高三物理第一轮复习教案——动能定理
高考一轮复习 -动能定理及其应用
第2讲动能定理及其应用知识点一动能1.定义:物体由于________而具有的能.2.公式:E k=________.3.单位:________,1 J=1 N·m=1 kg·m2/s2.4.物理意义(1)动能是状态量,v是________(选填“瞬时速度”或“平均速度”).(2)动能是________(选填“矢量”或“标量”),只有正值,动能与速度方向________(选填“有关”或“无关”).5.动能的变化物体________与________之差,即ΔE k=________________________.知识点二动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中____________.2.表达式:W=________________.3.物理意义:________的功是物体动能变化的量度.4.动能定理的特点思考辨析(1)一定质量的物体动能变化时,速度一定变化;而速度变化时,动能也一定变化.( )(2)动能不变的物体一定处于平衡状态.( )(3)物体的动能不变,所受的合力必定为零.( )(4)物体做变速运动时动能不一定变化.( )(5)合力做功不等于零时,物体的动能一定变化.( )(6)如果物体的动能增加,那么合力一定做正功.( )教材改编[人教版必修2P75T5改编]运动员把质量是500 g的足球踢出后,某人观察它在空中的飞行情况,估计上升的最大高度是10 m,在最高点的速度为20 m/s.估算出运动员踢球时对足球做的功为( ) A.50 J B.100 JC.150 J D.无法确定考点一对动能定理的理解和应用自主演练1.对“外力”的两点理解(1)“外力”可以是重力、弹力、摩擦力、电场力、磁场力等,它们可以同时作用,也可以不同时作用.(2)“外力”既可以是恒力,也可以是变力.2.动能定理公式中“=”体现的“三个关系”数量关系合力的功与物体动能的变化可以等量代换单位关系国际单位都是焦耳因果关系合力做的功是物体动能变化的原因3.“一个参考系”:高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.[多维练透]1.(多选)一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则碰撞前后小球速度变化量的大小Δv和碰撞过程中小球的动能变化量ΔE k为( )A.Δv=0 B.Δv=12 m/s C.ΔE k=1.8 J D.ΔE k=02.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g,则在这个过程中,下列说法正确的是( )A.对物体,动能定理的表达式为W=m-m,其中W为支持力做的功B.对物体,动能定理的表达式为W合=0,其中W合为合力做的功C.对物体,动能定理的表达式为W-mgH=m-m,其中W为支持力做的功D.对电梯,其所受的合力做功为M-M3.从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图象是( )考点二动能定理的应用师生共研题型1|应用动能定理求变力的功例1 如图所示,在半径为0.2 m的固定半球形容器中,一质量为1 kg的小球(可视为质点)自边缘上的A点由静止开始下滑,到达最低点B时,它对容器的正压力大小为15 N.重力加速度g取10 m/s2,则球自A点滑到B点的过程中克服摩擦力做的功为( )A.0.5 J B.1.0 J C.1.5 J D.1.8 J题型2|动能定理在直线运动中的应用例2 有两条雪道平行建造,左侧相同而右侧有差异,一条雪道的右侧水平,另一条的右侧是斜坡.某滑雪者保持一定姿势坐在雪橇上不动,从h1高处的A点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s的水平雪道上.接着改用另一条雪道,还从与A点等高的位置由静止开始下滑,结果能冲上另一条倾角为α的雪道上h2高处的E点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )A.动摩擦因数为tan θ B.动摩擦因数为C.倾角α一定大于θ D.倾角α可以大于θ题型3|动能定理在曲线运动中的应用(多过程问题)例3 如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙.BP为圆心角等于143°,半径R=1 m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处.现有一质量m=2 kg的物块在外力作用下将弹簧缓慢压缩到D点后(不拴接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为x=12t-4t2(式中x单位是m,t单位是s),假设物块第一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)试求:(1)若CD=1 m,物块从D点运动到C点的过程中,弹簧对物块所做的功.(2)B、C两点间的距离x.【考法拓展1】在【例3】中,求物块释放后通过与O点等高的位置Q点时对轨道的压力.【考法拓展2】在【例3】中,若BC部分光滑,把物块仍然压缩到D点释放,求物块运动到P点时受到轨道的压力大小.练1 如图,MN为半径R=0.4 m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,O 为圆心,M、O、P三点在同一水平线上,M的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m=0.01 kg的小钢珠,小钢珠每次都在M点离开弹簧枪.某次发射的小钢珠沿轨道经过N点时恰好与轨道无作用力,水平飞出后落到OP上的Q点,不计空气阻力,取g=10 m/s2.求:(1)小钢珠经过N点时速度的大小v N;(2)小钢珠离开弹簧枪时的动能E k;(3)小钢珠在平板上的落点Q与圆心O点的距离s.练2 新型冠状病毒肺炎疫情发生后,全国人民踊跃捐款捐物,支持武汉人民抗疫.为了与时间赛跑,运送抗疫物资的某运输车以恒定功率P启动后以最大速度v m行驶.已知运输车总重为m.(1)求运输车速度为v m时的加速度;(2)假设运输车启动后经过时间t1,达到最大速度v m,求时间t1内运输车行驶的距离;(3)假设运输车启动后行驶距离s到达武汉,运输车刹车时所受合外力等于正常行驶时阻力的2倍,求运输车行驶的总时间.题后反思应用动能定理解题的基本步骤考点三动能定理与图象问题的结合多维探究题型1|vt图象例4 [2020·湖南湘潭一中月考]质量为m的物体从高为h的斜面顶端由静止下滑,最后停在水平面上,若该物体以v0的初速度从顶端下滑,最后仍停在水平面上,如图甲所示.图乙为物体两次在水平面上运动的vt图象,则物体在斜面上运动过程中克服摩擦力所做的功为( )A.m-3mgh B.3mgh-mC.m-mgh D.mgh-m题型2|Fx图象例5 [2020·济南模拟]静止在地面上的物体在不同合外力F的作用下通过了相同的位移x0,下列情况中物体在x0位置时速度最大的是( )题型3|E kx图象例6 [2020·江苏卷,4]如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图象是( )练3 (多选)光滑水平面上静止的物体,受到一个水平拉力作用开始运动,拉力F随时间t变化的图象如图所示,用E k、v、x、P分别表示物体的动能、速度、位移和拉力F的功率,下列四个图象分别定性描述了这些物理量随时间变化的情况,其中正确的是( )练4 [2020·临沂二模]狗拉雪橇是人们喜爱的滑雪游戏.已知雪橇与水平雪道间的动摩擦因数μ=0.1,人和雪橇的总质量m=50 kg.在游戏过程中狗用水平方向的力拉雪橇,使雪橇由静止开始运动.人和雪橇的动能E k与其发生位移x之间的关系如图所示(g=10 m/s2).求:(1)雪橇在x=30 m时的加速度;(2)在前40 m位移过程中拉力对人和雪橇做的功.题后反思解决物理图象问题的基本思路(1)弄清纵坐标、横坐标所对应的物理量及图线的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)对比图线和函数关系式,利用图线的斜率、截距、交点、面积和特定值求物理量.思维拓展巧选过程规范答题[2020·江苏无锡6月模拟](12分)如图所示是滑板运动的轨道示意图,BC和DE是两段光滑的圆弧形轨道,BC的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.2.某运动员从轨道上的A点以v=3 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点与水平轨道CD的竖直高度分别为h=2 m和H=2.5 m,g=10 m/s2.(1)求运动员从A点运动到B点时的速度大小v B.(2)求水平轨道CD的长度L.(3)通过计算说明,第一次返回时,运动员能否回到B点?如果能,求出运动员回到B点时速度的大小;如果不能,求出运动员最后停止的位置距C点的距离.[教你解决问题](1)刚好沿着轨道的切线方向滑入圆弧轨道→B点速度分解→到达B点时的速度大小.(2)从B到E→动能定理→水平轨道CD的长度L.(3)从E到第一次返回左侧最高处→动能定理→总路程→最后停止的位置.解答规范解答书写区自查项目(1)滑板在B点刚好沿着轨道的切线方向滑入圆弧轨道,由题意得v B=①(1分)解得v B=6 m/s.②(1分)(2)从B到E的过程,由动能定理得mgh-μmgL-mgH=0-m③(2分)有必要的文字说明指明对象和所用规律列式规范,无连等式、无代数过程题后反思1.灵活选择研究过程求解多过程问题既可分段考虑,也可全过程考虑,但要优先考虑全过程.2.注意运用做功的特点(1)重力的功取决于物体的初、末位置,与路径无关.(2)摩擦力做的功等于力的大小与路程的乘积.(3)求全过程的总功时,注意有些力不是全过程一直作用.第2讲动能定理及其应用基础落实知识点一1.运动2.mv23.焦耳4.(1)瞬时速度(2)标量无关5.末动能初动能m-m知识点二1.动能的变化量2.m-m3.合外力4.(3)曲线运动(4)变力做功(5)分阶段思考辨析(1)×(2)×(3)×(4)√(5)√(6)√教材改编解析:根据动能定理W-mgh=mv2得,W=150 J,故选项C正确.答案:C考点突破1.解析:取初速度方向为正方向,则Δv=|(-6)-6| m/s=12 m/s,由于速度大小没变,动能不变,故动能变化量ΔE k=0,故选项B、D正确.答案:BD2.解析:电梯上升的过程中,对物体做功的有重力mg、支持力F N,这两个力的总功(即合力做的功)才等于物体动能的增量,即W合=m-m,选项A、B错误,C正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,选项D正确.答案:CD3.解析:对于整个竖直上抛过程(包括上升与下落),速度与时间的关系为v=v0-gt,v2=g2t2-2v0gt+,E k=mv2,可见动能与时间是二次函数关系,由数学中的二次函数知识可判断A正确.答案:A例1 解析:在B点对小球由牛顿第二定律得F N-mg=m,解得E kB=mv2= (F N-mg)R,小球由A滑到B的过程由动能定理得mgR-W f=mv2-0,解得W f=R(3mg-F N)=×0.2×(30-15) J=1.5 J,故C正确,A、B、D错误.答案:C例2 解析:第一次停在BC上的某点,由动能定理得mgh1-μmgcos θ·-μmgs′=0mgh1-μmg=0mgh1-μmgs=0μ=A错误,B正确;在AB段由静止下滑,说明μmgcos θ<mgsin θ,第二次滑上CE在E点停下,说明μmgcos α≥mgsin α,若α>θ,则雪橇不能停在E点,所以C、D错误.答案:B例3 解析:(1)由x=12t-4t2知,物块在C点速度为v0=12 m/s,a=8 m/s2设物块从D点运动到C点的过程中,弹簧对物块所做的功为W,由动能定理得W-mgsin 37°·=m代入数据得W=m+mgsin 37°·=156 J.(2)物块在CB段,根据牛顿第二定律,物块所受合力F=ma=16 N物块在P点的速度满足mg=C到P的过程,由动能定理得-Fx-mgR(1+cos 37°)=m-m解得x= m=6.125 m.答案:(1)156 J (2)6.125 m考法拓展1 解析:物块在P点时满足mg=,物块从Q点到P点过程中,由动能定理得-mgR=m-m.物块在Q点时有F N=.联立以上各式得F N=3mg=60 N.由牛顿第三定律可知物块通过Q点时对轨道压力为60 N,方向水平向右.答案:60 N 方向水平向右考法拓展 2 解析:物块从C到P的过程中,由动能定理得-mgxsin 37°-mgR(1+cos37°)=m-m物块在P点时满足F N+mg=,联立以上两式得F N=49 N答案:49 N练1 解析:(1)小钢珠沿轨道经过N点时恰好与轨道无作用力,则有mg=m解得v N==2 m/s(2)小钢珠在光滑圆弧轨道,由动能定理得-mgR=m-E k解得E k=0.06 J(3)小钢珠水平飞出后,做平抛运动,R=gt2,s=v N t解得s= m答案:(1)2 m/s (2)0.06 J (3) m练2 解析:(1)由P=fv m,解得f=,由P=F解得运输车速度为v m时的牵引力F=,由牛顿第二定律有F-f=ma,解得加速度a=.(2)由动能定理得Pt1-fx1=m,解得时间t1内运输车行驶的距离x1==.(3)运输车刹车时匀减速运动的加速度为a′=,从刹车到运输车停下需要的时间t3=,联立解得t3=,从刹车到运输车停下运动的距离x3==,运输车匀速运动的距离x2=s-x1-x3=,运输车匀速运动的时间t2=,又f=,则运输车行驶的总时间t=t1+t2+t3=.例4 解析:本题考查动能定理与图象结合的问题.若物体由静止开始从顶端下滑,由动能定理得mgh-W f=m,若该物体以v0的初速度从顶端下滑,由动能定理得mgh-W f=m-m,由题图乙可知,物体两次滑到水平面的速度关系为v2=2v1,由以上三式解得W f=mgh-m,D正确,A、B、C错误.答案:D例5 解析:由于Fx图象所包围的面积表示力做功的大小,已知物体在不同合外力F的作用下通过的位移相同,C选项中图象包围的面积最大,因此合外力做功最多,根据动能定理W合=mv2-0,可得C选项物体在x0位置时速度最大,故A、B、D错误,C正确.答案:C例6 解析:在斜面上,物块受竖直向下的重力、沿斜面向上的滑动摩擦力以及垂直斜面向上的支持力,设物块的质量为m,斜面的倾角为θ,物块沿斜面下滑的距离对应的水平位移为x,由动能定理有mgsinθ·-μ1mgcos θ·=E k-0,解得E k=(mgtan θ-μ1mg)x,即在斜面上时物块的动能与水平位移成正比,B、D项均错误;在水平面上,物块受竖直向下的重力、竖直向上的支持力以及水平向左的滑动摩擦力,由动能定理有-μ2mg(x-x0)=E k-E k0,解得E k=E k0-μ2mg(x-x0),其中E k0为物块滑到斜面底端时的动能,x0为物块沿斜面下滑到底端时的距离对应的水平位移,即在水平面上物块的动能与水平位移为一次函数关系,且为减函数,A项正确,C项错误.答案:A练3 解析:由于拉力F恒定,所以物体有恒定的加速度a,则v=at,即v与t成正比,选项B正确;由P=Fv=Fat可知,P与t成正比,选项D正确;由x=at2可知x与t2成正比,选项C错误;由动能定理可知E k=Fx=Fat2,E k与t2成正比,选项A错误.答案:BD练4 解析:(1)雪橇从20 m到40 m做匀加速直线运动,由动能定理得:F合·Δx=E k2-E k1由牛顿第二定律得:F合=ma联立解得:a=0.5 m/s2.(2)前40 m的运动过程由动能定理得:W-μmgx=E k2解得:W=2 900 J.答案:(1)0.5 m/s2(2)2 900 J。
高考一轮复习:机械能——动能定理
机械能一、功和功率 一、功1.一个物体受到力的作用,如果在力的方向上发生一段位移,这个力就对物体做了功.力对物体所做的功,等于力的大小、位移的大小、力的余弦这三者的乘积.用公式表示为 位移,功是一个力与位移夹角量.在国际单位制中,功的单位是W =Fs cos α,简称标.符号是焦耳.1 J 等于1 N 的力使物体在力的方向上发生1 m 的位移时所做的功.2.当α=90°时,cos α=0,W =0,这表示力F 的方向跟位移s 的方向垂直时,力F 不做功;当α<90°时,cos α>0,W >0,这表示力F 对物体做正功;当α>90°时,cos α<0,W <0,这表示力F 对物体做负功.一个力对物体做负功,往往说成物体克服某个力做功(取绝对值).当物体在几个力的共同作用下发生一段位移s 时,这几个力对物体所做的总功,等于各个力分别对物体所做的功的代数和.【例题1】下图所示的四幅图是小明提包回家的情景,其中小明提包的力不做功的是( )答案:B【例题2】(双选)一个力对物体做了负功,则说明( )A .这个力一定阻碍物体的运动B .这个力不一定阻碍物体的运动C .这个力与物体运动方向的夹角α>90°D .这个力与物体运动方向的夹角α<90°答案:AC【解析】由功的表达式W =Fs cos α知,只有当α>90°时,cos α<0,力对物体做负功,此力阻碍物体的运动,故A 、C 对.二、功率功跟完成这些功所用时间的比值叫做功率.用P 表示功率,则有P =W t.在国际单位制中,功率的单位是瓦特,简称瓦,符号是W .功率也可以用力和速度来表示,在作用力方向和位移方向相同的情况下,力F 的功率等于力和速度的乘积.用公式表示为P =F v .【例题1】运动员在某次体能训练中,用100 s 的时间跑上了20 m 高的高楼.那么,与他登楼时的平均功率最接近的估测值是( )A .10 WB .100 WC .1 kWD .10 kW答案:B【例题2】如右图所示,质量为m 的物体放在光滑水平面上,都是从静止开始以相同的加速度移动同样的距离.第一次拉力F 1方向水平,第二次拉力F 2与水平方向成α角斜向上拉,在此过程中,两力的平均功率分别为P 1、P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .无法判断答案:B【解析】物体由静止开始,加速度相同、位移相同,则时间、末速度相同,由动能定理,合外力做功相同,而物体所受重力、支持力都不做功,所以两次拉力做功相同.由P =W t,W 相同、t 相同,则P 1=P 2,B 正确.考点一 对做功的理解1.功的定义:力的空间积累效应,和位移相对应(也和时间相对应).功等于力和沿该力方向上的位移的乘积.即:W =Fs cos α.注意:求功必须指明是“哪个力”“在哪个过程中”做的.2.做功的正负判断:(1)若力是恒力或力在作用过程中力的方向不变,一般根据W =Fs cos α判断:①当α<90°时,W >0,F 对物体做正功;②当α=90°时,W =0,F 对物体不做功;③当α>90°时,W <0,F 对物体做负功.(2)若力是变力,特别是力在作用过程中力的方向发生变化,则由F 与v 的夹角θ变化关系来判断:①当θ<90°时,F 对物体做正功;②当θ=90°时,F 对物体不做功;③当θ>90°时,F 对物体做负功.3.做功的计算:(1)恒力对物体做功,直接运用公式W =Fs cos α求解.(2)至于变力做功,常见的方法有五种:①平均力法:如果参与做功的变力,其方向不变,而大小随位移线性变化,则可求出平均力等效代入公式W =F s cos α求解.②图象法:如果参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图所示,那么图线下方所围成的面积,即为变力做的功.③功能关系法:能是物体做功的本领,功是能量转化的量度.由此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.④微元法:当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化时,可用微元法将曲线分成无限个小段,每一个小段可认为是恒力做功,总功即为各个小段做功的代数和.⑤功率法:用W=Pt可求恒定功率下的变力(如汽车、轮船的牵引力)做功.【例题1】如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力()A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零答案:B解析本题主要考查的是力做功正负的判断.由弹力的产生条件可知,斜面对小物块的作用力(支持力)垂直于接触面;根据力做功的定义W=F·s cos α,为了求斜面对小物块的支持力所做的功,应找到小物块的位移,由上图关系可以确定支持力与物块位移夹角大于90°,则斜面对物块做负功,本题应选B.点拨:判断某一个力F对物体是否做功,做正功还是做负功,若该力是恒力或力的方向恒定,通常利用公式W=Fs cos α判断(如本题中斜面对小物块的支持力恒定),但如果该力是变力,特别是力的方向发生变化时,则依据F与v的夹角θ关系来判断.【变式训练】(双选)如右图所示,重物P放在一长木板OA上,将长木板绕O端转过一个小角度的过程中,重物P相对于木板始终保持静止.关于木板对重物P的摩擦力和支持力做功的情况是()A.摩擦力对重物不做功B.摩擦力对重物做负功C.支持力对重物不做功D.支持力对重物做正功答案:AD【解析】长木板绕O端转过一个小角度的过程中,重物P受支持力N与摩擦力f均发生变化,故可依F与v的夹角θ关系来判断.由于长木板转动的过程中,重物P的速度方向总是与长木板垂直,所以支持力与速度方向相同,支持力对重物做正功;而摩擦力与速度方向垂直,摩擦力对重物不做功.【例题2】如下图所示,质量为m的物块静止在倾角为θ的斜面体上,当斜面体沿水平面向左匀速运动位移s时,求物块所受重力、支持力、摩擦力做的功和合力做的功.解析:物块受重力mg ,支持力N 和静摩擦力f ,物块随斜面体匀速运动合力为零,所以,N =mg cos θ,f =mg sin θ.物块位移为s ,重力与位移的夹角为π2,重力做功 W G =mg ·s cos π2=0. 支持力N 与s 的夹角为(π2-θ),支持力做功: W N =Ns cos ⎝⎛⎭⎫π2-θ=mgs sin θcos θ.静摩擦力f 与s 的夹角为(π-θ),f 做的功W f =f ·s cos (π-θ)=-mgs sin θcos θ.合力F 做的功W F 是各个力做功的代数和:W F =W G +W N +W f =0.点拨: (1)根据功的定义计算功时一定要明确力、位移和力与位移间的夹角.本题重力与位移夹角为π2,不做功,支持力与位移夹角为⎝ ⎛⎭⎪⎫π2-θ<π2,做正功,摩擦力与位移夹角为(π-θ)>π2,做负功.一个力是否做功,做正功还是做负功要具体分析,不能笼统地说,如本题支持力做正功.(2)合力的功一般用各个力做功的代数和来求,因为功是标量,求代数和较简单.如果先求合力再求功,本题合力为零,合力功也为零.物理思想方法:求变力做功的方法——微元法【变式训练】某力F =10 N 作用于半径R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周的过程中这个力F 做的总功应为( )A .0B .20πJC .10 JD .20 J答案:B 【解析】把圆周分成无数个小段,每个小段可认为与力在同一直线上,故ΔW =FΔs ,则转一周过程中各个小段做功的代数和为W =F ×2πR =20πJ ,故B 正确.考点二 对平均功率和瞬时功率的理解1.功率的定义式:P =W t,所求出的功率是时间t 内的平均功率. 2.功率的计算式:P =F v cos θ,其中θ是力与速度间的夹角.该公式有两种用法:(1)求某一时刻的瞬时功率.这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;(2)当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率.P 的正负取决于cos θ的正负,即功的正负.【例题1】 质量为m 的物体,从倾角为θ的光滑长斜面顶端由静止而下滑.求:(1)前n 秒内重力对物体做功的平均功率;(2)第n 秒内重力对物体做功的平均功率;(3)第n 秒末重力对物体做功的瞬时功率.解析 由牛顿第二定律:F =mg sin θ=ma 可得物体的加速度a =g sin θ,所以第n 秒末的速度v n =at =ng sin θ,前n 秒内物体的位移s n =12at 2=12n 2g sin θ. (1)前n 秒内重力对物体做功的平均功率P 1=W G t =mgs n sin θt =12mng 2sin 2θ. (2)第n 秒内重力的平均功率:P n =mg v -cos (90°-θ).又v =v n -1+v n 2=(n -1)g sin θ+ng sin θ2=(n -12)g sin θ, ∴P n =(n -12)mg 2sin 2θ. (3)第n 秒末重力对物体做功的瞬时功率:P n =mg ·v n cos (90°-θ)将v n 代入得P n =mng 2sin 2θ.点拨:本题考查平均功率和瞬时功率.求平均功率可用P =W /t 和P =F v cos θ两种方法,如本题(1)(2)两问,而求瞬时功率一般用P =Fv cos θ(其中F 、v 、θ均为此时的瞬时值)如第(3)问.【变式训练】 两个完全相同的小球A 、B ,在某一高度处以相同大小的初速度v 0分别沿水平方向和竖直方向抛出,如图下列说法正确的是( )A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从开始运动至落地,重力对两小球做功相同D .从开始运动至落地,重力对两小球做功的平均功率相同答案:C【解析】两小球落地时速率相同但速度方向不同,重力的瞬时功率P =mg v cos θ,重力的瞬时功率不同;由W =mgh ,可知重力做功相同;但由于它们的落地时间不同,由P =W t知重力的平均功率不同.考点三 机车的两种起动问题当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是:瞬时功率公式:P =F v 和牛顿第二定律:F -f =ma .1.恒定功率的加速.由公式P =F v 和F -f =ma 知,由于P 恒定,随着v 的增大,F 必将减小,a 也必将减小,汽车做加速度不断减小的加速运动,直到F =f ,a =0,这时v 达到最大值v m=P mF=P mf.可见恒定功率的加速一定不是匀加速.这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力).2.恒定牵引力的加速.由公式P=F v和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率P m,功率不能再增大了.这时匀加速运动结束,其最大速度为v′m=P mF<P mf=v m,此后汽车要想继续加速就只能做恒定功率的变加速运动了.可见在恒定牵引力的作用下加速时,功率一定不恒定.这种加速过程发动机做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率).要注意两种加速运动过程的最大速度的区别.【例题1】图示为修建高层建筑常用的塔式起重机.在起重机将质量m=5×103kg的重物竖直吊起的过程中,重物由静止开始向上作匀加速直线运动,加速度a=0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m=1.02 m/s的匀速运动.取g=10 m/s2,不计额外功.求:(1)起重机允许输出的最大功率;(2)重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率.解析:(1)设起重机允许输出的最大功率为P0,重物达到最大速度时,拉力F0等于重力.P0=F0v m,①F0=mg,②代入数据,有:P0=5.1×104W.③(2)匀加速运动结束时,起重机达到允许输出的最大功率,设此时重物受到的拉力为F,速度为v1,匀加速运动经历时间为t1,有:P0=F v1,④F-mg=ma,⑤v1=at1,⑥由③④⑤⑥,代入数据,得:t1=5 s.⑦t=2s时,重物处于匀加速运动阶段,设此时速度为v2,输出功率为P,则v2=at,⑧P=F v2,⑨由⑤⑧⑨,代入数据,得:P=2.04×104 W.点拨:机车以两种方式起动,是两种典型的运动形式,解答时应认真分析运动过程,分析各物理量的变化及相互制约关系,准确找出临界点.【变式训练】(双选)某科技创新小组设计制作出一种全自动升降机模型,用电动机通过钢丝绳拉着升降机由静止开始匀加速上升.已知升降机的质量为m,当升降机的速度为v1时,电动机的有用功率达到最大值P,以后电动机保持该功率不变,直到升降机以最大速度v2匀速上升为止,整个过程中忽略摩擦阻力及空气阻力,重力加速度为g.有关此过程下列说法正确的是()A.钢丝绳的最大拉力为Pv2B.升降机的最大速度v2=PmgC.钢丝绳的拉力对升降机所做的功等于升降机克服重力所做的功D.升降机速度由v1增大至v2的过程中,钢丝绳的拉力不断减小答案:【解析】本题属机车的两种起动的第二类问题:升降机先以恒定牵引力加速,再保持恒定功率的加速,最后升降机达到最大速度.由题意可知,B、D选项正确.二、动能定理一、动能1.做功的过程就是能量转化的过程,做了多少功,就有多少能量发生转化.所以,功是能量转化的量度.2.物体由于运动而具有的能叫做动能.公式是E k =12m v 2,单位是焦耳,符号是J ,动能是标量.3.动能具有相对性,动能的大小与参照物的选取有关.中学物理中一般选取地球为参照物.【例题1】有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m ,甲速度为v ,动能为E k ;乙速度为-v ,动能为E k ′,那么( )A .E k ′=-E kB .E k ′=E kC .E k ′<E kD .E k ′>E k答案:B【例题2】关于某物体动能的一些说法,正确的是( )A .物体的动能变化,速度一定变化B .物体的速度变化,动能一定变化C .物体的速度变化大小相同时,其动能变化大小也一定相同D .选择不同的参考系时,动能可能为负值E .动能可以分解到两个相互垂直的方向上进行运算答案:A二、动能定理合外力所做的功等于物体动能的变化,这个结论叫做动能定理.用W 1、W 2、W 3表示各个力做的功,用E k 2表示末动能,E k 1表示初动能,动能定理可表示为:W 1+W 2+W 3=E k 2-E k 1.【例题1】一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( )A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J答案:A【解析】合外力做的功W 合=E k -0,即W 合=12m v 2=12×25×22J =50 J ,A 项正确; W G +W 阻=E k -0,故W 阻=12m v 2-mgh =-700 J ,B 项错误;重力做功W G =mgh =25×10×3 J =750 J ,C 错;小孩所受支持力方向上的位移为零,故支持力做的功为零,D 错.【例题2】质点所受的力F 随时间变化的规律如右图所示,力的方向始终在一直线上.已知t =0时质点的速度为零,在图示的t 1、t 2、t 3和t 4各时刻中,哪一时刻质点的动能最大( )A .t 1B .t 2C .t 3D .t 4答案:B【解析】从F -t 图象可知,从0到t 2时刻力的方向都是正方向,物体一直加速,只是加速度先变大,再变小,但速度一直变大,从t 2时刻到t 4时刻都在减速.所以t 2时刻速度最大,动能最大.考点一 对动能和动能定理的理解1.动能(1)物体由于运动而具有的能,叫动能.其表达式为:E k =12m v 2. (2)对动能的理解①动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.②动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零,但对路边的行人,物品的动能就不为零.2.动能定理(1)内容:外力对物体所做的总功,等于物体动能的变化量.(2)公式:W =E k 2-E k 1.其中W 为外力所做的总功,是各个外力所做功的代数和.E k 2表示物体末状态的动能,E k 1表示物体初状态的动能.E k 2与E k 1的差ΔE k 为物体动能的变化量.(3)对定理的理解①公式中的v 、s 均以地面为参照物.②W 为外力功的代数和.外力既可以同时作用,也可以先后作用.③是标量式,但有正负.④合外力引起物体运动状态的变化,外力所做总功引起物体的动能变化.【例题1】 质点在恒力作用下,由静止开始做直线运动,关于质点动能的大小,以下说法正确的是( )A .动能与它通过的位移成正比B .动能与它通过的位移的平方成正比C .动能与它运动的时间成正比D .动能与它运动的时间的平方成正比答案:AD解析 由动能定理:W =Fs =E k ,又由位移公式:s =12at 2. 由以上两式可以看出,在F 一定时,E k 与s 成正比,E k 与t 的平方成正比.点拨:本题是动能定理与运动学公式的综合考查,虽然难度不大,但若没有通过题意列出以上两个关系式来进行分析,仅从主观猜测来判断,则难于选出正确结果.【变式训练】两辆汽车在同一平直路面上行驶,它们的质量之比m 1∶m 2=1∶2,速度之比v 1∶v 2=2∶1.当两车急刹车后,甲车滑行的最大距离为s 1,乙车滑行的最大距离为s 2.设两车与路面间的动摩擦因数相等,不计空气阻力,则( )A .s 1∶s 2=1∶2B .s 1∶s 2=1∶1C .s 1∶s 2=2∶1D .s 1∶s 2=4∶1答案:D【解析】根据动能定理,分别对两车列式:-μm 1gs 1=0-m 1v 21/2,-μm 2gs 2=0-m 2v 22/2.两式相比可得s 1∶s 2=4∶1,故选项D 是正确的.【例题2】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处距开始运动处的水平距离为s ,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.解析 设斜面倾角为α,则斜坡长L =h sin α,平面上滑行距离为s 2,物体沿斜面下滑时,重力对物体做功:W G =mgh .摩擦力对物体做功:W f 1=-fL =-μmgL cos α.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),W f 2=-μmgs 2.全程由动能定理得:W G +W f 1+W f 2=0,解得:μ=h h cot α+s 2=h s. 点拨:本题为我们提供了一种测定动摩擦因数的方法,除了用动能定理求解以外也可运用牛顿第二定律结合运动学公式求解.【变式训练】如图所示,用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进方向的夹角为α,木箱与冰道间的动摩擦因数为μ,求木箱获得的速度.【解析】对物体受力进行分析,已知运动位移s 和初态速度,求末态速度可用动能定理.拉力F 对物体做正功,摩擦力f 做负功,重力G 和支持力N 不做功.初动能E k1=0,末动能E k2=12m v 2,由动能定理得 Fs cos α-f ·s =12m v 2-0,且f =μN ,N =mg -F sin α,解得v =2[F cos α-μ(mg -F sin α)]s /m .考点二 动能定理的应用1.利用动能定理解题的基本步骤(1)首先明确要研究的对象(一个物体),找出初、末状态(对应速度),及对应的过程.(2)正确分析研究过程中物体受的所有外力,包括重力.(3)要弄清各个外力做功的多少和正负情况,计算时应把各已知功的正负号代入动能定理的表达式.(4)有些力在物体运动全过程中不是始终存在的,导致物体的运动包含几个物理过程,物体运动状态、受力情况等均发生变化,因而在求外力做功时,可根据不同情况求功(既可以把每段中的各力做的功求出,再求代数和;也可把每个力在全程中的功求出,再求代数和).(5)当物体的运动是由几个物理过程所组成,又不需要研究过程的中间状态时,可以把这几个物理过程看作一个整体进行研究.2.利用动能定理解题的优点(1)动能定理是标量式,不牵扯方向问题.在不涉及加速度和时间的问题时,可首先考虑动能定理.(2)对多过程可全程考虑,从而避开每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.(3)变力做功问题.在某些问题中由于力F 大小的变化或方向变化,所以不能直接由W =Fs cos α求变力F 做功的值,此时可由其做功的结果=动能的变化来求变力F 所做的功.(4)曲线运动问题.物理思想方法:用分析法解多过程问题【例题1】汽车从静止开始做匀加速直线运动,到最大速度时刻立即关闭发动机,滑行一段后停止,总共经历4 s ,其速度-时间图象如下图所示,若汽车所受牵引力为F ,摩擦阻力为F f ,在这一过程中,汽车所受的牵引力做功为W 1,汽车克服摩擦力所做的功为W 2,则( )A .F ∶F f =1∶3B .F ∶F f =4∶1C .W 1∶W 2=1∶4D .W 1∶W 2=1∶1答案:BD解析 汽车从静止开始到最后停止运动,由全过程动能定理有:F ·s 1-F f ·s 2=0.而由做功定义式:W 1=Fs 1,W 2=F f s 2,又由速度-时间图象可知s 1∶s 2=1∶4,由以上得W 1∶W 2=1∶1,F ∶F f =4∶1.点拨:本题也可以用动力学的观点进行求解,根据汽车先做匀加速直线运动后做匀减速直线运动两个过程各列两条方程,求出F 与F f 的关系,但求解比较麻烦,因此对多过程运动中应用动能定理求解比较简单,这一点同学们要认真体会.【变式训练】 (双选)以初速度v 0竖直上抛一个质量为m 的小球,小球运动过程中所受阻力F 阻大小不变,上升最大高度为h ,则抛出过程中,人的手对小球做的功是( )A.12m v 20B .mgh C.12m v 20+mgh D .mgh +F 阻h答案:AD【解析】抛出过程中,通过人的手对小球做功,由功能关系有:W =12m v 20. 小球在上升过程中由动能定理:-mgh -F 阻h =0-12m v 20,综上可知,选项A 、D 正确.【例题】如右图,让摆球从图中的C 位置由静止开始下摆,正好摆到悬点正下方D 处时,线被拉断,紧接着,摆球恰好能沿竖直放置的光滑半圆形轨道内侧做圆周运动,已知摆线长l =2.0 m ,轨道半径R =2.0 m ,摆球质量m =0.5 kg.不计空气阻力.(g 取10 m/s 2)(1)求摆球落到D 点时的速度和摆球在C 点时与竖直方向的夹角θ;(2)如仅在半圆形内侧轨道上E 点下方1/4圆弧有摩擦,摆球到达最低点F 时的速度为6 m/s ,求摩擦力做的功.解析 (1)在D 点刚好不脱离半圆轨道,有mg =m v 2D R,得v D =2 5 m/s. 从C 点到D 点由动能定理,有:mgl (1-cos θ)=12m v 2D ,得θ=π3. (2)从D 点到最低点,由动能定理得:2mgR +W 摩=12m v 2-12m v 2D解得W 摩=-16 J.点拨:本题的情景是小球在竖直平面内的圆周运动问题,考查圆周运动的临界速度问题及动能定理的应用,特别是小球的第二个运动过程,由于摩擦力是变力,所以不能直接用做功公式W =-fs 求摩擦力做功,而用动能定理求解.【变式训练】如图所示,用汽车通过定滑轮拖动水面上的货船,汽车从静止开始把船从B 拖到A ,若滑轮的大小和摩擦不计,船的质量为M ,阻力为船重的k 倍,船在A 处时汽车的速度为v ,其他数据如图所示,则这一过程中汽车对船做的功为多少?(绳的质量不计)【解析】汽车对船做的功等于绳子对船做的功,而绳子的张力是变力,故应用动能定理求解.船在A 处的速度为v A =v cos θ2.而阻力所做的功为W f =kMg (H cot θ1-H cot θ2),根据动能定理W F -W f =12M v 2A -0所以W F =M v 22cos 2θ2+kMgH (cot θ1-cot θ2).。
2024届高考一轮复习物理教案(新教材粤教版):动能定理及其应用
第2讲动能定理及其应用目标要求 1.理解动能、动能定理,会用动能定理解决一些基本问题.2.能利用动能定理求变力做的功.3.掌握解决动能定理与图像结合的问题的方法.考点一动能定理的理解和基本应用1.动能(1)定义:物体由于运动而具有的能量叫作动能.(2)公式:E k=12m v2,单位:焦耳(J).1J=1N·m=1kg·m2/s2.(3)动能是标量、状态量.2.动能定理(1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.(2)表达式:W=ΔE k=E k2-E k1=12m v22-12m v12.(3)物理意义:合力做的功是物体动能变化的量度.1.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.(√) 2.物体在合外力作用下做变速运动时,动能一定变化.(×)3.物体的动能不变,所受的合外力必定为零.(×)4.合力对物体做正功,物体的动能增加;合力对物体做负功,物体的动能减少.(√)1.应用动能定理解题应抓住“两状态,一过程”,“两状态”即明确研究对象的始、末状态的速度或动能情况,“一过程”即明确研究过程,确定在这一过程中研究对象的受力情况和位置变化或位移信息.2.注意事项(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系.(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解,也可以全过程应用动能定理求解.(3)动能是标量,动能定理是标量式,解题时不能分解动能.例1如图所示,AB 为四分之一圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R .一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,它由轨道顶端A 从静止开始下滑,恰好运动到C 处停止,不计空气阻力,重力加速度为g ,那么物体在AB 段克服摩擦力所做的功为()A .μmgR B.12mgR C .mgR D .(1-μ)mgR答案D解析BC 段物体所受摩擦力为f =μmg ,位移为R ,故BC 段摩擦力对物体做功W =-fR =-μmgR ,对全程由动能定理可知mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做功为W 克=mgR -μmgR =(1-μ)mgR ,选D.例2(2021·河北卷·6)一半径为R 的圆柱体水平固定,横截面如图所示,长度为πR 、不可伸长的轻细绳,一端固定在圆柱体最高点P 处,另一端系一个小球,小球位于P 点右侧同一水平高度的Q 点时,绳刚好拉直,将小球从Q 点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的速度大小为(重力加速度为g ,不计空气阻力)()A.(2+π)gRB.2πgRC.2(1+π)gR D .2gR答案A解析小球下落的高度为h =πR -π2R +R =π+22R ,小球下落过程中,根据动能定理有mgh =12m v 2,综上有v =(π+2)gR ,故选A.例3一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示,当物块的初速度为v2时,上升的最大高度记为h .重力加速度大小为g .物块与斜坡间的动摩擦因数和h 分别为()A .tan θ,H 2B.v 22gH-1θ,H 2C .tan θ,H4 D.v 22gH-1θ,H 4答案D解析物块以初速度v 上升的过程,由动能定理得-mgH -μmg cos θ·H sin θ=0-12m v 2,解得μv 22gH -1θ.当物块的初速度为v2时,由动能定理得-mgh -μmg cos θ·h sin θ=0-12m v2,解得h =H4,故选D.例4如图所示,粗糙水平地面AB 与半径R =0.4m 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量m =1kg 的小物块在9N 的水平恒力F 的作用下,从A 点由静止开始做匀加速直线运动.已知x AB =5m ,小物块与水平地面间的动摩擦因数为μ=0.1,当小物块运动到B点时撤去力F ,取重力加速度g =10m/s 2,求:(1)小物块到达B 点时速度的大小;(2)小物块运动到D 点时,轨道对小物块作用力的大小.答案(1)45m/s(2)150N解析(1)从A 到B 过程,据动能定理可得(F -μmg )x AB =12m v B 2解得小物块到达B 点时速度的大小为v B =45m/s(2)从B 到D 过程,据动能定理可得-mg ·2R =12m v D 2-12m v B 2在D 点由牛顿第二定律可得F N +mg =mv D 2R联立解得小物块运动到D 点时,轨道对小物块作用力的大小为F N =150N.应用动能定理的解题流程考点二应用动能定理求变力做功例5质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(重力加速度大小为g )()A.12m v 02-μmg (s +x ) B.12m v 02-μmgx C .μmgs D .μmg (s +x )答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由动能定理可得-W 弹-W f =0-12m v 02,则W 弹=12m v 02-μmg (s +x ),故选项A 正确.例6(2023·广东深圳市光明区名校联考)如图所示,一半圆弧形细杆ABC 竖直固定在水平地面上,AC 为其水平直径,圆弧半径BO =3.6m .质量为m =4.0kg 的小圆环(可视为质点,小环直径略大于杆的粗细)套在细杆上,在大小为50N 、沿圆的切线方向的拉力F 作用下,从A 点由静止开始运动,到达B 点时对细杆的压力恰好为0.已知π取3.14,重力加速度g 取10m/s 2,在这一过程中摩擦力做的功为()A .66.6JB .-66.6JC .210.6JD .-210.6J答案B解析小圆环到达B 点时对细杆的压力恰好为0,则mg =m v 2r,拉力F 沿圆的切线方向,根据动能定理F 2πr 4-mgr +W f =12m v 2,又r =3.6m ,摩擦力做的功为W f =-66.6J ,故选B.在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12m v 22-12m v 12,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12m v 22-12m v 12-W 恒,就可以求出变力做的功了.考点三动能定理与图像问题的结合图像与横轴所围“面积”或图像斜率的含义例7(2021·湖北卷·4)如图(a)所示,一物块以一定初速度沿倾角为30°的固定斜面上滑,运动过程中摩擦力大小f 恒定,物块动能E k 与运动路程s 的关系如图(b)所示.重力加速度大小取10m/s 2,物块质量m 和所受摩擦力大小f 分别为()A.m=0.7kg,f=0.5NB.m=0.7kg,f=1.0NC.m=0.8kg,f=0.5ND.m=0.8kg,f=1.0N答案A解析0~10m内物块上滑,由动能定理得-mg sin30°·s-fs=E k-E k0,整理得E k=E k0-(mg sin30°+f)s,结合0~10m内的图像得,斜率的绝对值|k|=mg sin30°+f=4N,10~20m内物块下滑,由动能定理得(mg sin30°-f)(s-s1)=E k,整理得E k=(mg sin30°-f)s-(mg sin30°-f)s1,结合10~20m内的图像得,斜率k′=mg sin30°-f=3N,联立解得f=0.5N,m=0.7kg,故选A.例8A、B两物体分别在水平恒力F1和F2的作用下沿水平面运动,先后撤去F1、F2后,两物体最终停下,它们的v-t图像如图所示.已知两物体所受的滑动摩擦力大小相等,则下列说法正确的是()A.F1、F2大小之比为1∶2B.F1对A、F2对B做功之比为1∶2C.A、B质量之比为2∶1D.全过程中A、B克服摩擦力做功之比为2∶1答案C解析由v-t图像可知,两个匀减速运动的加速度大小之比为1∶2,由题可知A、B所受摩擦力大小相等,所以A、B的质量关系是2∶1,故C正确.由v-t图像可知,A、B两物体运动的位移相等,且匀加速运动位移之比为1∶2,匀减速运动的位移之比为2∶1,由动能定理可得F1与摩擦力的关系:F1·s-f1·3s=0-0,F2与摩擦力的关系:F2·2s-f2·3s=0-0,因此可得:F1=3f1,F2=32f2,f1=f2,所以F1=2F2.全过程中A、B克服摩擦力做的功相等,F1对A、F2对B做的功大小相等,故A、B、D错误.例9(2020·江苏卷·4)如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是()答案A解决图像问题的基本步骤(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线之间的交点、图线与横轴围成的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量.课时精练1.(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体.电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增大到v2时,上升高度为H,重力加速度为g ,则在这个过程中,下列说法正确的是()A .对物体,动能定理的表达式为W =12m v 22-12m v 12,其中W 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W -mgH =12m v 22-12m v 12,其中W 为支持力做的功D .对电梯,其所受的合力做功为12M v 22-12M v 12答案CD解析电梯上升的过程中,对物体做功的有重力mg 、支持力F N ,这两个力的总功(即合力做的功)才等于物体动能的增量,即W 合=W -mgH =12m v 22-12m v 12,其中W 为支持力做的功,A 、B 错误,C 正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力做的功一定等于其动能的增量,即12M v 22-12M v 12,D 正确.2.如图所示,光滑的固定斜面顶端固定一弹簧,质量为m 的小球以速度v 自最低点A 冲上斜面.压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,重力加速度为g ,则小球从A 到C 的过程中弹簧弹力做功是()A .mgh -12m v 2B.12m v 2-mgh C .-mgh D .-(mgh +12m v 2)答案A解析小球从A 到C 过程中,由动能定理可得W G +W F =0-12m v 2,W G =-mgh ,解得W F =mgh -12m v 2,故选A.3.(多选)(2023·云南昆明市第一中学、宁夏银川一中模拟)如图,若小滑块以某一初速度v 0从斜面底端沿光滑斜面上滑,恰能运动到斜面顶端.现仅将光滑斜面改为粗糙斜面,仍让滑块以初速度v 0从斜面底端上滑时,滑块恰能运动到距离斜面底端长度的34处.则()A .滑块滑上斜面后能再次滑回斜面底端B .滑块滑上斜面后不能再次滑回斜面底端C .滑块在斜面上运动的整个过程产生的热量为18m v 02D .滑块在斜面上运动的整个过程产生的热量为14m v 02答案AD解析设斜面长度为L ,斜面倾角为θ,由题意可知12m v 02=mgL sin θ,12m v 02=mgs sin θ+μmgs cos θ,其中的s =34L ,解得μ=13tan θ,因mg sin θ>μmg cos θ,则当滑块滑上斜面到达最高点后能再次滑回斜面底端,选项A 正确,B 错误;整个过程产生的热量为Q =2μmgs cos θ=12mgL sin θ=14m v 02,选项C 错误,D 正确.4.(2023·广东揭阳市普宁二中月考)如图,质量为m 的滑雪运动员(含滑雪板)从斜面上距离水平面高为h 的位置静止滑下,停在水平面上的b 处;若从同一位置以初速度v 滑下,则停在同一水平面上的c 处,且ab 与bc 相等.已知重力加速度为g ,不计空气阻力与通过a 处的机械能损失,则该运动员(含滑雪板)在斜面上克服阻力做的功为()A .mgh B.12m v 2C .mgh -12m v 2D .mgh +12m v 2答案C解析设运动员从静止开始滑下,停在水平面上b 处时,在斜面上克服阻力做的功为W 1,在水平面上克服摩擦力做的功为W 2,由动能定理得mgh -W 1-W 2=0,当运动员以速度v 从同一高度下滑时,停在同一水平面上的c 处,且ab 与bc 相等,由动能定理可得mgh -W 1-2W 2=0-12m v 2,联立两式求得W 1=mgh -12m v 2,故选C.5.(2023·湖南怀化市模拟)如图所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与斜面及水平面之间的动摩擦因数处处相同且不为零,不计B 、C 处能量损失)()A .等于v 0B .大于v 0C .小于v 0D .取决于斜面答案A解析物体从D 点滑动到顶点A 过程中,由动能定理可得-mg ·s AO -μmg ·s DB -μmg cos α·s AB=0-12v 02,α为斜面倾角,由几何关系有s AB cos α=s OB ,因而上式可以简化为-mg ·s AO -μmg ·s OD =0-12m v 02,从上式可以看出,物体的初速度与路径无关.故选A.6.电梯是一种以电动机为动力的垂直升降机,用于多层建筑载人或载运货物.某次电梯从地面由静止启动,加速度a 与离地高度h 的关系图像如图所示,则()A .2h 0~3h 0范围内电梯向上做匀减速直线运动B .电梯在0~h 0和2h 0~3h 0范围内的速度变化量相等C .电梯在3h 0处的速度大小为2a 0h 0D .电梯上升的最大高度可能为3h 0答案C解析由题图可知从0到2h 0,电梯先做加速度增大的加速运动再做匀加速运动,从2h 0到3h 0做加速度减小的加速运动,当加速度为零时,电梯向上的速度不为零,仍会向上运动,则电梯上升的最大高度一定大于3h 0,故A 、D 错误;根据动能定理可得12m v 2=Fh =mah =mS 面积,则v =2S 面积,则电梯在h 0处的速度大小为a 0h 0,在2h 0处的速度大小为3a 0h 0,在3h 0处的速度大小为2a 0h 0,所以电梯在0~h 0和2h 0~3h 0范围内的速度变化量不相等,故B 错误,C 正确.7.(2023·广东省清中、河中、北中、惠中联考)如图所示,竖直圆轨道固定在水平面上,其中A为最低点,B 为最高点,C 为与圆心等高的点,质量为1kg 且可视为质点的小球在轨道内做完整的圆周运动.已知小球动能E k 的变化范围为10~20J ,忽略一切摩擦,重力加速度g =10m/s 2,则下列说法正确的是()A .轨道半径为1mB .小球对轨道的最大压力与最小压力的大小之比为3∶1C .小球在C 点时对轨道的压力大小为45ND .以地面为势能零点参考平面,小球在C 点的重力势能等于动能答案B 解析在A 点F N1-mg =m v max 2R ,在B 点F N2+mg =m v min 2R ,A 到B 过程,根据动能定理有-mg ×2R =12m v min 2-12m v max 2,又有12m v max 2=20J ,12m v min 2=10J ,解得R =0.5m ,小球对轨道的最大压力与最小压力之比F N1′F N2′=F N1F N2=31,A 错误,B 正确;在C 点F N3=m v C 2R,A 到C 过程,根据动能定理有-mgR =12m v C 2-12m v max 2,解得小球在C 点时对轨道的压力大小F N3′=F N3=60N ,C 错误;以地面为势能零点参考平面,小球在C 点的重力势能E p =mgR =5J ,小球在C 点的动能E k =12m v C 2=15J ,D 错误.8.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10m/s 2.该物体的质量为()A .2kgB .1.5kgC .1kgD .0.5kg 答案C 解析法一:特殊值法画出运动示意图.设该外力的大小为F ,据动能定理知A →B (上升过程):-(mg +F )h =E k B -E k AB →A (下落过程):(mg -F )h =E k A ′-E k B ′整理以上两式并代入数据得物体的质量m =1kg ,选项C 正确.法二:写表达式根据斜率求解上升过程:-(mg +F )h =E k -E k0,则E k =-(mg +F )h +E k0下落过程:(mg -F )h =E k ′-E k0′,则E k ′=(mg -F )h +E k0′,结合题图可知mg +F =72-363-0N =12N ,mg -F =48-243-0N =8N 联立可得m =1kg ,选项C 正确.9.(多选)如图所示为一滑草场.某条滑道由上下两段高均为h 、与水平面夹角分别为45°和37°的滑道组成,载人滑草车与草地各处间的动摩擦因数均为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计载人滑草车在两段滑道交接处的能量损失,重力加速度大小为g ,sin 37°=0.6,cos 37°=0.8).则()A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g 答案AB 解析对载人滑草车从坡顶由静止开始滑到底端的全过程分析,由动能定理可知:mg ·2h -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;滑草车在滑道上段加速,在滑道下段减速,故滑草车通过上段滑道末端时速度最大,根据动能定理有mgh -μmg cos 45°·h sin 45°=12m v m 2,解得:v m =2gh 7,选项B 正确;全过程有W G -W 克f =0,则载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度为a =mg sin 37°-μmg cos 37°m=-335g ,故加速度大小为335g ,选项D 错误.10.如图所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的小球(可看成质点)从P 点上方高为R 处由静止开始下落,恰好从P 点进入轨道.小球滑到轨道最低点N 时,对轨道的压力大小为4mg ,g 为重力加速度.用W 表示小球从P 点运动到N 点的过程中克服摩擦力所做的功,则()A .W =12mgR ,小球恰好可以到达Q 点B .W >12mgR ,小球不能到达Q 点C .W =12mgR ,小球到达Q 点后,继续上升一段距离D .W <12mgR ,小球到达Q 点后,继续上升一段距离答案C 解析在N 点,根据牛顿第二定律有F N -mg =m v N 2R ,由牛顿第三定律知F N =F N ′=4mg ,解得v N =3gR ,对小球从开始下落至到达N 点的过程,由动能定理得mg ·2R -W =12m v N 2-0,解得W =12mgR .由于小球在PN 段某点处的速度大于此点关于ON 在NQ 段对称点处的速度,所以小球在PN 段某点处受到的支持力大于此点关于ON 在NQ 段对称点处受到的支持力,则小球在NQ 段克服摩擦力做的功小于在PN 段克服摩擦力做的功,小球在NQ 段运动时,由动能定理得-mgR -W ′=12m v Q 2-12m v N 2,因为W ′<12mgR ,故v Q >0,所以小球到达Q 点后,继续上升一段距离,选项C 正确.11.(2023·云南昆明市第一中学模拟)如图甲所示,两个不同材料制成的滑块A 、B 静置于水平桌面上,滑块A 的右端与滑块B 的左端接触.某时刻开始,给滑块A 一个水平向右的力F ,使滑块A 、B 开始滑动,当滑块A 、B 滑动1.0m 时撤去力F .整个运动过程中,滑块A 、B 的动能E k 随位移s 的变化规律如图乙所示.不计空气阻力,求:(1)滑块A 对B 做的功;(2)力F 的大小.答案(1)12J (2)39N 解析(1)B 在撤去F 后继续滑行s B =1.0m ,撤去F 时B 的动能E k B =6J ,由动能定理有-f B s B =0-E k B在撤去F 前,对B 由动能定律得W AB -f B s =E k B联立并代入数据解得W AB =12J(2)撤去力F 后,滑块A 继续滑行的距离为s A =0.5m ,撤去F 时A 的动能E k A =9J ,由动能定理有-f A s A =0-E k A力F 作用的过程中,分析滑块A 、B 整体,由动能定理有(F -f A -f B )s =E k A +E k B代入数据解得F =39N.12.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达B 点时对圆弧轨道的压力大小.答案(1)34mg 5gR 2(2)152mg 解析(1)设水平恒力的大小为F 0,小球所受重力和水平恒力的合力的大小为F ,小球到达C 点时速度的大小为v C ,则F 0mg =tan α,F =mg cos α,由牛顿第二定律得F =m v C 2R,联立并代入数据解得F 0=34mg ,v C =5gR 2(2)设小球到达B 点时速度的大小为v B ,小球由B 到C 的过程中由动能定理可得-2FR =12m v C 2-12m v B 2,代入数据解得v B =52gR 小球在B 点时有F N -F =m v B 2R,解得F N =152mg 由牛顿第三定律可知,小球在B 点时对圆弧轨道的压力大小为F N ′=152mg .。
高三物理教案动能定理及其应用(5篇)
高三物理教案动能定理及其应用(5篇)高三物理教案动能定理及其应用(5篇)作为一位兢兢业业的人民教师,前方等待着我们的是新的机遇和挑战,有必要进行细致的教案准备工作,促进思维能力的发展。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的教案范文。
欢迎分享!高三物理教案动能定理及其应用(精选篇1)1、研究带电物体在电场中运动的两条主要途径带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:(1)力和运动的关系--牛顿第二定律根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系--动能定理根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.2、研究带电物体在电场中运动的两类重要方法(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算高三物理教案动能定理及其应用(精选篇2)1、与技能:掌握运用动量守恒定律的一般步骤。
2、过程与:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
动能定理一轮复习教案
高三物理总复习—动能定理及其应用1.理解动能定理的确切含义2.熟练运用动能定理分析解决有关问题重点:1.动能定理的确切含义2.动能定理的应用难点:动能定理的应用考点点拨:1.利用动能定理求变力做功2.应用动能定理应该注意的问题3.动能定理在多过程、多体问题中的应用课前自主完成:金榜73页,主干回顾一、对动能定理的理解1.一个物体的动能变化ΔEk与合外力对物体所做功W具有等量代换关系(1)若ΔEk>0,表示合外力对物体做正功。
(2)若ΔEk<0,表示合外力对物体做负功。
(3)若ΔEk=0,表示合外力对物体做功为零。
2.动能定理公式中等号的意义(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功。
(2)单位相同,国际单位都是焦耳。
(3)因果关系:合外力的功是物体动能变化的原因。
3.动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面为参考系。
二、动能定理的应用1.运用动能定理须注意的问题(1)应用动能定理解题时,在分析过程的基础上无需深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程始末的动能。
(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同符号(正负)一同代入公式。
2.解题步骤(1)选取研究对象,明确它的运动过程。
(2)分析研究对象的受力情况和各个力的做功情况,然后求各个外力做功的代数和。
(3)明确物体在过程始末状态的动能Ek1和Ek2。
(4)列出动能定理的方程W合=Ek2-Ek1及其他必要的解题方程,进行求解。
题型一应用动能定理求变力的功例1用汽车从井下提重物,重物质量为m,定滑轮高为H,如图5-2-3所示,已知汽车由A点静止开始运动至B点时的速度为v,此时轻绳与竖直方向夹角为θ.这一过程中轻绳的拉力做功多大?变式一个质量为m的小球拴在钢绳的一端,另一端施加大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动。
第六章 第2讲 动能和动能定理-2025届高三一轮复习物理
第六章机械能守恒定律第2讲动能和动能定理对应学生用书P124考点动能定理的应用一、动能(E k ):物体由于①而具有的能量。
1.在物理学上,用②表示物体的动能,式中m 为物体的质量、v 为物体的速度。
2.动能是③,只具有大小,没有方向;由于速度具有相对性,因此动能也具有④性。
3.单位:⑤。
1J=1N·m =1kg·m/s 2。
二、动能定理1.文字表述:力在一个过程中对物体做的功,等于物体在这个过程中⑥的变化。
力:指物体受到的所有力的⑦力。
功:指合外力做的功,它等于各个力做功的⑧和。
2.数学表述:W 合=12mv 2-12m 02或W 合=E k -E k0或F 合x=E k -E k0。
3.适用范围:既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可同时作用,也可分阶段作用。
答案①运动②12mv 2③标量④相对⑤焦耳(J )⑥动能⑦合外⑧代数1.如图所示,质量为m 的物块在光滑水平面上,在水平恒力F 作用下发生了一段位移s ,物块在始、末状态的速度分别是v 1和v 2。
请根据牛顿第二定律和运动学规律推导动能定理的表达式。
答案物块在恒力F 作用下做匀加速直线运动,根据牛顿第二定律有F=ma ,由运动学公式有22-12=2as ,即s=22-122,把F 、s 代入W=Fs 得W=(22-12)ma 2=12m 22-12m 12。
2.如图所示,小滑块自左侧斜面高度为h 1的A 点由静止开始下滑,经长度为l 的水平面,最后滑到右侧斜面,到达高度为h 2的D 点速度恰好减为零。
若A 、D 两点的连线与水平面之间的夹角为θ,小滑块与左、右两斜面及水平面之间的动摩擦因数处处相同,请推导出动摩擦因数μ与角度θ之间的关系式。
答案对整个过程应用动能定理,有mgh 1-mgh 2-μmg cos α·ℎ1sin -μmg ·l-μmg cos β·ℎ2sin =0-0解得μ=ℎ1-ℎ2ℎ1tan +l+ℎ2tan。
2024版高考物理一轮复习教材:动能和动能定理教学课件
第2讲 动能和动能定理教材知识萃取1. 如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。
若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。
�2�1等于A.20 B.18C.9.0D.3.01.B 摩托车落到c 点时,根据平抛运动规律有h =v 01t 1,h =12g �12,解得�012=�ℎ2;同理摩托车落到b 点时有�022=9gh 。
又动能E 1=12m �012、E 2=12m �022,所以�2�1=18,故A 、C 、D 项错误,B 项正确。
答案2. 某音乐喷泉一个喷水管的流量为Q =0.04 m 3/s,喷出的水最高可达20 m 的高度,已知水的密度ρ=1.0×103 kg/m 3,不计空气阻力和水滴之间的相互作用,用于该喷水管的电动机功率约为A.8.0×103 WB.8.0×104 WC.2.0×103 WD.2.0×104 W2.A 根据题意,水离开管口的速度大小v =2� =2×10×20 m/s=20 m/s,设给喷管喷水的电动机输出功率为P ,很短一段时间Δt 内喷出的水柱的质量m =ρ·V =ρQ Δt ,根据动能定理可得P Δt =12mv 2,代入数据解得P =8.0×103 W,故A 正确,BCD 错误。
答案3. [多选]游乐场有一种儿童滑轨,其竖直剖面示意图如图所示,AB部分是半径为R的四分之一圆弧轨道,BC部分轨道水平。
一质量为m的小孩(可视为质点)从A点由静止滑下,滑到圆弧轨道末端B点时,对轨道的正压力为2.5mg,重力加速度大小为g。
下列说法正确的是A.小孩到达B点时的速度大小为2�B.小孩到达B点时的速度大小为6�2mgRC.小孩从A到B克服摩擦力做的功为14mgRD.小孩从A到B克服摩擦力做的功为12教材素材变式3.BC 根据牛顿第三定律可知,小孩在B点处受到轨道的支持力N=2.5mg,根据牛顿第二定律有N-mg=��2,解得v=6�2,故选项A错误,B正确;根据动能定理有mgR-W f=12mv2,将v=6�2代入可求出小孩从A到B克服摩擦力做的功W f=14mgR,故选项C正确,D错误。
高三物理动能定理及其应用教案
动能定理及其应用知识点动能Ⅱ1.定义:物体由于01运动而具有的能。
2.公式:E k=0212m v2。
3.标矢性:动能是03标量,只有正值,动能与速度方向04无关。
4.状态量:动能是05状态量,因为v是瞬时速度。
5.相对性:由于速度具有06相对性,所以动能也具有相对性。
6.动能的变化:物体07末动能与08初动能之差,即ΔE k=12m v22-12m v21。
动能的变化是过程量。
知识点动能定理Ⅱ1.内容:力在一个过程中对物体做的功,等于物体在这个过程中01动能的变化。
2.表达式(1)W=02ΔE k。
(2)W=03E k2-E k1。
(3)W=0412m v22-12m v21。
3.物理意义:05合力的功是物体动能变化的量度。
4.适用范围广泛(1)既适用于直线运动,也适用于06曲线运动。
(2)既适用于恒力做功,也适用于07变力做功。
(3)力可以是各种性质的力,既可以同时作用,也可以08不同时作用。
一堵点疏通1.合力做功是物体动能变化的原因。
()2.如果物体所受合力不为零,那么合力的功也一定不为零。
()3.物体的动能不变则物体的速度不变。
()4.物体做变速运动时动能一定变化。
()5.运用动能定理可以求变力做功。
()答案 1.√ 2.× 3.× 4.× 5.√二对点激活1.(人教版必修第二册·P88·T1改编)改变汽车的质量和速度,都可能使汽车的动能发生改变,下列几种情形中,汽车的动能不变的是()A.质量不变,速度增大到原来的2倍B.速度不变,质量增大到原来的2倍C.质量减半,速度增大到原来的2倍D.速度减半,质量增大到原来的4倍答案 D解析由E k=12知只有D项所述情形中汽车动能不变,故D正确。
2m v2.(多选)关于动能定理的表达式W=E k2-E k1,下列说法正确的是()A.公式中的W为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的总功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合力再求合力的功C.公式中的E k2-E k1为动能的变化量,当W>0时,动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功答案BC解析W=E k2-E k1中的W指合力的功,当然包括重力在内,E k2-E k1为动能的变化量,由合力的功来量度,W>0,ΔE k>0,W<0,ΔE k<0,动能定理也适用于曲线运动和变力做功。
高中物理动能定理讲课教案
高中物理动能定理讲课教案
教学目标:
1. 了解动能定理的概念及公式。
2. 掌握如何应用动能定理解决物理题目。
3. 能够理解动能定理与动能守恒的关系。
教学重点:
1. 动能定理的概念和公式。
2. 动能定理的应用。
教学难点:
1. 理解动能定理的推导过程。
2. 熟练应用动能定理解决问题。
教学过程:
一、导入(5分钟)
教师引入话题,通过一个例子引出动能和动能定理的概念,激发学生的学习兴趣。
二、讲解(15分钟)
1. 动能的定义和计算公式。
2. 动能定理的概念及公式推导。
3. 动能定理的应用方法。
三、练习(20分钟)
教师带领学生进行练习,包括计算动能、应用动能定理解决问题等方面的练习,让学生熟练掌握动能定理的应用方法。
四、讲解与总结(10分钟)
1. 再次强调动能定理的重要性和应用。
2. 总结动能定理与动能守恒的关系。
五、课堂小结(5分钟)
教师对本节课的重点内容进行总结,并布置相关作业。
教学反思:
本节课通过引入生动的例子和实际问题,让学生更加直观地理解了动能定理的概念和应用方法。
在练习环节,学生积极参与,对动能定理的掌握程度也有所提高。
下节课将继续巩固学生的动能定理应用能力,并进一步拓展和应用动能定理的知识。
高中物理教案动能定理
高中物理教案动能定理
一、教学目标:
1. 理解动能的定义,并能够运用公式计算动能;
2. 掌握动能定理的概念,能够运用公式解决相关问题;
3. 掌握动能定理的应用,能够分析物体运动中的动能变化情况。
二、教学重点和难点:
1. 动能定理的概念和公式;
2. 动能定理在实际问题中的应用。
三、教学准备:
1. 教材:高中物理教科书;
2. 实验器材:弹簧测力计、弹簧、小车等;
3. 多媒体教学设备。
四、教学过程:
引入:通过一个简单的例子引入动能定理的概念,并解释动能的定义和计算方法。
展示:通过实验演示,让学生观察物体在不同速度下的动能变化,并引入动能定理的公式。
练习:让学生进行动能定理相关的计算题目练习,加深对概念和公式的理解。
应用:通过实际问题案例,让学生应用动能定理解决物体运动中的动能变化问题。
总结:回顾动能定理的概念、公式和应用,帮助学生总结本节课的重点知识。
五、课堂讨论和解答:
六、作业布置:
七、课堂小结:本节课主要学习了动能定理的概念和公式,以及在实际问题中的应用,希
望同学们能够熟练掌握相关知识,并能够灵活运用于实际问题的解决中。
一轮复习动能定理
(1)平抛运动和圆周运动都属于曲线运动,若只涉及位 移和速度而不涉及时间,应优先考虑用动能定理列式求 解。
(2)动能定理的表达式为标量式,不能在某一个方向上 列动能定理方程。
(3)由于过程比较多,所以一定要注意:不论哪种情况 都不要出现“丢功”及“错功”。严格按照重力、弹力、 摩擦力的顺序找出运动物体所受的各个力,然后准确判断 出各个力做的功。
A.重力所做的功是mgh B.合外力对物块做的功是21mv2 C.推力对物块做的功是12mv2+mgh D.阻力对物块做的功是12mv2+mgh-Fs
12.(2017·洛阳检测)(多选)如图所示,在倾角为 θ 的斜面上, 轻质弹簧一端与斜面底端固定,另一端与质量为 M 的平板 A 连 接,一个质量为 m 的物体 B 靠在平板的右侧,A、B 与斜面的 动摩擦因数均为 μ。开始时用手按住物体 B 使弹簧处于压缩状 态,现放手,使 A 和 B 一起沿斜面向上运动距离 L 时,A 和 B 达到最大速度 v。则以下说法正确的是( )
2.(2016·全国卷Ⅲ)(多选)如图所示,一固定容器的内壁是 半径为 R 的半球面;在半球面水平直径的一端有一质量为 m 的质点 P。它在容器内壁由静止下滑到最低点的过程中, 克服摩擦力做的功为 W。重力加速度大小为 g。设质点 P 在最低点时,向心加速度的大小为 a,容器对它的支持力大 小为 N,则( )
A.物体先做加速运动,推力撤去时开始做减速运动 B.物体在水平地面上运动的最大位移是10 m C.物体运动的最大速度为2 15 m/s D.物体在运动中的加速度先变小后不变
6.(多选)质量为1 kg的物体静止在水平粗糙的地面 上,在一水平外力F的作用下运动,如图甲所示,外力F和 物体克服摩擦力Ff做的功W与物体位移x的关系如图乙所 示,重力加速度g取10 m/s2。下列分析正确的是( )
高三一轮复习动能定理教学设计
第四单元动能动能定理一。
背景和教学任务简介本节课在上一节对《功和功率》复习课的基础上展开对《动能动能定理》复习课的教学。
考虑到是高三第一轮的复习,本节课主要是通过引导学生对动能和动能定理概念和规律的复习,让学生理解动能定理含义,并通过一定量的问题分析,使学生初步掌握应用动能定理解题的一般方法步骤,培养学生分析问题、解决问题的能力。
二、教学目标:知识目标:1、通过一个简单问题的引入让学生回忆动能和能定理的内容;2、理解和应用动能定理,掌握动能定理表达式的正确书写。
3、分析得出应用动能定理解决问题的解题步骤。
4、能熟练应用动能定理解决一定的物理问题。
能力目标:1、能根据功是动能变化的量度关系解决简单的力学问题。
2、理论联系实际,培养学生逻辑思维能力、分析、解决问题的能力;情感目标:通过动能定理的理解和解题应用,培养学生对物理复习课学习的兴趣,培养辩正唯物主义的分析观点。
三、重点、难点分析1、本节重点是对动能定理的理解与应用。
2、总功的分析与计算对学生来说始终是个难点,总功的符号书写也是学生出错率最多的地方,应通过例题逐步提高学生解决该问题的能力。
3、通过动能定理进一步复习,让学生学会正确熟练应用动能定理,掌握应用动能定理解题的步骤,这是本节的难点。
四、教学设计思路和教学流程教学设计思想:通过习题引入复习内容,然后通过一个练习让学生讨论应用动能定理解题的步骤,同时教师把规范的解题步骤展示给学生,以便学生能逐渐掌握应用动能定理解题的正确书写。
教学过程中始终贯彻“以学生为本”的教学理念,采用学生讨论、思考、信息获取、演算、总结及口头表述的方法,突出老师与学生教与学的相互性,力求改变老师一讲到底的传统上课方式,在课堂教学模式上有所突破,同时根据学生的认知过程强化双基教学,提高学生的分析问题基本能力。
教学流程是通过一个简单的练习引出动能和动能定理的复习内容。
以分析做功为线索,通过师生对问题的共同讨论分析,最后由学生讨论、发言,总结出动能定理解题的一般步骤,并且通过巩固练习和思考提示学生进一步掌握应用动能定理解题的方法步骤。
2024届高考一轮复习物理教案(新教材粤教版):动能定理在多过程问题中的应用
专题强化八动能定理在多过程问题中的应用目标要求 1.会用动能定理解决多过程、多阶段的问题.2.掌握动能定理在往复运动问题中的应用.题型一动能定理在多过程问题中的应用1.应用动能定理解决多过程问题的两种思路(1)分阶段应用动能定理①若题目需要求某一中间物理量,应分阶段应用动能定理.②物体在多个运动过程中,受到的弹力、摩擦力等力若发生了变化,力在各个过程中做功情况也不同,不宜全过程应用动能定理,可以研究其中一个或几个分过程,结合动能定理,各个击破.(2)全过程(多个过程)应用动能定理当物体运动过程包含几个不同的物理过程,又不需要研究过程的中间状态时,可以把几个运动过程看作一个整体,巧妙运用动能定理来研究,从而避开每个运动过程的具体细节,大大简化运算.2.全过程列式时要注意(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,长为s,BC段是与AB段和CD段都相切的一小段圆弧,其长度可以忽略不计.一质量为m的小滑块在A点由静止释放,沿轨道滑下,最后停在D点,A点和D点的位置如图所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点回到A点,设滑块与轨道间的动摩擦因数为μ,重力加速度为g,则推力对滑块做的功等于()A.mgh B.2mghC.μmg(s+h)D.μmg(s+h cosθ)sinθ答案B,由动能定理得mgh-W克f AD=解析滑块由A点运动至D点,设克服摩擦力做功为W克f AD0,即W克f AD=mgh,①滑块从D 点回到A 点,由于是缓慢推,说明动能变化量为零,设克服摩擦力做功为W 克f DA ,由动能定理知,滑块从D 点被推回A 点过程有W F -mgh -W 克f DA =0,②由A 点运动至D 点,克服摩擦力做的功为W 克f AD =μmg cos θ·hsin θ+μmgs ,③从D →A 的过程克服摩擦力做的功为W 克f DA =μmg cos θ·hsin θ+μmgs ,④联立③④得W 克f AD =W 克f DA ,⑤联立①②⑤得W F =2mgh ,故A 、C 、D 错误,B 正确.例2(多选)(2021·全国甲卷·20)一质量为m 的物体自倾角为α的固定斜面底端沿斜面向上滑动.该物体开始滑动时的动能为E k ,向上滑动一段距离后速度减小为零,此后物体向下滑动,到达斜面底端时动能为E k5.已知sin α=0.6,重力加速度大小为g .则()A .物体向上滑动的距离为E k 2mgB .物体向下滑动时的加速度大小为g5C .物体与斜面间的动摩擦因数等于0.5D .物体向上滑动所用的时间比向下滑动的时间长答案BC解析物体从斜面底端回到斜面底端根据动能定理有-μmg ·2l cos α=Ek 5-E k ,物体从斜面底端到最高点根据动能定理有-mgl sin α-μmgl cos α=0-E k ,整理得l =E kmg ,μ=0.5,A 错误,C 正确;物体向下滑动时根据牛顿第二定律有ma 下=mg sin α-μmg cos α,解得a 下=g5,B 正确;物体向上滑动时根据牛顿第二定律有ma 上=mg sin α+μmg cos α,解得a 上=g ,故a 上>a 下,由于上滑过程中的末速度为零,下滑过程中的初速度为零,且走过相同的位移,根据位移公式l =12at 2,则可得出t 上<t 下,D 错误.例3(2023·广东惠州市调研)光滑斜面与长度为L =0.5m 粗糙水平地面平滑相连,质量为m=1kg 的小球(可视为质点)从斜面上距离地面高H 处由静止释放,经A 点进入与水平地面平滑连接的光滑圆形轨道(A 点为轨道最低点),恰好能到达圆形轨道的最高点B 点.已知小球与地面间的动摩擦因数μ=0.2,圆形轨道半径R =0.1m ,取重力加速度g =10m/s 2,求:(1)小球在B 点的速度大小;(2)小球在A 点时,其对圆形轨道的压力大小;(3)小球的释放点离水平地面的高度H .答案(1)1m/s(2)60N(3)0.35m解析(1)根据题意,小球恰好能到达圆形轨道的最高点B ,则mg =m v B 2R,解得v B =1m/s.(2)小球由A 运动到B 的过程中,根据动能定理有-mg ·2R =12m v B 2-12m v A 2,解得v A =5m/s在A 点,轨道对小球的支持力和小球的重力的合力提供向心力,即F N -mg =m v A 2R,解得F N=60N ,由牛顿第三定律得,小球对轨道的压力大小为60N.(3)小球从释放到运动到A 点的过程,运用动能定理有mgH -μmgL =12m v A 2,代入数据解得H=0.35m.题型二动能定理在往复运动问题中的应用1.往复运动问题:在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.2.解题策略:此类问题多涉及滑动摩擦力或其他阻力做功,其做功的特点是与路程有关,运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出,由于动能定理只涉及物体的初、末状态,所以用动能定理分析这类问题可简化解题过程.例4如图所示,固定斜面的倾角为θ,质量为m 的滑块从距挡板P 的距离为x 0处以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,重力加速度为g ,则滑块经过的总路程是()x 0tanx0tanx0tan答案A解析滑块最终要停在斜面底部,设滑块经过的总路程为x,对滑块运动的全程应用动能定理得mgx0sinθ-μmgx cosθ=0-12m v02,解得xx0tanA正确.例5(2023·广东中山市模拟)如图所示,水平轨道BC的左端与固定的光滑竖直14圆轨道相切于B点,右端与一倾角为30°的光滑斜面轨道在C点平滑连接(即物体经过C点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为3kg的滑块从圆弧轨道的顶端A点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D点,已知光滑圆轨道的半径R=0.45m,水平轨道BC长为0.4m,滑块与BC间的动摩擦因数μ=0.2,光滑斜面轨道上CD长为0.6m,g取10m/s2,求:(1)滑块第一次经过B点时对轨道的压力大小;(2)整个过程中弹簧具有最大的弹性势能;(3)滑块最终停在何处.答案(1)90N(2)2.1J(3)距B点0.15m处解析(1)滑块从A点到B点,由动能定理可得mgR=12m v B2①滑块在B点,由牛顿第二定律有F-mg=m v B2 R②由①②解得F=90N③由牛顿第三定律可得,滑块第一次经过B点时对轨道的压力为F′=F=90N④(2)滑块从A点到D点,该过程弹簧弹力对滑块做的功为W,由动能定理可得mgR -μmgL BC -mgL CD sin 30°+W =0⑤其中E p =-W ⑥由⑤⑥解得E p =2.1J ⑦(3)滑块最终停止在水平轨道BC 间,从滑块第一次经过B 点到最终停下来的全过程,由动能定理可得-μmg ·s =0-12m v B 2⑧由⑧解得s =2.25m ⑨则滑块在BC 段上运动的次数为n =2.250.4=5.625⑩说明滑块在BC 上滑动了5次,又向左运动0.625×0.4m =0.25m ⑪故滑块最终停止在BC 间距B 点0.15m 处(或距C 点0.25m 处).课时精练1.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 水平,其长度d =0.50m ,盆边缘的高度为h =0.30m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停止的地点到B 的距离为()A .0.50mB .0.25mC .0.10mD .0答案D解析小物块从A 点出发到最后停下来,设小物块在BC 面上运动的总路程为s ,整个过程由动能定理有:mgh -μmgs =0,所以小物块在BC 面上运动的总路程为s =h μ=0.30.1m =3m ,而d =0.5m ,刚好3个来回,所以最终停在B 点,即到B 点的距离为0,故选D.2.如图所示,一物体由固定斜面上的A 点以初速度v 0下滑到底端B ,它与挡板发生无动能损失的碰撞后又滑回到A 点,其速度恰好为零.设A 、B 两点高度差为h ,重力加速度为g ,则它与挡板碰前瞬间的速度大小为()A.2gh +v 024 B.2gh C.2gh +v 022D.2gh +v 02答案C解析设整个滑动过程中物体所受摩擦力大小为f (此力大小不变,下滑时方向沿斜面向上,上滑时方向沿斜面向下),斜面长为s ,则对物体由A →B →A 的整个过程运用动能定理,得-2fs =0-12m v 02.同理,对物体由A 到B 的过程运用动能定理,设物体与挡板碰前瞬间速度为v ,则mgh -fs =12m v 2-12m v 02,解得v =2gh +v 022,C 正确.3.(多选)(2023·江苏省启东中学模拟)如图所示,直杆AB 与水平面成α角固定,在杆上套一质量为m 的小滑块,杆底端B 点处有一弹性挡板,杆与板面垂直,滑块与挡板碰撞后将以原速率返回.现将滑块拉到A 点由静止释放,与挡板第一次碰撞后恰好能上升到AB 的中点,设重力加速度为g ,由此可以确定()A .滑块下滑和上滑过程加速度大小a 1、a 2B .滑块第1次与挡板碰撞前的速度v 1C .滑块与杆之间的动摩擦因数μD .滑块第k 次与挡板碰撞到第k +1次与挡板碰撞的时间间隔Δt 答案AC解析设AB 长为L ,对整个过程运用动能定理得:mg sin α·0.5L -μmg cos α(L +0.5L )=0,得μ=sin α3cos α,故C 正确;根据牛顿第二定律得下滑过程:mg sin α-μmg cos α=ma 1;上滑过程:mg sin α+μmg cos α=ma 2;解得:a 1=g sin α-μg cos α,a 2=g sin α+μg cos α,所以可求得滑块下滑和上滑过程加速度的大小a 1、a 2,故A 正确;由于A 、B 间的距离未知,尽管求出加速度,但不能求出滑块到达挡板时的时间以及与挡板碰撞前的速度,故B 、D 错误.4.(2023·广东深圳市模拟)如图所示,将一质量为m =0.1kg 的小球自水平平台右端O 点以初速度v 0水平抛出,小球飞离平台后由A 点沿切线落入竖直光滑圆轨道ABC ,并沿轨道恰好通过最高点C .圆轨道ABC 的形状为半径R =2.5m 的圆截去了左上角127°的圆弧,CB 为其竖直直径,sin 53°=0.8,g =10m/s 2,求:(1)小球经过C 点的速度大小;(2)小球运动到轨道最低点B 时轨道对小球的支持力大小;(3)平台末端O 点到A 点的竖直高度H .答案(1)5m/s(2)6N(3)3.36m解析(1)恰好过C 点,也就是在C 点,重力提供向心力mg =m v C 2Rv C =gR =5m/s(2)小球由B 到C 的过程,由动能定理-mg ·2R =12m v C 2-12m v B 2在B 点,合力提供向心力F N -mg =m v B 2R 联立解得F N =6N(3)小球由O 到A ,做平抛运动,在竖直方向v y 2=2gH 在A 点sin 53°=v yv A由A 到C 过程由动能定理得-mgR (1+cos 53°)=12m v C 2-12m v A 2联立解得H =3.36m.5.(2023·河北张家口市高三检测)如图所示,倾角为θ=37°的足够长光滑固定斜面AB 与长L BC =2m 的粗糙水平面BC 用一小段光滑圆弧(长度不计,未画出)平滑连接,半径R =1.5m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,使小滑块能够通过D 点,求小滑块的释放位置与B点的最小距离.答案(1)0.6(2)6.75m解析(1)小滑块恰好运动到C点,由动能定理得mgL0sin37°-μmgL BC=0-0,解得μ=0.6.(2)设滑块能够通过D点,在D点的最小速度为v D,有mg sinθ=m v D2R,解得v D=3m/s.设滑块释放位置与B点的最小距离为L,由动能定理得mgL sinθ-μmgL BC-mgR(1+sinθ)=12m v D2-0,解得L=6.75m.6.(2021·全国乙卷·24)一篮球质量为m=0.60kg,一运动员使其从距地面高度为h1=1.8m处由静止自由落下,反弹高度为h2=1.2m.若使篮球从距地面h3=1.5m的高度由静止下落,并在开始下落的同时向下拍球、球落地后反弹的高度也为1.5m.假设运动员拍球时对球的作用力为恒力,作用时间为t=0.20s;该篮球每次与地面碰撞前后的动能的比值不变.重力加速度大小取g=10m/s2,不计空气阻力.求:(1)运动员拍球过程中对篮球所做的功;(2)运动员拍球时对篮球的作用力的大小.答案(1)4.5J(2)9N解析(1)篮球从距地面高度h1=1.8m处自由下落的过程中由动能定理可得E k1=mgh1篮球反弹后向上运动的过程由动能定理可得0-E k2=-mgh2篮球从距地面h3=1.5m的高度由静止下落,同时向下拍球,篮球下落过程中,由动能定理可得W+mgh3=E k3在篮球反弹上升的过程中,由动能定理可得0-E k4=0-mgh4因篮球每次和地面撞击的前后动能的比值不变,则有比例关系E k2E k1=E k4E k3代入数据可得W=4.5J.(2)因作用力是恒力,在恒力作用下篮球向下做匀加速直线运动,因此由牛顿第二定律可得F+mg=ma,在拍球时间内运动的位移为s=1 2 at2做的功为W=Fs联立可得F=9N(F=-15N舍去).7.如图所示,让摆球从图中的C位置由静止开始摆下,摆到最低点D处,摆线刚好被拉断,小球在粗糙的水平面上由D 点向右做匀减速运动,到达A 孔进入半径R =0.3m 的固定在水平面上竖直放置的光滑圆弧轨道,当摆球进入圆轨道立即关闭A 孔.已知摆线长L =2m ,θ=53°,小球质量为m =0.5kg ,D 点与A 孔的水平距离s =2m ,g 取10m/s 2.(sin 53°=0.8,cos 53°=0.6)(1)求摆线能承受的最大拉力为多大;(2)要使摆球能进入圆轨道并且不脱离轨道,求摆球与粗糙水平面间的动摩擦因数μ的范围.答案(1)9N(2)0.25≤μ≤0.4或者μ≤0.025解析(1)当摆球由C 运动到D ,根据动能定理有mg (L -L cos θ)=12m v D 2,得v D =4m/s ,在D点,由牛顿第二定律可得F Tm -mg =m v D 2L,可得F Tm =9N(2)要保证小球能到达A 孔,设小球到达A 孔的速度恰好为零,由动能定理可得对DA 段:-μ1mgs =0-12m v D 2,可得μ1=0.4小球不脱离圆轨道分两种情况:①若进入A 孔的速度较小,那么将会在圆心所在高度以下做往返运动,不脱离轨道,其临界情况为到达圆心等高处速度为零,对DA 段:由动能定理可得-μ2mgs =12m v A 2-12m v D 2,在轨道中由动能定理可得-mgR =0-12m v A 2,可求得μ2=0.25②若小球进入A 孔的速度较大,能过圆轨道的最高点,那么也不会脱离轨道,当小球恰好到达最高点时,在最高点,由牛顿第二定律可得mg =m v 2R,由动能定理可得-μ3mgs -2mgR =12m v 2-12m v D 2,解得μ3=0.025综上所述,动摩擦因数μ的范围为0.25≤μ≤0.4或者μ≤0.025.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考一轮复习——动能定理一、教学目标:1.理解动能定理的确切含义2.熟练运用动能定理分析解决有关问题二、教学重难点:1、重点:〔1〕动能定理的确切含义〔2〕动能定理的应用2、难点:动能定理的应用三、考点点拨:1.利用动能定理求变力做功2.应用动能定理应该注意的问题3.动能定理在多体问题中的应用四、教学过程:〔一〕考点扫描1、知识整合〔1〕动能:①物体由于_____运动________而具有的能量叫动能。
②动能的大小:221mv E k 。
③动能是 标量 ,也是状态量。
〔2〕动能定理:⑴动能定理的内容和表达式:外力对物体做的总功等于物体动能的变化。
W 总=ΔE K ⑵物理意义:动能定理指出了____功___和____能___的关系,即外力做的总功,对应着物体动能的变化,变化的大小由_____外力做的总功_____来度量。
我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。
物体动能的变化是指____末动能与初动能的差____。
⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于____曲线运动___。
既适用于恒力做功,也适用于_____变力做功_____。
力可以是各种性质的力,既可以同时做用,也可以______分阶段作用____,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。
2、重难点阐释〔1〕应用动能定理解题的基本步骤:①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。
③明确物体在过程的始末状态的动能E k1和E k2④列出动能定理的方程W合=E k2-E k1与其它必要的解题方程,进行求解。
〔2〕动能定理的理解和应用要点:①动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。
②动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。
③动能定理不仅可以求恒力做功,也可以求变力做功。
在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。
④动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题〔圆周和平抛有自己独立的方法〕。
⑤在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程〔如加速和减速的过程〕,此时可以分段考虑,也可整体考虑。
如能对整个过程列动能定理表达式,则可能使问题简化。
在把各个力代入公式:W1﹢W2﹢……﹢W n=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。
〔二〕高考要点精析1、利用动能定理求变力做功☆考点点拨应用动能定理求解变力做功是高中阶段最常用的方法。
[例1]一个质量为m的小球拴在钢绳的一端,另一端施加大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动今将力的大小改变为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功。
解析:此题中,绳的拉力作为小球圆周运动的向心力,是变力,求变力做功应使用动能定理,设半径为R1和R2时小球的圆周运动的线速度大小分别为v1和v2,由向心力公式得F1=mv12/R1……①F2=mv22/R2……②由动能定理得:W=mv22/2-mv12/2……③由①②③得:W=〔F2R2-F1R1〕/2☆考点精炼1.如图所示,一弹簧振子,物块的质量为m,它与水平桌面间的动摩擦因数为μ。
起初,用手按住物块,物块的速度为零,弹簧的伸长量为x。
然后放手,当弹簧的长度回到原长时,物块的速度为v 。
试用动能定理求此过程中弹力所做的功。
2、应用动能定理应该注意的问题☆考点点拨〔1〕明确研究对象和研究过程,找出始、末状态的速度情况。
〔2〕要对物体进行正确的受力分析〔包括重力、弹力等〕,明确各力做功的正负。
〔3〕注意物体运动的阶段性,明确各阶段外力做功的情况。
[例2]质量为M=0.2 kg 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m 。
质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,当子弹以v =90m/s 的速度水平射出时,木块的速度为v 1=9m/s 〔此过程作用时间极短,可认为木块的位移为零〕。
若木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求:〔1〕木块对子弹所做的功W 1和子弹对木块所做的功W 2 ;〔2〕木块与台面间的动摩擦因数为μ。
解析:〔1〕由动能定理得,木块对子弹所做的功为W 12432121202-=-=mv mv J 同理,木块对子弹所做的功为W 21.82121==Mv J 〔2〕木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:21222121Mv Mv MgL -=-μ 木块离开台面后的平抛阶段,g h v s 22=解得μ=0.50 点评:从本题可以看出:木块对子弹所做的功W 1和子弹对木块所做的功W 2的代数和并不为零。
原因是,功是力对位移的积累,相互作用力大小相等,但位移大小不相等。
从本题还应引起注意的是:不要对系统用动能定理。
在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。
如果对系统在全过程用动能定理,就会把这个负功漏掉。
☆考点精炼2.如图所示,物体从倾斜角为θ的斜面上由A 点从静止滑下,最后停在水平面上的C 物体与斜面和地面间的动摩擦因数都是μ在滑经斜面与水平面的连接点B 时无机械能损失,试求物体在斜面上滑动的距离s 1和在地面上滑行的距离s 2的比值。
3、动能定理在多体问题中的应用☆考点点拨当题中涉与多个物体时,要注意灵活选取研究对象,找出各物体间位移或时间的关系,分别对各物体应用动能定理,必要时列方程组求解。
[例3]质量为M 的机车,牵引质量为m 的车箱在水平轨道上匀速前进,某时刻车箱与机车脱节,机车前进了 L 后,司机才发现,便立即关闭发动机让机车滑行。
假定机车与车厢所受阻力与其重力成正比且恒定。
试求车厢与机车都停止时两者的距离。
解析:此题用动能定理求解比用运动学、牛顿第二定律求解简便。
对车头,脱钩后的全过程用动能定理得:20121)(Mv kMgs L kMg F -=-- 对车箱,脱钩后用动能定理得:20221mv kmgs -=- 而21s s s -=∆,由于原来列车是匀速前进的,所以F =k 〔M+m 〕g 由以上方程解得M L m M s )(+=∆。
☆考点精炼3.如图所示:在光滑的水平面上有一平板小车M 正以速度v 向右运动,现将一质量为m 的木块无初速度的放在小车上。
由于木块和小车之间的摩擦力作用,小车的速度将会发生变化,为使小车保持原来的运动速度不变,必须与时对小车施加一个向右的水平力F ,当F 作用一段时间后,小车与木块刚好相对静止时,把它撤开,木块与小车的动摩擦因数为μ,求在上述过程中,水平恒力F 对小车所做的功。
m FM v〔三〕课堂小结:动能定理在高考中运用的非常广泛,它的运用并没有特定的题型,通常用于比较复杂的运动情况下,运用时,应多注意其运用条件和该注意的问题。
〔四〕布置作业:1.汽车在平直公路上行驶,在它的速度从零增至v 的过程中,汽车发动机做的功为W 1,在它的速度从v 增大至2v 的过程中,汽车所做的功为W 2,设汽车在行驶过程中发动机的牵引力和所受阻力不变,则有〔 〕A .W 2=2W 1B .W 2=3W 1C .W 2=4W 1D .仅能判断W 2>W 12.如图所示,DO 是水平面,AB 是斜面,初速为v 0的物体从D 点出发沿DBA 滑到A 点且速度刚好为零。
如果斜面改为AC ,让该物体从D 点出发沿DCA 滑到A 点且速度刚好为零,则物体具有初速度〔已知物体与路面之间的动摩擦因数处处相同且不为零〕〔 〕A .大于v 0B .等于v 0C .小于v 0D .取决于斜面的倾角 3.假设汽车紧急刹车制动后所受阻力的大小与汽车所受重力的大小差不多,当汽车以20m/s 的速度行驶时,突然制动。
它还能继续滑行的距离约为〔 〕A .40mB .20mC .10mD .5m4.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为 〔 〕A .m g L /4B .m g L /3C .m g L /2D .m g L5.质量为m 的小球用长度为L 的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g ,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为〔 〕A .m g L /4B .m g L /3C .m g L /2D .m g L6.将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。
7.如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h /10停止,则〔1〕钢珠在沙坑中受到的平均阻力是重力的多少倍?〔2〕若让钢珠进入沙坑h /8,则钢珠在h 处的动能应为多少?A B C D O h /10 h设钢珠在沙坑中所受平均阻力大小不随深度改变。
8.竖直固定在桌面上的轻质弹簧,原长为L0,质量为m的小球从弹簧上端正上方H处自由落下,碰到弹簧后,使弹簧发生的最大缩短量为△L,求小球具有最大速度时离桌面的高度〔弹簧劲度系数为k〕,以与此后弹簧可能具有的最大弹性势能。
9.如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长s=3m,BC 处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
10.质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力〔该升力由其他力的合力提供,不含重力〕,今测得当飞机在水平方向的位移为l时,它的上升高度为h,求:〔1〕飞机受到的升力大小;〔2〕从起飞到上升至h高度的过程中升力所做的功与在高度h处飞机的动能.11.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m。