答案 (1)(-∞,8] (2)C温馨提醒 (1)求分段函数的函数值,⾸先要确定⾃变量的范围,然后选定相应关系式代⼊求解.(2)当给出函数值或函数值的取值范围求⾃变量的值或⾃变量的取值范围时,应根据每⼀段解析式分别求解,但要注意检验所求⾃变量的值或取值范围是否符合相应段的⾃变量的值或取值范围. (3)当⾃变量含参数或范围不确定时,要根据定义域分成的不同⼦集进⾏分类讨论.[⽅方法与技巧]类型x 满⾜的条件,n ∈N +f (x )≥0与[f (x )]0f (x )≠0log a f (x )(a >0,a ≠1)f (x )>0log f (x )g (x )f (x )>0,且f (x )≠1,g (x )>0tan f (x )f (x )≠k π+,k ∈Z2.分类讨论思想在函数中的应⽤1313x2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进⾏行行.3.函数解析式的⼏几种常⽤用求法:待定系数法、换元法、配凑法、消去法.4.分段函数问题要分段求解. [失误与防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不不要和f (x )的定义域相混.2.分段函数⽆无论分成⼏几段,都是⼀一个函数,求分段函数的函数值,如果⾃自变量量的范围不不确定,要分类讨论.§2 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值典例例 (12分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数;(2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能⽤用定义.应该构造出f (x 2)-f (x 1)并与0⽐比较⼤大⼩小.(2)将函数不不等式中的抽象函数符号“f ”运⽤用单调性“去掉”是本题的切⼊入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1,∴f (x 2-x 1)>1.[2分]f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1)-1,[4分] ∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0 f (x 1)<f (x 2), ∴f (x )在R 上为增函数.[6分](2)解 ∵m ,n ∈R ,不不妨设m =n =1,增函数减函数定义在函数f (x )的定义域内的⼀个区间A 上,如果对于任意两数x 1,x 2∈A当x 1<x 2时,都有f (x 1)<f (x 2),那么,就称函数f (x )在区间A 上是增加的当x 1<x 2时,都有f (x 1)>f (x 2),那么,就称函数f (x )在区间A 上是减少的图像描述⾃左向右看图像是上升的⾃左向右看图像是下降的前提函数y =f (x )的定义域为D条件(1)存在x 0∈D ,使得f (x 0)=M ; (2)对于任意x ∈D ,都有f (x )≤M .(3)存在x 0∈D ,使得f (x 0)=M ; (4)对于任意x ∈D ,都有f (x )≥M .结论M 为最⼤值M 为最⼩值1.确定抽象函数单调性解函数不等式∴f(1+1)=f(1)+f(1)-1 f(2)=2f(1)-1,[8分]f(3)=4 f(2+1)=4 f(2)+f(1)-1=4 3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[10分]∵f(x)在R上为增函数,∴a2+a-5<1 -3<a<2,即a∈(-3,2).[12分]解函数不不等式问题的⼀一般步骤:第⼀一步:(定性)确定函数f(x)在给定区间上的单调性;第⼆二步:(转化)将函数不不等式转化为f(M)<f(N)的形式;第三步:(去f)运⽤用函数的单调性“去掉”函数的抽象符号“f”,转化成⼀一般的不不等式或不不等式组;第四步:(求解)解不不等式或不不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易易错点及解题规范.温馨提醒 本题对函数的单调性的判断是⼀个关键点.不会运⽤条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破⼜.第⼆个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在的单调区间的约束.[⽅方法与技巧]1.利⽤定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常⽤⽅法:定义法、导数法、复合函数法、图像法,也可利⽤单调函数的和差确定单调性.3.求函数最值的常⽤求法:单调性法、图像法、换元法.[失误与防范]1.分段函数单调性不不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不不同的区间上单调性相同,⼀一般要分开写,⽤用“,”或“和”连接,不不要⽤用“∪”.§3 函数的奇偶性与周期性1.奇函数、偶函数的概念图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.2.判断函数的奇偶性判断函数的奇偶性,⼀般都按照定义严格进⾏,⼀般步骤是(1)考察定义域是否关于原点对称.(2)考察表达式f(-x)是否等于f(x)或-f(x):若f(-x)=-f(x),则f(x)为奇函数;若f(-x)=f(x),则f(x)为偶函数;若f(-x)=-f(x)且f(-x)=f(x),则f(x)既是奇函数又是偶函数;若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,既⾮奇⾮偶函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在⼀个⾮零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最⼩正周期:如果在周期函数f (x )的所有周期中存在⼀个最⼩的正数,那么这个最⼩正数就叫做f (x )的最⼩正周期.典例例 (1)若函数f (x )=在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=则满⾜不等式f (1-x 2)>f (2x )的x 的取值范围是________. 易易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了了1-x 2>0导致解答失误. 解析 (1)∵f (-x )==, ∴f (-x )+f (x ) = =.由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=的图像,由图像可知,若f (1-x 2)>f (2x ), 则 即得x ∈(-1,-1).答案 (1)±1 (2)(-1,-1)温馨提醒 (1)已知函数的奇偶性,利⽤特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应⾼度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的⼤⼩关系.③弄清最终结果取并集还是交集.[⽅方法与技巧]1.判断函数的奇偶性,⾸先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的⼀个必要条件.2.利⽤函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图像,确定函数单调性.3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应⽤. [失误与防范]1.f (0)=0既不不是f (x )是奇函数的充分条件,也不不是必要条件.应⽤用时要注意函数的定义域并进⾏行行检验.2.判断分段函数的奇偶性时,要以整体的观点进⾏行行判断,不不可以利利⽤用函数在定义域某⼀一区间上不不是奇偶函数⽽而否定函数在整个定义域的奇偶性.§4 ⼆二次函数与幂函数1.⼆二次函数(1)⼆次函数解析式的三种形式 22.忽视定义域致误②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)⼆次函数的图像和性质 2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是⾃变量,α是常数. (2)幂函数的图像⽐较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减. 典例例 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最⼩值.思维点拨 参数a 的值确定f (x )图像的形状;a ≠0时,函数f (x )的图像为抛物线,还要考虑开⼝口⽅方向和对称轴与所给范围的关系. 规范解答解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 图像的开⼝口⽅方向向上,且对称轴为x =. ①当≤1,即a ≥1时,f (x )=ax 2-2x 图像的对称轴在[0,1]内, ∴f (x )在[0,]上递减,在[,1]上递增. 解析式f (x)=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图像定义域(-∞,+∞)(-∞,+∞)值域单调性在x ∈上单调递减; 在x ∈上单调递增在x ∈上单调递增; 在x ∈上单调递减对称性函数的图像关于x =-对称思想与⽅法系列3.分类讨论思想在⼆次函数最值中的应⽤②当>1,即0<a <1时,f (x )=ax 2-2x 图像的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减. ∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图像的开⼝口⽅方向向下, 且对称轴x =<0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2. 综上所述,f (x )min =温馨提醒 (1)本题在求⼆次函数最值时,⽤到了分类讨论思想,求解中既对系数a 的符号进⾏讨论,又对对称轴进⾏讨论.在分类讨论时要遵循分类的原则:⼀是分类的标准要⼀致,⼆是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不⽆原则的分类讨论.(2)在有关⼆次函数最值的求解中,若轴定区间动,仍应对区间进⾏分类讨论.[⽅方法与技巧]1.⼆二次函数的三种形式(1)已知三个点的坐标时,宜⽤用⼀一般式.(2)已知⼆二次函数的顶点坐标或与对称轴有关或与最⼤大(⼩小)值有关的量量时,常使⽤用顶点式. (3)已知⼆二次函数与x 轴有两个交点,且横坐标已知时,选⽤用零点式求f (x )更更⽅方便便. 2.研究⼆二次函数的性质要注意: (1)结合图像分析;(2)含参数的⼆二次函数,要进⾏行行分类讨论. 3.利利⽤用幂函数的单调性⽐比较幂值⼤大⼩小的技巧在⽐比较幂值的⼤大⼩小时,必须结合幂值的特点,转化为同指数幂,再选择适当的函数,借助其单调性进⾏行行⽐比较.[失误与防范]1.对于函数y =ax 2+bx +c ,要认为它是⼆二次函数,就必须满⾜足a ≠0,当题⽬目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.2.幂函数的图像⼀一定会出现在第⼀一象限内,⼀一定不不会出现在第四象限,⾄至于是否出现在第⼆二、三象限内,要看函数的奇偶性;幂函数的图像最多能同时出现在两个象限内;如果幂函数图像与坐标轴相交,则交点⼀一定是原点.§5 指数与指数函数1.分数指数幂(1)规定:正数的正分数指数幂的意义是,且n >1);正数的负分数指数幂的意义是=(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)幂的运算性质:a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,其中a >0,b >0,m ,n ∈R . 2.指数函数的图像与性质 (0),,m mn na a a m n +=>∈N m na −y =a x a >10<a <1图像典例例 (1)函数y =x -x +1在区间[-3,2]上的值域是________.(2)函数的单调减区间为__________________________.思维点拨 (1)求函数值域,可利利⽤用换元法,设t =x ,将原函数的值域转化为关于t 的⼆二次函数的值域.(2)根据复合函数的单调性“同增异减”进⾏行行探求. 解析 (1)因为x ∈[-3,2], 所以若令t =x ,则t ∈, 故y =t 2-t +1=2+.当t =时,y min =;当t =8时,y max =57. 故所求函数值域为. (2)设u =-x 2+2x +1, ∵y =u 在R 上为减函数,∴函数的减区间即为函数u =-x 2+2x +1的增区间. ⼜又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1]. 答案 (1) (2)(-∞,1]温馨提醒 (1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利⽤换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化.[⽅方法与技巧]1.通过指数函数图像⽐较底数⼤⼩的问题,可以先通过令x =1得到底数的值,再进⾏⽐较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,⼀定要分清a >1与0<a <1. 3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合⽽成. [失误与防范]1.恒成⽴立问题⼀一般与函数最值有关,要与⽅方程有解区别开来. 2.复合函数的问题,⼀一定要注意函数的定义域.3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)形式的⽅方程或不不等式,常借助换元法解决,但应注意换元后“新元”的范围.§6 对数与对数函数1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中 a 叫定义域(1)R 值域(2)(0,+∞)性质(3)过点(0,1),即x =0时,y =1(4)当x >0时,y >1;当x <0时,0<y <1(5)当x >0时,0<y <1;当x <0时,y >1(6)是R 上的增函数(7)是R 上的减函数4.换元法在和指数函数有关的复合函数中的应⽤用2211()()2x x f x −++=2211()()2x x f x −++=作对数的底数, N 叫作真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a =log a M -log a N ; ③log a M n =n log a M (n ∈R ); ④log am M n =log a M (m ,n ∈R ,且m ≠0). (2)对数的性质①= N ;②log a a N = N (a >0且a ≠1). (3)对数的重要公式①换底公式:log b N = (a ,b 均⼤于零且不等于1); ②log a b =,推⼴log a b ·log b c ·log c d =log a d . 3.对数函数的图像与性质4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图像关于直线 y =x 对称. 典例例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的⼤⼩关系是( ) A.c <b <a B.a <b <c C.b <a <c D.a <c <b(2)设a =log 2π,b =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a(3)已知a =,b =,c =,则( )A.a >b >cB.b >a >cC.a >c >bD.c >a >b思维点拨 (1)可根据幂函数y =x 0.5的单调性或⽐比商法确定a ,b 的⼤大⼩小关系,然后利利⽤用中间值⽐比较a ,c ⼤大⼩小.(2)a ,b 均为对数式,可化为同底,再利利⽤用中间变量量和c ⽐比较.(3)化为同底的指数式. 解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;log m n a M log a Na a >10<a <1图像性质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0当0<x <1时,y <0(5)当x >1时,y <0当0<x <1时,y >0(6)是(0,+∞)上的增函数(7)是(0,+∞)上的减函数2.⽐比较指数式、对数式的⼤大⼩小12log π2log3.454log 3.653log 0.31()5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节幂函数与二次函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域R值域⎣⎢⎡⎭⎪⎫4ac-b24a,+∞⎝⎛⎦⎥⎤-∞,4ac-b24a 对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性当b=0时是偶函数,当b≠0时是非奇非偶函数单调性在⎝⎛⎦⎥⎤-∞,-b2a上是减函数;在⎣⎢⎡⎭⎪⎫-b2a,+∞上是增函数在⎝⎛⎦⎥⎤-∞,-b2a上是增函数;在⎣⎢⎡⎭⎪⎫-b2a,+∞上是减函数[常用结论与微点提醒]1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f(x)=ax2+bx+c(a≠0),则当⎩⎪⎨⎪⎧a>0,Δ<0时恒有f(x)>0;当⎩⎪⎨⎪⎧a<0,Δ<0时,恒有f(x)<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=2x13是幂函数.( )(2)当α>0时,幂函数y=xα在(0,+∞)上是增函数.( )(3)二次函数y=ax2+bx+c(a≠0)的两个零点可以确定函数的解析式.( )(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.( )解析(1)由于幂函数的解析式为f(x)=xα,故y=2x13不是幂函数,(1)错.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a小于a或大于b时,最值不是4ac-b24a,故(4)错.答案 (1)× (2)√ (3)× (4)×2.(老教材必修1P79T1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12B.1C.32D.2解析 因为f (x )=k ·x α是幂函数,所以k =1. 又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22, 所以α=12,所以k +α=1+12=32.答案 C3.(新教材必修第一册P86T7改编)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.解析 当a =0时,f (x )=2x -3在(-∞,4)单调递增. 当a ≠0时,f (x )在(-∞,4)上单调递增.则a 需满足⎩⎪⎨⎪⎧a <0,-1a ≥4,解得-14≤a <0.综上可知,-14≤a ≤0.答案 ⎣⎢⎡⎦⎥⎤-14,04.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( ) A.b <a <c B.a <b <c C.b <c <aD.c <a <b解析 因为a =243=423,b =323,c =523又y =x 23在(0,+∞)上是增函数,所以c >a >b . 答案 A5.(2020·河南省实验中学质检)已知函数f (x )=3x 2-2(m +3)x +m +3的值域为[0,+∞),则实数m 的取值范围为( ) A.{0,-3} B.[-3,0]C.{0,3}D.(-∞,-3]∪[0,+∞)解析 依题意,得Δ=4(m +3)2-4×3(m +3)=0,则m =0或m =-3.∴实数m 的取值范围是{0,-3}. 答案 A6.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______. 解析 由y =x α为奇函数,知α取-1,1,3. 又y =x α在(0,+∞)上递减,∴α<0,取α=-1. 答案 -1考点一 幂函数的图象和性质【例1】 (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )(2)(2020·衡水中学调研)已知点(m ,8)在幂函数f (x )=(m -1)x n的图象上,设a =f ⎝ ⎛⎭⎪⎫13,b=f (ln π),c =f (2-12),则a ,b ,c 的大小关系是( ) A.a <c <b B.a <b <c C.b <c <aD.b <a <c解析 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.(2)由于f (x )=(m -1)x n为幂函数, 所以m -1=1,则m =2,f (x )=x n. 又点(2,8)在函数f (x )=x n的图象上,所以8=2n,知n =3,故f (x )=x 3,且在R 上是增函数,又ln π>1>2-12=22>13, 所以f (ln π)>f (2-12)>f ⎝ ⎛⎭⎪⎫13,则b >c >a . 答案 (1)C (2)A规律方法 1.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【训练1】 (1)(2019·荆门模拟)已知点⎝ ⎛⎭⎪⎫2,12在幂函数f (x )的图象上,则f (x )是( ) A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数(2)若幂函数y =x -1,y =x m 与y =x n在第一象限内的图象如图所示,则m 与n 的取值情况为( )A.-1<m <0<n <1B.-1<n <0<mC.-1<m <0<nD.-1<n <0<m <1解析 (1)设幂函数y =f (x )=x α,且图象过点⎝ ⎛⎭⎪⎫2,12,∴2α=12,得α=-1,则f (x )=x -1在x ∈R 且x ≠0时为奇函数,但在定义域内不单调.(2)幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,∴0<m <1. 当α<0时,y =x α在(0,+∞)上为减函数. 不妨令x =2,由图象得2-1<2n,则-1<n <0. 综上可知,-1<n <0<m <1. 答案 (1)A (2)D 考点二 二次函数的解析式【例2】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式. 解 法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a=8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12,所以m =12. 又根据题意,函数有最大值8,所以n =8,所以y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4, 所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a =8.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.规律方法 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练2】已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.解析因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图象关于x=2对称.又y=f(x)的图象在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图象上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.答案x2-4x+3考点三二次函数的图象及应用【例3】 (1)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是( )(2)设函数f(x)=x2+x+a(a>0),已知f(m)<0,则( )A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0解析(1)若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y =(a -1)x 2-x 图象开口向上,且对称轴在y 轴右侧,因此B 项不正确,只有选项A 满足.(2)因为f (x )的对称轴为x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0,所以m +1>0,所以f (m +1)>f (0)>0. 答案 (1)A (2)C规律方法 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x 轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【训练3】 一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析 A 中,由一次函数y =ax +b 的图象可得a >0,此时二次函数y =ax 2+bx +c 的图象应该开口向上,A 错误;B 中,由一次函数y =ax +b 的图象可得a >0,b >0,此时二次函数y =ax 2+bx +c 的图象应该开口向上,对称轴x =-b2a <0,B 错误;C 中,由一次函数y =ax +b 的图象可得a <0,b <0,此时二次函数y =ax 2+bx +c 的图象应该开口向下,对称轴x =-b2a<0,C 正确;D 中,由一次函数y =ax +b 的图象可得a <0,b <0,此时二次函数y =ax 2+bx +c 的图象应该开口向下,D 错误. 答案 C考点四 二次函数的性质多维探究角度1 二次函数的单调性与最值【例4-1】 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R . (1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解 (1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1]. (2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值范围是(-∞,1). 角度2 二次函数中的恒成立问题【例4-2】 (2020·沈阳模拟)已知函数f (x )=-x 2+ax -6,g (x )=x +4.若对任意x 1∈(0,+∞),存在x 2∈(-∞,-1],使f (x 1)≤g (x 2),则实数a 的最大值为( ) A.6B.4C.3D.2解析 由题意f (x )max ≤g (x )max ,(*)由g (x )在(-∞,-1]上单调递增,则g (x )max =g (-1)=3,f (x )=-x 2+ax -6=-⎝ ⎛⎭⎪⎫x -a 22+a24-6.当a ≤0时,f (x )在[0,+∞)上单调递减, 所以f (x )<f (0)=-6,显然f (x )<g (x )max =3. 所以当a ≤0时,(*)恒成立.当a >0时,x =a2∈(0,+∞),∴f (x )max =f ⎝ ⎛⎭⎪⎫a 2=a24-6.此时应有a 24-6≤3,且a >0,解得0<a ≤6. 综上可知a ≤6,则a 的最大值为6. 答案 A规律方法 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解. 2.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【训练4】 (1)(角度1)若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( )A.在(-∞,2]上递减,在[2,+∞)上递增B.在(-∞,3)上递增C.在[1,3]上递增D.单调性不能确定(2)(角度2)若函数f (x )=ax 2-(2a +1)x +a +1对于x ∈[-1,1]时恒有f (x )≥0,则实数a 的取值范围是________.解析 (1)由已知可得该函数图象的对称轴为x =2,又二次项系数为1>0,所以f (x )在(-∞,2]上是递减的,在[2,+∞)上是递增的.(2)∀x ∈[-1,1]时,f (x )≥0⇔a (x -1)2≥x -1.(*) 当x =1时,a ∈R ,(*)式恒成立. 当x ∈[-1,1)时,(*)式等价于a ≥1x -1恒成立. 又t =1x -1在[-1,1)上是减函数,a ≥⎝ ⎛⎭⎪⎫1x -1max=-12. 综上知a ≥-12.答案 (1)A (2)⎣⎢⎡⎭⎪⎫-12,+∞A 级 基础巩固一、选择题1.(2020·濮阳模拟)已知函数f (x )=(m 2-m -1)xm 2+2m -3是幂函数,且其图象与两坐标轴都没有交点,则实数m =( ) A.-1B.2C.3D.2或-1解析 由题意,得m 2-m -1=1,解得m =2或m =-1. 当m =2时,f (x )=x 5的图象与坐标轴有交点,不合题意. 当m =-1时,f (x )=x -4的图象与坐标轴无交点,符合题意. 综上可知,m =-1. 答案 A2.已知p :|m +1|<1,q :幂函数y =(m 2-m -1)x m在(0,+∞)上单调递减,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 p :由|m +1|<1得-2<m <0,又幂函数y =(m 2-m -1)x m在(0,+∞)上单调递减, 所以m 2-m -1=1,且m <0,解得m =-1. 故p 是q 的必要不充分条件. 答案 B3.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .所以M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 答案 B4.(2020·长沙一中调研)定义在R 上的函数f (x )=-x 3+m 与函数g (x )=f (x )+x 3+x 2-kx 在[-1,1]上具有相同的单调性,则k 的取值范围是( ) A.(-∞,-2] B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)解析 易知f (x )=-x 3+m 在R 上是减函数.依题设,函数g (x )=x 2-kx +m 在[-1,1]上单调递减. ∴抛物线的对称轴x =k2≥1,则k ≥2.答案 B5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A.[0,4]B.⎣⎢⎡⎦⎥⎤32,4C.⎣⎢⎡⎭⎪⎫32,+∞D.⎣⎢⎡⎦⎥⎤32,3 解析 二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示),可得m ∈⎣⎢⎡⎦⎥⎤32,3.答案 D 二、填空题6.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,实数a 等于________.解析 设f (x )=x α,则4α=12,所以α=-12.因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15.答案 157.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________. 解析 f (x )=-x 2+4x +a =-(x -2)2+a +4, ∴函数f (x )=-x 2+4x +a 在[0,1]上单调递增,∴当x =0时,f (x )取得最小值,当x =1时,f (x )取得最大值, ∴f (0)=a =-2,f (1)=3+a =3-2=1. 答案 18.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是________.解析由题意可知函数f(x)的图象开口向下,对称轴为x=2(如图),若f(a)≥f(0),从图象观察可知0≤a≤4.答案[0,4]三、解答题9.已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.解(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4,故a的取值范围是(-∞,-6]∪[4,+∞).10.已知幂函数f(x)=(m-1)2x m 2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q 成立的必要条件,求实数k的取值范围.解(1)依题意得:(m-1)2=1⇒m=0或m=2,当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m=0.(2)由(1)得,f(x)=x2,当x∈[1,2)时,f(x)∈[1,4),即A=[1,4),当x∈[1,2)时,g(x)∈[2-k,4-k),即B=[2-k,4-k),因p是q成立的必要条件,则B⊆A,则⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,即⎩⎪⎨⎪⎧k ≤1,k ≥0,得0≤k ≤1. 故实数k 的取值范围是[0,1].B 级 能力提升11.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a,y =x b的图象三等分,即有BM =MN =NA ,那么a-1b=( )A.0B.1C.12D.2解析 BM =MN =NA ,点A (1,0),B (0,1),所以M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13, 将两点坐标分别代入y =x a ,y =x b,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.答案 A12.已知在(-∞,1]上递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围是( ) A.[-2,2] B.[1,2] C.[2,3]D.[1,2]解析 由于f (x )=x 2-2tx +1的图象的对称轴为x =t , 又y =f (x )在(-∞,1]上是减函数,所以t ≥1. 则在区间[0,t +1]上,f (x )max =f (0)=1,f (x )min =f (t )=t 2-2t 2+1=-t 2+1,要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2, 只需1-(-t 2+1)≤2,解得-2≤t ≤ 2.又t ≥1,∴1≤t ≤ 2. 答案 B13.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.解析 当x ∈[-1,1]时,|f (x )|≤1恒成立.∴⎩⎪⎨⎪⎧|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1;|f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0,∴2-m =0,m =2, ∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.答案 -1914.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1, 又f (0)=1,所以c =1.因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立; 即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).C 级 创新猜想15.(组合选择题)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( )A.②④B.①④C.②③D.①③解析因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确.对称轴为x=-1,即-b2a=-1,2a-b=0,②错误. 结合图象,当x=-1时,y>0,即a-b+c>0,③错误. 由对称轴为x=-1知,b=2a.根据抛物线开口向下,知a<0,所以5a<2a,即5a<b,④正确.答案 B。